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Abstract 

The field of machine learning strives to develop methods and techniques to automate the acquisition of new 

information, new skills, and new ways of organizing existing information. In this article, we review the major 

approaches to machine learning in symbolic domains, covering the tasks of learning concepts from examples, 

learning search methods, conceptual clustering, and language acquisition. We illustrate each of the basic 

approaches with paradigmatic examples. 
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1 . Introduction: Why Machine Learning? 

Learning is ubiquitous in intelligence, and it is natural that Artificial Intelligence (Al), as the science of 

intelligent behavior, be centrally concerned with learning. ITierc are two clear reasons for this concern, one 

practical and one theoretical. With respect to the first, Al has now demonstrated the utility of expert systems, 

but these systems often require several man-years to construct An expert system consists of a symbolic 

reasoning engine plus a large domain-specific knowledge base. Kxpcrt systems that rival or surpass human 

performance at very narrowly defined tasks arc proliferating rapidly as Al is applied to new domains. A better 

understanding of learning methods would enable us to automate the acquisition of the domain-specific 

knowledge bases for new expert systems, and thus greatly speed the development of applied Al programs. On 

the theoretical side, expert systems arc unattractive because they lack the generality that science requires of its 

theories and explanations. On this dimension, the study of learning may reveal general principles that apply 

across many different domains. 

A third research goal is to emulate human learning mechanisms, and thus come to a better 

understanding of the cognitive processes that undcrly human knowledge and skill acquisition. In addition to 

improving our knowledge of human behavior, studying human learning may produce benefits for Al, since 

humans are the most flexible and robust (if slow) learning systems in existence. Hence, one objective of 

machine learning is to combine the capabilities of modern computers with the flexibility and resiliance of 

human cognition. As Simon [1] has pointed out if learning could be automated and the results of that 

learning transferred directly to other machines which could ftirther augment and refine the knowledge, one 

could accumulate expertise and wisdom in a way not possible by humans - each individual person must 

learn all relevant knowledge without benefit of a direct copying process. Thus, no single mind can hold the 

collective knowledge of the species. 

2. A Historical Sketch 

Historically, researchers have taken two approaches to machine learning. Numerical methods such as 

discriminant analysis have proven quite useful in perceptual domains, and have become associated with the 

paradigm known as Pattern Recognition. In contrast Artificial Intelligence researchers have concentrated on 

symbolic learning methods,1 which have proven useful in other domains. The symbolic approach to machine 

learning has received growing attention in recent years, and in this paper we review some of the main 

approaches that have been taken within this paradigm, and outline some of the work that remains to be done. 

Within the symbolic learning paradigm, work first focused on learning simple concepts from examples. 

This originally involved artificial tasks similar to questions found in intelligence tests given to children, such 

as "What do all these pictures have in common?" and "Does this new picture belong in the group?" Such 

tasks involve the formulation of some hypothesis that predicts which instances should be classified as 

examples of the concept Not too surprisingly, psychologists were among the active researchers in this early 

stage (e.g., Hunt Marin and Stone [3]). Subsequent work focused on learning progressively more complex 

concepts, often requiring larger numbers of exemplars. Recent work has focused on more complex learning 

tasks, in which the learner does not rely so heavily on a tutor for instruction. For example, some of this 

research has focused on learning in the context of problem solving, while others have explored methods for 

learning by observation and discovery. Learning by analogy with existing plans or concepts has also received 

considerable attention. 

In the following pages, we examine four categorical tasks that have been addressed in the machine 

learning literature - learning from examples, learning search heuristics, learning by observation, and 

language acquisition. These four representative tasks do not by any means, cover all approaches to machine 

learning, but they should provide an illustrative sample of the issues, methods, and techniques of primary 

aamucl's [2] early checkers learning system was a notable exception to the later trend, relying mainly on a parameter fitting methods 

to improve performance. 
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concern to the field. In each case, we describe the task, consider the main approaches that have been 

employed, and identify some open problems in the area. As is typical in a survey article, we can only highlight 

the best known approaches and results in the area of machine learning, giving the reader a feeling for where 

the field as a whole has been and where it is heading. The serious reader is encouraged to digest other reviews 

of machine learning work by Mitchell [4], Dicttcrich and Michalski [5], and Michalski, Carboncll, and 

Mitchell [6]. 

Figure 1. Positive and negative instances of "arch". 

3. Learning Concepts From Examples 

Methods for learning concepts from examples have received more attention than any other aspect of 

machine learning. The task appears straightforward: given a set of positive and negative instances of a 

concept, generate some rule or description that correctly identifies these and all future examples as instances 

or non-instances of the concept. However, despite its apparent simplicity, the approaches taken to solving this 

problem are nearly as numerous as the people"who have worked on it. Below, we consider one approach to 

learning from examples, and then examine some of the dimensions along which different approaches to this 

problem vary. After this, we discuss some open issues in learning from examples that remain to be addressed, 

3 . 1 . An Example 

Perhaps the best known research on learning from examples is Winston's [7] work on the "arch" 
concept Figure 1 presents two examples of this concept and one counterexample that are very similar to those 
presented to Winston's system. Given these instances, one might conclude that 

"An ARCH consists of two vertical blocks and one horizontal block". 

This hypothesis covers both positive instances and excludes the negative one. Alternately, one could define 
"arch" as simply a union of all positive examples of ARCH ever encountered. However, the principles of 
brevity and generality preclude us from formulating such a definition, since we would like our concept to be 
as simple as possible, and for it'to be able to predict new positive and negative instances. Given the first 
hypothesis, there is hope that a simple and general definition of "arch" will converge and help us recognize 
future examples of arches. 

Now let us consider the two instances shown in Figure 2. Upon considering the positive instance, we 
realize that our concept of arch is too restrictive, since it excludes this instance. rrhereforc, we revise the 
concept to 

"An ARCH consists of two vertical blocks and one horizontal object". 

However, this new hypothesis covers some of the negative instances, suggesting that it is overly general in 

some respect Revising the definition to exclude these instances, we might get: 

"An ARCH consists of two vertical blocks that do not touch and a horizontal object that rests atop 
both blocks. 

One can continue along these lines, gradually refining the concept to include all the positive but none of the 

negative examples. New positive instances that arc not covered by the current hypothesis (errors of omission) 
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tell us that the concept being formulated is overly specific, while new negative examples that are covered by 

the hypothesis (errors of commission) tell us it is overly general. We have not been very specific about how 

the learner responds to these two situations, but we consider some of the alternatives below. All systems that 

learn from examples employ these two types of information, though we will see that they use them in quite 

different ways. 

Figure 2. Additional positive and negative examples of "arch". 

Lest the reader get the false impression that modifying an existing definition of a concept to 

accommodate a new positive or negative exemplar is always a simple process, we offer the positive and 

negative examples in Figure 3. We challenge the reader to devise an automated process that can modify 

"ARCH" to account for these examples. One insight that arises from these instances is that our concept of 

ARCH might involve some junctional aspects as well as the structural ones we have focused on so far. We 

shall have more to say on this matter later. 

3.2. The Dimensions of Learning 

As Mitchell [4] and Dicttcrich and Michalski [5] have pointed out, all Al systems that learn from 

examples can be viewed as carrying out search through a space of possible concepts, represented as 

recognition rules or declarative descriptions. Moreover, this space is partially ordered2 along the dimension of 

generality, and it is natural to use this partial ordering to organize the search process. However, at this point 

the similarity between systems ends. The first dimension of variation relates to the direction of the search 

through the rule space. Discrimination-based concept learning programs begin with very general rules and 

make them more specific until all instances can be correctly classified, while generalization-based systems 

begin with very specific rules and make them more general. Since these two methods approach the goal 

concept from different directions and more than one concept may be consistent with the data, the two 

methods need not arrive at the same answer. Dietterich and Michalski have called the rules learned by 

discrimination systems discriminant descriptions, and the rules learned by generalization systems 

characteristic descriptions. In general, the latter will be more specific than the former. 

A second dimension of variation relates to the manner in which search through the rule space is 

controlled. Some systems carry out a depth-first search through the space of rules, while others employ a 

breadth-first search. In depth-first search, the learner focuses on one hypothesis at a time, generating more 

general or more specific versions of this (depending on the direction of the search) until it finds a description 

that accounts for the observed instances. In breadth-first search, the system considers a number of alternate 

hypotheses simultaneously, though many are eliminated as they fail to account for the data. Breadth-first 

search strategics have greater memory requirements than depth-first methods, but need never back up 

through the search space. 

A third dimension of variation involves the manner in which data is handled. All-at-once systems 

ni is this partial ordering that leads to branching, and thus to search. If the space were completely ordered, then the task of learning 
rules would be much simpler. 
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require all instances to be present at the outset of the learning process, while incremental systems deal with 

instances one at a time. The former tend to be more robust with respect to noise, while the latter are more 

plausible models of the human learning process. Finally, concept learning programs differ in the operators 

they use to move through the aile space. Data-driven systems incorporate instances in the generation of new 

hypotheses, while enumerative systems3 use some other source of knowledge to generate states, and employ 

data only to evaluate these states. 

Given these four dimensions, we can determine that 2 4 = 16 basic types of concept learning systems are 

possible, at least in principle. New researchers in machine learning might take as an exercise the task of 

classifying existing systems in terms of these dimensions, and brave individuals might attempt to develop a 

learning system that fills one of the unexplored combinations. In order to clarify the dimensions along which 

concept learning systems vary, let us examine two programs that lie at opposite ends of the spectrum on each 

dimension. For the sake of clarity, we will simplify certain aspects of the programs. The first is Quinlan's 1D3 

system [8], which has been tested in the domain of chess endgames, where the concepts to be learned are "lost 

in one move", "lost in two moves" and so forth. The second is Hayes-Roth and McDcrmott's SPROUTKR [9] 

which has been tested on a number of complex relational instances like those in Figure 1 through 3. 

ID3 represents concepts in terms of discrimination networks, as with the disjunctive concept ((large and 

red) or (blue and circle and small)), shown in Figure 4. * ITic system begins with only die top node of a 

network, and grows its decision tree one branch at a time. For instance, the system would first create the (red 

or blue) branch emanating from the top node. Next, it would create a branch coming from one of the new 

nodes, if necessary. The tree is grown downward, until terminal nodes are reached which contain only positive 

or negative instances. Thus, the system can be viewed as discrimination-based, moving from very general rules 

to very specific ones. At each point, it must select one attribute as more discriminating than others, so it 

carries out a depth-first search through the space of rules. ID3 is given a list of potentially relevant attributes 

by the programmer, so that in deciding which branch to create, it uses the data only in evaluating these 

attributes. The system is thus enumerative rather than data-driven in its search through the rule space. Finally, 

the program has all data available at the outset, so that it can use statistical analyses to distinguish 

discriminating attributes from undiscriminating ones; as a result, ID3 is an all-at-once concept learning system 

rather than an incremental one. The exact evaluation function Quinlan uses to direct search is based on 

information theory, but Hunt, Marin, and Stone [3] have used another evaluation function, and the exact 

function seems to be less important than the overall search organization. 

Hayes-Roth and McDcrmott's SPROUTER [9] is historically interesting, since it was one of the first 

alternatives to Winston's early work on learning from examples. This program attempts to learn conjunctive 

Mitchell [4J has called these generate and test systems, while Dicttcrich and Michaiski [51 have called them model-driven systems. 

However. AI associates the first term with systems that proceed exhaustively through a list of alternatives, and associates the second term 

with systems that rely on large amounts of domain-specific knowledge. We prefer the term enumerative, since a learning system can 

enumerate a set of alternate hypotheses at each stage in its search, without being cither of these. 

+ 

Figure 3. Still more positive and negative instances of "arch". 



MACHINE LEARNING PAGE 5 

characteristic descriptions for a set of data, moving from a very specific initial hypodicsis based on the first 

positive instance to more general rules as more instances are gathered. Thus. Hayes-Roth and McDcrmott's 

concept learning system is generalization-based rather than discrimination-based. SPROUTKR also differs 

from ID3 in carrying out a breadth-first search through the rule space, rather than a depth-first search. With 

respect to positive instances, the system is data-driven, since it uses these instances to generate new hypotheses 

by finding common structures between them and the current hypotheses. However, the program is 

enwnerative with respect to negative instances, since it uses these only to eliminate overly general hypotheses. 

Similarly, SPROUTKR processes positive instances in an incremental fashion, reading them in one at a time 

and generalizing its hypotheses accordingly. However, it retains all negative instances in order to evaluate the 

resulting hypotheses, and processes them in an all-at-once manner. Thus, SPROUTKR is something of a 

hybrid system in that it treats positive and negative instances in quite different ways. 

Figure 4. A concept expressed as a discrimination network. 

3.3. Open Problems in Learning from Examples 

A number of problems remain to be addressed with respect to learning from examples. Most of these 

relate to simplifying assumptions that have typically been made about the concept learning task. For instance, 

many researchers have assumed that no noise is present (i.e., all instances arc correctly classified). However, 

there arc many real-world situations in which no rule has perfect predictive power, and heuristic rules that are 

only usually correct must be employed. Some learning methods (such as Quinlan's) can be adapted to deal 

with noisy data sets, while others (such as Hayes-Roth and McDcrmott's) seem less adaptable. In any case, 

one direction for future work would be to identify those approaches that are robust with respect to noise, and 

to identify the reasons for their robustness. Most likely, tradeoff exist between an ability to deal with noise 

and the number of instances required for learning, but it would be uscftil to know the exact nature of such 

relationships. 

A related simplification is that the correct representation is known. If a learning system employs an 

incomplete or incorrect representation for its concepts, then it may be searching a rule space that does not 

contain the desired concept One approach is to construct as good a rule as possible with the representation 

given; any system that can deal with noise can handle incomplete representations in this manner. A more 

interesting approach is one in which the system may improve its representation. This is equivalent to changing 

the space of rules one is searching, and on the surface at least, appears to be a much more challenging 

problem. Little work has been done in this area, but Utgoff[10] and Lenat [11], have made an interesting start 

on the problem. 
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A final simplifying assumption that nearly all concept learning researchers have made is that the 

concept to be acquired is all or none. In other words, an instance eidier is an example of the concept or it is 

not; there is no middle ground. However, almost none of our everyday concepts arc like this. Some birds fit 

our bird stereotype better than others, and some chairs are nearer to the prototypical chair than others. (Is a 

Dodo a bird? Is a Platypus a better bird? If a person sits on a log, is it a chair? Is it a better chair if we add 

stubby legs and use a second log as a backrest?) Unfortunately, all of the existing concept learning systems 

rely fairly heavily on the sharp and unequivocal distinction between positive and negative instances, and it is 

not clear how they might be modified to deal with fuzzily-defined concepts such as birds and chairs. This is 

clearly a challenging direction for future research in machine learning. 

ITic vast majority of work on learning concepts frorp examples has assumed diat a number of instances 

must be available for successful learning to occur. However, recently a few machine learning researchers have 

taken a somewhat different approach. DeJong[12] has explored the use of causal information to determine 

die relevant features in a positive instance of a complex concept, such as kidnapping. By focusing on causal 

connections between events (such as the reason one would pay money to ensure another's safety), his system 

is able to formulate a plausible hypodicsis on the basis of a single positive instance and no negative instances. 

Winston [13] has taken a similar approach to learning concepts such as cup. His system is presented with a 

Junctional description of a cup (e.g., that it must be capable of containing liquid, that it must be capable of 

being grasped) and a single positive instance of the concept. The system then uses its knowledge of the world 

to decide which structural features of the example allow the functional features to be satisfied, again using 

causal reasoning. These structural features are used in formulating the definition of the concept. Both 

approaches rely on causal information, and both relate this to some form of Junctional knowledge. This new 

approach promises concept learning systems that arc much more efficient than the traditional syntactic 

methods, while retaining the generality of the earlier approaches. We expect to see much more work along 

these lines in the future. 

4. Learning Search Methods 

One of the central insights of AI is that intelligence involves the ability to solve problems by searching 

the space of possible actions and possible solutions, and to employ knowledge to constrain that search. In fact, 

one of the major differences between novices and experts in a complex domain is that the former must search 

extensively, while the latter use domain-specific heuristics to achieve their goal. In order to understand the 

nature of these heuristics, and how they may be learned, we must recall that search involves states and 

operators. A problem is stated in terms of an initial state and a goal, and operators arc used to transform the 

initial state into one that satisfies the goal. Search arises when more than one operator can be applied to a 

given state, requiring consideration of the different alternatives. Of course, some constraints arc usually given 

in terms of the legal conditions under which each operator may apply, but these constraints arc seldom 

sufficient to eliminate search. In order to accomplish this, the learner must also acquire heuristic conditions on 

the operators. For example, Figure 5 presents a simple search tree involving two operators (Ol and 02), with 

the solution path shown in bold lines. If the problem solver knew the heuristic conditions on each operator, it 

would be able to generate the steps along the solution path without considering any of the other moves. The 

task of learning search methods involves determining these heuristic conditions. 

The problem of learning search heuristics from experience can be divided into three steps. First, the 

system must generate the behavior upon which learning is based. Second, it must distinguish good behavior 

from bad behavior, and decide which part of the performance system was responsible for each. In other 

words, it must assign credit and blame to its various parts. Finally, the system must be able to modify its 

performance so that behavior will improve in the future. Different learning programs can vary on each of 

these three dimensions. For instance, though their initial performance component will carry out search, it may 

use depth-first search, breadth-first search, means-ends analysis, or any one of many other methods for 

directing the search process. Below we consider some alternative approaches to dealing with credit assignment 

and modification of the performance system. 
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Given this framework, the task of learning from examples is easily seen as a special case task of learning 

search heuristics, in which a single operator is involved and for which the solution path is but one step long. 

No true search control is necessary for the performance component, since feedback occurs as soon as a single 

"move" has been taken. Credit assignment is trivialized, since the responsible component is easily identified 

as die rule suggesting the "move". However, the modification problem remains significant, and in fact the 

task of learning from examples can be viewed as an artificial domain designed for studying the modification 

problem in isolation from other aspects of the learning process. In a similar fashion, the task of learning search 

heuristics can be seen as the general case of learning from examples, in which a different "concept" must be 

learned for each operator. Learning heuristics is considerably more difficult than learning from examples, 

since the learner must generate its own positive and negative instances, and since the credit assignment 

problem is nontrivial. 

Figure 5. A simple search tree. 

4 . 1 . Assigning Credit and Blame 

As we have discussed, if a learning system is to improve its behavior, it must decide which components 

of its performance system arc responsible for desirable behavior, and which led to undesirable behavior. In 

general, assigning credit and blame can be difficult because many actions may be taken before knowledge of 

results is obtained, and any one of these actions may be responsible for the error. For instance, if the 

performance component is represented as a set of production rules, one must decide which of those rules led 

the system down an undesirable path. The problem of credit assignment is trivial in learning from examples 

since feedback is given as soon as a rule applies. However, the task is more formidable in the area of learning 

search heuristics, and recent progress in this area has resulted mainly from new insights about methods for 

assigning credit and blame. 

The most straightforward of these approaches relies on waiting until a complete solution path to some 

problem has been found. Since moves along the solution path led the system toward the goal, one can infer 

that every move on this path is a positive instance of the rule that proposed the move. Similarly, moves that 

lead one step off of the solution path arc likely candidates for negative instances of the rules that proposed 

them (though it is possible that alternate solutions starting with these moves were overlooked). Let us return 

to the problem space in Figure 5, with the solution path shown in bold. The move from state 1 to state 2 and 

from state 5 to state 6 would be classified as good instances of operator .Ol, while the move from state 2 to 

state 5 would be marked as a good instance of operator 02. In contrast, the moves from state 1 to state 3, and 

from state 5 to state 7 would be labeled as bad instances of 0 1 , while the moves from state 2 to 4, and from 

state 5 to 8 would be noted as bad instances of 02. Moves more than one step off the solution path (these are 
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not shown in the figure) are not classified; since they were not responsible for die initial step away from the 
goal they are not at fault. At least two recent strategy learning systems - Mitchell Utgoff, and Bancrji's LEX 
and Langley's SAGK — have used this heuristic as their basic method for assinging credit and blame to 
components of their performance systems. Other systems, including firazdii's KLM [14] and Kiblcr and 
Porter's learning system [15], have used a similar technique, though their programs required the solution path 
to be provided by a benevolent tutor. Slccman, Langley, and Mitchell [16] have discussed the advantages of 
this method for "learning from solution paths". 

One limitation of this approach is that it encounters difficulty in domains involving very long solution 

paths and extensive problem spaces. Obviously, one cannot afford to search exhaustively in a domain such as 

chess. In response, some researchers have begun to examine other methods that assign credit and blame while 

the search process is still under way. These include such heuristics as noting loops and unnecessarily long 

patiis, noting dead ends, and noting failure to progress towards the goal. Systems that incorporate such 

"learning while doing" methods include Anzai's HAPS [17], Ohlsson's UPL [18], and I-anglcy's SAGK.2 [19]. 

Ironically, these systems have all been tested in simple puzzle-solving domains, where the "learning from 

solution paths" method is perfectly adequate. One obvious research project would involve applying these and 

other methods to more complex domains with long solutions and extensive search spaces. 

4.2. Modifying the Performance System 

Once credit and blame has been assigned to the moves made during the search process, one can modify 
the performance system so that it prefers desirable moves to undesirable ones. If the performance component 
is stated as a set of condition-action rules, then one can employ the same methods used in learning from 
examples. In other words, one can search the space of conditions, looking for some combination that will 
predict all positive instances but none of thé negative instances. However, since multiple operators are 
involved, one must search a separate rule space for each operator. When one or more rules have been found 
for each operator, they can be used to direct search through the original problem space; if these rules are 
sufficiently specific, they will eliminate search entirely. 

However, the task of learning search heuristics does place some constraints on the modification method 
that is employed. In particular, the learning system must be able to generate both positive and negative 
instances of its operators. This poses no problem for discrimination-based learning systems, since they begin 
with overly general move-proposing rules that lead naturally to search.4 However, generalization-based 
systems are naturally conservative, preferring to make errors of omission rather than errors of commission. 
Such an approach works well if a tutor is present to provide positive and negative examples, but it encounters 
difficulties if a system must generate its own behavior. Ohlsson [18] has reported a mixed approach in which 
specific rules arc preferred, but very general move-proposing rules arc retained and used in cases where none 
of the specific rules are matched. However, in its pure form, generalization-based methods do not seem 
appropriate for heuristics learning. 

4.3. Open Problems in Heuristics Learning 

We have seen that heuristics learning can be viewed as the general case of learning from examples, and 

many of the open problems in this area arc closely related to those for concept learning. For instance, one can 

imagine complex domains for which no perfect rules exist to direct the search process. In such cases, one 

might still be able to learn probabilistic rules that will lead search down the optimum path in most cases. This 

situation is closely related to the task of learning concepts from noisy data. Similarly, one can imagine 

attempting to learn search heuristics with an incorrect or incomplete representation. Finally, there are many 

domains in which some moves are better than others, but for which no absolute good or bad moves exist As 

with learning from examples, most of the existing heuristics learning systems assume that "all or none" rules 
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exist. Thus, even if one could modify the credit assignment methods to deal with such continuous 
classifications, it is not clear how one would alter the modification components of these systems. Kach of these 
problems have been largely ignored in the machine learning literature, but we expect to see more work on 
them in the future. 

One recent departure from the syntactic methods we described above corresponds closely with the 

causal reasoning approach to learning from examples. Rather than relying on multiple solution paths to learn 

the heuristic conditions on a set of operators, Mitchell, Utgoff, and Bancrji [20] have explored a method for 

gathering maximum information from a single solution path. This method involves reasoning backwards from 

the goal state, and determining which features of each previous state allowed the final operator in the 

sequence to apply. This method is used for each operator along the solution path, resulting in a macro-

operator that is guaranteed to lead to the goal state. This method is very similar to that employed by Hikes, 

Hart, and Nilsson [21] in their early STRIPS system. Carbonell [22, 23] has explored a somewhat different but 

related approach in his work on problem solving by analogy. During its attempt to solve a problem, 

CarbonclLs system retains information not only about the operators it has applied, but about the reasons they 

were applied. Upon coming to a new problem, the system determines if similar reasons hold there, and if so, 

attempts to solve the current problem by analogy with the previous one. Both Mitchell's and CarbonclFs 

methods involve analyzing the solution path in order to take advantage of all the available information. As * 

with learning from examples, this approach to learning search heuristics has definite advantages over the 

more syntactic approaches, and we expect it to become more popular in die future. 

5. Learning from Observation: Conceptual Clustering 

For the moment, let us return to the task of learning concepts from examples. Another of the 
simplifying assumptions made in this task is that the tutor provides the learner with explicit feedback by 
telling him whether an instance is an example of the concept to be learned. However, if we examine very 
young children, it is clear that they acquire concepts such as "dog" and "chair" long before they know the 
words for these classes. Similarly, scientists form classification schemes for animals, chemicals, and even 
galaxies with no one to guide them. Thus, it is clear that concept learning can occur without the presence of a 
benevolent tutor to provide feedback. The task of learning concepts in this way is sometimes called learning 
by observation. 

5 . 1 . The Conceptual Clustering Task 

There are different types of learning by observation, but let us focus on what Michalski and Stcpp [24] 

have called conceptual clustering, since this bears an interesting relation to learning from examples. In the 

conceptual clustering paradigm, one is presented with a set of objects or observations, each having an 

associated set of features. The goal is to divide this set into classes and subclasses, with similar objects being 

placed together. The result is a taxonomic tree similar to those used in biology for classifying organisms. In 

fact, biologists and statisticians have developed methods for generating such taxonomies from a set of 

observations. However, these methods (such as cluster analysis and numerical taxonomy) allow only numeric 

attributes (e.g., length of tail), while the conceptual clustering task also allows symbolic features. 

Consider the set of objects shown in Figure 6, which vary on four binary attributes - size, shape, color, 
and thickness of the border. Only four out of the sixteen possible objects are observed, and the task is to 
divide these into disjoint groups that cover the observed objects, but that do not predict any of the 
unobserved ones. The classification tree shown in the figure satisfies these constraints while reflecting the 
regularities in the data. For instance, size and shape are the only features Uiat are completely correlated, since 
all large objects are red, and all small objects are blue. Thus, these two features are ideal for dividing the 
observations into two groups at the highest level. However, within these groups finer distinctions can be 
made, and the features of border-thickness and shape are useful at this level. 

This example points out two additional complexities in the conceptual clustering task over learning 
from examples. First, classification schemes nearly always involve disjunctive classes, and any successful 
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method must be able to handle them. (A conjunctive clustering task would be one in which only a single 

object was observed, and would not be very interesting.) Second, concepts must be learned at multiple levels. 

For instance, in the above example the "concept" ((large and red) or (small and blue)) must be generated at 

the first level, while the concepts ((thick and square) or (thin and circle)) and ((thick and circle) or (thin and 

square)) must be learned at the second level. ITius, the task of conceptual clustering can be viewed as a 

version of learning from examples that is more difficult along a number of dimensions - namely the absence 

of explicit feedback, the presence of disjuncts, and the need for concepts at multiple levels of description. 

large&white small&black 

thick&square 
thin&square 

o 
Figure 6. A simple classification tree. 

5.2. Approaches to Conceptual Clustering 

Michalski and Stcpp's[24] approach to conceptual clustering takes advantage of this relationship. 

Basically, they employ a method for learning conjunctive concepts from examples to determine the branches 

(or concepts) at each level in the classification tree, starting at the top and working downward. In order to do 

this, their system must have a set of positive and negative instances. These arc based on a small set of N 

randomly selected seed objects, and concepts are learned for each of these seed objects in such a manner that 

they do not cover any of the other seeds. Based on these concepts, a new set of seeds are produced which 

represent the central tendency of each concept, and the process is repeated, generating a revised set of 

concepts. This strategy continues until the seed objects stabilize, giving an optimal set of N disjoint classes. In 

addition, the system must decide how many classes should be used at each level in the classification tree. This 

is done by considering different numbers of seeds, and evaluating the resulting sets of concepts on their fit to 

the data. The best of these sets is used to add branches to the tree, and objects arc sorted down the appropriate 

branches. The entire process is then repeated on each of these subsets of objects, in order to add lower level 

branches to the classification scheme. 

As with learning from examples, approaches to conceptual clustering can vary along a number of 

dimensions. For instance, though Michalski and Stcpp's method requires all data to be present at the outset, 

one can imagine systems that work in an incremental fashion. In fact, Lebowitz [25] has reported such an 

incremental system. These two systems also differ in the way they organize search through the space of 

classification trees. Both systems carry out a depth-first search through this space, starting at the top with more 

general classes and adding more specific subclasses later. However, since Michalski and Stepp's approach has 

all relevant data available at the outset, it can use this information to select the best branch at each point In 

contrast, lwCbowitz's system is sometimes forced to restructure a classification tree as new observations are 

made; this is equivalent to backing up through the space of classification trees, and trying an alternate path. 

This appears to be another case of the well-known AI tradeoff between knowledge and search: the more 
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knowledge that is available (in this case in the form of data), the less search is required (in this case through 
the space of classification trees). 

A final dimension of variation involves the order in which the classification tree is constructed. Both 
Michalski and Stepp's and Lcbowitz's approaches begin at the top of the tree and work downward. For 
example, given the objects in Figure 6, the distinction between large red objects and small blue objects would 
be made first, followed by die "finer" distinctions at lower levels in the tree. However, there is no reason why 
a taxonomic scheme could not be generated in the opposite order, classifying the most similar objects together 
first, and grouping the resulting classes afterwards. In fact, two systems that form conceptual clusters in this 
manner have been described in the Al literature. Wolffs [26] MK10 and SNPR [27] programs, which operate 
in the domain of grammar acquisition, form classes such as noun, verb, and adjective early in the learning 
process, and form more abstract classes in terms of these at a later time. Similarly, the GLAUBKR program 
described by Langley, Zytkow, Bradshaw, and Simon [28] discovers regularities in chemical reactions first by 
defining classes such as alkalis and metals, and only later defines classes such as bases in terms of them. 
Hopefully, future work will reveal the advantages and disadvantages of different approaches to the conceptual 
clustering task. 

5.3. Open Problems in Conceptual Clustering 

Most of the existing conceptual clustering systems are designed to handle attribute-value 
representations. ITius, one direction for future research in this area would involve extending these approaches 
to deal with relational.or structural information. In addition, the reader may recall that the task of learning 
from examples can be transformed into the conceptual clustering task by removing the simplifying 
assumption of explicit feedback. However, most work in conceptual clustering retains the assumption that the 
learned concepts are "all or none". Thus, a second direction for research would involve extending these 
methods, enabling them to learn inexact concepts such as dog or chair in which some features are more 
central than others. Since conceptual clustering methods do not rely on a strong distinction between positive 
and negative instances, this should be reasonably straightforward. It simply has not been a major focus of the 
researchers in this area. 

A final research area relates to the importance of junction in our everyday concepts. Nelson [29] has 
argued that children's very early concepts arc often functional in nature. For example, a ball is something that 
one can bounce, and a chair is something that one can sit on. Only later, Nelson claims, arc structural features 
added to these concepts. This suggests that a child's goals play an important role in the way he organizes his 
view of the world. Moreover, this tics in with Winston's approach to learning from examples, in which the 
learner uses a functional description to simplify the learning of structural descriptions. One can imagine a 
learning system that, starting with certain goals, formulated a set of function-based core concepts without 
using explicit feedback, and which then used Winston's method to add structural information. This would be 
a radically different approach to conceptual clustering, but one which appears to have considerable potential 
for modeling the human process of concept formation. 

6. Language Acquisition 

A fourth major area of machine learning research has dealt with the acquisition of language. In many 

ways, the literature on language learning stands apart from other work in the field. For instance, more of the 

researchers in this area have been concerned with modeling the human learning process than have workers in 

other areas of machine learning. In addition, relatively little contact has been made between work in this area 

and the work on concept learning and strategy learning. For this reason, and for lack of space, we will not 

attempt to cover AI approaches to language acquisition is as much detail as we have other areas. Rather, we 

will attempt to state the problem and provide a simple example. More detailed reviews of computational 

approaches to language learning can be found in Anderson [30], Pinker [31], and Langley [32]. 

Early research on language acquisition focused on inducing grammars to predict a set of sample 
sentences [33, 34]. More recently, most workers have reformulated the task in terms of learning a mapping 
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between a set of sentences and their meanings. Anderson [30] has argued that this situation is similar to that 

encountered by children, since early sample sentences generally refer to some situation or event present in the 

child's environment. Figure 7 presents such a sample sentence and its meaning. Some workers have focused 

on sentence generation (most of the psychological data concerns children's utterances), others have studied 

learning to understand sentences, and still others have been concerned with both issues. Some researchers 

have assumed that connections between concepts and their associated words arc already known, while others 

attempt to learn this mapping along with the relation between meaning structures and grammatical structures. 

�boy 'bounce *red *ball 

The boy bounce ed the red ball. 

Figure 7. A simple sentence and its meaning. 

In modeling language acquisition, the learning system is presented with a set of legal sentences and their 

associated meanings. The reader will recall that negative instances play an important role in learning from 

examples and learning search methods, and one would expect a similar situation here. Thus, the fact that only 

legal sentences are presented might be viewed as a serious problem for language learning systems. However, 

recall that the task is to learn a mapping between sentences and their meanings. TTiis mapping is never carried 

out by a single rule, but rather by some set of rules. For a given sentence-meaning pair, some of these rules 

may apply correctly, some may fail to apply when they should, and still others may apply when dicy should 

not. The latter two cases correspond to positive instances (errors of omission) and negative instances (errors of 

commission), respectively, llius, at the appropriate level of analysis, both positive and negative instances do 

arise in the language learning task. 

For example, in order to describe the meaning structure in Figure 7, the learner must have some rule for 

saying the word "the", another for Mboy", another for "bounce", perhaps another for "cd", and so forth. Each 

of these rules may be overly specific or overly general, leading to errors of omission or commission. In terms 

of finding the correct conditions on such rules, the language learning task is more difficult than the others we 

have examined, since arbitrary exceptions often occur. Thus, the learner may decide to say "cd" after the 

word for any past action, and then discover the numerous exceptions to this rule. In fact, young children often 

produce overgcncralizations like "runncd" and "hittcd", though they eventually recover from these 

problems.5 In addition, in order to organize its knowledge, the language learner may also need intermediate 

level rules for describing the agent of an event, the action, and so on. This further complicates the learning 

task, since errors can occur at different levels in such hierarchical schemes, making credit and blame difficult 

to assign. 

In summary, the language acquisition task involves learning a mapping between sentences and their 

meanings. In turn, this provides the equivalent of positive and negative instances, letting the learner acquire 

'Selfridge [35] has developed a computational model of this process of overgcncralization and recovery. 
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rules in much the same fashion as in other areas of machine learning. However, the task is more difficult than 
most in that it often involves arbitrary exceptions, as well as intermediate level rules for which one can never 
attain complete feedback, The language acquisition task is complex enough that we cannot hope to cover it 
adequately here; however, this brief overview may have given the reader some idea of its relation to, and 
differences from, other areas of machine learning. 

7. Conclusions 

In this paper, we examined some of the task domains studied by researchers in machine learning — 

learning from examples, learning search methods, conceptual clustering, and language acquisition — and 

considered some relations between those domains. A number of common threads emerged from this 

examination. One of those was the notion of search through a space of rules, and various methods for 

directing the search through this space. Another was the idea that learning from examples can be viewed as a 

simpler version of the more complex tasks of learning search heuristics and conceptual clustering, in that 

credit assignment is simplified and feedback is present. We found diat some areas, such as data-driven 

approaches to learning from examples, appear to relatively well understood, while in other areas, such as 

learning during the search process, much work remains to be done. In each of the domains we examined, we 

found a number of open issues that remain to be explored. Among the most exciting of these was the 

potential for using functional or causal information in directing the learning process. 

In addition to those aspects of machine learning we have covered, ongoing research is addressing a 

number of exciting topics we have not had the space to discuss. One of these involves attempts to automate 

the process of scientific discovery [11, 36]; ultimately this may lead to advisory systems that aid scientists in 

their research. Another area that has received considerable attention recently concerns methods for reasoning 

by analogy with prior experience [23]; systems that solve problems in this manner could be considerably more 

flexible than existing AI programs. Another research focus is learning from instruction, in which the system 

acquires knowledge directly from a textbook or tutor. This is probably the most immediately applicable of all 

machine learning methods, due to recent advances in natural language processing. Machine learning, despite 

its recent emergence, has developed nearly as many fascinating problems as researchers to pursue those 

problems. As a result, more colleagues arc always welcome, and we hope we have communicated some of the 

excitement in this rapidly developing field to the reader. 
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