
Approaches for Heuristically Biasing RRT Growth

Chris Urmson & Reid Simmons

The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
{curmson, reids}@ri.cmu.edu

Abstract

This paper presents several modifications to the basic
rapidly-exploring random tree (RRT) search algorithm.
The fundamental idea is to utilize a heuristic quality
function to guide the search. Results from a relevant
simulation experiment illustrate the benefit and
drawbacks of the developed algorithms. The paper
concludes with several promising directions for future
research.

1 Introduction

Rapidly-exploring random trees (RRT) have been
shown to provide an efficient method for solving
planning problems with kino-dynamic constraints [5].
Frazzoli adapted RRTs for real time planning for an
autonomous helicopter operating in the presence of
moving obstacles [3]. More recently, Bruce adapted
RRTs for use with a robotic soccer team [2]. In both of
these examples, there is only a binary evaluation of
whether space is free or impassable. In many
applications, however, it is important to consider a
continuum of costs between completely free space and
impassable obstacles. This is particularly relevant in the
case of planning for outdoor mobile robots where terrain
characteristics vary greatly.

This paper provides a method for biasing the growth of
an RRT based on costs discovered through the
exploration of the space. Doing so provides extra
information to the algorithm that allows it to operate in
more than just an exploratory manner. Our techniques
show improvements over the basic RRT algorithm in
the quality of solutions found in both binarized and
continuous cost spaces.

Section 2 introduces the basic RRT algorithm. Section
3 describes a variety of enhancements that we have
explored and section 4 provides an empirical
comparison between these improved algorithms and the
basic algorithm. The paper concludes with some
insights and promising future research directions
discovered through this work.

2 The Basic RRT algorithm

The rapidly-exploring random tree planner is an
incremental search algorithm that provides benefits over

conventional roadmap planners [4] due to the inherent
feasibility of the solutions generated. An outline of the
algorithm is shown in Figure 1. The
RANDOM_STATE function draws its samples from a
uniform distribution spread over the problem space.
NEW_STATE takes this random sample (xsample) and a
node to be extend (xnear), and generates an action from
the node towards the sample (unew) and the resultant
state (xnew). If unew is not executable, NEW_STATE
returns false.

The elegance of an RRT based search is that it uses
randomization to implicitly compute the Voronoi
regions of each of the nodes in a tree, and then selects a
node to expand with preference proportional to the size
of its Voronoi region. This technique causes the tree to
rapidly explore the space. In essence, the tree is
probabilistically pulled outward from its root.

In [5], LaValle and Kuffner mention that shaping the
probability distribution used to generate random
samples for growing the tree effects the rate of
convergence of the algorithm. Adding the goal state to
the distribution with a higher probability dramatically
increases the rate of convergence of the planner. The

BUILD_RRT (xinit)

T.init (xinit);

While (xgoal ⊄ T) do

 { xrand, xnear } � SELECT_NODE(T);

 EXTEND (T, xrand, xnear);

Return T;

SELECT_NODE (T)

 xrand � RANDOM_STATE();

 xnear � NEAREST_NEIGHBOR(xrand, T);

return { xrand, xnear };

EXTEND(T, xrand, xnear)

if (NEW_STATE(xrand, xnear, xnew, unew)) then

 T.add_vertex(xnew);

 T.add_edge(xnear, xnew, unew);

return;

Figure 1: The RRT Algorithm.

principal effect is that goal biasing pulls the tree in the
general direction of the goal state. A second and
equally important effect is that when the tree nears the
goal state, there is an increased likelihood of it
extending to the goal state. Without goal biasing, the
tree may come close to the goal, but through
happenstance, fail to achieve it.

3 Improving the RRT

One weakness of the basic RRT algorithm is that it does
not take path cost into account. This can lead to
solutions that are far from optimal (in particular, in
cases where the search space has a continuum of costs
ranging from free to impassable). Our work is
predicated on the idea that providing the algorithm with
some knowledge of path cost, better solutions will be
found.

To guide the growth of the randomized tree, the
algorithm should preferentially extend lower cost paths
heading towards the goal, while maintaining a
reasonable bias towards exploration. To this end, we
developed a modification to the RRT algorithm that
provides a probabilistic implementation of heuristic
search concepts. For convenience, this algorithm will be
referred to as heuristically-guided RRT (hRRT) search.

The hRRT shapes the probability distribution based on
the growth of the tree. The distribution is shaped to
make the likelihood of selecting any particular node

dependent on both the size of its Voronoi region (a bias
toward exploration) and the quality of the path to that
node (a bias toward exploiting known good parts of the
space). To accomplish this, an additional measure,
mquality, is computed:

)(

)(
1

max opt

optvertex
quality CC

CC
m

−
−

−=

Cvertex represents the total cost associated with a node
(i.e. the sum of the integrated cost along the path to this
node and the estimated cost from this node to the goal
state). Copt is the estimated total cost of the optimal path
from the initial state to the goal state. Cmax holds the
value of the highest total cost for any node considered
thus far. The numerator indicates how much worse a
path through this node is expected to be, in comparison
tot he optimal path. The denominator provides a scaling
coefficient to ensure that the weight falls within the
range [0, 1].

The quality measure is used to weight the Voronoi
region associated with each node. The weighting is
applied by modifying the EXTEND and
SELECT_NODE functions of the basic RRT algorithm
as shown in Figure 2. This algorithm generates random
states until a good nearest neighbor is probabilistically
chosen. The likelihood of selecting a node for extension
is proportional to both the size of its Voronoi region and
its quality measure. A floor value is introduced to
ensure that the search is not overly biased against
exploration. If the floor value is set to 1, this algorithm
becomes the basic RRT search algorithm.

Incorporating this quality measure results in a dramatic
improvement in the cost of paths found when the cost
function for the space is not binary. It even provides a
modest improvement in the quality of the paths returned
in the case of binary costs. A more detailed discussion
of the performance improvements are provided with the
experimental comparisons presented in section 3.

The hRRT algorithm generally works well, but can
sometimes encounter situations that result in undesired
behavior. In the case illustrated in Figure 3, vertex A is
near an obstacle and has been extended into a high cost
region. In this situation, the desired behavior is that A
should expand into the narrow passageway between the
obstacle and the high cost region, and exploration from
B should cease. Unfortunately, this frequently does not
happen because B’s Voronoi region is much larger than
A’s. The probability of selecting B relative to A is
given by:

Aquality

Bquality

pAvor

pBvor

)(

)(

SELECT_NODE(T)

do

xrand � RANDOM_STATE();

xnear � NEAREST_NEIGHBOR(x, T);

mquality �1- (xnear.cost –T.opt_cost) /
(T.max_cost-T.opt_cost);

mquality � min (mquality, T.prob_floor);

r �RANDOM_VALUE();

 while (r > mquality);

return { xrand, xnear };

EXTEND(T, xrand, xnear)

if (NEW_STATE (xrand, xnear, xnew, unew)) then

 T.add_vertex (xnew);

 T.add_edge (xnear, xnew, unew);

 CALCULATE_COST (xnew);

 T.max_cost �max(xnew.cost, T.max_cost);

return;

Figure 2: The hRRT algorithm.

This means that any time the ratio of the sizes of A and
B’s Voronoi regions is larger than the probability floor
value, B will be more likely to be selected than A.
This observation led to an investigation of algorithms
that try to expand one of the k-nearest neighbors, not
just the single nearest neighbor.

3.1 k-Nearest Algorithms

By considering the k-nearest neighbors, rather than only
the single nearest neighbor, regions of the tree are
chosen for expansion rather than particular nodes. In
essence, the combined area of the Voronoi regions of a
set of points is used to compute the probability that
biases towards expansion. To implement these
algorithms, only the SELECT_NODE function needs to
be modified.

IkRRT

The iterative k-nearest neighbor algorithm (IkRRT)
iterates over the k-neighbors in order of their quality
measure (see Figure 4). Once a node is sufficiently
good to pass the probabilistic quality test, it is selected
and the extension process continues. Note that if k is
equal to 1, this algorithm is equivalent to the hRRT
algorithm. By considering a set of nodes, rather than
the single closest node, the determining factor in cases
similar to those illustrated in Figure 3 is the quality
measure. Thus the likelihood of A being expanded (as
desired) is increased.

BkRRT

A variant method is the best of k-nearest neighbors
algorithm (BkRRT). Pseudo-code for this algorithm is
shown in Figure 5. In this algorithm, only the node of
the k-nearest neighbors with the best quality measure is
considered. If this node fails the quality test, a new
random sample is drawn and the process repeats. This
algorithm is much more aggressive in searching for
lower cost solutions since it only considers the best
node in any region of the tree. The downside of this
approach is that the algorithm tends to over-explore
regions of the space. 4 Experimental Results

This section provides some experimental results
showing the relative performance of these algorithms in
a variety of test cases. The long term goal of this work
is to apply randomized planning to the field of outdoor
mobile robot navigation in difficult terrain. To that end,
a velocity controlled massive particle is used as a
simplified, yet relevant, model for these experiments.
The particle is actuated by magnitude-limited forces
applied to it in any direction. The control input is a
desired velocity and direction. This control input is fed
to a PID controller that actuates the forces applied to the
particle. This model contains constraints similar to that
of a robot moving over terrain: high cost regions act as
an analogy for sloped terrain, while the inertial

Figure 4: Select node function for iterative
 k-nearest algorithm

SELECT_NODE(T)

do

xrand � RANDOM_STATE();

Knear � NEAREST_NEIGHBOR(x, T, k);

SORT_BY_QUALITY(Knear)

for each x in Knear

mquality �1- (x.cost –T.opt_cost) /
(T.max_cost-T.opt_cost);

mquality�min(mquality, T.prob_floor);

r �RANDOM_VALUE();

if (r < pquality)

 return { xrand, x };

 while true;

SELECT_NODE (T)

do

brand � RANDOM_STATE();

Knear � NEAREST_NEIGHBOR(x, T, k);

xnear � BEST_QUALITY(Knear)

mquality �1- (xnear.cost –T.opt_cost) /
(T.max_cost-T.opt_cost)

mquality � min(mquality, T.prob_floor);

r �RANDOM_VALUE();

while (r>pquality);

return { xrand, xnear };

Figure 5: Select node function for best of
k-nearest algorithm

A

B

Figure 3: A difficult case for the hRRT algorithm to
handle correctly.

properties of the particle and control space mirror those
of a mobile robot.

The performance of the basic RRT algorithm is
compared with the three algorithms presented here. All
experiments were performed on a Pentium III 900 MHz
computer with 256MB of memory with results
representing an average over a set of 100 trials. The k-
nearest neighbor algorithms were tested with a k of 5.
In the first experiment, we consider an environment
where the configuration space is binarized, i.e. the cost
for moving through any part of the free space is the
same.

4.1 Binary Space

Figure 6 shows the binary space in which this
experiment was performed. Table 1 shows the
performance of the various algorithms.

Algorithm Avg.
Cost

Avg. # of
nodes in T

Avg. Time
(s)

RRT 17.67 396 0.377

5% goal bias 17.63 167 0.148

10% goal bias 17.29 140 0.159

hRRT 16.52 366 0.545

5% goal bias 16.28 201 0.279

10% goal bias 16.05 172 0.251

IkRRT 16.02 912 1.408

5% goal bias 15.70 570 0.799

10% goal bias 15.67 528 0.753

BkRRT 14.28 913 2.908

5% goal bias 14.15 694 2.108

10% goal bias 14.16 656 2.059

Table 1: A comparison of various algorithms in a
binary free space.

The basic hRRT algorithm shows a modest
improvement in the quality of solution found with a
minor increase in computational cost. Both of the k-
nearest neighbor algorithms improve the solution but
are more costly to compute. In all cases, the addition of
a small amount of goal biasing reduces the computation
time and in general, improves the solution.

4.2 Variable Cost Plane

The next experiment compares the algorithms in an
open plane. A portion of the plane has an increased cost
(the grey area is ten times as expensive to move through
as the white area). Figure 7 shows the space considered
in this experiment. Table 2 shows the performance of
the various algorithms.

Algorithm Avg.
Cost

Avg. # of
nodes in T

Avg. Time
(s)

RRT 71.67 439 0.391

5% goal bias 63.12 113 0.074

10% goal bias 64.89 80 0.051

hRRT 23.89 292 0.276

5% goal bias 27.22 116 0.088

10% goal bias 25.49 85 0.061

IkRRT 16.3 562 0.555

5% goal bias 17.86 268 0.211

10% goal bias 17.42 193 0.171

BkRRT 13.25 432 0.454

5% goal bias 14.21 211 0.171

10% goal bias 14.39 179 0.140

Table 2: A Comparison of algorithms in a variable cost
plane.

Figure 7: An IkRRT grown in the second
experiment.

Figure 6: An hRRT grown in the first experiment.

When operating in a space with a non-uniform cost, the
hRRT shows a dramatic improvement over the basic
RRT algorithm in terms of path quality while
maintaining a similar computational cost. The k-nearest
neighbor algorithms show a significant improvement
over the hRRT algorithm but are more computationally
expensive.

An important observation to make about this data is that
the addition of a goal bias somewhat reduces the quality
of the solution while dramatically improving the rate of
convergence. The goal biasing essentially pulls the tree
through the expensive regions, to some degree
overriding the heuristic biasing.

4.3 Variable Cost Space with Obstacles

In this experiment the environments from experiments
one and two are overlaid, constructing a variable cost
space with obstacles embedded in it. The resulting
environment is shown in Figure 8. Table 3 shows how
the various algorithms compare in this space.

Algorithm Avg.
Cost

Avg. # of
nodes in T

Avg. Time
(s)

RRT 80.19 434 0.428

5% goal bias 77.75 154 0.135

10% goal bias 74.51 140 0.129

hRRT 24.58 246 0.278

5% goal bias 24.66 138 0.181

10% goal bias 23.98 126 0.151

IkRRT 20.31 771 1.088

5% goal bias 24.19 575 0.767

10% goal bias 26.53 510 0.699

BkRRT 18.74 558 1.003

5% goal bias 18.25 457 0.801

10% goal bias 18.16 436 0.782

Table 3: A comparison of the algorithms in a variable
cost space with obstacles.

Once again, the hRRT finds better paths than the basic
RRT. An interesting observation is that the hRRT
requires less computation time than the RRT, when no
biasing is provided. This performance increase results
because the hRRT generally avoids exploring the left
(high cost) portion of the plane, thus reducing the size
of the search space. This effect can also be seen in the
dramatic reduction in computation time for the IkRRT
and BkRRT algorithms (as compared to experiment 1).

4.4 Experimental Summary

From these experiments, it can be seen that heuristic
guidance provides a significant improvement in the
quality of paths produced through an RRT like search.

In all cases, utilizing the hRRT algorithm instead of the
basic RRT algorithm produces statistically significant
improvements in the quality of solutions found without

any statistically significant increase in computational
cost, in fact, in some cases the computational cost is
reduced. The IkRRT and BkRRT algorithms improve
further on the quality of results returned, but do require
a statistically significant increase in computational cost.
Finally, the addition of a small amount of goal bias to
the heuristically guided algorithms provides a dramatic
improvement in the rate of convergence with only a
small, often statistically insignificant decrease in the
quality of the solution.

5 Insights and Future Work

In working with the RRT algorithms, we have begun to
develop an understanding of several important factors
that must be considered when applying RRT-like
algorithms.

Shape of the Probability Distribution

One of the most important components of an RRT based
planner is the underlying probability distribution. For
example, in the problem shown in Figure 9, if there is
no probability mass to the right of the problem space, an
RRT based algorithm will take a long time to find a

Figure 9: A problem where the distribution must
have probability mass to the right of the space.

S

G

Figure 8: An IkRRT grown in the third
experiment.

solution. Similarly, without goal biasing, the likelihood
of achieving the goal state will be very low unless there
is additional probability mass above and to the left of
the problem space. The reason for this is that without
these additional probability masses, there is little, or no,
area in which the random samples could be generated to
pull the tree beyond the wall and towards the goal state.

Given this observation, it is important to carefully
consider the shape and bounds of the probability
distribution applied to solve any particular problem.

Exploitation vs. Exploration

A fundamental trade-off in any search problem is how
much effort should be spent exploring the space vs. how
much effort should be used to exploit, or greedily search
the space. This work provides a technique that attempts
to strike a balance between these two competing desires.
Improvements may come from providing a better
estimate for the true cost between the initial state and
the goal state. Initial work has begun on a variation of
these algorithms that propagates an expected cost back
through the tree using an update function similar to:

()













+−+

+
+= ∑ i

children
jjij

children
ii GPCP

N
PC

1
1

Where Ci is the total cost of a node, Pi is the cost of the
path to the node, Pij is the incremental path cost between
node i and node j, and Gi is the optimistic estimate of
cost to the goal for node i.

Each time a state is added to the tree, this function is
applied recursively to the nodes in the path from the
newly added state to the root. When this data reaches
the root, Copt is updated accordingly. Information about
the problem space is thus used to adjust the heuristic
cost guiding the search. At this point, the idea has
shown limited success. The principal difficulty at this
point is how to incorporate knowledge of failures to
extend the tree. This information is important as it
provides an understanding of the difficulty of the
problem space.

Randomization vs. Determinism

In a recent paper [1], Branicky et al. argued
convincingly for the use of pseudo random sampling in
favor of randomized sampling in probabilistic roadmap
planners [4]. The results of the Branicky work cannot
be applied directly in the case of RRT-like planners,
since the randomization is actually being used to
perform an implicit computation. Even so, the
arguments in this paper are cause for pause and force a
careful consideration of the role of randomization in
path planning. We are beginning investigation of a
hybrid planner that will utilize a deterministic search to
grow the initial components of a tree and then switch to
an RRT like algorithm if the initial deterministic search
stalls.

Planning in Unknown Environments

Instead of solving an entire planning problem, the RRT
could be used to plan to a fixed horizon. An iterative
planning strategy would use an RRT like algorithm to
generate a feasible trajectory in the general direction
determined by a low cost planner. This approach holds
promise in domains where the search space is too large
to search quickly at full resolution, or in cases where
complete knowledge of the search space is unavailable.
Initial experiments in this area have shown some
promise. We will continue exploring this idea in
experiments with an outdoor mobile robot moving
through unknown difficult terrain.

6 Conclusions

In this paper we have presented extensions to the basic
RRT algorithm that incorporate heuristic functions to
bias the search towards low-cost solutions. These
algorithms generate better paths in both binarized and
continuous cost problem spaces. The heuristic guidance
is applied by weighting the probability density function
used to build the random tree. The hRRT algorithm
shows significant improvements in the quality of paths
found with little to no computational cost. The k-
nearest neighbor variants show further improvement in
the quality of paths found, but are more computationally
expensive.

Acknowledgments

This work was partially funded by NASA under
contract #1229340. The authors would like to thank
James Kuffner, Steven LaValle and Alonzo Kelly for
valuable discussions.

References

[1] M. Branicky et al. “Quasi-Randomized Path Planning”
Proc. IEEE International Conference on Robotics and
Automation, Seoul, Korea, Mat 2001.

[2] J. Bruce & M. Veloso. “Real-Time Randomized Path
Planning for Robot Navigation”, Proc. IEEE/RSJ
Conference on Robotics and Systems.

[3] E. Frazzoli, et al. “Real-Time Motion Planning for Agile
Autonomous Vehicles”, AIAA Journal of Guidance,
Control, and Dynamics, Volume 25, Issue 1, 2002.

[4] L. Kavraki et al. “Probabilistic Roadmaps for path
planning in high dimensional configuration spaces”,
IEEE Transactions on Robotics & Automation, Vol. 12,
Issue 4, August 1996.

[5] S. LaValle & J. Kuffner. “Randomized Kinodynamic
Motion Planning”, International Journal of Robotics
Research, Vol. 20, No. 5 pp 378-400, May 2001.

