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Abstract 

This paper presents several modifications to the basic 
rapidly-exploring random tree (RRT) search algorithm.  
The fundamental idea is to utilize a heuristic quality 
function to guide the search.  Results from a relevant 
simulation experiment illustrate the benefit and 
drawbacks of the developed algorithms.  The paper 
concludes with several promising directions for future 
research. 

1 Introduction 

Rapidly-exploring random trees (RRT) have been 
shown to provide an efficient method for solving 
planning problems with kino-dynamic constraints [5].  
Frazzoli adapted RRTs for real time planning for an 
autonomous helicopter operating in the presence of 
moving obstacles [3].  More recently, Bruce adapted 
RRTs for use with a robotic soccer team [2].  In both of 
these examples, there is only a binary evaluation of 
whether space is free or impassable.  In many 
applications, however, it is important to consider a 
continuum of costs between completely free space and 
impassable obstacles.  This is particularly relevant in the 
case of planning for outdoor mobile robots where terrain 
characteristics vary greatly.  

This paper provides a method for biasing the growth of 
an RRT based on costs discovered through the 
exploration of the space.  Doing so provides extra 
information to the algorithm that allows it to operate in 
more than just an exploratory manner.  Our techniques 
show improvements over the basic RRT algorithm in 
the quality of solutions found in both binarized and 
continuous cost spaces.    

Section 2 introduces the basic RRT algorithm.  Section 
3 describes a variety of enhancements that we have 
explored and section 4 provides an empirical 
comparison between these improved algorithms and the 
basic algorithm.  The paper concludes with some 
insights and promising future research directions 
discovered through this work. 

2 The Basic RRT algorithm 

The rapidly-exploring random tree planner is an 
incremental search algorithm that provides benefits over 

conventional roadmap planners [4] due to the inherent 
feasibility of the solutions generated.  An outline of the 
algorithm is shown in Figure 1.  The 
RANDOM_STATE function draws its samples from a 
uniform distribution spread over the problem space.  
NEW_STATE takes this random sample (xsample) and a 
node to be extend (xnear), and generates an action from 
the node towards the sample (unew) and the resultant 
state (xnew).  If unew is not executable, NEW_STATE 
returns false. 

The elegance of an RRT based search is that it uses 
randomization to implicitly compute the Voronoi 
regions of each of the nodes in a tree, and then selects a 
node to expand with preference proportional to the size 
of its Voronoi region.  This technique causes the tree to 
rapidly explore the space.  In essence, the tree is 
probabilistically pulled outward from its root. 

In [5], LaValle and Kuffner mention that shaping the 
probability distribution used to generate random 
samples for growing the tree effects the rate of 
convergence of the algorithm.   Adding the goal state to 
the distribution with a higher probability dramatically 
increases the rate of convergence of the planner.   The 

BUILD_RRT ( xinit ) 

T.init ( xinit ); 

While ( xgoal ⊄ T ) do 

 { xrand, xnear } � SELECT_NODE(T); 

 EXTEND ( T, xrand, xnear ); 

Return T; 

SELECT_NODE ( T ) 

 xrand � RANDOM_STATE(); 

 xnear � NEAREST_NEIGHBOR( xrand, T); 

return { xrand, xnear }; 

EXTEND( T, xrand, xnear) 

if ( NEW_STATE( xrand, xnear, xnew, unew ) ) then 

 T.add_vertex( xnew ); 

 T.add_edge( xnear, xnew, unew); 

return; 

Figure 1: The RRT Algorithm. 



principal effect is that goal biasing pulls the tree in the 
general direction of the goal state.  A second and 
equally important effect is that when the tree nears the 
goal state, there is an increased likelihood of it 
extending to the goal state.  Without goal biasing, the 
tree may come close to the goal, but through 
happenstance, fail to achieve it. 

3 Improving the RRT 

One weakness of the basic RRT algorithm is that it does 
not take path cost into account.  This can lead to 
solutions that are far from optimal (in particular, in 
cases where the search space has a continuum of costs 
ranging from free to impassable).  Our work is 
predicated on the idea that providing the algorithm with 
some knowledge of path cost, better solutions will be 
found. 

To guide the growth of the randomized tree, the 
algorithm should preferentially extend lower cost paths 
heading towards the goal, while maintaining a 
reasonable bias towards exploration.  To this end, we 
developed a modification to the RRT algorithm that 
provides a probabilistic implementation of heuristic 
search concepts. For convenience, this algorithm will be 
referred to as heuristically-guided RRT (hRRT) search.    

The hRRT shapes the probability distribution based on 
the growth of the tree.  The distribution is shaped to 
make the likelihood of selecting any particular node 

dependent on both the size of its Voronoi region (a bias 
toward exploration) and the quality of the path to that 
node (a bias toward exploiting known good parts of the 
space).  To accomplish this, an additional measure, 
mquality, is computed:  
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Cvertex represents the total cost associated with a node 
(i.e. the sum of the integrated cost along the path to this 
node and the estimated cost from this node to the goal 
state).  Copt is the estimated total cost of the optimal path 
from the initial state to the goal state.  Cmax holds the 
value of the highest total cost for any node considered 
thus far.  The numerator indicates how much worse a 
path through this node is expected to be, in comparison 
tot he optimal path.  The denominator provides a scaling 
coefficient to ensure that the weight falls within the 
range [0, 1].   

The quality measure is used to weight the Voronoi 
region associated with each node.  The weighting is 
applied by modifying the EXTEND and 
SELECT_NODE functions of the basic RRT algorithm 
as shown in Figure 2.  This algorithm generates random 
states until a good nearest neighbor is probabilistically 
chosen.  The likelihood of selecting a node for extension 
is proportional to both the size of its Voronoi region and 
its quality measure.  A floor value is introduced to 
ensure that the search is not overly biased against 
exploration.  If the floor value is set to 1, this algorithm 
becomes the basic RRT search algorithm. 

Incorporating this quality measure results in a dramatic 
improvement in the cost of paths found when the cost 
function for the space is not binary.  It even provides a 
modest improvement in the quality of the paths returned 
in the case of binary costs.  A more detailed discussion 
of the performance improvements are provided with the 
experimental comparisons presented in section 3.   

The hRRT algorithm generally works well, but can 
sometimes encounter situations that result in undesired 
behavior.  In the case illustrated in Figure 3, vertex A is 
near an obstacle and has been extended into a high cost 
region.  In this situation, the desired behavior is that A 
should expand into the narrow passageway between the 
obstacle and the high cost region, and exploration from 
B should cease. Unfortunately, this frequently does not 
happen because B’s Voronoi region is much larger than 
A’s.  The probability of selecting B relative to A is 
given by: 
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SELECT_NODE(T) 

do 

xrand � RANDOM_STATE(); 

xnear � NEAREST_NEIGHBOR(x, T); 

mquality �1- (xnear.cost –T.opt_cost ) / 
(T.max_cost-T.opt_cost); 

mquality � min ( mquality, T.prob_floor ); 

r �RANDOM_VALUE(); 

 while ( r > mquality); 

return { xrand, xnear }; 

EXTEND( T, xrand, xnear ) 

if (NEW_STATE ( xrand, xnear, xnew, unew ) ) then 

 T.add_vertex ( xnew ); 

 T.add_edge ( xnear, xnew, unew); 

 CALCULATE_COST ( xnew ); 

 T.max_cost �max(xnew.cost, T.max_cost); 

return; 

Figure 2: The hRRT algorithm. 



This means that any time the ratio of the sizes of A and 
B’s Voronoi regions is larger than the probability floor 
value, B will be more likely to be selected than A.    
This observation led to an investigation of algorithms 
that try to expand one of the k-nearest neighbors, not 
just the single nearest neighbor.  

3.1  k-Nearest Algorithms 

By considering the k-nearest neighbors, rather than only 
the single nearest neighbor, regions of the tree are 
chosen for expansion rather than particular nodes.  In 
essence, the combined area of the Voronoi regions of a 
set of points is used to compute the probability that 
biases towards expansion.  To implement these 
algorithms, only the SELECT_NODE function needs to 
be modified.   

IkRRT 

The iterative k-nearest neighbor algorithm (IkRRT) 
iterates over the k-neighbors in order of their quality 
measure (see Figure 4).  Once a node is sufficiently 
good to pass the probabilistic quality test, it is selected 
and the extension process continues.  Note that if k is 
equal to 1, this algorithm is equivalent to the hRRT 
algorithm.   By considering a set of nodes, rather than 
the single closest node, the determining factor in cases 
similar to those illustrated in Figure 3 is the quality 
measure.  Thus the likelihood of A being expanded (as 
desired) is increased. 

BkRRT 

A variant method is the best of k-nearest neighbors 
algorithm (BkRRT).  Pseudo-code for this algorithm is 
shown in Figure 5.  In this algorithm, only the node of 
the k-nearest neighbors with the best quality measure is 
considered.  If this node fails the quality test, a new 
random sample is drawn and the process repeats.  This 
algorithm is much more aggressive in searching for 
lower cost solutions since it only considers the best 
node in any region of the tree.  The downside of this 
approach is that the algorithm tends to over-explore 
regions of the space.   4 Experimental Results 

This section provides some experimental results 
showing the relative performance of these algorithms in 
a variety of test cases.  The long term goal of this work 
is to apply randomized planning to the field of outdoor 
mobile robot navigation in difficult terrain.  To that end, 
a velocity controlled massive particle is used as a 
simplified, yet relevant, model for these experiments.  
The particle is actuated by magnitude-limited forces 
applied to it in any direction. The control input is a 
desired velocity and direction.  This control input is fed 
to a PID controller that actuates the forces applied to the 
particle.  This model contains constraints similar to that 
of a robot moving over terrain: high cost regions act as 
an analogy for sloped terrain, while the inertial 

Figure 4: Select node function for iterative 
 k-nearest algorithm 

SELECT_NODE(T) 

do 

xrand � RANDOM_STATE(); 

Knear � NEAREST_NEIGHBOR(x, T, k); 

SORT_BY_QUALITY(Knear) 

for each x in Knear 

mquality �1- (x.cost –T.opt_cost ) / 
(T.max_cost-T.opt_cost); 

mquality�min(mquality, T.prob_floor ); 

r �RANDOM_VALUE(); 

if (r < pquality ) 

 return { xrand, x }; 

 while true; 

SELECT_NODE (T) 

do 

brand � RANDOM_STATE(); 

Knear � NEAREST_NEIGHBOR(x, T, k); 

xnear � BEST_QUALITY( Knear ) 

mquality �1- (xnear.cost –T.opt_cost ) / 
(T.max_cost-T.opt_cost) 

mquality � min( mquality, T.prob_floor ); 

r �RANDOM_VALUE(); 

while ( r>pquality ); 

return { xrand, xnear }; 

Figure 5: Select node function for best of  
k-nearest algorithm 
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Figure 3: A difficult case for the hRRT algorithm to 
handle correctly. 



properties of the particle and control space mirror those 
of a mobile robot.   

The performance of the basic RRT algorithm is 
compared with the three algorithms presented here.  All 
experiments were performed on a Pentium III 900 MHz 
computer with 256MB of memory with results 
representing an average over a set of 100 trials.  The k-
nearest neighbor algorithms were tested with a k of 5.  
In the first experiment, we consider an environment 
where the configuration space is binarized, i.e. the cost 
for moving through any part of the free space is the 
same.  

4.1 Binary Space 

Figure 6 shows the binary space in which this 
experiment was performed.  Table 1 shows the 
performance of the various algorithms.  

Algorithm Avg. 
Cost 

Avg. # of 
nodes in T 

Avg. Time 
(s) 

RRT 17.67 396 0.377 

5% goal bias 17.63 167 0.148 

10% goal bias 17.29 140 0.159 

hRRT  16.52 366 0.545 

5% goal bias 16.28 201 0.279 

10% goal bias 16.05 172 0.251 

IkRRT  16.02 912 1.408 

5% goal bias 15.70 570 0.799 

10% goal bias 15.67 528 0.753 

BkRRT  14.28 913 2.908 

5% goal bias 14.15 694 2.108 

10% goal bias 14.16 656 2.059 

Table 1: A comparison of various algorithms in a 
binary free space. 

The basic hRRT algorithm shows a modest 
improvement in the quality of solution found with a 
minor increase in computational cost.  Both of the k-
nearest neighbor algorithms improve the solution but 
are more costly to compute.   In all cases, the addition of 
a small amount of goal biasing reduces the computation 
time and in general, improves the solution. 

4.2 Variable Cost Plane 

The next experiment compares the algorithms in an 
open plane. A portion of the plane has an increased cost 
(the grey area is ten times as expensive to move through 
as the white area).  Figure 7 shows the space considered 
in this experiment.  Table 2 shows the performance of 
the various algorithms. 

 

Algorithm Avg. 
Cost 

Avg. # of 
nodes in T 

Avg. Time 
(s) 

RRT 71.67 439 0.391 

5% goal bias 63.12 113 0.074 

10% goal bias 64.89 80 0.051 

hRRT  23.89 292 0.276 

5% goal bias 27.22 116 0.088 

10% goal bias 25.49 85 0.061 

IkRRT  16.3 562 0.555 

5% goal bias 17.86 268 0.211 

10% goal bias 17.42 193 0.171 

BkRRT  13.25 432 0.454 

5% goal bias 14.21 211 0.171 

10% goal bias 14.39 179 0.140 

Table 2:  A Comparison of algorithms in a variable cost 
plane. 

Figure 7: An IkRRT grown in the second 
experiment. 

Figure 6: An hRRT grown in the first experiment. 



When operating in a space with a non-uniform cost, the 
hRRT shows a dramatic improvement over the basic 
RRT algorithm in terms of path quality while 
maintaining a similar computational cost.  The k-nearest 
neighbor algorithms show a significant improvement 
over the hRRT algorithm but are more computationally 
expensive.   

An important observation to make about this data is that 
the addition of a goal bias somewhat reduces the quality 
of the solution while dramatically improving the rate of 
convergence.  The goal biasing essentially pulls the tree 
through the expensive regions, to some degree 
overriding the heuristic biasing. 

4.3 Variable Cost Space with Obstacles 

In this experiment the environments from experiments 
one and two are overlaid, constructing a variable cost 
space with obstacles embedded in it.  The resulting 
environment is shown in Figure 8. Table 3 shows how 
the various algorithms compare in this space.       

Algorithm Avg. 
Cost 

Avg. # of 
nodes in T 

Avg. Time 
(s) 

RRT 80.19 434 0.428 

5% goal bias 77.75 154 0.135 

10% goal bias 74.51 140 0.129 

hRRT  24.58 246 0.278 

5% goal bias 24.66 138 0.181 

10% goal bias 23.98 126 0.151 

IkRRT  20.31 771 1.088 

5% goal bias 24.19 575 0.767 

10% goal bias 26.53 510 0.699 

BkRRT  18.74 558 1.003 

5% goal bias 18.25 457 0.801 

10% goal bias 18.16 436 0.782 

Table 3: A comparison of the algorithms in a variable 
cost space with obstacles. 

Once again, the hRRT finds better paths than the basic 
RRT.  An interesting observation is that the hRRT 
requires less computation time than the RRT, when no 
biasing is provided.  This performance increase results 
because the hRRT generally avoids exploring the left 
(high cost) portion of the plane, thus reducing the size 
of the search space.  This effect can also be seen in the 
dramatic reduction in computation time for the IkRRT 
and BkRRT algorithms (as compared to experiment 1). 

4.4 Experimental Summary 

From these experiments, it can be seen that heuristic 
guidance provides a significant improvement in the 
quality of paths produced through an RRT like search. 

In all cases, utilizing the hRRT algorithm instead of the 
basic RRT algorithm produces statistically significant 
improvements in the quality of solutions found without 

any statistically significant increase in computational 
cost, in fact, in some cases the computational cost is 
reduced.  The IkRRT and BkRRT algorithms improve 
further on the quality of results returned, but do require 
a statistically significant increase in computational cost.  
Finally, the addition of a small amount of goal bias to 
the heuristically guided algorithms provides a dramatic 
improvement in the rate of convergence with only a 
small, often statistically insignificant decrease in the 
quality of the solution. 

5 Insights and Future Work 

In working with the RRT algorithms, we have begun to 
develop an understanding of several important factors 
that must be considered when applying RRT-like 
algorithms.   

Shape of the Probability Distribution 

One of the most important components of an RRT based 
planner is the underlying probability distribution.  For 
example, in the problem shown in Figure 9, if there is 
no probability mass to the right of the problem space, an 
RRT based algorithm will take a long time to find a 

Figure 9: A problem where the distribution must 
have probability mass to the right of the space. 
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Figure 8: An IkRRT grown in the third 
experiment. 



solution.  Similarly, without goal biasing, the likelihood 
of achieving the goal state will be very low unless there 
is additional probability mass above and to the left of 
the problem space.  The reason for this is that without 
these additional probability masses, there is little, or no, 
area in which the random samples could be generated to 
pull the tree beyond the wall and towards the goal state.  

Given this observation, it is important to carefully 
consider the shape and bounds of the probability 
distribution applied to solve any particular problem. 

Exploitation vs. Exploration 

A fundamental trade-off in any search problem is how 
much effort should be spent exploring the space vs. how 
much effort should be used to exploit, or greedily search 
the space.  This work provides a technique that attempts 
to strike a balance between these two competing desires.  
Improvements may come from providing a better 
estimate for the true cost between the initial state and 
the goal state.  Initial work has begun on a variation of 
these algorithms that propagates an expected cost back 
through the tree using an update function similar to: 
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Where Ci is the total cost of a node, Pi is the cost of the 
path to the node, Pij is the incremental path cost between 
node i and node j, and Gi is the optimistic estimate of 
cost to the goal for node i. 

Each time a state is added to the tree, this function is 
applied recursively to the nodes in the path from the 
newly added state to the root.  When this data reaches 
the root, Copt is updated accordingly.  Information about 
the problem space is thus used to adjust the heuristic 
cost guiding the search.  At this point, the idea has 
shown limited success.  The principal difficulty at this 
point is how to incorporate knowledge of failures to 
extend the tree.  This information is important as it 
provides an understanding of the difficulty of the 
problem space. 

Randomization vs. Determinism 

In a recent paper [1], Branicky et al. argued 
convincingly for the use of pseudo random sampling in 
favor of randomized sampling in probabilistic roadmap 
planners [4].  The results of the Branicky work cannot 
be applied directly in the case of RRT-like planners, 
since the randomization is actually being used to 
perform an implicit computation. Even so, the 
arguments in this paper are cause for pause and force a 
careful consideration of the role of randomization in 
path planning.  We are beginning investigation of a 
hybrid planner that will utilize a deterministic search to 
grow the initial components of a tree and then switch to 
an RRT like algorithm if the initial deterministic search 
stalls. 

Planning in Unknown Environments 

Instead of solving an entire planning problem, the RRT 
could be used to plan to a fixed horizon.  An iterative 
planning strategy would use an RRT like algorithm to 
generate a feasible trajectory in the general direction 
determined by a low cost planner. This approach holds 
promise in domains where the search space is too large 
to search quickly at full resolution, or in cases where 
complete knowledge of the search space is unavailable.  
Initial experiments in this area have shown some 
promise.   We will continue exploring this idea in 
experiments with an outdoor mobile robot moving 
through unknown difficult terrain. 

6 Conclusions 

In this paper we have presented extensions to the basic 
RRT algorithm that incorporate heuristic functions to 
bias the search towards low-cost solutions.  These 
algorithms generate better paths in both binarized and 
continuous cost problem spaces.  The heuristic guidance 
is applied by weighting the probability density function 
used to build the random tree.  The hRRT algorithm 
shows significant improvements in the quality of paths 
found with little to no computational cost.   The k-
nearest neighbor variants show further improvement in 
the quality of paths found, but are more computationally 
expensive.   
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