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Abstract

Hesitant fuzzy preference relations (HFPRs) have been widely applied in multicriteria decision-making (MCDM) for their 
ability to efficiently express hesitant information. To address the situation where HFPRs are necessary, this paper develops 
several decision-making models integrating HFPRs with the best worst method (BWM). First, consistency measures from 
the perspectives of additive/multiplicative consistent hesitant fuzzy best worst preference relations (HFBWPRs) are intro-
duced. Second, several decision-making models are developed in view of the proposed additive/multiplicatively consistent 
HFBWPRs. The main characteristic of the constructed models is that they consider all the values included in the HFBWPRs 
and consider the same and different compromise limit constraints. Third, an absolute programming model is developed to 
obtain the decision-makers’ objective weights utilizing the information of optimal priority weight vectors and provides the 
calculation of decision-makers’ comprehensive weights. Finally, a framework of the MCDM procedure based on hesitant 
fuzzy BWM is introduced, and an illustrative example in conjunction with comparative analysis is provided to demonstrate 
the feasibility and efficiency of the proposed models.

Keywords Multicriteria decision-making · Hesitant fuzzy best worst preference relations · Additive consistency · 
Multiplicative consistency · Best–worst method

Introduction

In multicriteria decision-making (MCDM) problems, we 
need to choose the best alternative/alternatives according 
to several determined criteria from a set of alternatives 
[1–3]. Different approaches have been developed from dif-
ferent perspectives, where preference relations (PRs) are 
one of the commonly used technologies. Their principle is 
to rank alternatives in view of the priority weight vector 
obtained from pairwise comparisons of the alternatives [4]. 

According to the evaluation scale of the pairwise compari-
sons, PRs can be divided into fuzzy PRs (FPRs) and mul-
tiplicative PRs (MPRs). The former uses the [0, 1] scale, 
and the latter expresses the comparison with [1/9, 9]. In the 
process of developing PRs, consistency analysis is necessary 
to avoid contradictory ranking. Tanino [5] developed two 
consistency concepts for FPRs, namely, additive consistent 
FPRs and multiplicative consistent FPRs. The former indi-
cates additive transitivity, and the latter shows multiplica-
tive transitivity. For MPRs, Saaty [6] defined the concept of 
multiplicatively consistent MPRs, which indicates the multi-
plicative transitivity among three related comparisons. Since 
then, MCDM approaches based on two types of PRs have 
been proposed [7–12].

Noticeably, FPRs and MPRs only employ an exact numeric 
value to denote the membership degree of pairwise compari-
sons, which limits the applications because hesitant information 
exists extensively in MCDM problems. To address this issue, 
Torra and Narukawa [13] employed several values in [0, 1] to 
denote the pairwise comparisons and developed the concept of 
hesitant fuzzy set (HFS). The primary advantage of HFS is that 
several values can be used to represent decision makers’ hesitant 
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information; it can also overcome the shortcoming of fuzzy sets, 
which use only one value. Since the concept of HFS has been 
proposed, a large number of studies focusing on HFS have been 
developed [14–16]. Later, Xia and Xu [17] introduced the con-
cept of hesitant fuzzy preference relations (HFPRs). Following 
the original work of Xia and Xu [17], many MCDM approaches 
based on HFPRs have been developed. For example, MCDM 
approaches are based on additive consistent HFPRs [18–20], 
MCDM approaches are based on multiplicatively consistent 
HFPRs [21–23], and MCDM approaches are based on multipli-
catively consistent hesitant MPRs (HMPRs) [24, 25]. According 
to the principle of using the number of elements, including hesi-
tant fuzzy elements (HFEs), these approaches can be classified 
into four categories [21]. A concise literature review of these 
approaches is presented as follows and summarized in Table 1.

(1) Consider only one FPR derived from HFPRs [26, 27]. 
This method is also named optimistic consistency; that is, a 
reduced FPR with the highest consistency degree is derived 
from HFPRs. The optimistic consistency method can reflect 
the highest consistency degree of HFPRs, but it cannot reflect 
the hesitancy of decision-makers. It leads to substantial 
information loss. (2) Based on ordered FPRs derived from 
normalized HFPRs [28, 29]. This method also named nor-
malized consistency. The normalized consistency requires 
that any two HFEs have an equal number of elements; if 
two HFEs have an unequal number of elements, a normal-
ized process is needed. In the review of the previous work 
[30], the shorter HFE needs to add some values until two 
HFEs have the same number of elements in the normalized 
process. Therefore, the normalized consistency method may 
distort the original information provided by decision-makers. 
(3) Based on all possible FPRs, including HFPRs [18, 31]. 
This method defines the concept of consistent HFPRs as too 
restricted. It is difficult for decision-makers to provide such 
pairwise comparisons in the actual decision-making process. 
(4) Based on the derived FPRs for each value in HFEs [32, 
33]. The main feature of this method is that it considers all 
the evaluation information and neither adds values to HFEs 
nor removes values from HFEs. Compared with (3), this 
method only used some possible FPRs, including HFPRs.

Rezaei [34] developed a novel MCDM method named 
the best–worst method (BWM), which can be taken as an 
enhancement of the traditional analytic hierarchy process 
(AHP). With the BWM, it can remedy the drawbacks of 
AHP in terms of numerous comparisons and low consistency 

[35]; thus, it is much easier to use. At the same time, the 
weights derived from the BWM are more reliable than the 
AHP, as it only needs to provide the best and worst vectors 
[36, 37]. Due to these advantages, the BWM has attracted 
wide attention from scholars [38–43]. For example, Ming 
et al. [44] managed patient satisfaction in a blood-collec-
tion room integrated with BWM and probabilistic linguis-
tic gained and lost dominance score method. Karimi et al. 
[45] introduced a fully fuzzy BWM with a triangular fuzzy 
number. Chen and Ming [46] developed a smart product ser-
vice module integrated with a BWM and data envelopment 
analysis. Liang et al. [47] established the thresholds for the 
consistency ratios. Mohammadi and Rezaei [48] introduced 
the Bayesian BWM for group decision-making problems. 
In addition, an overview of the BWM can be found in [49].

The concept of HFPRs has been introduced, and sev-
eral scholars have studied some MCDM methods based on 
BWM. However, there are still some important issues that 
need to be further studied. (1) The concept of additive/multi-
plicatively consistent HFPRs. As HFPRs, additive/multipli-
catively consistent HFPRs develop in considering one FPR 
derived from HFPRs, which may lead to information loss 
[50]; develops in considering ordered FPRs derived from 
normalized HFPRs may distort the preference information 
[50, 51]; and develops in considering all possible FPRs in 
HFPRs seems too restrictive [31]. (2) The different exper-
tise levels of decision-makers and the complexity of MCDM 
problems lead to the appearance of uncertainty in decision-
making processes. In these cases, uncertain techniques, such 
as fuzzy numbers, interval numbers and triangular fuzzy 
numbers, were integrated with the BWM. Unfortunately, few 
scholars have studied integrating BWM with HFEs. (3) In 
the review of the previous work related to BWM, the schol-
ars study the maximum absolute differences are minimized 
problem are transferred to two list of same compromise limit 
constraints. Considering that decision-makers with differ-
ent constraints may have different compromise limits, it is 
necessary to study the maximum absolute differences when 
the minimized problem is transferred to two lists of different 
compromise limit constraints.

To eliminate the abovementioned defects, consider the 
advantage of HFS in showing the evaluation information and 
the advantage of BWM in solving MCDM problems. It is nec-
essary to propose a new hesitant fuzzy BWM for MCDM. 
In this study, consistency measures from the perspectives of 

Table 1  A summary of different 
consistent HFPRs

The category of different 
consistent HFPRs

Main characteristic Representa-
tive literature

Optimistic consistency Only considers one FPR derived from HFPRs [26, 27]

Normalized consistency Based on ordered FPRs derived from normalized HFPRs [28, 29]

Average consistency Based on all possible FPRs including in HFPRs [18, 31]

Partial average consistency Based on the derived FPRs for each value in HFEs [32, 33]
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additive/multiplicative consistent hesitant fuzzy best worst 
preference relations (HFBWPRs) are defined. Several decision-
making models are developed in view of the proposed addi-
tive consistency and multiplicative consistency measures. The 
primary contributions of this study are summarized as follows:

1. Consistency measures from the perspectives of additive/
multiplicatively consistent HFBWPRs are introduced, 
which integrate the advantages of HFPRs and BWM.

2. Several decision-making models are developed in view 
of the proposed additive/multiplicatively consistent 
HFBWPRs. The main characteristic of the constructed 
models is that they consider all the values included in 
the HFBWPRs and consider the same and different com-
promise limit constraints.

3. An absolute programming model is developed to obtain 
the decision-makers’ objective weights utilizing the opti-
mal priority weight vector information, and the calculation 
of decision-makers’ comprehensive weights is provided.

The remainder of the paper is organized as follows. In 
"Preliminaries", some basic knowledge of FPRs, HFS, 
HFPRs and the BWM is introduced. In "Hesitant fuzzy 
BWM", the concepts of additive/multiplicatively consist-
ent HFBWPRs are presented, and several decision-making 
models are developed in view of the proposed additive con-
sistency and multiplicative consistency measures. In "A 
framework of MCDM procedure based on hesitant fuzzy 
BWM", an absolute programming model is developed to 
obtain the decision-makers’ objective weights, and a pro-
cedure for MCDM problems with hesitant fuzzy BWM is 
given. In "Illustrative example", the proposed methods are 
illustrated by an example, and a comparative analysis is pro-
vided. Finally, conclusions are presented in "Conclusion".

Preliminaries

In this section, some basic knowledge of FPRs, HFS, HFPRs 
and the BWM is introduced.

FPRs

Let X =

{

x1, x2,… , x
n

}

 denote a finite set of alternatives, 
where x

i
 represents the ith alternate. Orlovsky [52] devel-

oped the concept of FPRs.

Definition 1 [52]. An FPR on a set of alternatives X is rep-
resented by a matrix H =

(

rij

)

n×n
⊂ X × X , where rij is inter-

preted as the degree to which alternative x
i
 is preferred to 

xj . Furthermore, rij should satisfy the following conditions: 
rij + rji = 1 , r

ii
= 0.5 for all i, j ∈ N.

To measure the rationality of FPRs provided by decision-
makers, the concepts of additive consistent and multiplica-
tive consistent FPRs were introduced.

Definition 2 [5]. Let H =

(

rij

)

n×n
 be an FPR, and 

W =

(

w1, w2,… , w
n

)

 be the priority weight vector derived 
from R, where w

i
∈ [0, 1] and 

∑n

i=1
w

i
= 1 . For all i, j ∈ N , 

the FPR is additive consistency if rij =
1

2

(

wi − wj

)

+ 0.5 and 
FPR is multiplicative consistency if rij =

wi

wi+wj

.

HFS and HFPRs

To express the hesitant information, Torra and Narukawa 
[13] introduced an effective tool which named HFS.

Definition 3 [13]. Let X be a fixed set. Accordingly, a HFS E 
on X is defined in terms of a function h

E
(x) that when applied 

to X returns a finite subset of [0, 1].

To be easily understood, Xia and Xu [53] utilized 
the following mathematical symbol to express the 
HFS:E =

{
< x, h

E
(x) > |x ∈ X

}
 . Where h

E
(x) is a set of val-

ues in [0, 1] representing the possible membership degrees 
of the element x in X to E, and h

E
(x) is named HFE and 

denoted as h={�s|s = 1, 2,… , #h} , #h is the number of ele-
ments including in h.

With the effective of HFE, Xia and Xu [17] proposed the 
concept of HFPRs. However, the need for sequence relation-
ships of the elements including in HFPRs, this leads to some 
complexity in actual application. To address this issue, Xu 
et al. [54] developed a new definition of HFPRs that does 
not need to arrange the elements in descending or ascending 
sequence.

Definition 4 [54]. Let X =

{

x1, x2,… , x
n

}

 be a fixed set, 
HFPRs on X is represented by a matrix R =

(

hij

)

n×n
⊂ X × X , 

where hij=

{
�

s
ij

|
||
s = 1, 2,… , #hij

}
 is a HFE indicating the 

possible preference degrees of alternative x
i
 is preferred to 

alternative xj . For all i, j ∈ N  , hij should satisfy: 
�

s
ij
+ �

#hij−s+1

ji
= 1 , �

ii
= 0.5 , #hij = #hji , where �s

ij
 refers to the 

sth element in hij.

Integrating into Tanino [5]’s additive consistency and the 
concept of HFPRs, Xu et al. [55] developed the concept of 
additive consistent HFPRs.

Definition 5 [55]. Let R be the same as those given in Defi-
nition 4. If  R satisfies the following condition: 
1

2

(

wi − wj

)

+ 0.5 = �
1

ij
or �

2

ij
or … or �

#hij

ij
 . Then R is called 

additive consistent HFPR, where W =

(

w1, w2,… , w
n

)

 is the 
priority weight vector derived from R.
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Similarly, integrating into Tanino [5]’s multiplicative con-
sistency and the concept of HFPRs, Zhu and Xu [56] devel-
oped the concept of multiplicative consistent HFPRs.

Definition 6 [56]. Let R be the same as those given in Defi-
nition 4. If  R satisfies the following condition: 

wi

wi+wj

= �
1

ij
or �

2

ij
or ⋯ or �

#hij

ij
 , then R is called multiplica-

tive consistent HFPR.

BWM

BWM is a frequently used MCDM technique since it was 
developed by Rezaei [34]. Later, Li et al. [10] extended this 
method to the evaluation scale as a number from 0.1 to 1 to 
address FPRs. It mainly includes the following steps:

Step 1: Define the decision criteria.
The decision criteria are defined on the basis of alterna-

tives’ characteristics and denoted as 
{

c1, c2,… , c
n

}

.
Step 2: Identify the best and worst criteria.
How to identify the best and worst criteria is puzzled by 

decision-makers when using the BWM. Some scholars devel-
oped it with the out-degree and in-degree of the node [57] and 
belief degree [58], while more scholars suggested that with 
respect to decision-makers’ professional judgment [59].

Step 3: Determine the priority of the best criterion over 
each of the other criteria.

When the best criteria are identified, the decision-mak-
ers determine the priority of the best criterion over each of 
the other criteria as a number from 0.1 to 1 and denote it as 
ABj =

(

aB1, aB2,⋯ , aBn

)

 . The value aBj is the priority of the 
best criterion over the jth criterion and a

BB
= 0.5 , where the 

evaluation result is an FPR.
Step 4: Determine the priority of each criterion over the 

worst criteria.
Similarly, when the worst criteria are identified, the deci-

sion-makers determine the priority of each criterion over 
the worst criteria as a number from 0.1 to 1 and denote it as 
AjW =

(

a1W , a2W ,… , anW

)

 . The value ajW is the priority of the 
jth criterion over the worst criteria and a

WW
= 0.5 , where the 

evaluation result is an FPR.
Step 5: Calculate the optimal weights of the criteria.
To obtain the optimal weight of each criterion, there are two 

cases, including Case 1: suppose the FPRs have additive con-
sistency. We form the pairs 1

2

(

wB − wj

)

+ 0.5 − aBj and 
1

2

(

wj − wW

)

+ 0.5 − ajW and then try to minimize the maxi-
m u m  o f  |

|
|

1

2

(
wB − wj

)
+ 0.5 − aBj

|
|
|

 a n d 
|
|
|

1

2

(
wj − wW

)
+ 0.5 − ajW

|
|
|
 for each j. Based on the theory of 

maximum–minimum, the optimal weight model is constructed 
as follows:

Case 2: Suppose the FPRs have multiplicative consistency. 
We form the pairs wB

wB+wj

− aBj and 
wj

wj+wW

− ajW and then try to 

minimize the maximum of 
|
|
|
|

wB

wB+wj

− aBj

|
|
|
|

 and 
|
|
|
|

wj

wj+wW

− ajW

|
|
|
|

 for 

each j. Similarly, to Eq. (1), the optimal weight model is con-
structed as follows:

Step 6: Calculate the consistency ratio of FPRs.
Since the optimal weights of each criterion are derived from 

different models, there are also two cases to calculate the con-
sistency ratio.

Case 1: We derive the optimal solution �
A
 by solving model 

(1), and combining the consistency index �
A
 presented in 

Table 2, the consistency ratio of FPRs is calculated as follows: 
CR

A
=

�
A

�
A

.

Case 2: Similarly, we derive the optimal solution �
M

 by 
solving model (2), and combining the consistency index �

M
 

presented in Table 3, the consistency ratio of FPRs is calcu-
lated as follows: CR

M
=

�
M

�
M

.

Step 7: Improve the consistency of FPRs.
When a desired consistency level is not achieved, the consist-

ency of FPRs can be improved by modifying some values, includ-
ing in the FPRs. Two issues need to be considered in this process: 
the first issue is how to determine the threshold of consistency, and 

(1)

min z = �

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

���
1

2

�
wB − wj

�
+ 0.5 − aBj

��� ≤ �, ∀ j

���
1

2

�
wj − wW

�
+ 0.5 − ajW

��� ≤ �, ∀ j

∑n

j=1
wj = 1

wj ≥ 0

(2)

min z = �

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

����
wB

wB+wj

− aBj

���� ≤ �, ∀ j

����
wj

wj+wW

− ajW

���� ≤ �, ∀ j

∑n

j=1
wj = 1

wj ≥ 0

Table 2  Consistency index for 
BWM with additive consistent 
FPRs

a
BW

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�
A

0.13 0.10 0.07 0.03 0.00 0.03 0.07 0.10 0.13 0.17
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the second issue is how to modify the values to improve the consist-
ency. For the first one, some scholars developed it with the Monte 
Carlo simulation method [60], while more scholars suggested that 
decision-makers determine it with respect to the background of 
practical decision problems [10]. For the last one, several scholars 
designed different algorithms based on different decision environ-
ments, such as intuitionistic fuzziness [57], hesitant fuzzy linguistics 
[61], and probabilistic hesitant fuzziness [10].

Remark 1 The consistency index for the fuzzy BWM pre-
sented in Tables 2 and 3 includes only the numbers ranging 
from 0.1 to 1, and other numbers, including those in [0,1], 
can be determined according to Eq. (13) if BWM with addi-
tive consistent FPR or Eq. (21) if the BWM has a multipli-
catively consistent FPR, which is developed in [10].

Hesitant fuzzy BWM

In this section, we first introduce the concepts of additive/
multiplicatively consistent HFBWPRs and then develop 
several programming models for deriving priority weight 
vectors from the proposed HFBWPRs, which include two 
cases. That is, programming models consider the same and 
different compromise limit constraints.

Additive and multiplicative consistent HFBWPRs

To further consider Definitions 5 and 6, the concepts of addi-
tive and multiplicatively consistent HFPRs are defined on 
the basis of relationships between the formula consisting of 
priority weights and the values included in HFEs. However, 
the relationships present in Definitions 5 and 6 only consider 
the relationships between one priority weight formula and 
all the values included in HFPRs but cannot reflect the hesi-
tancy of decision-makers. It is reasonable that every value 
included in HFPRs has a relationship to one priority weight 
formula. That is, the additive and multiplicatively consist-
ent HFPRs are in accordance with the derived FPRs with 
respect to each fixed value. Integrating HFPRs into the idea 
of BWM, new concepts for additive and multiplicatively 
consistent HFBWPRs are developed as follows.

Definition 7 Let R be the same as those given in Definition 
4. Then, R is called additive consistent HFBWPRs if the ele-
ments of best and worst including in R satisfy the following 
conditions:

for all j = 1, 2,… , n , where wk
j
 are the priority weights 

such that wk
j
≥ 0, j = 1, 2,… , n,

∑n
j=1

j≠B

wk
j
+ wk

B
= 1 , for all 

k = 1, 2,… ,
∏n

j=1
#hBj  or  

∑n
j=1

j≠W

wk
j
+ wk

W
= 1 ,  for al l 

k = 1, 2,… ,
∏n

j=1
#hjW , the above two equations hold at least 

one of them. In addition, �s
Bj

 , s = 1, 2,… , #hBj and �s
jW

 , 
s = 1, 2,… , #hjW are two lists of 0–1 indicator variables that 
satisfy 

∑#hBj

s=1
�

s
Bj
= 1 and 

∑#hjW

s=1
�s

jW
= 1.

In a similar way, the concept of multiplicatively con-
sistent HFBWPRs is developed as follows.

Definition 8 Let R be the same as those given in Definition 
4. Then, R is called multiplicatively consistent HFBWPRs 
if the elements of best and worst, including in R, satisfy the 
following conditions:

for all j = 1, 2,… , n . The meanings of symbols wk
j
 , �s

Bj
 

and �s
jW

 are the same as those given in Eq. (3).

Remark 2 It can be easily found that the additive and mul-
tiplicatively consistent HFBWPRs present in Definitions 7 
and 8 only consider the elements of best and worst; that is, 
the elements including in the Bth row and Wth column are 
considered. Other elements, including in R, do not require 
satisfying Eq. (3) or Eq. (4).

Example 1 Let R be an HFPR obtained from pairwise com-
parisons of four criteria, namely, x

1
 , x

2
 , x

3
 and x

4
 , where 

R =

⎡
⎢
⎢
⎢
⎣

{0.5} {0.3} {0.5, 0.6, 0.7} {0.5}

{0.7} {0.5} {0.7} {0.6, 0.7}

{0.3, 0.4, 0.5} {0.3} {0.5} {0.8}

{0.5} {0.3, 0.4} {0.2} {0.5}

⎤
⎥
⎥
⎥
⎦

 . 

(3)

⎧
⎪⎪⎨⎪⎪⎩

1

2

�
wk

B
− wk

j

�
+ 0.5 =

∑#hBj

s=1
�s

Bj
�s

Bj
, k = 1, 2,… ,

∏n

j=1
#hBj

1

2

�
wk

j
− wk

W

�
+ 0.5 =

∑#hjW

s=1
�s

jW
�s

jW
, k = 1, 2,… ,

∏n

j=1
#hjW ,

(4)

⎧
⎪⎪⎨⎪⎪⎩

wk
B

wk
B
+wk

j

=
∏#hBj

s=1

�
�s

Bj

��s
Bj

, k = 1, 2,… ,
∏n

j=1
#hBj

wk
j

wk
j
+wk

W

=
∏#hjW

s=1

�
�s

jW

��s
jW

, k = 1, 2,… ,
∏n

j=1
#hjW ,

Table 3  Consistency index for 
BWM with multiplicatively 
consistent FPRs

a
BW

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�
M

0.0633 0.0746 0.0599 0.0325 0.0000 0.0325 0.0599 0.0746 0.0633 0.0000



2622 Complex & Intelligent Systems (2021) 7:2617–2634

1 3

Suppose x
3
 is the best criterion and x

4
 is the worst criterion. 

According to Definition 7, if 
⎧
⎪⎪⎨⎪⎪⎩

1

2

�
w

1

3
− w

1

1

�
+ 0.5 = 0.3�1

31
+ 0.4�2

31
+ 0.5�3

31
;

1

2

�
w

2

3
− w

2

1

�
+ 0.5 = 0.3�1

31
+ 0.4�2

31
+ 0.5�3

31

1

2

�
w

3

3
− w

3

1

�
+ 0.5 = 0.3�1

31
+ 0.4�2

31
+ 0.5�3

31
;

1

2

�
w

1

3
− w

1

2

�
+ 0.5 = 0.3;

1

2

�
w

1

3
− w

1

4

�
+ 0.5 = 0.8

1

2

�
w

1

1
− w

1

4

�
+ 0.5 = 0.5;

1

2

�
w

1

2
− w

1

4

�
+ 0.5 = 0.6�1

24
+ 0.7�2

24
; �1

31
+ �2

31
+ �3

31
= 1; �1

24
+ �2

24
= 1

 

holds, then R is called additive consistent HFBWPRs.

Deriving priority weight vectors from HFBWPRs 
with the same compromise limit constraint

Consistency of PRs is related to rationality. By compari-
son, inconsistent PRs often lead to misleading solutions. 
Therefore, developing approaches to obtain the expected 
consistency level is necessary. However, only a few schol-
ars have focused on optimization-based methods to obtain 
the expected consistent HFBWPRs at present. Therefore, 
in this section, several mathematical programming models 
are proposed to obtain acceptable consistent HFBWPRs 
that consider the minimized deviation from the target of the 
goal. There are two cases, namely, deriving priority weight 
vectors from HFBWPRs based on additive consistency and 
multiplicative consistency.

Case 1; Deriving priority weight vectors 
from additive consistent HFBWPRs

According to the definition of additive consistent HFB-
WPRs, we obtain 1

2

�

wk
B
− wk

j

�

+ 0.5 =
∑#hBj

s=1
�

s
Bj
�

s
Bj

 and 
1

2

�

wk
j
− wk

W

�

+ 0.5 =
∑#hjW

s=1
�s

jW
�s

jW
 . The priority weights of 

complete additive consistent HFBWPRs can be derived by 
solving a list of equations 1

2

�

wk
B
− wk

j

�

+ 0.5 =
∑#hBj

s=1
�

s
Bj
�

s
Bj

 , 

j = 1, 2,… , n  ,  k = 1, 2,… ,
∏n

j=1
#hBj  a n d 

1

2

�

wk
j
− wk

W

�

+ 0.5 =
∑#hjW

s=1
�s

jW
�s

jW
 ,  j = 1, 2,⋯ , n  , 

k = 1, 2,… ,
∏n

j=1
#hjW . However, the abovementioned equa-

tions do not constantly hold in general given a deviation 
between 1

2

(

wk
B
− wk

j

)

+ 0.5 and 
∑#hBj

s=1
�

s
Bj
�

s
Bj

 for each pair of 

possible value 
(

B, j0
)

 with j0 = 1, 2,… , n for each 
s = 1, 2,… , #hBj . Similarly, there is also a deviation between 
1

2

(

wk
j
− wk

W

)

+ 0.5 and 
∑#hjW

s=1
�s

jW
�s

jW
 for each pair of possible 

value 
(

j0, W
)

 with j0 = 1, 2,… , n for each s = 1, 2,… , #hjW . 
Moreover, the more 1

2

�

wk
B
− wk

j

�

+ 0.5 −
∑#hBj

s=1
�

s
Bj
�

s
Bj

 and 
1

2

�

wk
j
− wk

W

�

+ 0.5 −
∑#hjW

s=1
�s

jW
�s

jW
 approaches to 0, the more 

valid and reasonable the priority weights are.
In this regard, motivated by the idea developed in Rezaei 

[34], the priority weight vectors are obtained by minimizing the 

maximum absolute differences 
�
���

1

2

�
wk

B
− wk

j

�
+ 0.5 −

∑#hBj

s=1
�

s
Bj
�

s
Bj

�
��
�
 

and 
�
�
��

1

2

�
wk

j
− wk

W

�
+ 0.5 −

∑#hjW

s=1
�s

jW
�s

jW

��
�
�
 . Thus, the following 

programming models can be constructed:

In Eq. (5), the first and second constraints are derived from 
the theory of maximum–minimum; the third constraint is hold 
when �s

Bj
0

= 1 , which ensure that all the values including in the 

HFBWPRs are considered. Similarly, when �s
j
0
W
= 1 , the 

fourth constraint is hold. The fifth constraint ensures that at 
least one of the third and fourth constraints holds. In addition, 
the sixth to eighth constraints indicates that �s

Bj
 and �s

jW
 are two 

lists of 0–1 indicator variables. Solving Eq. (5), a list of prior-
i ty  weigh t  vec tors  wk  ,  k = 1, 2,… , t  ,  where 
t =

∏n

j=1
#hBj +

∏n

j=1
#hjW can be derived. Since wk can be 

viewed as the possible priority weight vector of R.

Remark 3 Solving Eq. (5), a list of priority weight vectors 
wk , k = 1, 2,… , t , are derived. However, in most cases, we 
will obtain more than two identical priority weight vectors.

Based on the ideas of Zhang et al. [31] and Wu et al. [62]. 
The distance between wk and R is developed to select the 
best priority weight vector of R.

Definition 9 Let R =

(

hij

)

n×n
⊂ X × X  be an HFBWPR, 

and wk
=

(

w
k

1
, w

k

2
,⋯ , wk

n

)

 , k = 1, 2,⋯ , t be a list of prior-
ity weight vectors derived from Eq. (5). Then, the distance 
between wk and R is developed as follows:

(5)

min zk
= �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

����
1

2

�
wk

B
− wk

j

�
+ 0.5 −

∑#hBj

s=1
�s

Bj
�s

Bj

���� ≤ �

����
1

2

�
wk

j
− wk

W

�
+ 0.5 −

∑#hjW

s=1
�s

jW
�s

jW

���� ≤ �

�s
Bj0

�
∑n

j=1

j≠B

wk
j
+ wk

B
− 1

�
= 0, ∀ k = 1, 2,… ,

∏n

j=1
#hBj

�s
j0W

�
∑n

j=1

j≠W

wk
j
+ wk

W
− 1

�
= 0, ∀ k = 1, 2,… ,

∏n

j=1
#hjW

�
�s

Bj0
= 1

�
∨

�
�s

j0W
= 1

�
, j0 = 1, 2,… , n

∑#hBj

s=1
�s

Bj
= 1,

∑#hjW

s=1
�s

jW
= 1

�s
Bj
= 0 ∨ 1, s = 1, 2,… , #hBj

�s
jW

= 0 ∨ 1, s = 1, 2,… , #hjW

wk
j
≥ 0, � ≥ 0

j = 1, 2,… , n
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It can be easily found that the distance d1

(

wk, R
)

 reflects 
the sum of the average of the absolute deviation between 
1

2

(

wk
B
− wk

j

)

+ 0.5 and 
∑#hBj

s=1
�

s
Bj
�

s
Bj

 for the elements including 

in the B th row and the absolute deviation between 
1

2

(

wk
j
− wk

W

)

+ 0.5 and 
∑#hjW

s=1
�s

jW
�s

jW
 for the elements includ-

ing in the Wth column. The number of above absolute devia-
tions is 2(n − 1) , and the coefficient presented in Eq. (6) 
ensures the value range in interval [0, 1]. It is natural that the 
optimal priority weight vector minimizes the deviation 
d1

(

wk, R
)

 . As a consequence, the priority weight vector of R 
is developed as follows.

Definition 10 Let R and wk be the same as those given in 
Definition 9. Then, the priority weight vector of R is devel-
oped as follows:

where the symbol arg represents the correspondence of the 
priority weight vector wk in the minimum distance d1

(

wk, R
)

 , 
which is obtained from Eq. (6).
Remark 4 There may be more than one priority weight vec-
tor, including in min

wk d1

(

wk, R
)

 ; that is, sometimes the solu-
tion of Eq. (7) is not unique. In this case, the priority weight 
vector R is developed as:

where wk

i
 , i = 1, 2,⋯ , n , and it indicates that the number 

of priority weight vectors included in min
wk d1

(

wk, R
)

 is l
0
 . 

It can be easily found that the priority weight vectors are 
derived from the average value of  wk

i
 , k = 1, 2,⋯ , l0.

Case 2. Deriving priority weight vectors 
from multiplicatively consistent HFBWPRs

Similar to the idea of additive consistent HFBWPRs pre-
sented in case 1, the following programming models can be 
constructed when we consider multiplicatively consistent 
HFBWPRs.

(6)d1

�
wk, R

�
=

1

2(n − 1)

⎛⎜⎜⎝

n�
j=1

������
1

2

�
wk

B
− wk

j

�
+ 0.5 −

#hBj�
s=1

�s
Bj
�s

Bj

������
+

n�
j=1

������
1

2

�
wk

j
− wk

W

�
+ 0.5 −

#hjW�
s=1

�s
jW
�s

jW

������

⎞⎟⎟⎠
.

(7)w
k∗

=

(

w
k∗

1
, w

k∗

2
,…w

k∗

n

)

= arg min
wk

d1

(

w
k, R

)

,

(8)

w
k∗

=

(

w
k∗

1
, w

k∗

2
,… , w

k∗

n

)

=

(

1

l0

l0
∑

k=1

w
k

1
,

1

l0

l0
∑

k=1

w
k

2
,… ,

1

l0

l0
∑

k=1

w
k

n

)

,

The difference between Eqs. (5) and (9) is that we use 
multiplicatively consistent HFBWPRs in the first and sec-
ond constraints of Eq. (9) to replace additive consistent 
HFBWPRs in the first and second constraints of Eq. (5), 
the rest of the constraints are exactly the same. The mean-
ing of symbols presents in Eq. (9) is the same as those 
given in Eq. (5). Similar to additive consistent HFBWPRs, 
the distance between wk and R is developed to select the 
best priority weight vector R.

Definition 11 Let R =

(

hij

)

n×n
⊂ X × X be an HFBWPR, 

and let wk
=

(

w
k

1
, w

k

2
,⋯ , wk

n

)

 , k = 1, 2,⋯ , t be a list of prior-
ity weight vectors derived from Eq. (9). Then, the distance 
between wk and R is developed as follows.

(9)

min zk
= �

s.t.
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.

(10)
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�
wk

, R
�
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1

2(n − 1)
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n�
j=1

������
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B

wk
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��s
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The difference between Eqs.  (6) and (10) is that we 
use multiplicatively consistent HFBWPRs in the first and 
second sections of Eq. (10) to replace additively consist-
ent HFBWPRs in the first and second sections of Eq. (6). 
The meaning of symbols presents in Eq. (10) is the same 
as those given in Eq. (6). Similar to additive consistent 
HFBWPRs, the priority weight vector of R is developed 
as follows.

Definition 12 Let R and wk be the same as those given in 
Definition 11. Then, the priority weight vector of R is devel-
oped as follows:

Remark 5 There may be more than one priority weight vec-
tor, including in min

wk d2

(

wk, R
)

 . In this case, the priority 
weight vector  R is developed according to Eq. (8).

Deriving priority weight vectors from HFBWPRs 
with different compromise limit constraints

In the above programming models, the constraints 
��
�
�

1

2

�
wk

B
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j

�
+ 0.5 −

∑#hBj

s=1
�

s
Bj
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s
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j
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W
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o r  
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B
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j
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j
+wk

W

−
∏#hjW

s=1

�
�s

jW

��s
jW ��
�
�
≤ � present in Eq.  (9) with the 

same compromise limit � for all j, j = 1, 2,… , n . This is 
unreasonable in some circumstances because different HFEs, 
including HFBWPRs, have different numbers of elements; in 
other words, different numbers of elements may express dif-
ferent hesitant degrees of HFEs. It is more reasonable that for 
different HFEs corresponding to different compromise limits 
�j for different j , j = 1, 2,⋯ , n . There are also two cases, that 
is, deriving priority weight vectors from HFBWPRs based 
on additive consistency and multiplicative consistency.

Case 1: Deriving priority weight vectors 
from additive consistent HFBWPRs

In view of the above analysis, the maximum absolute differ-
e n c e s  a r e  m i n i m i z e d ,  a n d  t h e  p r o b l e m 
min max
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����
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j
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jW
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�
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�

 

can be transferred to two lists of different compromise limit 

constraints; that is, 
�
�
��

1

2

�
wk

B
− wk

j
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+ 0.5 −

∑#hBj

s=1
�

s
Bj
�

s
Bj
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and 
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1
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j
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W

�
+ 0.5 −

∑#hjW

s=1
�s

jW
�s

jW

��
��
≤ �j for different j 

and j = 1, 2,… , n . Thus, the following programming models 
are constructed:

(11)w
k∗

=

(

w
k∗

1
, w

k∗

2
,… , w

k∗

n

)

= arg min
wk

d2

(

w
k, R

)

.

The difference between Eqs. (5) and (12) is that we use 
�j in the first and second constraints of Eq. (12) to replace 
� in the first and second constraints of Eq. (5), and use 
∑n

j=1
�j in the objective function of Eq. (12) to replace � in 

the objective function of Eq. (5), the rest of the constraints 
are exactly the same. The meaning of symbols presents in 
Eq. (12) is the same as those given in Eq. (5).

Case 2. Deriving priority weight vectors 
from multiplicatively consistent HFBWPRs

Similar to the idea of additive consistent HFBWPRs pre-
sented in case 1, the following programming models can 
be constructed when we consider multiplicatively consist-
ent HFBWPRs.
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The difference between Eqs. (9) and (13) is that we use 
�j in the first and second constraints of Eq. (13) to replace 
� in the first and second constraints of Eq. (9), and use 
∑n

j=1
�j in the objective function of Eq. (13) to replace � in 

the objective function of Eq. (9), the rest of the constraints 
are exactly the same. The meaning of symbols presents in 
Eq. (13) is the same as those given in Eq. (9).

Remark 6 When solving Eqs. (12) and (13), a list of com-
promise limit constraint values �j and j = 1, 2,… , n are 
der ived.  In  these  cases ,  we use  the  value 
max

{
�j

|
||
j = 1, 2,… , n

}
 to replace the value �

A
 and �

M
 pre-

sent in step 6 of Sect. 2.3 when calculating the consistency 
ratio of FPRs.

A framework of MCDM procedure based 
on hesitant fuzzy BWM

In this section, including three subsections, the first subsec-
tion introduces hesitant fuzzy MCDM problems, the second 
subsection develops a method to derive the weights of deci-
sion-makers, and the last subsection introduces a framework 
of the MCDM procedure based on hesitant fuzzy BWM.

Hesitant fuzzy MCDM problems

Hesitant fuzzy MCDM problems involve m alternatives 
denoted as A =

{

a1, a2,… , a
m

}

 . Each alternative is assessed 
based on several feature criteria C =

{

c1, c2,… , c
n

}

 . 
Let E =

{

e1, e2,… , ez

}

 be a set of decision-makers and 
� =

(

�1, �2,… , �
z

)

 be the decision-makers’ weight vector. 
The evaluation of the alternative a

i
 , i = 1, 2,… , m with 

respect to the feature criterion is provided by the moderator, 
which is an HFE and denotes as h={�s|s = 1, 2,… , #h} . We 
assume that the weights of criteria and decision-makers are 
completely unknown. Decision-makers are invited to deter-
mine the weights of the criteria. The evaluation of the crite-
ria cj , j = 1, 2,… , n with pairwise comparisons is provided 
by decision-maker e

k
 , k = 1, 2,… , z , which are the HFPRs 

and denoted as h
k
=

{
�

s

k
|s = 1, 2,… , #h

}
.

Derive the weights of the decision-makers

In this subsection, an optimization model is constructed to 
derive the objective weights of decision-makers with complete 
unknown information. Considering that decision-makers in the 
MCDM process typically construct from different knowledge 
backgrounds and have varied expertise in the domain area, 
each decision-maker has different judgment values, which 
influences the solution differently. Therefore, each decision-
maker has a different importance weight when collecting the 

priority weights of the criteria. Given that the decision-maker 
whose judgment values are far away from the collect judgment 
values indicates that the judgment values he/she provides are 
the least reliable, the decision-maker should endow a smaller 
weight value. By comparison, the decision-maker whose judg-
ment values are close to the collect judgment values indicates 
that the judgment values he/she provides are the most reliable, 
and the decision-maker should endow a larger weight value. 
On this basis, the optimization model is constructed as follows:

In Eq. (14), wk∗

i
 , and i = 1, 2,… , n are the priority weight 

vectors of the criteria provided by decision-maker e
k
 . If we 

consider the maximum absolute differences to be a minimized 
problem with the same compromise limit constraints, then wk∗

i
 

is obtained from Eqs. (5), (6) and (7) suppose HFBWPRs with 
additive consistency or obtained from Eqs. (9), (10) and (11) 
suppose HFBWPRs with multiplicative consistency. Moreover, 
if we consider that the maximum absolute differences are mini-
mized problems with different compromise limit constraints, 
then wk∗

i
 is obtained from Eqs. (6), (7) and (12) suppose HFB-

WPRs with additive consistency or obtained from Eqs. (10), (11) 
and (13) suppose HFBWPRs with multiplicative consistency.

According to the knowledge of decision-makers, the sub-
jective weights of decision-makers are given in advance as �s

k
 

with �s

k
≥ 0 and 

∑z

k=1
�

s

k
= 1 . Therefore, the comprehensive 

weight �
k
 of the k th decision-maker is calculated as follows:

where k = 1, 2,… , z and the parameter � (0 ≤ � ≤ 1) trade-
offs the subjective weights and objective weights of deci-
sion-makers. In general, we set � = 0.5.

A framework of MCDM procedure based on hesitant 
fuzzy BWM

The proposed decision-making procedure is summarized in 
the following steps.

Step 1: Define the decision criteria and provide the evalu-
ation values.

The decision criteria are defined on the basis of alterna-
tives’ characteristics, which are determined by the modera-
tor, and the evaluation of the alternatives with respect to the 
decision criteria is also provided by the moderator, which is 
denoted as R =

(

hij

)

m×n
 . hij is an HFE indicating the evalu-

ation value of alternative a
i
 under the criteria cj.

(14)

min z =

z�
k=1

n�
i=1

�����
w

k∗

i
−

z�
k=1

�
o

k
w

k∗

i

�����

s.t.

⎧⎪⎨⎪⎩

z∑
k=1

�
o

k
= 1

0 ≤ �
o

k
≤ 1

k = 1, 2,… , z.

(15)�
k
= ��

o

k
+ (1 − �)�s

k
,
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Step 2: Identify the best and worst criteria.
According to the determination criteria, the decision-

makers provide their pairwise comparison judgment matri-
ces and denote them as Rk =

(

hij,k

)

n×n
⊂ X × X  , 

k = 1, 2,… , z . hij,k =

{
�

s
ij,k

|
||

s = 1, 2,… , #hij

}
 is an HFPR 

indicating that the possible preference degrees of criteria c
i
 

are preferred to criteria cj . Then, the score function of crite-
ria c

i
 is calculated as follows [53]:

For decision-maker e
k
 , the best and worst criteria can be 

determined based on the score function; that is, the maximal 
value of s

(

h
i,k

)

 is the best criterion, and the minimum value 
is the worst criterion.

Step 3: Calculate the optimal weights of the criteria.
To obtain the optimal weight of each criterion, there are 

two cases, including.
Case 1: Suppose HFPRs with additive consistent HFB-

WPRs. If we consider the maximum absolute differences to 
be a minimized problem with the same compromise limit 
constraints, then the priority weight vectors of the criteria are 
obtained from Eqs. (5), (6) and (7); otherwise, if we consider 
the maximum absolute differences to be a minimized problem 
with different compromise limit constraints, the priority weight 
vectors of the criteria are obtained from Eqs. (6), (7) and (12).

Case 2: Suppose HFPRs with multiplicatively consistent 
HFBWPRs. If we consider the maximum absolute differences 
to be a minimized problem with the same compromise limit 
constraints, then the priority weight vectors of the criteria are 
obtained from Eqs. (9), (10) and (11); otherwise, if we consider 
the maximum absolute differences to be a minimized problem 
with different compromise limit constraints, the priority weight 
vectors of the criteria are obtained from Eqs. (10), (11) and (13).

Step 4: Calculate the consistency ratio.
Since the optimal weight of each criterion is derived from 

different models, there are also two cases to calculate the 
consistency ratio.

Case 1: Solving models (5) or (12), we derive the optimal 
solution �

A
 and use the consistency index �

A
 presented in 

Table 2. The consistency ratio is calculated according to 
CR

A
=

�
A

�
A

.

Case 2: Solving models (9) or (13), we derive the optimal 
solution �

M
 and use the consistency index �

M
 presented in 

Table 3. The consistency ratio is calculated according to 
CR

M
=

�
M

�
M

.

Step 5: Improve the consistency of FPRs.
Suppose the threshold of consistency is determined by 

the moderator. If a desired consistency level is not achieved, 
the consistency of FPRs can be improved by modifying 
some values, including in the FPRs. To save space, we only 

(16)s
(

hi,k

)

=

1

#hij

n
∑

j=1

#hij
∑

s=1

�
s
ij,k

, i = 1, 2,… , n.

present the case in which the HFBWPRs with additive con-
sistency and the maximum absolute differences are mini-
mized problems with the same compromise limit constraint; 
other cases can be developed in a similar way.

In the improving process, the identification rule and 
direction rule are sequentially considered. First, identify the 
position that needs to be adjusted. In the first phase, we 
deter mine  the  maximum di f ference  between 
�
�
��

1

2

�
wk

B
− wk

j

�
+ 0.5 −

∑#hBj

s=1
�

s
Bj
�

s
Bj

��
�
�
 a n d  �  ,  a n d 

�
�
��

1

2

�
wk

j
− wk

W

�
+ 0.5 −

∑#hjW

s=1
�s

jW
�s

jW

��
�
�
 and � . The maximum 

difference corresponds to the value �Bj or �jW that needs to 
be adjusted. In the second phase, determine the range that 
can be adjusted. If 1

2

�

wk
B
− wk

j

�

+ 0.5 −
∑#hBj

s=1
�

s
Bj
�

s
Bj
+ � = 0 

or 1

2

�

wk
j
− wk

W

�

+ 0.5 −
∑#hjW

s=1
�s

jW
�s

jW
+ � = 0 , the adjust-

ment range is determined as �Bj ∈
{

[0, 1] ∧
[

�Bj, �Bj + �
]}

 
o r  �jW ∈

{

[0, 1] ∧
[

�jW , �jW + �
]}

 .  I f 
1

2

�

wk
B
− wk

j

�

+ 0.5 −
∑#hBj

s=1
�

s
Bj
�

s
Bj
− � = 0  o r 

1

2

�

wk
j
− wk

W

�

+ 0.5 −
∑#hjW

s=1
�s

jW
�s

jW
− � = 0 , the adjustment 

range is determined as �Bj ∈
{

[0, 1] ∧
[

�Bj − �, �Bj

]}

 or 
�jW ∈

{

[0, 1] ∧
[

�jW − �, �jW

]}

 . For a better understanding, 
algorithm  1 for improving the consistency of FPRs is 
depicted in Fig. 1.

Step 6: Determine the weights of decision-makers.
First, the objective weights of the decision-makers are 

derived with respect to Eq. (14), and then the comprehen-
sive weights of decision-makers are determined according 
to Eq. (15).

Step 7: Compute the collective optimal priority weights 
of the criteria.

The collective optimal priority weights of the criteria are 
determined by the following formula:

where �
k
 is the weight of decision-maker e

k
 , and wk∗

i
 is the 

optimal priority weight vector determined from Step 3.
Step 8: Calculate the collective evaluation values.
The collective evaluation values are calculated by the 

hesitant fuzzy weighted averaging (HFWA) operator [53]:

where �j is the collective optimal priority weight vector 
determined from Eq. (17).

Step 9: Rank the alternatives.
The ranking order of all alternatives is obtained by 

the scores of collective evaluation values HFWA
(

a
i

)

 , 

(17)�i =

z
∑

k=1

�kw
k∗

i
, i = 1, 2,… , n,

(18)

HFWA
(

ai

)

= ∪�ij∈hij

{

1 −

n
∏

j=1

(

1 − �ij

)�j

}

, i = 1, 2,… , n,
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i = 1, 2,… , n . The maximal scores of HFWA
(

a
i

)

 are the 
best alternative.

The proposed decision-making procedure is depicted 
in Fig. 2.

Remark 7 In Step 2, more than two identical scores may 
be derived from different criteria. In this case, the best and 
worst criteria can be determined with respect to the devia-
tion function that is developed in Xia and Xu [53].

Remark 8 In Step 4, since there may be more than one pri-
ority weight vector, including Eq. (7) or Eq. (11). In this 
case, the consistency ratio of the optimal weights can be 
determined according to the following formula:

where �k

A
 , k = 1, 2,… , l

◦
 is the optimal solution of model 

(5) or model (9) and indicates that the number of priority 
weight vectors included in Eq. (7) or Eq. (11) is l

0
.

Remark 9 The algorithm for improving the consistency of 
FPRs developed in Step 5 is motivated by the idea presented 

(19)CR
◦

A
= min

{
�k

A

�k

A

|
|
|
|
|
k = 1, 2,… , l

◦

}

,

in Mou et al. [57]. The proof of the algorithm’s convergence 
is developed in a similar way.

Illustrative example

There are three subsections. The first subsection introduces 
the selection of the most important project problems, the 
second subsection illustrates the use of the proposed meth-
ods, and the comparative analysis and discussion is con-
ducted in the last subsection.

Case description

With the development of the rural economy in China, there 
are an increasing number of opportunities for enterprises to 
develop in the countryside. Currently, a series of preferential 
policies have been adopted in the rural areas of China, and 
many large domestic companies have taken part in the invest-
ment of rural infrastructure, making rural areas that had no 
prospects for development previously more attractive. Cur-
rently, many enterprises in our country choose to develop in 
rural areas. People in every industry in China are optimistic 

Fig. 1  The algorithm of improving the consistency of FPR

Fig. 2  The framework of the decision-making process based on hesi-
tant fuzzy BWM
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about the development of rural areas, and everyone believes 
that they will earn a large profit if invested in rural industries.

The enterprise’s board of director has to plan the devel-
opment of strategy initiatives for the following several years. 
Suppose that there are five possible projects, denoted as (1) 
a

1
 agricultural processing plant industry; (2) a

2
 rural express 

industry; (3) a
3
 rural logistics industry; (4) a

4
 rural e-com-

merce industry; and (5) a
5
 early childhood education in rural 

areas, to be evaluated. It is necessary to compare these projects 
to select which is the most important from the point view of 
their importance, taking into account four criteria suggested by 
the enterprise’s board of director from the perspectives of (1) 
c

1
 the future development; (2) c

2
 the risk of the investment; (3) 

c
3
 the size of revenue; and (4) c

4
 impact on the environment.

The evaluation of the alternative a
i
 , i = 1, 2,… , 5 with 

respect to four feature criteria is provided by the enterprise’s 
board of director, which is an HFE and demonstrated in 
Table 4. The weights of the criteria in this decision problem 
are completely unknown. To derive the weights of criteria, 
three decision-makers from related fields are invited to take 
part in the decision process. First, three decision-makers 
are asked to provide their opinion relative to each criterion. 
Because of the uncertainty of the criteria, it is difficult for 
decision-makers to use just one value to provide their pairwise 
evaluation values. To facilitate the elicitation of their evalua-
tion values, HFE is just an effective tool to address such situ-
ations. Three decision-makers provide their evaluation with 
HFPRs, as demonstrated in matrices 1–3.

R1 =

⎡
⎢
⎢
⎢
⎣

{0.5} {0.2} {0.5, 0.6, 0.7} {0.5}

{0.8} {0.5} {0.7} {0.8, 0.9}

{0.3, 0.4, 0.5} {0.3} {0.5} {0.6}

{0.5} {0.1, 0.2} {0.4} {0.5}

⎤
⎥
⎥
⎥
⎦

R2 =

⎡
⎢
⎢
⎢
⎣

{0.5} {0.8, 0.9} {0.8} {0.7, 0.8}

{0.1, 0.2} {0.5} {0.5} {0.7}

{0.2} {0.5} {0.5} {0.4}

{0.2, 0.3} {0.3} {0.6} {0.5}

⎤
⎥
⎥
⎥
⎦

and

R3 =

⎡
⎢
⎢
⎢
⎣

{0.5} {0.6} {0.5, 0.6, 0.7} {0.7}

{0.4} {0.5} {0.6} {0.6}

{0.3, 0.4, 0.5} {0.4} {0.5} {0.6}

{0.3} {0.4} {0.4} {0.5}

⎤
⎥
⎥
⎥
⎦

.

Illustration of the proposed methods

In this subsection, we only present the case in which 
HFPRs are provided by three decision-makers with addi-
tively consistent HFBWPRs, and a similar method can 
be developed when HFPRs have multiplicatively consist-
ent HFBWPRs. The procedures for determining the most 
important project using the proposed methods are dis-
cussed below, and there are two cases.

Case 1: The maximum absolute differences are 
minimized problems with the same compromise limit 
constraint.

Step 1: Define the decision criteria and provide the 
evaluation values.

The decision criteria have been defined, and three 
decision-makers’ evaluation values have been provided, 
as demonstrated in matrices 1–3.

Step 2: Identify the best and worst criteria.
According to Eq. (16), for decision-maker e

1
 , we have:

s

(

c
1

)

= 1.8 ; s
(

c
2

)

= 2.85 ; s
(

c
3

)

= 1.8 and s
(

c
4

)

= 1.35 . 
Since s

(

c
2

)

> s

(

c
3

)

=s

(

c
1

)

> s

(

c
4

)

 , we have the best crite-
rion c

2
 and the worst criterion c

4
.

For decision-maker e
2
 , we have:

s

(

c
1

)

= 2.9 ; s
(

c
2

)

= 1.85 ; s
(

c
3

)

= 1.6 and s
(

c
4

)

= 1.65 . 
Since s

(

c
1

)

> s

(

c
2

)

> s

(

c
4

)

> s

(

c
3

)

 , we have the best cri-
terion c

1
 and the worst criterion c

3
.

For decision-maker e
3
 , we have:

s

(

c
1

)

= 2.4 ; s
(

c
2

)

= 2.1 ; s
(

c
3

)

= 1.9 and s
(

c
4

)

= 1.6 . 
Since s

(

c
1

)

> s

(

c
2

)

> s

(

c
3

)

> s

(

c
4

)

 , we have the best cri-
terion c

1
 and the worst criterion c

4
.

Step 3: Calculate the optimal weights of the criteria.
First, calculate the weights of the criteria, according to 

Eq. (5), for decision-maker e
1
 , we have:

min zk
= �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

���
1

2

�
wk

2
− wk

1

�
+ 0.5 − 0.8

��� ≤ �

���
1

2

�
wk

2
− wk

3

�
+ 0.5 − 0.7

��� ≤ �

���
1

2

�
wk

2
− wk

4

�
+ 0.5 −

�
0.8�1

24
+ 0.9�2

24

���� ≤ �

���
1

2

�
wk

1
− wk

4

�
+ 0.5 − 0.5

��� ≤ �

���
1

2

�
wk

3
− wk

4

�
+ 0.5 − 0.6

��� ≤ �

�
s
24

�
wk

1
+ wk

2
+ wk

3
+ wk

4
− 1

�
= 0

�
1

24
+ �

2

24
= 1

�
s
24

= 0 ∨ 1, s = 1, 2

�
s
24

= 1, s = 1, 2

wk
j
≥ 0

� ≥ 0

k = 1, 2

Table 4  Evaluation of the alternatives with respect to four feature cri-
teria

Criteria
Alternative

c
1

c
2

c
3

c
4

a
1

{0.3, 0.4, 0.5} {0.6, 0.7} {0.8} {0.7, 0.8}

a
2

{0.6, 0.7, 0.8} {0.9} {0.2, 0.3} {0.5}

a
3

{0.8, 0.9} {0.2, 0.3, 0.4} {0.7} {0.3}

a
4

{0.5} {0.7, 0.8} {0.8, 0.9} {0.3, 0.4}

a
5 {0.8, 0.9} {0.3, 0.5} {0.6, 0.7} {0.4}
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By solving this optimization model, when �1

24
 and �2

24
 , 

respectively, set 1, we obtain:

Similarly, for decision-maker e
2
 , when �1

12
 , �2

12
 , �1

14
 and 

�
2

14
 are set to 1, we can obtain,

Moreover, for decision-maker e
3
 , when �1

13
 , �2

13
 and �3

13
 , 

respectively, set 1, we can obtain,

Second, derive the optimal priority weight vector.
First, utilize Eq. (6) to obtain the distance between wk 

and R
k
 , for decision-maker e

1
 , we have:d1

(

w
1, R1

)

= 0.07 
and d1

(

w
2, R1

)

= 0.09 . Since there is only one prior-
ity weight vector included in Eq.  (7), then the optimal 
priority weight vector can be determined as follows: 
w

1∗ = (0.05, 0.65, 0.25, 0.05).

Similarly, for decision-maker e
2
 , we can obtain.

d1

(

w
1, R2

)

= d1

(

w
3, R2

)

= 0  a n d 
d1

(

w
2, R2

)

= d1

(

w
4, R2

)

= 0.03 . Since there is only one 
priority weight vector included in Eq. (7), then the opti-
mal priority weight vector can be determined as follows: 
w

2∗ = (0.65, 0.05, 0.05, 0.25).
Moreover, for decision-maker e

3
 , we can obtain.

d1

(

w
1, R3

)

= d1

(

w
3, R3

)

= 0.028 and d1

(

w
2, R3

)

= 0 . 
Since there is only one priority weight vector included in 
Eq. (7), then the optimal priority weight vector can be deter-
mined as follows: w3∗ = (0.45, 0.25, 0.25, 0.05).

Step 4: Calculate the consistency ratio.
According to CR

A
=

�
A

�
A

 , for decision-maker e
1
 , we have 

CR
1
=

0.0

0.1
= 0 ; for decision-maker e

2
 , we have CR

2
= 0 ; and 

for decision-maker e
3
 , we have CR

3
= 0.

Step 5: Improve the consistency of FPRs.
Since the consistency ratio values CR

1
 , CR

2
 and CR

3
 are 

equal to 0, we have that R
1
 , R

2
 and R

3
 are completely con-

sistent, and their consistency does not need to be further 
improved.

Step 6: Determine the weights of decision-makers.
According to Eq. (14), the objective weights of deci-

sion-makers e
1
 , e

2
 and e

3
 are determined as follows:�o

1
= 0 , 

�
o

2
= 0 and �o

3
= 1 . Suppose the subjective weights of 

z
1
= 0.0; w

1

1
= 0.05, w

1

2
= 0.65, w

1

3
= 0.25 and w

1

4
= 0.05.

z
2
= 0.04; w

2

1
= 0.04, w

2

2
= 0.72, w

2

3
= 0.24 and w

2

4
= 0.0.

z
1
= 0.0; w

1

1
= 0.65, w

1

2
= 0.05, w

1

3
= 0.05 and w

1

4
= 0.25.

z
2
= 0.03; w

2

1
= 0.73, w

2

2
= 0.0, w

2

3
= 0.07 and w

2

4
= 0.2.

z
3
= 0.0; w

3

1
= 0.65; w

3

2
= 0.05; w

3

3
= 0.05 and w

3

4
= 0.25.

z
4
= 0.03; w

4

1
= 0.73; w

4

2
= 0.0; w

4

3
= 0.07 and w

4

4
= 0.2.

z
1
= 0.03; w

1

1
= 0.38, w

1

2
= 0.25, w

1

3
= 0.32 and w

1

4
= 0.05.

z
2
= 0.0; w

2

1
= 0.45, w

2

2
= 0.25, w

2

3
= 0.25 and w

2

4
= 0.05.

z
3
= 0.03; w

3

1
= 0.52, w

3

2
= 0.25, w

3

3
= 0.18 and w

3

4
= 0.05.

decision-makers are provided by the enterprise’s board 
of director, which are equal values �s

1
= �

s

2
= �

s

3
=

1

3
 ; 

then, according to Eq.  (15), the comprehensive weights 
of decision-makers e

1
 , e

2
 and e

3
 are calculated as follows: 

�
1
= �

2
=

1

3
 and �

3
=

2

3
.

Step 7: Compute the collective optimal priority weights 
of the criteria.

With respect to Eq. (17), the collective optimal priority 
weights of the criteria are calculated as follows:�

1
= 0.4167 , 

�
2
= 0.2833 , �

3
= 0.2167 and �

4
= 0.0833.

Step 8: Calculate the collective evaluation values.
According to Eq. (18), the collective evaluation values are 

calculated by the HFWA operator as follows:

Step 9: Rank the alternatives.
According to Eq. (16), the score values of collective evalu-

ation values are derived as follows: s
(

HFWA
(

a
1

))

= 0.7686 , 
s

(

HFWA
(

a
2

))

= 0.7970  ,  s

(

HFWA
(

a
3

))

= 0.7619  , 
s

(

HFWA
(

a
4

))

= 0.8257 and s
(

HFWA
(

a
5

))

= 0.8112 . Since 
s

(

HFWA
(

a
4

))

> s

(

HFWA
(

a
5

))

> s

(

HFWA
(

a
2

))

> s

(

HFWA
(

a
1

))

> s

(

HFWA
(

a
3

))  , 
the ranking order of all alternatives is obtained as 
a

4
≻ a

5
≻ a

2
≻ a

1
≻ a

3
 . Thus, the rural e-commerce indus-

try is the most important project to invest.
Case 2: The maximum absolute differences are mini-

mized problems with different compromise limit constraints.
Step 1′ and Step 2′ are the same as those given in Step 1 

and Step 2.
Step 3′ : Calculate the optimal weights of the criteria.
First, calculate the weights of the criteria, according to 

Eq. (12), for decision-maker e
1
 , we have:

HFWA
(

a1

)

= {0.5757, 0.9557, 0.9506, 0.9609, 0.9637, 0.9604, 0.9670, 0.9632, 0.9708},

HFWA
(

a2

)

= {0.9350, 0.9455, 0.9597, 0.9683, 0.9731}, HFWA
(

a3

)

= {0.8516, 0.8833, 0.9414, 0.9449, 0.95}

HFWA
(

a4

)

= {0.8912, 0.9079, 0.9586, 0.9452, 0.9538, 0.9750, 0.9735} and,

HFWA
(

a5

)

= {0.8736, 0.9073, 0.9113, 0.9389, 0.9475, 0.9519, 0.9595}.

min zk
=

5�
i=1

�i

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1
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+ wk

4
− 1

�
= 0

�
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+ �

2

24
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�
s
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= 0 ∨ 1, s = 1, 2

�
s
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= 1, s = 1, 2
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j
≥ 0

�j ≥ 0, j = 1, 2,… , 5

k = 1, 2
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By solving this optimization model, when �1

24
 and �2

24
 

respectively set 1, we obtain:

Similarly, for decision-maker e
2
 , when �1

12
 , �2

12
 , �1

14
 and 

�
2

14
 are set to 1, we can obtain.

Moreover, for decision-maker e
3
 , when �1

13
 , �2

13
 and �3

13
 

respectively set 1, we can obtain.

Second, derive the optimal priority weight vector.
First ,  util ize Eq.  (6) to obtain the distance 

between wk  and R
k
 ,  for decision-maker e

1
 ,  we 

have:d1

(

w
1, R1

)

= d1

(

w
2, R1

)

= 0.07 . Since there is only 
one priority weight vector including in Eq.  (7), then 
the optimal priority weight vector can be determined as 
follows:

Similarly, for decision-maker e
2
 , we can obtain.

d1

(

w
1, R2

)

= d1

(

w
3, R2

)

= 0  a n d 
d1

(

w
2, R2

)

= d1

(

w
4, R2

)

= 0.03 . Since there is only one 
priority weight vector including in Eq. (7), then the opti-
mal priority weight vector can be determined as follows:

Moreover, for decision-maker e
3
 , we can obtain,

d1

(

w
1, R3

)

= d1

(

w
3, R3

)

= 0.028 and d1

(

w
2, R3

)

= 0 . 
Since there is only one priority weight vector including 
in Eq. (7), then the optimal priority weight vector can be 
determined as follows: w3∗ = (0.45, 0.25, 0.25, 0.05).

Step 4
′

 : Calculate the consistency ratio.
According to CR

A
=

�
A

�
A

 , for decision-maker e
1
 , we have: 

CR
1
=

0.0

0.1
= 0 ; for decision-maker e

2
 , we have: CR

2
= 0 ; 

for decision-maker e
3
 , we have: CR

3
= 0.

z
1
= 0.0; �1 = �2 = �3 = �4 = �5 = 0.0,

w
1

1
= 0.05, w

1

2
= 0.65, w

1

3
= 0.25 and w

1

4
= 0.05.

z
2
= 0.1; �1 = �2 = �4 = �5 = 0.0, �3 = 0.1,

w
1

1
= 0.05, w

1

2
= 0.65, w

1

3
= 0.25 and w

1

4
= 0.05.

z
1
= 0.0; �1 = �2 = �3 = �4 = �5 = 0.0, w

1

1
= 0.65, w

1

2
= 0.05, w

1

3
= 0.05 and w

1

4
= 0.25.

z
2
= 0.1; �2 = �3 = �5 = 0.0, �1 = 0.07, �4 = 0.03, w

2

1
= 0.67, w

2

2
= 0.0, w

2

3
= 0.07 and w

2

4
= 0.27.

z
3
= 0.0; �1 = �2 = �3 = �4 = �5 = 0.0, w

3

1
= 0.65, w

3

2
= 0.05, w

3

3
= 0.05 and w

3

4
= 0.25.

z
4
= 0.1; �1 = �2 = �3 = �4 = 0.0, �5 = 0.1 w

4

1
= 0.7, w

4

2
= 0.1, w

4

3
= 0.1, and w

4

4
= 0.1.

z
1
= 0.1, �1 = �3 = �4 = �5 = 0.0, �2 = 0.1, w

1

1
= 0.45, w

1

2
= 0.25, w

1

3
= 0.25 and w

1

4
= 0.05.

z
2
= 0.0, �1 = �2 = �3 = �4 = �5 = 0.0, w

2

1
= 0.45, w

2

2
= 0.25, w

2

3
= 0.25 and w

2

4
= 0.05.

z
3
= 0.1, �1 = �3 = �4 = �5 = 0.0, �2 = 0.1, w

1

1
= 0.45, w

1

2
= 0.25, w

1

3
= 0.25 and w

1

4
= 0.05.

w
1∗ = (0.05, 0.65, 0.25, 0.05).

w
2∗ = (0.65, 0.05, 0.05, 0.25).

Step 5′ : Improve the consistency of FPRs.
Since the consistency ratio values CR

1
 , CR

2
 and CR

3
 are 

equal to 0, we have R
1
 , R

2
 and R

3
 are completely consistency, 

the consistency of them do not need to be further improved.
Since the collective optimal priority weights of the cri-

teria are the same as in case 1, Steps 6′ to 9′ are the same 
as those given in Steps 6–9, and the best choice is the same 
as in case 1.

Comparative analysis and discussion

To validate the feasibility of the proposed method, we con-
ducted a comparative study with other methods based on 
the same illustrative example.

Mi and Liao [35] investigated the BWM with hesitant 
fuzzy information and then developed three different mod-
els to derive the priority weights of criteria with respect to 
diverse objectives. That is: (1) score-based method. The 
score values of HFEs are used to denote the most possi-
ble values of HFEs; (2) normalization-based method. The 
HFEs are extended to those with equal lengths accord-
ing to decision-makers’ attitudes. (3) Regression-based 
method. Each possible value of pairwise comparisons 
is traversed without ignoring or adding any information. 
The shortcomings of the score-based method are that the 
HFEs are translated into different score values, which may 
lead to the loss of information. The shortcomings of the 
normalization-based method are that different values are 
added into shorter HFEs, which may distort the original 
information provided by decision-makers. The regression-
based method is the most similar to the methods proposed 
in this study. To save space, only the regression-based 
method is conducted with a comparative study with the 
proposed methods. The calculation process is shown as 
follows.
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Step 1: Calculate the individual weights of the criteria.
Suppose the HFPRs are provided by three decision-

makers with additive consistency. According to the method 
presented in [35], for decision-maker e

1
 , we have:

By solving this optimization model, we obtain:

Similarly, for decision-maker e
2
 , we can obtain,

Moreover, for decision-maker e
3
 , we can obtain,

Step 2: Compute the collective optimal priority weights 
of the criteria.

Suppose the decision-makers’ weights are the same 
as those given in Step 6, that is, �

1
= �

2
=

1

3
 and �

3
=

2

3
 . 

With respective to Eq. (17), the collective optimal priority 
weights of the criteria are calculated as follows: �

1
= 0.4167 , 

�
2
= 0.2833 , �

3
= 0.2167 and �

4
= 0.0833.

For a better comparison, the results obtained by Mi and 
Liao [35]’s method and the proposed methods are summa-
rized in Table 5.

As shown in Table 5, the ranking values are the same 
when compared with Mi and Liao [35] method and the 
proposed methods. This confirms the feasibility of the 

min z = �

s.t.
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= 0 ∨ 1, s = 1, 2
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j
≥ 0

� ≥ 0

z= 0.0; w
1
= 0.05, w

2
= 0.65, w

3
= 0.25 and w

4
= 0.05.

z= 0.0; w
1
= 0.65, w

2
= 0.05, w

3
= 0.05 and w

4
= 0.25.

z= 0.0; w
1
= 0.45; w

2
= 0.25; w

3
= 0.25 and w

4
= 0.05.

proposed methods. The possible reasons for the consist-
ency are explained as follows: Mi and Liao [35] method 
and the proposed methods both integrate the consistent 
HFPRs and BWM and determine the best priority weight 
vector. However, in the review of the calculation process, 
the definitions of the consistent HFPRs are different from 
Mi and Liao [35] method and the proposed methods, In 
Mi and Liao [35] method, the consistency definitions 
based on one FPR derived from HFPRs, that is, optimistic 
consistency, while the proposed methods the consistency 
definitions are based on the derived FPRs for each value 
in HFEs. The ways to determine the best priority weight 
vector are also different. The best priority weight vector 
was derived from the mathematical programming model 
in Mi and Liao [35] method, while the proposed meth-
ods were derived from the proposed distance formulas. 
Moreover, the proposed methods consider the consistency 
checking and improving process, while Mi and Liao [35] 
method fails to this.

In addition, although the ranking values are the same 
when compared with the proposed methods with the same 
and different compromise limit constraints, in the review 
of the calculation process, we find that the weights of the 
criteria are different for some FPRs. This confirms the 
necessity of considering different compromise limit con-
straints. For a better comparison, the results obtained by 
Mi and Liao [35] method and the proposed methods are 
summarized in Table 6.

According to the comparison analysis, the method pro-
posed in this study has the following advantages over other 
existing methods.

1. The consistency measures from the perspectives of 
additive consistent and multiplicatively consistent HFB-
WPRs are defined based on the relationships between 
each fixed value and their corresponding priority weight 
vector. It can then avoid information loss and distortion, 
and the ranking result obtained from the proposed meth-
ods seems more reasonable.

2. The ways to determine the best priority weight vector 
developed in this study consider the case when more 
than one priority weight vector has the same minimum 
distance.

Table 5  The ranking results of the different methods

Methods Ranking values Ranking results

�
1

�
2

�
3

�
4

Mi and Liao [35] method Regression-based method 0.4167 0.2833 0.2167 0.0833 c
1
≻ c

2
≻ c

3
≻ c

4

The proposed methods Same compromise limit 0.4167 0.2833 0.2167 0.0833 c
1
≻ c

2
≻ c

3
≻ c

4

Different compromise limit 0.4167 0.2833 0.2167 0.0833 c
1
≻ c

2
≻ c

3
≻ c

4
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3. The proposed methods consider the consistency checking 
and improving process, and the ranking result obtained 
from the proposed methods seems more convincing.

Conclusion

To address the situation where HFPRs are necessary, this 
paper develops several decision-making models integrating 
HFPRs with BWM. First, consistency measures from the per-
spectives of additive/multiplicatively consistent HFBWPRs 
are introduced. Second, several decision-making models are 
developed in view of the proposed additive/multiplicatively 
consistent HFBWPRs. Third, an absolute programming 
model is developed to obtain the decision-makers’ objective 
weights utilizing the optimal priority weight vector informa-
tion, and the calculation of comprehensive weights of deci-
sion-makers is provided. Finally, a framework of the MCDM 
procedure based on hesitant fuzzy BWM is introduced, and 
an illustrative example in conjunction with comparative 
analysis is used to demonstrate that the proposed models are 
feasible and efficient for practical MCDM problems.

The present study provides several significant contri-
butions to MCDM problems with HFPRs. They are sum-
marized as follows: (1) consistency measures from the 
perspectives of additive/multiplicatively consistent HFB-
WPRs are introduced, which integrate the advantages of 
HFPRs and BWM. The proposed hesitant fuzzy BWM 
based on HFPRs provides us with a very useful method for 
MCDM in fuzzy environments. (2) Several decision-mak-
ing models are developed in view of the proposed additive/
multiplicatively consistent HFBWPRs and consider the 

same and different compromise limit constraints. In view 
of this, the MCDM methods developed in this study have 
wide practical applications. (3) An absolute programming 
model is developed to obtain the decision-makers’ objec-
tive weights utilizing the optimal priority weight vector 
information. It provides us with a new way to derive deci-
sion-makers’ weights. In our future research, the proposed 
methods are extended to hesitant fuzzy linguistic prefer-
ence relations, and the proposed methods are applied to 
solve other practical MCDM problems. In addition, since 
the results given in this study are consistent, inconsist-
ency is not considered. How to solve the weight vector by 
minimizing the inconsistency of the hesitant fuzzy BWM 
is also an area of future research.
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Table 6  The weights of criteria derived from different methods

Methods Decision 
makers

Weight vectors The number of 
weight vectors

w
1

w
2

w
3

w
4

Mi and Liao [35]’s method Regression-based method e
1

0.05 0.65 0.25 0.05 1

e
2

0.65 0.05 0.05 0.25 1

e
3

0.45 0.25 0.25 0.05 1

The proposed methods Same compromise limit e
1

0.05 0.65 0.25 0.05 2

e
2

0.65 0.05 0.05 0.25 2

0.67 0.0 0.07 0.27 1

0.7 0.1 0.1 0.1 1

e
3

0.45 0.25 0.25 0.05 3

Different compromise limit e
1

0.65 0.05 0.05 0.25 1

0.04 0.72 0.24 0.0 1

e
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0.73 0.0 0.07 0.2 2

e
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