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Approaches to Improving Survey-Weighted
Estimates
Qixuan Chen, Michael R. Elliott, David Haziza, Ye Yang, Malay Ghosh, Roderick J. A. Little,
Joseph Sedransk and Mary Thompson

Abstract. In sample surveys, the sample units are typically chosen using a
complex design. This may lead to a selection effect and, if uncorrected in the
analysis, may lead to biased inferences. To mitigate the effect on inferences
of deviations from a simple random sample a common technique is to use
survey weights in the analysis. This article reviews approaches to address
possible inefficiency in estimation resulting from such weighting.

To improve inferences we emphasize modifications of the basic design-
based weight, that is, the inverse of a unit’s inclusion probability. These
techniques include weight trimming, weight modelling and incorporating
weights via models for survey variables. We start with an introduction to sur-
vey weighting, including methods derived from both the design and model-
based perspectives. Then we present the rationale and a taxonomy of methods
for modifying the weights. We next describe an extensive numerical study
to compare these methods. Using as the criteria relative bias, relative mean
square error, confidence or credible interval width and coverage probability,
we compare the alternative methods and summarize our findings. To supple-
ment this numerical study we use Texas school data to compare the distribu-
tions of the weights for several methods. We also make general recommenda-
tions, describe limitations of our numerical study and make suggestions for
further investigation.
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1. INTRODUCTION

The setting for this review paper is the analysis of
data from sample surveys involving complex probabil-
ity designs, potentially with auxiliary information. Us-
ing such a design may lead to a selection effect and,
if uncorrected in the analysis, may lead to biased in-
ferences. To mitigate the effect on inferences of devia-
tions from a simple random sample, a common analytic
technique is to use survey weights. Since weighting can
lead to inefficient estimation, this article reviews ap-
proaches to address such inefficiency.
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Here, inferences are required for finite population
quantities such as means or totals in the entire popula-
tion or subpopulations. A key requirement of a proba-
bility sample is that the inclusion probability of each
of the samples that could be drawn is known, and
each unit in the population has a nonzero chance of
being included. In a landmark paper, Neyman (1934)
considered stratified random sampling. For estimation,
Neyman weighted sampled cases by the inverse of the
stratum sampling rate; more generally, Horvitz and
Thompson (1952) assigned unit i in the sample, with
inclusion probability πi , the design or sampling weight

(1.1) di = 1/πi.

In data sets from population surveys, weights at-
tached to the units can include adjustments for unit
nonresponse, and post-stratification to match the distri-
butions of auxiliary variables with known distributions
in the population. Thus, a more general form of weight
is wi = di ×win ×wip where win is a unit nonresponse
adjustment, and wip is a post-stratification adjustment.
Weighting units is a convenient way to allow for the
effects of differential inclusion into the sample, but re-
sulting estimates can be very inefficient. This article
reviews methods that attempt to ameliorate this ineffi-
ciency, either by modifying the weights or by model-
based approaches that treat weights as covariates.

Most surveys are multipurpose surveys in the sense
that information is collected on a possibly large num-
ber of characteristics of interest. In this context, the
weights are generally constructed so that they may be
applied to any characteristic of interest. Such weights
are often referred to as multipurpose weights, dis-
cussed in detail in Haziza and Beaumont (2017). In the
current paper, both multipurpose and single-purpose
weights are considered. For the latter, the weights are
variable specific so the resulting weights are, in gen-
eral, not applicable to all characteristics of interest.

1.1 The Design-Based Perspective

Sampling weights are a key feature of the random-
ization or design-based approach to descriptive survey
inference (e.g., Hansen, Hurwitz and Madow, 1953;
Kish, 1995; Cochran, 1977), which has the following
main elements. For a population U with N units, let
yi , i = 1, . . . ,N , be the value of the survey (or out-
come) variable of the ith unit. From the population U ,
a sample s, of size n, is selected according to a given
sampling design. Let Ii , i = 1, . . . ,N , be the inclusion
indicator variable of the ith unit, with value 1 if the unit

is included in the sample and 0 otherwise. Let Z rep-
resent design information, such as stratum or cluster
indicators. We consider “descriptive” inference about
a finite population quantity Q(Y,Z), for example, the
population total

Q(Y,Z) = ty =
N∑

i=1

yi,

where Y = (y1, . . . , yN). In the design-based or ran-
domization approach, inferences are based on the dis-
tribution of I = (I1, . . . , IN), and the outcome vari-
ables y1, . . . , yN are treated as fixed quantities. Infer-
ence involves (a) the choice of an estimator for Q, q̂ =
q̂(Yinc, I,Z), where Yinc is the included part of Y ; and
(b) the choice of a variance estimator ν̂ = ν̂(Yinc, I,Z)

that is unbiased or approximately unbiased for the vari-
ance of q̂ with respect to the distribution of I . Infer-
ences are then generally based on normal large-sample
approximations. For example, a 95% confidence inter-
val for Q is q̂ ± 1.96

√
ν̂, where 1.96 is the 97.5th per-

centile of the standard normal distribution. For samples
that are not large, and quantities Q that are functions
of population totals, resampling-based confidence in-
tervals are available for some designs (Rao and Wu,
1988; Rao, Wu and Yue, 1992).

Estimators q̂ are chosen to have good design-based
properties, such as design unbiasedness: E(q̂|Y) = Q,
or design consistency: q̂/Q → 1, that is, q̂ converges to
Q in probability under the sampling design and a suit-
able asymptotic framework (Brewer, 1979; Isaki and
Fuller, 1982; Fuller, 2009).

Two weighted estimators play a central role in
design-based inference, in the absence of unit nonre-
sponse. Weighting sampled cases by the design weight,
the inverse of the inclusion probability, yields the
Horvitz–Thompson (Horvitz and Thompson, 1952) es-
timator

(1.2) t̂HT =
N∑

i=1

diIiyi,

which is design-unbiased for ty . That is, E(̂tHT|Y) = ty
for all Y . An alternative to t̂HT is the Hájek estimator
(Hájek, 1971):

(1.3) t̂HA = t̂HT

N̂HT
N,

with N̂HT = ∑N
i=1 diIi , which is design-consistent

for ty . The corresponding estimators of the popula-
tion mean Y = ty/N are ȳHT = t̂HT/N and ȳHA =
t̂HT/N̂HT.
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EXAMPLE 1.1 (Stratified sampling). Assume that
the finite population U is partitioned into H strata and
let Nh be the size of stratum h, h = 1, . . . ,H . Suppose
a simple random sample of size nh is selected from
stratum h,without replacement. The inclusion proba-
bility of unit i in stratum h is thus πhi = nh/Nh. For
this design, the HT and Hájek estimators of the popu-
lation mean are identical and are equal to

(1.4) yHT = N−1
H∑

h=1

Nh∑
i=1

(Nh/nh)Ihiyhi =
H∑

h=1

Phyh,

where Ph = Nh/N and yh is the sample mean in
stratum h. The standard estimator of variance is v̂ =∑H

h=1 P 2
h (1 − (nh/Nh))s

2
h/nh, where s2

h is the sample
variance of y in stratum h. A 95% confidence interval
for Y is yHT ± 1.96

√
v̂.

EXAMPLE 1.2 (Estimating a population total from
a PPS sample). In applications such as establishment
surveys or auditing, a measure of size x is available for
all units in the population. The larger units often con-
tribute more to summaries of interest, and it is efficient
to sample them with higher probability. In particular,
for probability proportional to size (PPS) sampling,
unit i with size xi is sampled with probability cxi ,
where c is chosen to yield the desired sample size; units
included with certainty are removed from the pool be-
fore sampling. The HT estimator (1.2), which weights
sampled units by the inverses of their inclusion proba-
bilities, is the standard estimator of the population total
in this setting.

The design-based approach does not require a sta-
tistical model for the survey outcomes, but the perfor-
mance of design-based estimators varies with the valid-
ity of the assumptions about y implied by the form of
the estimator; a useful guide is to assess an estimator’s
implied predictions of nonsampled values, and check
whether they are sensible. For example, if yi = βπi for
all i, t̂HT = ty for any sample s and, so V (̂tHT|Y) = 0.
More generally, consider the model:

(1.5) yi
ind∼ N

(
βπi, σ

2π2
i

)
,

where N(μ, τ 2) denotes the normal distribution with
mean μ and variance τ 2. Using (1.6) leads to predic-
tions β̂πi , where β̂ = n−1 ∑N

i=1 Iiyi/πi . Hence, t̂HT =∑N
i=1 β̂πi is the result of using this model to predict

the sampled and nonsampled values. In view of this
property, we call (1.5) the HT model. Similarly, the Há-
jek estimator (1.3) of the total results from predictions
from the model

(1.6) yi
ind∼ N

(
β,σ 2πi

)
,

and accordingly we call (1.6) the Hájek model.

EXAMPLE 1.3 (Calibration estimators). Suppose
that an L-vector of auxiliary variables x = (x1, . . . ,

xL)� is available for all the sample units and that the
vector of population totals (benchmarks)

tx = (tx1, . . . , txL
)�

is known, where txl
= ∑

i∈U xli, l = 1, . . . ,L, with U

denoting the population of units. We seek calibrated
weights wCi as close as possible to the design weights
di such that the calibration constraints∑

i∈s

wCixli = txl

are satisfied; see Deville and Särndal (1992) and
Särndal (2007) for detailed discussions about calibra-
tion. The resulting calibrated weights are given by
wCi = digi where gi is the calibration adjustment as-
sociated with unit i. The resulting calibration estimator
is

(1.7) t̂C = ∑
i∈s

wCiyi,

which is design consistent for the ty . If yi = x�
i β for

a vector of constants β , then t̂C = ty for any sample s

and MSE(̂tC |Y) = 0. For the simple case where xi = 1
for all i, the calibration estimator t̂C in (1.7) reduces
to the Hájek estimator given by (1.3). The commonly-
used Generalized Regression (GREG) estimator is also
a special case of (1.7), where

gi = 1 + qi

(
tx − ∑

j∈s

dj xj

)�

(1.8)

·
(∑

j∈s

dj qj xj x�
j

)−1
xi ,

q−1
i being a known positive weight unrelated to di . See,

for example, Särndal, Swensson and Wretman (1992).
Estimator (1.7) is an example of a model-assisted es-

timator (e.g., Särndal, Swensson and Wretman, 1992),
and is constructed to be design-consistent but is also
approximately model-unbiased under an assumed
model. The estimator is design-consistent whether
or not the model is correctly specified, and as such
foreshadows “doubly-robust” estimators in the main-
stream statistics literature. Kang and Schafer (2007)
discuss connections between survey weights and in-
verse propensity weights in that literature.
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1.2 The Model-Based Perspective

An alternative to randomization inference is the
model-based approach which, traditionally, bases in-
ferences directly on an assumed model for the popu-
lation outcomes. A model is assumed for the popula-
tion outcomes y with underlying parameters θ , and this
model is used to predict the nonsampled values in the
population, and hence to predict finite population quan-
tities. More generally, inferences are based on the joint
distribution of Y and I (Rubin, 1978, 1983; Peng, Lit-
tle and Raghunathan, 2004). Rubin (1976) and Sugden
and Smith (1984) show that under probability sam-
pling, inferences can be based on the distribution of
Y alone, provided the design variables (say Z) are con-
ditioned in the model, and the distribution of I given Y

and Z is independent of the distribution of Y given Z.
In other words, random sampling is justified since it
makes the sampling mechanism ignorable, simplifying
model-based inferences. Since the sampling weights
can be viewed as design variables, this perspective ar-
gues against ignoring the weights for model-based in-
ference.

There are two major variants: superpopulation mod-
elling and Bayesian modelling. In superpopulation
modelling (e.g., Royall, 1970; Godambe and Thomp-
son, 1986; Thompson, 1997; Valliant, Dorfman and
Royall, 2000), the population values Y are assumed
to be a random sample from a “superpopulation”,
and assigned a probability distribution p(Y |Z,θ) in-
dexed by fixed parameters θ . Bayesian survey infer-
ence (Ericson, 1969, 1988; Basu, 1971; Scott, 1977;
Binder, 1982; Rubin, 1984, 1987; Ghosh and Mee-
den, 1997; Little, 2003; Peng, Little and Raghunathan,
2004) requires the specification of a prior distribution
p(Y |Z) for the population values. Inferences for fi-
nite population quantities are then based on the pos-
terior predictive distribution of the nonsampled values
(say Yexc) of Y , given the sampled values. The prior
distribution is often specified via a parametric model
p(Y |Z,θ) indexed by parameters θ , combined with a
prior distribution p(θ |Z) for θ , that is,

p(Y |Z) =
∫

p(Y |Z,θ)p(θ |Z)dθ,

where the sampling mechanism is assumed to be ignor-
able.

The posterior predictive distribution of the nonsam-
pled values Yexc is then

p(Yexc|Yinc,Z)
(1.9)

=
∫

p(Yexc|Yinc,Z, θ)p(θ |Yinc,Z)dθ,

where p(θ |Yinc,Z) is the posterior distribution of the
parameters, computed via Bayes’ theorem:

p(θ |Yinc,Z) = p(θ |Z)p(Yinc|Z,θ)/p(Yinc|Z),

where p(Yinc|Z) is a normalizing constant. This pos-
terior distribution induces a posterior distribution for
finite population quantities Q.

The specification of p(Y |Z,θ) in the Bayesian for-
mulation is the same as in parametric superpopula-
tion modelling, and in large samples, the likelihood
based on this distribution dominates the contribution
from the prior distribution of θ . As a result, large-
sample inferences from the superpopulation modelling
and Bayesian approaches are often similar, with the
key distinction then being between design-based and
model-based inference. Bayes modelling has advan-
tages over some superpopulation model techniques in
small samples, since the integration over the parame-
ters θ in (1.9) propagates uncertainty in the estimation
of θ , yielding better inferences than approaches that fix
θ at an estimate θ̂ .

Many authors have considered design-based proper-
ties of model-based inferences (e.g., Isaki and Fuller,
1982). Advocates of calibrated Bayes inference (Box,
1980; Rubin, 1984; Little, 2006, 2012) argue that in-
ferences should be Bayesian, but under models that
yield inferences with good design-based properties; in
other words, Bayesian credible intervals when assessed
as confidence intervals in repeated sampling should
have close to nominal coverage. For surveys, good cal-
ibration requires that Bayes models should incorporate
sample design features such as weighting, stratification
and clustering. For example, clustering is captured by
Bayesian hierarchical models, with clusters as random
effects. Prior distributions are generally weakly infor-
mative, so that the likelihood dominates the posterior
distribution.

What is the role of weights in model-based infer-
ence about finite population quantities? A hybrid ap-
proach is to apply the sampling weight to the contri-
bution to the model from a sampled case (Molina and
Skinner, 1992). For simple random samples, the basis
of inference for a parametric model p(Y |Z,θ) is the
log-likelihood

l(θ |Yinc,Z) =
N∑

i=1

Ii logp(yi |zi, θ);

in particular, maximum likelihood (ML) estimates of θ

maximize this function. With survey weights, an anal-
ogous “pseudo-” or “weighted” log-likelihood can be
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defined as

(1.10) lw(θ |Yinc,Z) =
N∑

i=1

Iiwi logp(yi |zi, θ),

and θ estimated by maximizing this function (1.10).
From a strict modelling perspective, however, the pri-
mary focus for descriptive inference is on prediction of
nonsampled or nonresponding values, and the weights
enter among the design variables Z as covariates in the
prediction model (e.g., Gelman, 2007).

EXAMPLE 1.1 CONTINUED. For a stratified ran-
dom sample, the design variables Z consist of the stra-
tum indicators, and conditioning on Z suggests that
models need to have distinct stratum parameters. In

particular, consider the normal model yhi |μh,σ
2
h

ind∼
N(μh,σ

2
h ), with prior p(μh, logσ 2

h ) = const. This
model yields the stratified mean as the posterior mean
which, as described above, weights sampled cases in
stratum h by their design weight Nh/nh. The posterior
variance for known σ 2

h is the stratified variance. When
{σ 2

h } are unknown, assigning them a flat prior leads
to a posterior distribution that is a mixture of t distri-
butions. Many variants of this basic normal model are
possible. �

EXAMPLE 1.2 CONTINUED. Estimating a popula-
tion total from a PPS sample. The posterior mean from
the HT model (1.5) differs from the HT estimator by a
quantity that tends to zero with the sampling fraction
n/N . Zheng and Little (2003, 2005) relax the linearity
assumption of the mean structure, modelling the mean
of y given size x as a penalized spline, and the vari-
ance of y given x as proportional to a power of the
x-variable. Simulations suggest that this model yields
estimates of the total that have smaller mean square
error than the HT estimator when the HT model is a
misspecification of the mean function. Further, confi-
dence intervals from the expanded model using jack-
knife standard errors have better confidence coverage.

Simple weighted estimates like ȳHT or ȳHA work
well when their underlying models are reasonable, but
when they are not, the estimators can have unaccept-
ably high variance—a comical extreme case is Basu’s
famous (Basu, 1971) elephant example—and associ-
ated confidence intervals with poor confidence cov-
erage. Alternatives to these weighted estimators that
address these weaknesses are reviewed in Section 2
while considerations when estimating for domains are
in Section 3. A large simulation study is described in

Section 4 together with summaries of the results. Sec-
tion 5 has an analysis of a single data set, emphasiz-
ing distributions of the weights corresponding to sev-
eral methods. Further discussion and conclusions are
in Section 6.

2. RATIONALE AND TAXONOMY OF METHODS
FOR MODIFYING WEIGHTS

2.1 Overview

Large variability in the survey weights is often as-
sociated with unstable estimators, although variable
weights do not necessarily lead to an increase in the
variance of point estimators. For example, suppose that
yi ∝ πi for all i. In this case, the Horvitz–Thompson
estimator, t̂HT, provides a perfect estimate of the pop-
ulation total ty since V (̂tHT|Y) = 0. This is true even
if the πi ’s are highly dispersed. However, if the survey
weights are highly dispersed and exhibit a low corre-
lation with the study variables, the resulting estimators
tend to be unstable.

A number of approaches have been developed for
modifying the weights to improve survey estimates by
reducing mean square error or improving inferential
properties like confidence coverage: (a) weight trim-
ming or truncation based on some measure of influ-
ence, discussed in Section 2.2; (b) weight modelling,
either marginally or conditionally on survey variables,
discussed in Section 2.3; and (c) weight modification
arising as predictions from model-based estimates, dis-
cussed in Section 2.4.

2.2 Weight Trimming

A number of trimming techniques have been pro-
posed in the literature, all sharing the same goal, that
is, to modify the survey weights so that the resulting
estimators have a lower mean square error than that of
the usual estimators (e.g., the Horvitz–Thompson es-
timator). Weight trimming consists of modifying the
weight of units that are identified as “influential”. The
concept of influential unit is not always clearly de-
fined in practice. In some cases, a unit is identified
as influential if it exhibits a large weight; this is dis-
cussed in Section 2.2.1. In other cases, a unit show-
ing a large weighted value (i.e., wiyi ) is labeled in-
fluential; see Section 2.2.2. More recently, Moreno-
Rebollo, Muñoz-Reyes and Muñoz-Pichardo (1999);
Moreno-Rebollo et al. (2002) and Beaumont, Haziza
and Ruiz-Gazen (2013) used the concept of conditional
bias of a unit as a measure of influence in the context
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of finite population sampling. This is discussed in Sec-
tion 2.2.3.

Regardless of the weight trimming method used,
one must determine an appropriate cut-off point. The
weights of units that are above the cut-off point are
trimmed. The choice of the tuning constant is impor-
tant as a bad choice may lead to trimmed estima-
tors with a mean square error larger than that of the
nontrimmed estimators. A method frequently encoun-
tered in statistical agencies consists of reducing to one
the weight of units identified as influential, whereas
the outstanding weight is redistributed among the re-
maining units. However, this approach tends to in-
duce large biases, which in turn, leads to large mean
square errors. Estimators with a smaller mean square
error are generally obtained through a compromise be-
tween the original weight and a weight of one. Dif-
ferent criteria may be used for determining the cut-
off point: (i) It may be set in an ad hoc fashion;
for example, the weights above bw̄ may be trimmed,
where b is constant and w̄ is the mean of the weights.
(ii) Alternatively, the cut-off point may be selected so
that the estimated mean square error of the resulting
trimmed estimator is minimized; for example, Hulliger
(1995); Kokic and Bell (1994) and Rivest and Hur-
tubise (1995). (iii) Beaumont, Haziza and Ruiz-Gazen
(2013) proposed a method that consists of determin-
ing the value of the cut-off point that minimizes the
maximum absolute estimated conditional bias of the
trimmed estimator. Unlike (i), the approaches (ii) and
(iii) lead to y-specific weights in the sense that each
y-variable requires its own cut-off point. As such, the
resulting weights are not multipurpose weights.

2.2.1 Trimming large weights. The most common
form of weight trimming, the ad hoc cutpoint method,
redistributes sampling weights by picking a cutpoint
w0, forcing weights above this cutpoint to this value,
and then multiplying weights below this value by the
constant that allows the sum of the trimmed weights to
equal the sum of the untrimmed weights:

w̃i =
{
w0, if wi ≥ w0,

γwi, if wi < w0,

where γ = (n − ∑
κiwo)/

∑
(1 − κi)wi , and κi is an

indicator variable for whether or not wi ≥ w0. Often
the adjustment is ignored and γ is simply set to 1. The
trimmed estimator of ty is given by

t̂TR = ∑
i∈s

w̃iyi .

Potter (1988, 1990) provided one of the first formal
treatments of weight trimming outside of US Census
Bureau internal documentation. His weight distribution
method assumes that the reciprocals of the scaled sur-
vey weights follow a beta distribution, leading to

f (wi) = n
(α + β)


(α)
(β)

(
1/(nwi)

)α+1(
1 − 1/(nwi)

)β−1
.

The parameters of the beta distribution are estimated
by method-of-moment estimators α̂ = 2 + [w(nw −
1)/ns2

w] and β̂ = (nw − 1)[1 + w(nw − 1)/ns2
w],

where w and s2
w are the sample mean and variance of

the weights. The weights from the upper tail of the dis-
tribution, say where 1 − F(wi) < 0.01, are trimmed
to w0 such that 1 − F(w0) = 0.01. This process is re-
peated a number of times (Potter suggests 10), using
the newly trimmed weights from the previous itera-
tion. In this fashion only the “unlikely” weights will be
trimmed. Another approach, termed the “NAEP pro-
cedure” because of its use in the National Assessment
of Educational Progress (Benrud et al., 1978), trims all

weights wi > w0 =
√

(c/n)
∑

w2
i for a fixed c, then it-

erates the procedure until all weights are below some
factor c of the square root of the mean of the squared
sum. Potter suggests that the value of c be chosen

by considering the distribution of
√

nwi/
∑

w2
i before

trimming.
Another option for trimming is to set the cutpoint to

w0 = cw̄, where c must be determined. When c is very
large, the trimmed estimator essentially reduces to the
nontrimmed estimator (e.g., the Horvitz–Thompson es-
timator or the Hájek estimator). As c decreases, we
expect the proportion of trimmed values to increase,
which may or may not translate to a reduction of the
mean square error. When c = 1 the trimmed estima-
tor is equivalent to an unweighted estimator. In other
words, large values of c tend to preserve all the in-
formation contained in the πi ’s, whereas small values
of c tend to get rid of this information. Whether or
not the trimmed estimator would be efficient with re-
spect to the untrimmed estimator depends on the re-
lationship between yi and πi as well as the form of
the nontrimmed estimator. Suppose that we are using a
Horvitz–Thompson estimator and that the relationship
between yi and πi is linear through the origin and the
coefficient of correlation between yi and πi is strong.
In this case, the Horvitz–Thompson estimator is ex-
pected to be very efficient. Here, the information con-
tained in the πi ’s about the y-variable is highly rele-
vant and it is not advisable to get rid of the information
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contained in the πi’s through trimming. On the other
hand, if there is no relationship between yi and πi , the
Horvitz–Thompson estimator tends to be very ineffi-
cient. In this case, trimming may help in terms of mean
square error because it results in a smaller variability
of the weights. In fact, if c is set to 1, the resulting es-
timator is known to have good properties (Rao, 1966;
Scott and Smith, 1969) when there is no relationship
between yi and πi .

Without considering the relationship between the
outcome of interest and the probability of inclusion,
the (at least implicit) bias-variance tradeoff cannot be
made correctly, since bias can only be estimated in
the context of a particular outcome. Potter (1988) de-
scribed one of the first attempts to do this, which ex-
plicitly focused on the bias-variance tradeoff using
a “minimum mean square error” approach to weight
trimming. The weight trimming cutpoint is based on
an unbiased estimator of mean square error (MSE) for
a trimmed estimator t̂TRc :

̂MSE(̂tTRc ) = (̂tTRc − t̂HT)2 − var(̂tHT)

+ 2 cov(̂tHT, t̂TRc ),

where t̂TRc has cutpoint c. The weight trimming cut-
point is given by choosing w0 to equal the value of
c that minimizes ̂MSE(̂tTRc ). One drawback of this
approach is that the resulting weights are y-specific.
The same holds true for the methods presented in Sec-
tions 2.2.2 and 2.2.3.

2.2.2 Trimming large weighted values. Another ap-
proach is winsorization, which reduces the weight of
units with a large weighted y-value. Define

(2.1) ỹi =
⎧⎨⎩yi, if wiyi ≤ c,

c

wi

, if wiyi > c,

the y-value attached to unit i after winsorization, where
c > 0 is a cut-off point to be determined. The standard
winsorized estimator of ty is then t̂WIN = ∑

i∈s wiỹi .
The latter can also be written as

(2.2) t̂WIN = ∑
i∈s

w̃iyi,

where

w̃i = wi

min(yi,
c
wi

)

yi

.

The weight w̃i can be viewed as a trimmed weight
for unit i. If min(yi,

c
wi

) = yi , we have w̃i = wi . In
other words, the weight of a noninfluential unit is not

modified. For influential units, that is, those for which
wiyi > c, the trimmed weight w̃i is smaller than the
original weight wi .

One drawback of the standard winsorization proce-
dure is that some units may receive a weight smaller
than 1. To overcome this problem, Dalén (1986) and
Tambay (1988) considered a modified winsorization
procedure under which the ỹ-values are defined as

(2.3) ỹi =
⎧⎪⎨⎪⎩

yi, if wiyi ≤ c,
c

wi

+ 1

wi

(
yi − c

wi

)
, if wiyi > c.

The resulting estimator can be written as a weighted
sum of the original y-values with trimmed weights

(2.4) w̃i = 1 + (wi − 1)
min(yi,

c
wi

)

yi

,

which cannot be smaller than one.
In the context of stratified simple random sampling,

Kokic and Bell (1994) and Rivest and Hurtubise (1995)
suggested determining the cut-off point c that mini-
mizes the mean square error of the winsorized estima-
tor. Favre-Martinoz, Haziza and Beaumont (2015) sug-
gested determining the cut-off point c that minimizes
the absolute estimated conditional bias with respect to
the winsorized estimator. This method is discussed in
more detail in the next section.

2.2.3 Trimming weights of cases with large con-
ditional biases. Beaumont, Haziza and Ruiz-Gazen
(2013) proposed reducing the influence of units that
exhibit a large influence, assessed through their con-
ditional biases.

The design-based conditional bias associated with
the sample unit i with respect to an estimator θ̂ of a
finite population parameter θ is defined as

(2.5) Bi(Ii = 1) = E(θ̂ |Y, Ii = 1) − θ;
see Moreno-Rebollo, Muñoz-Reyes and Muñoz-
Pichardo (1999); Moreno-Rebollo et al. (2002) and
Beaumont, Haziza and Ruiz-Gazen (2013). If θ = ty
and θ̂ = t̂HT, the conditional bias associated with the
sample unit i with respect to t̂HT is given by

BHT
i (Ii = 1) = E(̂tHT|Y, Ii = 1) − ty

(2.6)

= ∑
j∈U

(
πij

πiπj

− 1
)
yj ,

where πij denotes the second-order inclusion probabil-
ity of units i and j in the sample.
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EXAMPLE 2.1. For a stratified simple random
sampling design, the conditional bias associated with
the sample unit i in stratum h reduces to

BHT
i (Ii = 1) = Nh

Nh − 1

(
Nh

nh

− 1
)
(yi − Yh),

where nh denotes the sample size in stratum h and
Ȳh = N−1

h

∑
i∈Uh

yi , with Uh denoting the population
of units in stratum h of size Nh, h = 1, . . . ,H .

EXAMPLE 2.2. For a Poisson sampling design,
Tillé (2017), the conditional bias associated with sam-
ple unit i is

(2.7) BHT
i (Ii = 1) = (di − 1)yi .

The conditional bias of a unit can be obtained for all
the sampling designs provided that the second-order
inclusion probabilities (or, at least, some approxima-
tion of these probabilities) are available. It is not dif-
ficult to derive expressions of the conditional bias for
two-stage and two-phase designs; see Favre-Martinoz,
Haziza and Beaumont (2016).

REMARK 1. The conditional bias (2.6) is generally
unknown (except for Poisson sampling) as it depends
on the y-values for the nonsampled units. Therefore,
it must be estimated. An estimator of BHT

i (Ii = 1) is
given by

(2.8) B̂HT
i (Ii = 1) = ∑

j∈s

(
πij − πiπj

πjπij

)
yj .

Provided that πij > 0 for all j ∈ U , the estimator (2.8)
is conditionally unbiased for BHT

i (Ii = 1). That is,
E{B̂HT

i (Ii = 1)|Y, Ii = 1} = BHT
i (Ii = 1).

REMARK 2. The conditional bias (2.6) accounts
for the sampling design as it depends on the first-order
and second-order inclusion probabilities. If πi = 1, we
have BHT

i (Ii = 1) = 0. That is, a unit included with
probability 1 has no influence on an estimator.

REMARK 3. Although we have focussed on the
conditional bias associated with a sample unit, note
that a nonsampled unit may have a large influence on
the quality of an estimator. For the Horvitz–Thompson
estimator, we define the conditional bias of a nonsam-
pled unit as

BHT
i (Ii = 0) = E(̂tHT|Y, Ii = 0) − ty

= −(di − 1)−1BHT
i (Ii = 1).

However, it is not possible to estimate BHT
i (Ii = 0)

from the sample values as the y-values associated with
nonsampled units are not observed.

Is the conditional bias of a unit an appropriate
measure of influence in the design-based framework?
Beaumont, Haziza and Ruiz-Gazen (2013) showed
that, for Poisson sampling, the conditional bias of a
(sampled or nonsampled) unit can be viewed as the
contribution of this unit to the sampling error. This re-
sult holds approximately for stratified simple random
sampling and high entropy sampling designs, provided
that the population size N is large enough. The reader
is referred to Tillé (2017) for a discussion of high en-
tropy sampling designs.

Beaumont, Haziza and Ruiz-Gazen (2013) have also
established the link between the conditional bias of a
unit and the design-variance of t̂HT. That is, using (2.6),

V (̂tHT|Y) = ∑
i∈U

∑
j∈U

(
πij

πiπj

− 1
)
yiyj

= ∑
i∈U

BHT
i (Ii = 1)yi .

From the previous expression, it is clear that a sample
unit whose conditional bias is equal to 0 does not con-
tribute to the variance of t̂HT.

Based on the estimated conditional bias, Beaumont,
Haziza and Ruiz-Gazen (2013) constructed a robust
version of the Horvitz–Thompson estimator:

t̂RHT(c) = t̂HT − ∑
i∈s

B̂HT
i (Ii = 1)

(2.9)
+ ∑

i∈s

ψc

(
B̂HT

i (Ii = 1)
)
,

where ψc(·) is the Huber function given by

ψc(x) =

⎧⎪⎪⎨⎪⎪⎩
c, if x > c,

x, if |x| ≤ c,

−c, if x < −c.

Note that ψc(x)/x lies between 0 and 1 and reduces
the influence of highly influential units.

The value of c may be determined by minimizing
the estimated mean square error of (2.9). In general,
this is a difficult task that often requires simplify-
ing assumptions. Beaumont, Haziza and Ruiz-Gazen
(2013) suggested an alternative criterion, which con-
sists of finding the value of c which minimizes the
absolute maximum estimated conditional bias with re-
spect to (2.9). That is, we determine c which mini-
mizes maxi∈s{|B̂RHT

i (Ii = 1)|}, where B̂RHT
i (Ii = 1) =

E(B̂RHT
i (Ii = 1)|Y, Ii = 1) − ty is the conditional bias

attached to unit i with respect to (2.9). It can be shown
that the resulting estimator is

t̂RHT(copt) = t̂HT − 1

2

(
B̂HT

min + B̂HT
max

)
,(2.10)
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where B̂HT
min = min(B̂HT

i (Ii = 1) : i ∈ s) and B̂HT
max =

max(B̂HT
i (Ii = 1) : i ∈ s). The estimator (2.10) is

easy to implement and is design-consistent for ty ; see
Beaumont, Haziza and Ruiz-Gazen (2013).

2.2.4 Modifications of the weights in generalized re-
gression (GREG) estimates. In this section, we briefly
discuss the weight trimming methods described in Sec-
tions 2.2.1–2.2.3 in the context of GREG type esti-
mation. First, the seminal GREG paper of Deville and
Särndal (1992) noted that restrictions on the minimum
and maximum weights could be imposed as Ldi and
Udi , respectively by replacing gi in (1.8) with L if gi <

L and similarly with U if gi > U . Wu and Lu (2016)
extended this approach to minimize the impact on the
resulting calibration by adjusting L < gi < U by a con-
stant so that, for the adjusted and restricted weights
w∗

Ci ,
∑

i∈s w∗
Ci = ∑

i∈s wCi . While this method and
its extensions have the advantage of providing non-
negative weights if L = 0, it provides no guidance on
the choice of L and U for weight trimming, nor does
it impact the design weights. Second, the methods of
Potter (1988, 1990) can be readily applied by replacing
the original weights di = π−1

i with the GREG weights
wCi = digi , where gi is given by (1.8). In the context
of winsorized procedures, Kokic (1998) discussed one-
sided and two-sided procedures for the GREG estima-
tor. Finally, Beaumont, Haziza and Ruiz-Gazen (2013)
constructed a robust version of the GREG estimator
based on the concept of conditional bias. The GREG
estimator being a complex function of estimated totals,
the conditional bias associated with a unit is virtually
intractable. One must rely on a first-order Taylor ex-
pansion, which leads to

BGREG
i (Ii = 1) � ∑

j∈U

(
πij

πiπj

− 1
)
Ej ,(2.11)

where the residual Ej = yj − x�
j B with

B =
(

N∑
i=1

qixix�
i

)−1 N∑
i=1

qixiyi,

and qi is defined in (1.8). As for the Horvitz–Thompson
estimator, we can estimate BGREG

i (Ii = 1) by

B̂GREG
i (Ii = 1) � ∑

j∈s

(
πij

πijπiπj

− 1
)
ej ,(2.12)

where ej = yj − x�
j B̂ with

B̂ =
(∑

i∈s

π−1
i qixix�

i

)−1 ∑
i∈s

π−1
i qixiyi .

Following the approach of Beaumont, Haziza and
Ruiz-Gazen (2013), we obtain a robust version of
t̂GREG:

t̂RGREG(copt) = t̂GREG − 1

2

(
B̂GREG

min + B̂GREG
max

)
,

where B̂GREG
min = min(B̂GREG

i (Ii = 1) : i ∈ s) and
B̂GREG

max = max(B̂GREG
i (Ii = 1) : i ∈ s).

2.3 Weight Modelling, Marginally or Conditionally
on Survey Variables

Weight modelling, as mentioned in Section 1.2, also
aims to reduce the mean square error at the cost of
introducing some bias. Beaumont (2008) sought esti-
mators that improve on the Horvitz–Thompson (HT)
estimator without specification of outcome-specific
tuning constants which are problematic in multipur-
pose surveys. He referred to his method as “generalized
design-based inference”. Unlike the usual model-based
approach in finite population sampling which models
the outcome vectors, this method models the design
weights, and the inference is conditional on the out-
come vectors.

Beaumont began with the smoothed random variable

t̂SHT = E(t̂HT|I, Y ) = E

(∑
i∈U

Iidiyi

)
(2.13)

= ∑
i∈s

d̃iyi,

where di = π−1
i is the sampling weight and d̃i =

E(di |I, Y ) a smoothed weight for the unit i ∈ s. For
a nonsampled unit, that is, for i ∈ U − s,
E(Iidiyi |I, Y ) = E(di |I, Y )Iiyi = 0. The term t̂SHT is
introduced to reduce the variability of the di , but cannot
be used as such, because it involves the unknown d̃i . To
address this issue, Beaumont modeled the di to obtain
an estimator d̂i of d̃i . The final smoothed estimator of
ty is then t̂SHT = ∑

i∈s d̂iyi .
Beaumont proposed two simple models, although he

recognized the potential for others. Beaumont’s first
model is a linear regression model given by di =
h�

i β + v
1/2
i εi , where hi and vi are known functions

of yi , and where conditional on (I, Y ), the εi are i.i.d.
with zero mean and variance σ 2. For this model, d̃i =
h�

i β and is estimated by d̂i = h�
i β̂ , where

(2.14) β̂ =
(∑

i∈s

hih�
i

/
vi

)−1(∑
i∈s

hidi

/
vi

)
.

Choosing an appropriate model in the context of
weight modelling is important as a misspecified model
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may lead to biases. Standard model selection as well
as model diagnostics tools can be applied for selecting
a reasonable model. Also, if one removes conditioning
on I , E(Iidiyi |Y) = yi for both i ∈ s and i ∈ U − s,
and then there is no need for weighting.

Two extreme special cases of the above linear model
are as follows. First, suppose hi = vi = 1 for all i

so that the model reduces to di = β + ε for all i. In
this case, d̂i = N̂/n for all i, where N̂ = ∑

i∈s di , so
that the variability of the design weights is entirely re-
moved. The resulting smoothed HT estimator is then
given by t̂SHT = (N̂/n)

∑
i∈s yi .

The other extreme case is when the hi are perfect
predictors of the design weights di without any error so
that the error variables εi are zero with probability 1. In
this case, di = d̃i = d̂i = h�

i β so that the smoothed HT
estimator is identical with the original HT estimator,
and smoothing does not lead to any added efficiency.
In practice, models that are not so extreme in either
direction will be more appropriate.

The above linear model suffers from the drawback
that it can produce estimators d̂i smaller than 1 when
the true di are known to be bigger than 1. In or-
der to overcome this problem, Beaumont introduced
a second model with di = 1 + exp(h�

i β + v
1/2
i εi),

again only for i ∈ s. Then the smoothed weight d̃i∗ =
E(di |I, Y ) = 1 + exp(h�

i β)E{exp(v
1/2
i εi)}, i ∈ s. An

analytical expression for an estimator d̂i of di is
difficult without further assumptions, but Beaumont
approximated d̃i∗ by d̃a

i∗(β), where E{exp(v
1/2
i εi)} is

replaced by the corresponding sample average
n−1 ∑

l∈s exp{v1/2
l εl(β)}. The random vector εl(β) =

{log(dl − 1) − h�
l β}/v1/2

l is a function of β as justi-
fied from the second model. It is easy to check that
E{d̃a

i∗(β)|I, Y } = d̃i , and the final smoothed estima-
tor is given by d̃a

i∗(β̂) with β̂ = (
∑

i∈s hih�
i /vi)

−1 ×
{∑i∈s(hi/vi) log(di − 1)}. Further, when hi = vi = 1
for all i, β̂ simplifies to N̂∗/n, where N̂∗ =∑

i∈s log(di −1). Note that, while the discussion above
uses design weights as the model outcome, one could
just as easily use GREG weights or other calibration
weights as a model outcome.

Kim and Skinner (2013), like Beaumont (2008), also
considered weight modification in the original HT esti-
mator. They proposed two methods, one involving mul-
tiplication of the inverse probability weights by func-
tions of covariates. The second, quite in the spirit of
Beaumont, was smoothing weights involving outcome
variables and the covariates.

Any sampling mechanism where the selection prob-
abilities of units depend on outcome variables after
conditioning on covariates is referred to as informative
sampling. This area, developed recently in a series of
articles by Pfeffermann and his colleagues, has found
application in many complex surveys, for example, in
case-control sampling. A source for this is the review
article of Pfeffermann and Sverchkov (2009), which
contains many useful references. The weight modifica-
tion approaches of both Beaumont (2008) and Kim and
Skinner (2013) are particularly relevant in this context.

2.4 Incorporating Weights Via Models for Survey
Variables

A model-based approach in finite population sam-
pling relates survey outcomes to auxiliary variables
through a model. This can lead to potentially unreliable
estimates of finite population quantities in the event of
model failure unless the survey weights are also incor-
porated as part of the model. One way to address this is
to build models that treat the survey weights as covari-
ates, predicting the outcome of interest as a function of
the weight, and estimating population-level quantities
of interest using Bayesian finite population inference
(Little, 1983, 1991; Rubin, 1983). This approach can
be extended to the hierarchical model setting, allowing
“data-driven” weight trimming that maintains associ-
ations between outcomes and weights when the data
suggest such associations exist, and smooths them to-
ward 0 otherwise.

Elliott and Little (2000) developed two approaches
to induce weight smoothing under stratified designs, as
described in Example 1.1. The first of these, termed
“weight pooling”, used a variable selection method that
mimicked weight trimming, except that the trimming
cutpoint was treated as an unknown parameter. Elliott
(2008) extended this to allow for any number of trim-
ming cutpoints associated with the data to be used:

yhi |μl , σ
2,L = l

ind∼ N
(
Z�

lhiμl , σ
2)

,

μl|σ 2,L = l ∼ N
(
μ0l , σ

2�0l

)
,

(2.15)
σ 2|L = l ∼ Inv−χ2(

a, s2)
,

p(L = l) = 2−(H−1),

where L indexes the 2(H−1) possible patterns of pool-
ing coterminous strata, Zlhi is a vector of dummy vari-
ables of length H ∗ set equal to 1 for the pooled stra-
tum to which the hth stratum belongs, and 0 otherwise,
and μl=(μ1, . . . ,μH ∗)� corresponds to the vector of
means associated with these pooled strata. The model
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includes as special cases both the unweighted estima-
tor (when l = 1, H ∗ = 1 and Zlhi = 1 for all h) and
fully-weighted estimator, N−1 ∑H

h=1 Nhȳh, of Ȳ (when
l = 2(H−1), H ∗ = H and Zlhi is a vector consisting
of 0s except for a 1 in the hth element). The poste-
rior mean of Ȳ is obtained by averaging all possible
poolings of coterminous inclusion strata, where each
estimator contributes to the final average based on the
posterior probability that the pooling is “correct”:

p(Ȳ |y) = ∑
l

∫ ∫
p

(
Ȳ |μl , σ

2,L = l,y
)

· p(
μl|σ 2,L = l,y

)
p

(
σ 2|L = l,y

)
(2.16)

· p(L = l|y) dμl dσ 2.

This integral cannot be computed analytically, but
can be obtained via simulation. Elliott (2008, 2009)
showed that weight pooling models were robust and
had substantial efficiency gains over standard weighted
estimators of population means when associations be-
tween probability of selection and means or regres-
sion parameters were weak, particular when fractional
Bayes factors (O’Hagan, 1995) were employed.

A second approach, first suggested by Holt and
Smith (1979), considered random effects or “weight
smoothing” models that used a hierarchical structure
to induce shrinkage in the weight stratum terms:

(2.17) yhi |μh
ind∼ N

(
μh,σ

2)
, μ ∼ NH(φ,D),

where μ = (μ1, . . . ,μH )′ and φ = (φ1, . . . , φH )′,
and a weak or noninformative hyperprior p(φ,D) is
posited. Based on (2.17), the posterior predictive mean
of Ȳ is

(2.18) E(Ȳ |y) = N−1
H∑

h=1

(
nhȳh + (Nh − nh)μ̂h

)
,

where μ̂h = E(Ȳh|y) = E(μh|y).
A simple weight smoothing model is the exchange-

able random effects model, where φh = φ∗ for all h and
D = τ 2IH (Holt and Smith, 1979; Ghosh and Meeden,
1986; Little, 1991; Lazzeroni and Little, 1998). Un-
der this model, with a uniform prior for φ∗, one gets
E{Ȳ |y} = N−1 ∑H

h=1 Nh[whȳh + (1 − wh)ȳ], where
wh = τ 2nh/(σ

2 + τ 2nh) = nh/(nh + σ 2τ−2) and
ȳ = ∑H

h=1 nhȳh/
∑H

h=1 nh. In the case when τ 2 → 0,
wh → 0 for all h, leading thereby to the estimator
N−1 ∑H

h=1[nhȳh + (Nh − nh)ȳ] = y of Ȳ . Thus, all
the unsampled units are estimated by the pooled mean,
which is sensible since the model assumes now that the
observations in all strata have a common mean. On the

other hand, when τ 2 → ∞, wh → 1 for all h, one gets
the fully weighted estimator.

Elliott and Little (2000) considered the following
generalizations of the exchangeable model.

(I) Linear: φh = α + βh for all h, D = τ 2IH

(Lazzeroni and Little, 1998).
(II) Autoregressive: φh = m for all h, D =

τ 2(ρ|i−j |) (Lazzeroni and Little, 1998).
(III) Nonparametric: φh = g(h), D = 0, where g is a

twice differentiable smooth function of h satisfying (i)
g and g′ absolutely continuous and (ii)

∫
(g′′(u))2 du <

∞ (Wahba, 1978; Hastie and Tibshirani, 1990).

The function g minimizes the residual sum of squares
plus a roughness penalty given by

H∑
h=1

∑
i∈sh

(
yhi − g(h)

)2 + λ

∫ (
g′′(u)

)2
du,

λ denoting the penalty parameter.
Elliott and Little found that models with little struc-

ture in φ and D had larger gains in efficiency when
the association between the probability of inclusion
and the mean was weak, but were vulnerable to “over-
smoothing” when this association was strong. The non-
parametric mean prior (III) yielded a highly robust es-
timator of the population mean when weights were
needed to adjust for bias, with a moderate increase
in efficiency when bias correction was unnecessary.
Elliott (2007) developed extensions of weight smooth-
ing models for linear and generalized linear model re-
gression.

A related approach uses penalized spline (p-spline)
models to predict the outcome using the probabili-
ties of inclusion for the nonsampled units. This ap-
proach does not require a stratified sample design;
instead, sampling weights for nonsampled units are
typically available in probability-proportional-to-size
sample designs, where the probability of inclusion πi

for the ith element in the population is proportional
to a measure of size variable xi known for all ele-
ments in the population: πi = nxi∑N

i=1 xi
. Zheng and Little

(2003, 2005) considered p-spline models of the form:

yi = β0 +
p∑

j=1

βjπ
j
i

+
m∑

l=1

βl+p(πi − κl)
p
+ + εi,

(2.19)
εi

ind∼ N
(
0, π2k

i σ 2)
,

βl+p ∼ N
(
0, τ 2)

, l = 1, . . . ,m,
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where (x)+ = x if x > 0 and 0 otherwise, and k is
known (to allow for heteroscedasticity). This can be
viewed as an extension of the model implied by the
Horvitz–Thompson estimator (1.5). In settings where
the implied HT model is correct, Zheng and Little
showed that the p-spline estimator was almost as ef-
ficient as the HT estimator, whereas in other settings it
had much lower mean square error. Zheng and Little
(2005) also showed that the p-spline estimator using
jackknife standard errors yielded inferences that are
superior to the HT and the GREG estimators. Results
were not sensitive to the choice and number of knots
as long as there were a sufficient number (Zheng and
Little suggested 15). Chen, Elliott and Little (2012) ex-
tended model (2.19) to estimate finite population quan-
tiles by estimating the variance of yi using a second
p-spline function of πi .

Chen, Elliott and Little (2010) also extended this into
a setting with binary outcomes to estimate population
proportions using a probit p-spline model:

�
(
P(yi = 1)

)−1

(2.20)

= β0 +
p∑

j=1

βjπ
j
i +

m∑
l=1

βl+p(πi − κl)
p
+,

where �(·)−1 denotes the inverse CDF of a stan-
dard normal distribution. The population proportions
were estimated using N−1(

∑
i∈s yi + ∑

j /∈s ŷj ). They
showed by simulation studies and real data applications
that the p-spline estimators yielded substantial gains
over the classical weighted estimators for population
proportions with respect to mean square error, confi-
dence coverage and interval length, especially when
the sample size is small.

3. ESTIMATION FOR DOMAINS

Estimates are often required not only at the popula-
tion level but also for subpopulations called domains.
If the population is divided into mutually disjoint do-
mains U1, . . . ,UG such that

⋃G
g=1 Ug = U , it seems

desirable that the estimates of domain totals of y sum
to the estimate of the total of y in the population. This
property is often referred to as external consistency.
This condition might not be satisfied if weight modi-
fication is performed at the population level and within
each domain independently. One possible solution for
achieving external consistency is to obtain the estimate
at the population level by aggregating the domain es-
timates. However, the compounding of biases in the
domain estimates may lead to appreciable bias in the

aggregate (Rivest and Hidiroglou, 2004). To overcome
this problem, a simple solution was proposed by Favre-
Martinoz, Haziza and Beaumont (2015). It consists of
performing weight modification within each domain
separately and obtaining G estimates, t̂∗1 , . . . , t̂∗G. Inde-
pendently, an estimator at the overall level, t̂∗0 , is also
obtained using the same weight modification method.
The idea is then to force consistency by determining
final estimates, t̃0, t̃1, . . . , t̃G as close as possible to the
initial estimates t̂∗0 , t̂∗1 , . . . , t̂∗G, subject to external con-
sistency being satisfied.

4. SIMULATION STUDY

4.1 Introduction to Simulations

The overarching goal of the simulation study is to
relate the performance of the various estimators to:

(i) the nature and distribution of the weights;
(ii) the shape and nature of the relationship between

the response variable and the weights;
(iii) the degree of agreement with models [such as

the Horvitz–Thompson (1.5) and Hájek (1.6) models]
that lead to particular estimators; and

(iv) the proportions, sizes and degree of symmetry
of outliers.

This study extends the one carried out by Henry
and Valliant (2012). A selected set of estimators of
the population mean of a continuous response variable
y was considered with populations generated from a
variety of models (see Table 1). A similar simulation
for the population proportion of a binary variable y is
shown in the online supplementary materials (Chen et
al., 2017).

The population size was 20,000 and the sample size
was 200 for each scenario considered. Where there was
stratification, the stratum sizes were 5000, 6000 and
9000, and the sample sizes were allocated proportion-
ally to the stratum sizes.

4.1.1 Calculation and distribution of weights. The
sampling design for most of the scenarios was sin-
gle stage systematic PPS sampling, using ppss() from
the PPS package in R, and using as size variable
the values of a positive random variable x. The ba-
sic design weights were the reciprocals of the inclu-
sion probabilities. When making inclusion probabili-
ties proportional to x resulted in some of them exceed-
ing 1, the inclusion probabilities for the corresponding
units were set equal to 1 and the rest recalculated—
iteratively if necessary—so that inclusion probabilities
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TABLE 1
Scenarios: PPS sampling with x as the size variable, ε is distributed as N(0,1), independently of x

xa Scenario y|x = Note

A 1 10 + 0.5 logx + ε stratified, same slopes
2 10 + 0.5 logx + 0.5Zb

1 − Zb
2 − 0.2Z1 logx + 0.3Z2 logx + ε stratified, varying slopes

3 (10 + 0.5 logx + 0.5Z1 − Z2 − 0.2Z1 logx + 0.3Z2 logx + ε)Ud
0 stratified, mixed slopes

+ (10 + 0.5 logx + e)(1 − U0); log e ∼ N(0,1)

Bc 4 ε no association
5 100π + 10πε HT model
6 log(π + 0.0001n) + π0.25ε log function of π

7 {π > qπ
20} + {π > qπ

40} − {π > qπ
60} − {π > qπ

80} + ε stepwise function of π

C 32 3.5x + 0.8xε HT model
33 50 + 3

√
xε Hájek model

35 (3x + 0.8xε)Ud
1 + (7000 + 5000ε)(1 − U1) HT model w/outliers

36 500 + 3x + 250ε linear w/intercept
37 (500 + 3x + 250ε)U1 + (7500 + 3000ε)(1 − U1) linear w/int, high outliers
38 (10,000 + 3x + 500ε)Ud

2 + (10,750 + 3x + 10,000 ∗ ε)(1 − U2) linear w/int, high/low outliers
40 2500 + e0.01x + xε nonlinear heteroscedastic
41 (2500 + e0.0105x + 500ε)U1 + (10,000 + 5000ε)(1 − U1) nonlinear w/outliers

47b 10,000 + 3x + 10,000ε y|x of 47 and x of C

D 42 2500 + x2 + 1000ε nonlinear homoscedastic
43 2500 + x2 + 20xε nonlinear heteroscedastic

E 44 (50 + 3
√

xε)Ud
3 + (100 + 30ε)(1 − U3) Hájek model w/outliers

F

36b 500 + 3x + 250ε y|x of 36 and x of F

47 10,000 + 3x + 10,000ε linear w/int, logNx

48 3x + 100
√

xε linear, logNx

49 500 + √
xε Hájek, logNx

aA = 100 logN(0.5,0.25), B = 
(1.5,0.001), C = 50
(5,1), D = 10
(5,1), E = 5
(1,1), and F =
100 logN(0,4). b Z1 = 1 if stratum 1 and 0 otherwise, and Z2 = 1 if stratum 2, and 0 otherwise. c π =
nx/

∑
i∈U x. d U0 ∼ Bernoulli(0.8), U1 ∼ Bernoulli(0.995), U2 ∼ Bernoulli(0.99), U3 ∼ Bernoulli(0.95).

overall would sum to the sample size. The basic design
weights were then the reciprocals of the recalculated
inclusion probabilities.

The x distributions considered ranged from some-
what skew to highly skew. Specifically, we used: 100×
lognormal(0.5,0.25); 100 × lognormal(0,4) (lead-
ing to some calculated inclusion probabilities exceed-
ing 1); 
(1.5,0.001) (corresponding to highly variable
inclusion probabilities); 50 × 
(5,1); 10 × 
(5,1);
and 5 × 
(1,1). The density curves of the x distribu-
tions are displayed in Figure 1A (online supplementary
material).

In each scenario, the population values, including the
x variable values, were generated newly for all popu-
lation units before each realization of the sample from
the sampling design. Where there was stratification, the
strata were formed independently of x.

4.1.2 Relationship between the response variable y

and the size variable x. The relationship between y

and the size variable x was determined through a spec-
ification of a model, in some cases depending on stra-
tum. There were no other explanatory variables. See
Table 1 for the list of models.

4.1.3 Proportions, sizes and symmetry/asymmetry of
outliers. The proportions of outliers introduced in the
response variable ranged from 0 through 0.005 to 0.05.
Outliers were both symmetric and asymmetric. With
a sample size of 200, the smaller proportion provided
on average one outlier per sample, and the larger on
average 10 outliers per sample.

4.1.4 Estimators. The following estimators of the
finite population mean of y were computed, for com-
parisons of relative bias and relative root mean square
error (RMSE):

(a) The Horvitz–Thompson (HT) estimator, given
by equation (1.2).
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(b) The Hájek (HA) estimator, given by equation
(1.3).

(c) The robust HT (HT-ROB) estimator of Sec-
tion 2.2.3, given by equation (2.10).

(d) The robust Hájek (HA-ROB) estimator, analo-
gous to (c).

(e) A trimmed weight Hájek (TRIM-3W) estimator
with weights exceeding 3 times the mean weight set
equal to that value and the weights rescaled to preserve
the total of sample weights, iterated to convergence.

(f) The penalized spline of propensity prediction
(PSPP-HOM) estimator, from prediction of y in terms
of a penalized linear spline function of x with m = 10
equally spaced knots, assuming homoscedastic errors
(Zheng and Little, 2003). The model was fitted us-
ing a fully Bayesian approach. The model is given
by equation (2.19) with k = 0, p = 1, locally uni-
form priors on β0 and β1, and σ 2 and τ 2 having
InvGamma(10−5,10−5) priors. The posterior MCMC
computation uses 10,000 iterations, with 1000 burn-in
and subsequently drawing every 10th iteration, for 900
draws altogether.

(g) The PSPP estimator with the same settings, but
allowing heteroscedastic errors in the sense that the er-
ror variances are proportional to the 2kth power of the
inclusion probability (PSPP-HET); the prior for k is
uniform on (−2,2).

(h) The estimator of Beaumont, given by equation
(2.13), where the original weight is replaced by the pre-
dicted value from a regression of the weight on a spline
function of y (BEAU-PS).

(i) The generalized regression (GREG) estimator,
with xi = (1, xi)

�.
(j) The robust GREG estimator (GREG-ROB) of

Section 2.2.4, analogous to (c).

Of these, a subset for which variance estimation is
straightforward were compared in terms of associated
confidence or credible interval (for PSPP) widths and
empirical coverage probabilities:

(a) The HT estimator.
(b) The Hájek estimator.
(f) The PSPP estimator assuming homoscedastic er-

rors.
(g) The PSPP estimator allowing heteroscedastic er-

rors.
(i) The GREG estimator.

The empirical bias of the estimator of variance was also
obtained in each case.

Variance estimation for (a) was based on the follow-
ing expression:

(4.1) V̂ = 1

N2

∑
i∈s

φi

(
yi

πi

− b̂

)2
,

where

b̂ =
∑

i∈s αi
yi

πi∑
i∈s αi

with φi = αi = n
n−1(1−πi); see Matei and Tillé (2005)

and Haziza, Mecatti and Rao (2008).
For the Hájek estimator, the variance was estimated

using (4.1) with zi = (yi − μ̂) replacing yi , where μ̂

is the Hájek estimator of the mean, and N̂ = ∑
i∈s π−1

i

replacing N .
Similarly, the variance of the GREG estimator (with

qi = 1) was estimated using (4.1) with zi = (yi −x�
i B̂)

replacing yi , where

B̂ =
(∑

i∈s

π−1
i xix�

i

)−1 ∑
i∈s

π−1
i xiyi,

and N̂ replacing N .
For the Hájek estimator, replacement of N by N̂ is

suggested by the study of Wu and Deng (1983). For the
GREG estimator, replacement of N by N̂ is by anal-
ogy.

It should be noted that the formula for V̂ assumes
that it is the finite population mean which is being es-
timated, and thus a slight underestimation of the vari-
ance of estimation of the model mean, the estimand
in these simulations, is expected. However, in addi-
tional simulations where the finite population mean
was taken to be the estimand, the overall conclusions
did not change.

4.1.5 Intervals. For the HT, Hájek and GREG esti-
mators, the intervals were the standard normal-based
confidence intervals: μ̂ ± 1.96SE(μ̂). Credible inter-
vals for the PSPP estimators were the 2.5th and 97.5th
percentiles of the posterior draws.

4.1.6 Simulation design. As indicated above, for
each sample in each scenario, following generation of
the population x values and the stratification, the values
of the y variable were generated for all population units
given the x values and stratification. The true value of
the estimand was taken to be the expectation under the
model of the finite population mean. There were 200
iterations for each scenario initially, and subsequently
20,000 iterations for the HT, Hájek and GREG meth-
ods.
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For each estimator and scenario, the empirical Rel-
ative Bias was computed as the absolute value of the
empirical bias of the estimator (as an estimator of the
superpopulation mean) divided by the absolute value of
the empirical bias of the Hájek estimator. The empiri-
cal Relative RMSE was computed as the square root
of the empirical MSE of the estimator divided by ei-
ther the square root of the empirical MSE of the Hájek
estimator or the minimum (over the set of estimators
considered) of the set of square root empirical MSEs.
Where the confidence or credible intervals were calcu-
lable, the average width (CIW) and the empirical cov-
erage probabilities were obtained for each estimator
and scenario. The relative RMSEs are displayed in Fig-
ure 2A (online supplementary material) in dot plots for
all estimators while the relative RMSE, CIW and non-
coverage are displayed in dot plots for the HT, Hájek,
PSPP and GREG methods in Figure 3A (online supple-
mentary material). We also looked at an additional set
of plots, that is, for each scenario, (a) scatterplots of y

vs. x and y versus sampling weight for a finite popula-
tion and a selected PPS sample of values, (b) bar charts
of relative (to Hájek) bias and RMSE, (c) bar charts of
relative (to Hájek) CIW and percent coverage for the
HT, Hájek, PSPP and GREG methods, (d) histograms
of t = (μ̂ − μ)/SE(μ̂) and the Monte Carlo relative

bias of the variance estimator of μ̂ for the HT, Há-
jek, PSPP and GREG estimators, and (e) scatterplots
of CIW against (μ̂ − μ). This set of plots is given in
Figures 4A and 5A (online supplementary material) for
scenarios 35 and 38, respectively.

4.2 Results

4.2.1 Bias and RMSE of estimators. We have evalu-
ated the ten estimators (listed in Section 4.1.4), in terms
of their absolute biases and RMSEs; see Figure 2A
in the online supplementary material for the RMSEs.
A summary comparison of the RMSE of the ten esti-
mators is presented as a heat map in Figure 1.

The heat map is constructed as follows. Letting
RMSE(i, r) denote the root mean square error for esti-
mator i under scenario r , let

R(i, r) = RMSE(i, r)

/
(
min

{
RMSE(j, r), j = 1, . . . ,10

})
.

The columns (estimators) are ordered in terms of the
mean of R(i, r) over all scenarios r , from smallest
(PSPP-HET) to largest (HT). The rows (scenarios) are
ordered so that those with similar color patterns are
close together. Specifically, they are ordered by the
70th percentile of R(i, r) for fixed r and varying i.
There are 13 colors, with lighter colors for smaller

FIG. 1. Relative RMSE of each estimator compared to the estimator with the smallest RMSE under each model scenario. The columns are
ordered by the mean relative RMSE for each method and the rows are ordered by the 70th percentile of relative RMSE for each scenario.



242 Q. CHEN ET AL.

R(i, r) and darker colors for larger R(i, r). The 13
corresponding intervals for R(i, r) are 1, (1,1.05],
(1.05,1.1], (1.1,1.2], (1.2,1.3], (1.3,1.4], (1.4,1.5],
(1.5,2], (2,3], (3,5], (5,10], (10,20], 20+. If all of
the rectangles in a column have a light color, then that
estimator has small RMSE over all scenarios. Corre-
spondingly, if a column has many dark rectangles then
that estimator has a substantial number of large values
of RMSE. For example, PSPP-HET (first column) has
small RMSE overall while HA (sixth column) does not.

In terms of RMSE and for the scenarios presented,
there are three distinct groups of estimators. In the first
group, the PSPP-HET, GREG-ROB, GREG and PSPP-
HOM methods perform similarly, with the PSPP-
HET and GREG-ROB methods being superior. The al-
lowance for nonconstant variance in PSPP-HET results
in gains for PSPP-HET over PSPP-HOM in a few sce-
narios. The robustness feature of GREG-ROB results
in gains over GREG in some problems, including those
with outliers. The second group includes HA and re-
lated estimators: HA-ROB, BEAU-PS and TRIM-3W.
The third group comprises HT and HT-ROB. The sec-
ond and third groups perform relatively well for com-
plementary sets of scenarios, the second group working
well when the data are generated by a model that is not
too far from the Hájek model (1.6), and the third group
working well when the data are generated by a model
that is not too far from the HT model (1.5).

For interpretation of simulation results for the trim-
med estimator it is helpful to note that the observa-
tions with large weights are those with small x values
and the observations with small weights are those with
large x values. The more highly variable the weights,
the greater the proportion of observations that will have
trimmed weights for a given value of the cut-off con-
stant c. Trimming weights with high values will de-
crease the contribution of points with small x values
and increase the contribution of points with large x

values. Thus, if y is associated with x, the bias of the
trimmed estimator will increase, the larger the propor-
tion of weights that are trimmed. In the heat map, it is
apparent that the trimmed estimator does well in terms
of MSE in cases of no association between y and x

(scenario 4) and the Hájek model with outliers (sce-
nario 44).

In general, the robust HT, Hájek and GREG estima-
tors perform about the same as their nonrobust counter-
parts. In the scenarios with a difference, the bias tends
to be higher but the RMSE lower for the robust ver-
sions, as might be expected; most of these scenarios
involve outliers.

4.2.2 Interval coverage and width. We have also in-
vestigated the coverage and interval widths of those
procedures where methods for constructing intervals
are straightforward. Doing so means that we have not
assessed those procedures where bootstrap methods
would be needed. Thus, this evaluation is limited to the
HT, HA, PSPP-HOM, PSPP-HET and GREG methods.

We start with an overall evaluation of these meth-
ods. A heat map, Figure 2, presents for each method
and scenario the amount of noncoverage and relative
interval width. In Figure 2, an appearance of light
(blue scale) colors in a column indicates good cover-
age while an appearance of light (red scale) colors in-
dicates small relative width. Looking at the scenarios
and estimators where coverages are close to the nom-
inal 95%, and widths are relatively small, it is appar-
ent that most of them correspond to PSPP-HET and
GREG. Thus, for this set of scenarios the PSPP-HET
and GREG are the dominant methods. It is notable that
the large widths for the HT intervals negate the gener-
ally good coverage for this method, this being true to
a somewhat lesser extent for HA. Overall, the balance
between coverage and width is best for PSPP-HET.

Another general conclusion is that most of the sce-
narios where the performance of several of the methods
is poor are those where there are outliers.

We now discuss some of our findings. We look first
at HT, noting that, for specificity, we define satisfactory
coverage as between 0.92 and 0.98. While, as expected,
the HT intervals are fully satisfactory when the model
generating the data is close to the HT model, this is also
true for other scenarios, for example, some where the
model has an intercept. Overall, the performance of the
HT method is satisfactory in twelve of the twenty-three
scenarios. Most of the exceptions are where there are
outliers, or there is a substantial departure from the HT
model.

Two cases illustrate common themes in these scenar-
ios. The first is scenario 35 where the histogram of the
t statistic, t = (μ̂−μ)/SE(μ̂), is highly (left) skewed,
and the coverage is quite low. Here, the HT estimator is
too small relative to the expected value of y when there
is no outlier in the sample. Considering only those sam-
ples where there are no observations from the non-HT
part of the mixture distribution, the histogram of the t

statistic is symmetric, while those histograms for sam-
ples with at least one outlier are highly left skewed.
The second is scenario 38 where the distribution of the
t statistic is symmetric, the coverage is satisfactory but
the average interval width is large. In this case, the dis-
tribution of the variance estimator is shifted to the right
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FIG. 2. Relative average interval width and noncoverage rate of 95% CI under each model scenario. The relative width is the ratio of
the average interval width of each estimator compared to the estimator with the smallest avearge interval width under each scenario. The
columns are ordered by the mean noncoverage rate for each method and the rows are ordered by the 75th percentile of the noncoverage rate
for each scenario.

of the other variance estimators, that is, it is often too
large. One can see from (4.1) that if some of the outliers
in the sample are associated with small values of x, the
estimated variance gives greater weight to those contri-
butions to the square error, yielding a large estimated
variance and a wide interval. See Figures 4A and 5A in
the online supplementary material for the plots relevant
to this analysis.

Of the twenty-three scenarios, there are ten where
the HA method has either low coverage or large inter-
val width. In most of these scenarios, either there are
outliers, or the model generating the data is far from
the HA model.

For the GREG method, there are seven scenarios
where the performance is unsatisfactory. Three of these
have outliers, and the explanation is the same as that
given for HT for scenario 35. It is surprising that the
GREG method has poor coverage in scenarios 47–49
where, in each case, there is a linear relationship be-
tween y and x. Noting that for those scenarios, the
number of simulations may have been insufficient be-
cause of the very high variability of the weights, we in-
vestigated further, using 20,000 simulations. Then the
coverage is almost 0.92 for both scenarios 48 and 49.
However, for scenario 47 the relative bias of each of the
variance estimators is very large, and the coverage is
very low. By using x ∼ 50
(5,1), scenario 47b, rather

than x ∼ 100 logN(0,4) in scenario 47, the bias of the
basic variance estimator is now small, and the coverage
is satisfactory. We have seen this result in other scenar-
ios, that is, that the distribution of x may make a large
difference in the properties of the intervals.

In general, the PSPP method tends to outperform the
other methods: there are only five scenarios where the
coverage or width for PSPP-HET is poor. Four of these
are ones where there are outliers and the explanation
given for the low coverage for scenario 35 for HT ap-
parently holds here as well.

5. APPLICATION: ESTIMATION OF STUDENT
SOCIOECONOMIC STATUS MEASURES

To compare the methods using a real dataset,
a single-stage PPS sample of 200 Texas schools was
drawn from the population of schools in the Na-
tional Center for Education Statistics Core of Com-
mon Data (NCES/CCD) database, using the number
of students attending the school as a measure of size.
The NCES/CCD is a national database of US primary
and secondary public schools (http://nces.ed.gov/ccd/
aboutCCD.asp). The population was restricted to the
7171 schools with complete data on location, Title I
funding status and number of children on free or re-
duced lunch status. We considered two sets of base

http://nces.ed.gov/ccd/aboutCCD.asp
http://nces.ed.gov/ccd/aboutCCD.asp
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weights: the PPS sampling weights themselves, and
these weights calibrated (post-stratified) so that the dis-
tribution of urbanicity matched the “known” distribu-
tion of urbanicity taken from the population data. [Ur-
banicity was defined by 4 ×3 = 12 levels; 4 levels of
city, suburb, town and rural crossed with 3 size levels
(for city and suburb) or three location levels relative
to urbanized area (for town and rural).] We focus on
estimating the mean number of free lunch students in
Texas public schools.

We obtained estimates using all of the methods de-
scribed in the simulation study: the Horvitz–Thompson
and Hájek estimators, the Hájek estimator trimmed to
have a maximum weight value 3 times the mean of the
sampling weights, the PSPP estimators using the equal
and unequal variance assumptions, the Beaumont esti-
mator using the predicted values of the weights from
a spline model to the free lunch count and the GREG
estimator using total number of students in Texas as
a calibrating variable; robust versions of the Horvitz–
Thompson, Hájek and GREG estimators were also ob-
tained (see Table 2). All confidence intervals in Ta-
ble 2 were computed using with-replacement approxi-
mations, which were found to be approximately correct
for the Horvitz–Thompson and Hájek sample weighted
estimators; confidence intervals were not computed
for the robust estimators. Figure 3 shows the distribu-
tion of the original Horvitz–Thompson and calibrated
weights, as well as for the crude trimming and Beau-
mont methods that involve direct adjustment of the
weights (either original or calibrated). Calibration to
location generates a long tail of large weights; the
crude trimming heaps the maximum weights at 3 times
the mean, while the Beaumont method does a more

TABLE 2
Estimated mean number of free lunch students in Texas public

schools by various estimators (95% CIs in parenthesis).
Population mean = 325.05

Estimator Sample weighted Calibration weighted

HT 321.09 (298.81, 343.36) 364.86 (325.86, 403.86)
HT-ROB 321.18 NA
HA 371.53 (333.62, 409.44) 364.86 (325.86, 403.86)
HA-ROB 372.88 NA
TRIM 374.90 (338.10, 411.70) 372.04 (334.86, 409.22)
PSPP-HOM 340.57 (286.91, 395.93) NA
PSPP-HET 322.79 (299.62, 346.60) NA
BEAUMONT 371.56 (336.40, 406.72) 364.86 (330.21, 399,51)
GREG 329.43 (285.27, 373.59) 328.37
GREG-ROB 329.50 NA

general shrinkage away from the tail. Figure 4 shows
the population distribution of the sampling weights and
the outcome; it suggests that the underlying Horvitz–
Thompson “model”, (1.6), is a reasonable approxima-
tion in this setting, and consequently it has little bias
and stable variance, although the GREG estimator also
performs reasonably well. The Hájek estimator, which
ignores the heteroscedacity in Figure 4, has larger de-
grees of bias, with the Beaumont and trimming estima-
tors also performing relatively poorly. (Note that the
point estimate for the calibrated Horvitz–Thompson
estimator corresponds to the Hájek estimator, since the
calibrated weights sum to the population size.) PSPP-
HET continues to outperform the other methods in this
example, although it closely approximates the Horvitz–
Thompson estimator in this setting.

6. DISCUSSION AND CONCLUSIONS

This article has mainly focused on the estimation of
the finite population mean of y, leaving consideration
of descriptive inference for other finite population pa-
rameters and analytic inference for future study.

Most of the estimators considered in detail and in the
simulation study could be regarded as modifications of
basic Horvitz–Thompson or Hájek estimators. One ad-
vantage of these two basic forms is that they are com-
putable as a weighted sum, with the same form for any
variable y, using weights which may be provided with
the survey file. The same is true of the GREG estima-
tor of (1.7) and (1.8). The methods of trimming large
weights described in Section 2.2.1 have this same prop-
erty, because the weights w̃i in t̂TR do not depend on yi .

Some of the other estimators are of a similar form
but require computation by the user to obtain y-specific
weights or adjustments. In the case of the winsoriza-
tion estimator t̂WIN of Section 2.2.2, the estimator is
a weighted sum, but the weight w̃i in (2.2) depends
on yi . Beaumont’s estimator of Section 2.3 also is a
weighted sum, where the weights d̂i depend not only
on yi but on functions of the sampled values of y.
The robust Horvitz–Thompson estimator of (2.10) in
Section 2.2.3 is a weighted sum minus a sample-based
constant correction for conditional biases which is de-
pendent on sampled values of y; the robust GREG es-
timator of Section 2.2.4 has this form as well.

The PSPP estimators of Section 2.4 use the survey
weights through a model of the y variable as a function
of the design inclusion probabilities, and thus do not
employ them as weights in the traditional sense.



IMPROVING SURVEY-WEIGHTED ESTIMATES 245

FIG. 3. Distribution of weights: uncalibrated (wt_sample = HT weights; wt_trim_sample = trimmed to a normalized maximum of 3;
wt_beau_sample = Beaumont modeling adjustment) and calibrated to location (wt_final = HT weights; wt_trim_final = trimmed to a nor-
malized maximum of 3; wt_beau_final = Beaumont modeling adjustment).

The PSPP estimators used here require knowledge of
the inclusion probabilities for both sampled and non-
sampled units, although extensions in which the sam-
pling probabilities are observed only for the sample are
available (Zangeneh and Little, 2015). The GREG and
robust GREG estimators require knowing the x values

FIG. 4. Number of free lunch students by sampling weight; non-
sampled (black dots) and sampled (red circles).

for the sampled units and (only) the population total
of x.

The simulation scenarios are special in that the size
variable in PPS sampling, proportional to the inclu-
sion probabilities, is also the principal auxiliary vari-
able. The purpose was to separate the performance of
the estimators, and to be favorable or unfavorable to
specific estimators. That being said, there are practical
scenarios where any procedure does poorly. Another
limitation is that the true models for continuous y in
terms of x or π assume linear, quadratic, or exponential
forms, and the error term is normal in all cases. Thus,
cases where the error term has a skewed distribution,
so that it might be profitable to employ a transforma-
tion on the y variable, have been excluded. Finally, the
population size (20,000) in each case is large enough
that there is essentially no difference between the finite
population mean and its expectation under the model;
the sample size (200) is large enough that simple esti-
mators of variance suffice; at the same time the ratio of
the sample size to the population size (0.01) is small.

The following are general recommendations:

• In choosing or constructing an estimator of the finite
population mean of y, it is important to pay attention
to the relationship between y (or its mean function)
and π , along with other auxiliary information.
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• It is also important to examine the distribution of π

to detect very high weight variability, and possible
outlier weights.

• Trimming methods of the kind considered in the
simulations to deal with outliers in y given x are sel-
dom effective in estimation of the mean of y.

• Although the performance of the simplest estimators
is good when the data are concordant with their as-
sociated models, this is not the case when there are
outliers or significant deviations from such models.

• Some more sophisticated estimators/procedures are
less dependent on closeness to associated models; in
particular PSPP-HET and GREG-ROB are flexible
all-purpose models.
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SUPPLEMENTARY MATERIAL

Supplement to “Approaches to Improving Sur-
vey-Weighted Estimates”
(DOI: 10.1214/17-STS609SUPP; .pdf). The Supple-
mentary Material includes the density plots of the size
variables, and dot plots summarizing the relative mean
square errors, interval widths, and percent noncoverage
for the methods in Section 4. Results of the simulations
for binary outcomes, and plots corresponding to a thor-
ough study of two scenarios with continuous outcomes
are also presented.
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