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Abstract

This thesis deals with all aspects of mobile robot localization for indoor applica-
tions. The problems span from tracking the position given an initial estimate,
over finding it without any prior position knowledge, to automatically build-
ing a representation of the environment while performing localization. The
theme is the use of minimalistic models which capture the large scale struc-
tures of the environment, such as the dominant walls, to provide scalable and
low-complexity solutions.

In many cases it is enough to only maintain an estimate of the robot posi-
tion. For such situation an extensively tested low-complexity, robust and accu-
rate pose tracking method is presented which utilizes the minimalistic model
in combination with a laser sensor.

When the initial position is unknown the robot must perform global lo-
calization. Two different methods are investigated. The first one is a novel
localization scheme, based on the ideas of Multiple Hypothesis Tracking. The
second is an, experimentally verified, significant improvement of the standard
Monte Carlo Localization technique.

To automatically generate an environmental representation an hierarchical
approach to simultaneous localization and mapping (SLAM) is presented. The
map scaling issue is here addressed by dividing the environment into submaps,
each representing a small area.

Keywords: mobile robot, laser scanner, sonar, odometric model, sensor fu-
sion, pose tracking, global localization, SLAM, Kalman filter, particle filter,
Multiple Hypothesis Localization, Monte Carlo Localization.
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Chapter 1

Introduction

Today robotic systems are widely used in the industry, in particular for tasks
such as welding, painting and packaging. All of these robot systems are in
the form of manipulators that carry out repetitive motion. For large scale
transportation such robotics systems are not particularly practical and there-
fore automatic transportation systems have been developed either as numeri-
cally controlled systems like automatic warehouses or through use of automatic
guided vehicles (AGVs). Almost all AGVs use a guide-path system where they
track a buried wire on the floor or utilize other forms of artificial landmarks.

There is currently a diffusion in the set of applications away from the factory
setting towards office and domestic applications. One issue that in particular
motivates this change is the aging of society. An analysis of the demographics
for countries such as Sweden reveals that the number of retired people will
increase with more than 50% over the next 30 years. In health-care it is widely
recognized that people older than 85 years of age in general are in need of
assistance for a number of everyday tasks such as getting dressed, getting out of
bed, visiting the rest-room, preparing meals, etc. For this group of citizens the
forecast is even more dramatic. Over the next 10 years this group will increase
with 25% and over the next 30 years it will double in size. Quality of life
is in some respects synonymous with ”autonomy”, i.e. getting by without the
assistance of others. To this end there is a need for development of intelligent
aids that allow people to have a significant degree of autonomy. One possible
solution to this problem is to provide robotic platforms that can assist the user
with tasks such as fetch-and-carry, mobility aids etc. The development of such
facilities will not only be of interest to elderly but can also be used by other
citizens for tasks such as automatic cleaning, entertainment, etc. The class of
robot systems to carry out such tasks are termed ”Service Robots”.
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1.1 Service Robots

A service robot must as a minimum include facilities for autonomous navigation
in indoor environments. To make the systems truly useful they must in addition
include facilities for interaction with the environment. This interaction can
take on many different forms, from simple pushing to explicit manipulation of
objects.

A fundamental component of any mobile robot system is methods for local-
ization and navigation. Almost all deliberative tasks that a robot must carry
out has as an underlying assumption that the system can answer the three
questions: ”Where am I?”, ”Where am I going?”, and ”How do I get there?”.
The first question is termed localization, while the second questions implic-
itly is termed localization and/or place recognition, while the third question is
termed path planning.

In industrial settings it is often permissible to use artificial markers for
localization. In addition it might be acceptable to provide a map of the en-
vironment a priori, e.g. a CAD model of the environment. For operation in
an office environment or in a domestic setting it might not be acceptable to
place artificial markers throughout the environment, in addition it is in general
impossible to assume that a map of the environment can be provided. Such a
map can be generated by professionals but it is unrealistic to assume that the
regular citizen can. Relying on such information would thus significantly limit
the potential utility of a system. Consequently it is of interest to investigate
methods that allow automatic acquisition of maps of the environment based on
natural features and subsequent use of such maps for robust localization and
navigation. These are the issues studied in this thesis.

1.2 Working Hypothesis and the Localization

Problem

The work presented in the thesis has been conducted within the context of
the project “The Intelligent Service Robot” at the Center for Autonomous
Systems (CAS) at the Royal Institute of Technology. The project acts as a
focal point for the research and provides a platform for systems integration. It
is only by putting all the parts together that a fully autonomous system can
ever be realized. The setting for the service robot is an indoor semi-structured
environment, which typical office and domestic areas are examples of.

The working hypothesis throughout the thesis is that it is possible to per-
form localization reliably using a simple model of the environment and that
simplicity contributes to robustness.

The localization problem can roughly be divided into three parts, pose track-
ing, global localization and map acquisition. This separation is to a large extent
based on the way people have approached the problem.
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1.2.1 Pose Tracking

In many applications an initial estimate of the robot pose1 is known. During the
execution of a task, the robot must update this estimate using measurements
from sensors. Using only sensors that measure relative movements, the error in
the pose estimate increases over time as errors are accumulated. Therefore ex-
ternal sensors are needed to provide information about the absolute pose of the
robot. This is achieved by matching these measurements with an environmen-
tal model (the map). Finding the correspondence between the measurements
and the model of the environment is one of the hardest problems in any es-
timation process. In pose tracking a good initial estimate is given and the
correspondence or data association problem becomes easier as it is not nec-
essary to consider the entire space when looking for the correspondences, but
rather only a relatively small region around the estimated pose.

1.2.2 Global Localization

Tracking can be used if an initial estimate of the pose is given. However, in some
situations, and for a fully autonomous service robot in particular this is not
possible. The process of finding the pose starting with no or very limited pose
information is called global localization or pose initialization. It is considerably
more difficult than pose tracking because of the data association problem. The
level of complexity of this task varies with the size of the environment, but also
with the level of symmetry. It is only by integrating large amounts of data over
time that these symmetries can be resolved.

1.2.3 Map Acquisition

Both pose tracking and global localization require a map of the environment.
In some cases a map can be acquired from a plan of a building, but in other
cases the map representation is such that it must be constructed from sensor
data by the robot. The position of the robot must be known to build the map
using sensor data from the robot.

1.2.4 Closing the Loop: SLAM

An autonomous robot must perform both pose estimation and mapping. How-
ever, since pose estimation requires a map and mapping requires the pose, there
is a “chicken and egg” problem. Which comes first? The answer to the question
is that they have to be carried out at the same time. The process of building
a map at the same time as estimating the pose of the robot is called simul-
taneous localization and mapping (SLAM). SLAM is different from ordinary
map acquisition since the uncertainty in the robot pose is accounted for when

1pose: position and orientation
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building the map. The correlation between the estimate of the robot pose and
the map that is being constructed is thus explicitly modeled.

1.3 Thesis Outline and Contributions

In this section brief reviews are given of the different chapters together with a
list of publications.

Chapter 2

Localization is to a large extent a question of representing uncertain infor-
mation about the pose of the robot and about the environment (the map).
There is a tight coupling between how the map is represented and the way
the pose estimation is performed. This chapter gives an overview of the most
common approaches. The representations used for maps are divided into four
groups: topological, feature-based, grid-based and appearance-based. Seven dif-
ferent groups for representing uncertain pose information are presented. Span-
ning from not representing it at all (dead-reckoning), over analytic represen-
tations using a single or a mixture of Gaussians to discretization techniques.
Based on this review a strategy for further investigation is discussed. Finally
the minimalistic map representation used in this thesis is presented.

Chapter 3

Pose tracking, as previously explained, is the process of maintaining an esti-
mate of the robot pose, given a good initial pose estimate. In the chapter
a Kalman filter based approach is presented utilizing the minimalistic envi-
ronmental model mentioned in the previous section. By frequently updating
the pose, the correspondence problem is simplified. A Gaussian PDF is used
to represent the pose uncertainty, which is a good approximation as long as
the data associations are solved. The minimalistic model paves the way for a
low-complexity algorithm with a high degree of robustness and accuracy. Ro-
bustness here refers both to being able to track the pose for a long time, but
also handling changes and clutter in the environment. The robustness is gained
by the minimalistic model only capturing the stable and large scale features of
the environment. The effectiveness of the pose tracker is demonstrated through
a number of experiments, including a run of 90 minutes which clearly estab-
lishes the robustness of the method. The results presented in the chapter have
been published in:

• Jensfelt, P. & Christensen, H. (1998), Laser based position acquisition and
tracking in an indoor environment, in ‘Proc. of the International Sym-
posium on Robotics and Automation’, Vol. 1, IEEE, Saltillo, Coahuila,
Mexico, pp. 331–338.
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• Jensfelt, P. & Christensen, H. (1999), Laser based pose tracking, in
‘Proc. of the International Conference on Robotics and Automation’,
IEEE, Detroit, Michigan, USA, pp. 2994–3000.

• Jensfelt, P. (1999), Localization using laser scanning and minimalistic
environmental models, Licentiate thesis, Automatic Control, Royal Insti-
tute of Technology, SE-100 44 Stockholm, Sweden.

• Jensfelt, P. & Christensen, H. I. (2001), ‘Pose tracking using laser scan-
ning and minimalistic environmental models’, to appear in IEEE Trans-
actions on Robotics and Automation .

Chapter 4

When an initial pose estimate is not available, the pose estimate must be
automatically initialized. It is needed not only when starting on the robot, but
also in case the pose is lost during a mission. With global pose uncertainty, it
is no longer possible to use a simple Gaussian PDF.

In the chapter a novel approach based on tracking multiple pose hypothe-
ses is presented. The method is inspired by techniques used in radar target
tracking. Although similar techniques are applied in other fields this contri-
bution presents the first thorough investigation of how this can be applied to
mobile robot localization. The method proposed is called Multiple Hypothesis
Localization (MHL). The results have been presented in:

• Jensfelt, P. & Kristensen, S. (1999), Active global localisation for a mobile
robot using multiple hypothesis tracking, in ‘Proc. of the IJCAI-99 Work-
shop on Reasoning with Uncertainty in Robot Navigation’, Stockholm,
Sweden, pp. 13–22.

• Jensfelt, P. & Kristensen, S. (2001), ‘Active global localisation for a mo-
bile robot using multiple hypothesis tracking’, accepted for IEEE Trans-
actions on Robotics and Automation .

Chapter 5

Monte Carlo methods have recently become popular in robotics. In this chapter
the performance of the Monte Carlo Localization (MCL) method is evaluated
in the minimalistic model setting. Two different approaches are presented to
improve the performance and reduce computational complexity. The first of
these has been suggested before in the literature, but this chapter provides the
first thorough evaluation of its characteristics. The second approach is a novel
way of reducing the computational effort, while at the same time improving
the performance significantly. These results have been published in:
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• Jensfelt, P., Austin, D., Wijk, O. & Andersson, M. (2000), Feature
based condensation for mobile robot localization, in ‘Proc. of the Inter-
national Conference on Robotics and Automation’, San Francisco, CA,
USA, pp. 2531–2537.

• Jensfelt, P., Wijk, O., Austin, D. & Andersson, M. (2000), Experiments
on augmenting condensation for mobile robot localization, in ‘Proc. of the
International Conference on Robotics and Automation’, San Francisco,
CA, USA, pp. 2518–2524.

Chapter 6

To have a fully autonomous robot, the map that is required for pose track-
ing and global localization must be constructed automatically. As previously
discussed this requires performing localization and mapping at the same time.
Most of the approaches presented in the literature so far are based on the
Kalman filter. Due to the computational complexity of these methods they are
only applicable in small environments. Much of the research have been focused
on different approximations to reduce the computational complexity. One such
approach is to divide the map into submaps. SLAM is performed in each of
the submaps and the computational complexity can thus be made independent
of the size of the environment. The price for this is a suboptimal algorithm.

In the chapter SLAM algorithm is evaluated for building minimalistic mod-
els. The map scaling issue is addressed by a submap approach, where two differ-
ent strategies are evaluated. A comparison is presented between the standard
SLAM algorithm and the two different submap allocations strategies. Finally
a scenario for how mapping can be performed in a service robot application is
presented and the benefits of adding extra degrees of freedom to a laser scanner
using a pan-tilt unit is investigated.

Appendix A

As most platforms so far in robotics research are wheeled, the use of encoders
to measure the rotation of the wheel axes has become more or less standard.
The common term for this kind of information is odometry, which can provide
information about the change in the pose of the platform. As with all sensors,
a model of the odometry provides valuable information about performance and
limitations.

The main contribution is the development of a model for the odometric
system on a synchro drive robot. The model can be used in an iterative update
procedure, such as a Kalman filter, and provides uncertainty estimates that are
independent of how the path is segmented.
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Appendix B

Together with the odometry, the laser sensor is the main sensor in the thesis
and as such warrants a thorough investigation. The main contribution here is
the characterization two laser scanners from SICK, the PLS and the LMS. The
effect of quantization and the underlying range distribution are investigated as
well as the beam width and effects that arise when only a fraction of the beam
is reflected by an object.

1.4 Publications not covered in this thesis

Results that are only briefly touched upon in this thesis, but which concern
related topics have been published in:

• Wijk, O., Jensfelt, P. & Christensen, H. (1998), Triangulation based fu-
sion of ultrasonic sensor data, in ‘Proc. of the International Conference on
Robotics and Automation’, Vol. 4, IEEE, Leuven, Belgium, pp. 3419–24.

• Austin, D. & Jensfelt, P. (2000), Using multiple gaussian hypotheses
to represent probability distributions for mobile robot localization, in
‘Proc. of the International Conference on Robotics and Automation’, San
Francisco, CA, USA, pp. 1036–1041.

• Seiz, M., Jensfelt, P. & Christensen, H. I. (2000), Active exploration for
feature based global localization, in ‘Proc. of the International Conference
on Intelligent Robots and Systems”’, pp. 281–287.

• Jensfelt, P., Austin, D. & Christensen, H. I. (2000), Toward task oriented
localization, in ‘The 6th Int. Conf. on Intelligent Autonomous Systems
(IAS-6)’, pp. 612–619.
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Chapter 2

Approaches to Localization

“While other aspects of the overall navigation problem, such
as path planning, are important, in practice, the major dif-
ficulty in achieving reliable navigation is in maintaining a
good estimate of the robot’s whereabouts.”

(Simmons & Koenig 1995)

Localization is one of the fundamental problems of robotics, and the amount of
work presented in the literature is tremendous. Before proposing any new ideas
it is important to take past experiences into account, so that design decisions
are well founded. Therefore, this thesis begins with a survey of different ap-
proaches to localization. The overview focuses on methods for pose tracking,
global localization and ways of representing the map. The combined prob-
lem of simultaneous localization and mapping (SLAM) is further discussed in
Chapter 6.

The two fundamental issues that have to be dealt with when designing a
localization system is how to represent uncertain information about the en-
vironment and the robot pose. Localization is thus to a large extent about
representing uncertainty. Section 2.1 presents different approaches to repre-
senting the environment, i.e. map representations. Section 2.2 is dedicated to
methods for estimating the robot pose, i.e. pose tracking and global localiza-
tion. Based on the material presented in the initial two sections, Section 2.3
proposes a strategy for the investigation in the remainder of the thesis, where
the first step is to decide upon a representation for the map which is done in
Section 2.4.

2.1 Environmental Representations

There are many ways to represent the knowledge about an environment. As
stated already in Chapter 1, this thesis deals with indoor semi-structured en-
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vironments. Typical examples of such environments are domestic and office
settings. The assumptions and decisions made in the thesis do not necessarily
apply to other types of environments, for example an outdoor scene.

In (Thrun & Bücken 1996) two major paradigms are identified for mapping
indoor environments; grid-based and topological. This disregards a large part of
the literature (Crowley 1985a, Moutarlier & Chatila 1990, Leonard & Durrant-
Whyte 1991a, Arras & Siegwart 1997) which use feature based representations.
In (Chatila & Laumond 1985) a distinguish is made between three different
world models ; geometric, topologic and semantic. The semantic model is used
at high decision making levels and is thus not of primary interest for localiza-
tion. This leaves geometric and topological world models which is in agreement
with the grouping made in (Engelson & McDermott 1992). A distinction is
made between the grid based and feature based methods in the thesis. Fur-
thermore, methods that use sensor data directly to represent the environment
is dealt with separately under the name appearance based methods.

The border between the metric and the topological representations is not
razor sharp. In (Hu et al. 1991) a hybrid approach is used, where the topolog-
ically based map is used for planning and the metric feature map is used for
localization. A known example of a topological map used for planning is the
TOUR model presented in (Kuipers 1977, Kuipers 1978).

When the situation allows it, there is no reason not to engineer the environ-
ment by adding for example bar codes or reflective tapes. A typical example
of such a situation is a factory. The cost of adding reflective tapes or bar
codes is not significant and the robot often uses the same route, going back
and forth between two positions. The environment is furthermore easily con-
trolled and not sensitive to bar codes on the walls or colorful stripes in the floor.
An example of a commercially available product is the laser based navigation
system LazerWay for autonomous vehicles from Netzler & Dahlgren Co AB
(NDC n.d., Åström 1996).

For the consumer market, the cost issue is much more important, as instal-
lation of bar codes or reflective tapes typically requires a level of knowledge
that an ordinary customer does not possess. Furthermore we have much higher
aesthetic demands in our own homes than in a factory. One might argue that
using the global position system GPS would not need a change of the environ-
ment. The catch here though is that it does not work indoors.

2.1.1 Outline

The following four map representations are considered in more detail in Sec-
tions 2.1.2-2.1.5:

Topological maps:
The world is represented as a connected graph. The nodes in the graph
correspond to places of importance and the edges are the connections,
such as corridors.
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Feature maps:
Geometric features are used to represent the world. Common examples
are points and lines.

Grid maps:
Instead of restricting the map representation to specific features, typi-
cally determined by the user, the world is divided into a grid. Each cell
represents a small area/volume of the world and is given a certainty value
expressing the chance of that part of the environment being occupied.

Appearance based methods:
Instead of having an intermediate representation of sensor data in the
form of grids or features, sensor data is used directly to form a function
from sensor data to pose space.

2.1.2 Topological Maps

The topological map is often defined by the structure of the environment. In
(Chatila & Laumond 1985) the concept of place is defined as an area that is a
functional or topological unit. Examples of topological units are corridors and
rooms, whereas a printer is a functional unit. Connectors are used to connect
the places, e.g., doors, stairways and elevators. The topological world model
is a connected graph where the places are nodes and the connectors are edges.
Topological maps can be organized as a hierarchical structure. For example, at
a low level a place might be a room, but at a higher level a building or a city.

Brooks builds a topological map based on visual information. Here the
building blocks are called freeways and meadows (Brooks 1984). Freeways
correspond to edges and meadows are nodes.

One important special case of an indoor environment is an office space.
The office environment typically consists of long corridors, some open spaces
and offices. The corridors often form a grid with each corridor running either
left-right or up-down. Most mobile robot research is conducted in such office
environments, which is reflected in many of the approaches.

One of the clear advantages of the topological approaches is that they are
abstract and can be constructed without knowing the exact geographical re-
lation between the different nodes. It is enough to know on which edge the
robot is traveling when leaving a node. In the office environment discussed
above there are only 90◦ angles between the corridor parts, and thus only four
directions to distinguish between. This can easily be achieved using odometry
(Horswill 1998).

Figure 2.1 shows a floor plan of the lower floor of the mobile robot lab at
KTH along with a possible topological description of it. In the right subfigure
R:s mark rooms and C:s are corridor connections or corridor areas outside a
door.



12 2 Approaches to Localization
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Figure 2.1: (a) A metric description of the mapped part of the lower floor
of the mobile robot lab. (b) Topological map of the same environment. R
marks rooms and C is a corridor connection or the area outside a door.

To achieve localization in a topological map the robot must be able to tell
the nodes apart. For a human this is often quite easy, but for a robot this can be
a challenging task. Associated with the nodes, there are landmarks, signatures
or features. “A place corresponding to a node must be locally distinctive within
its immediate neighborhood by some criterion definable in terms of sensory
input”, as put by (Kuipers & Byun 1991), where 16 sonars and a compass are
used to distinguish between places.

In (Kortenkamp & Weymouth 1994) so-called gateways are used as nodes.
These gateways mark the transition between two spaces in the environment.
The idea is that the sonar sensor does not give a rich enough description of a
place to make it distinct. That is, it cannot decide which place it is, but it can
however still be used to detect a place. Place recognition is performed using
vision. Examples of gateways are doors and corridor intersections. Gateways
are typically traversed in two or a small number of directions and thus provide
a limited set of view for the robot at these locations.
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In (Koenig & Simmons 1998) the topological map is augmented with rough
metric information about the length of the edges (corridors). Assumptions
about the environment also include all corridors being two meters wide, inter-
sections having 90 degree angles and doorways being no more than ten meters
apart. It is pointed out that there might be valuable information in between
the topological nodes which is discarded in a purely topological approach.

A topological map representation is also used in (Cassandra et al. 1996)
where the focus is on how to choose the action to take. POMDPs (Partially
Observable Markov Decision Processes) form the basis for the decisions and
various heuristics are presented. As noted in for example (Simmons & Koenig
1995) a full implementation of POMDP is still computationally infeasible.

In (Ulrich & Nourbakhsh 2000) the robot is led through the environment
taking pictures with a panoramic color CCD camera at 1 Hz. The user then
labels the images with the location where they where taken. The labeling
is made easy because of the sequential images. It is claimed that the color
images contain enough information so that range sensor data is not needed.
Instead of using the raw images, one-dimensional histograms are extracted.
The histograms have the advantage of being two orders of magnitude smaller
in memory than the raw images and being invariant under rotation.

2.1.3 Metric Maps: Features

The idea of trying to extract features from the environment is quite natural,
this is for example how most city maps are constructed. Extreme examples of
features are labels on doors which specify the room it is leading to, but other
less discriminative features can also be found. In a structured environment,
which most office environments are examples of, lines, corners and edges are
common features. The features can be parameterized by, for instance, their
color, length, width, position, etc. A feature based map can in general be
written

M = {fj | j = 1, . . . ,M}, (2.1)

where fj is a feature and M is the number of features in the map.
Leonard, Durrant-Whyte and Cox are quite firm in their belief that feature-

based methods are the way to go, when they say: “we believe that navigation
requires a feature-based approach in which a precise, concise map is used to
efficiently generate predictions of what the robot should “see” from a given lo-
cation” (Leonard et al. 1992). Durrant-Whyte also promotes the parametric
method by saying “The advantage of describing sensor information in terms of
an uncertain parametric function is that [the] geometric description itself can be
transformed between different coordinate systems and different object represen-
tations, providing a simple but effective means of communicating information
between different sensors” (Durrant-Whyte 1988).
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In (Chatila 1985) a polygonal map is used to predict the readings from a
laser range finder. Crowley also uses lines (Crowley 1985b, Crowley 1985a),
where each line segment has an attribute which represents the degree of con-
fidence. When a line is predicted using a local map and later detected, its
confidence increases, whereas the confidence decreases when a predicted line
is not seen. Drumheller also uses the line primitive for doing sonar based lo-
calization (Drumheller 1987). Arras and Tomatis complement horizontal lines
extracted from laser range data with vertical lines extracted from vision (Arras
& Tomatis 1999). The list of researchers using the line feature can be made
long, some more examples are (Cox 1989, Moutarlier & Chatila 1990, Forsberg,
Larsson, Åhman & Wernersson 1993, Weckesser & Dillmann 1997, Jensfelt &
Christensen 1999).

John Leonard and Hugh Durrant-Whyte develop a localization method
based on tracking natural geometric beacons (Leonard & Durrant-Whyte 1991a,
Leonard & Durrant-Whyte 1992), where a geometric beacon is defined as: “a
special type of target that can be reliably observed in successive sensor mea-
surements and that can be accurately described in terms of a concise geometric
parameterization”. Based on the work by Kuc and Siegel (Kuc & Siegel 1987),
lines, corners and edges are considered as candidates for geometric beacons.
The beacons are extracted from densely sampled sonar data.

Localization using artificial landmarks is well understood and reliable, but
requires modified environments. When using natural landmarks for localiza-
tion, one of the problems is to find suitable candidates for such, a process which
often requires the designer of the algorithm to give geometrical specifications,
e.g. points, lines, corners, etc. This is a cumbersome task. In (Thrun 1998)
a method based on artificial neural networks is presented for automatically
selecting good landmarks. Results are presented to show that it outperforms
systems where the landmarks are selected manually.

In (Faugeras et al. 1986) 3D features are points, lines and planes from visual
data, while in (Rencken 1993) lines and edges are extracted from sonar data.

In (Castellanos & Tardós 1999) many different geometric features are used.
Besides the common point and line features, edges, corners, semi-planes and
vision edges are used. A scheme based on so-called binding matrices is used
when pairing features of different types.

An extreme example of feature based localization is the work by Christensen
et al (Christensen et al. 1994) where a complete CAD model of the environment
is used for localization and pose tracking through feature matching and 3D
recovery using stereo vision.

2.1.4 Metric Maps: Grids

The parametric methods have the disadvantage that an explicit model is needed
for all the information which is used. Another thought is to divide the work
space into a grid where each cell in the grid represents a part of the world.
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One advantage of this approach compared to the parametric is, as Hager and
Mintz (Hager & Mintz 1990) points out, “The grid-based method is only an
approximative solution, but it is much less sensitive to assumptions about the
particular form of the sensing system”. In (Raschke & Borenstein 1990) it is
stated that the grid-based models are better suited for dealing with sonar data
than line-type models (features).

Moravec and Elfes made the grid based techniques popular with their paper
(Moravec & Elfes 1985), where what would later be called the occupancy grid is
presented. As the authors say in the paper: “one range measurement contains
only a small amount of information”, which means that the only way to be
able to build a map of the environment or find the location of the robot is
by combining many readings. In the occupancy grid method, the world is
rasterized into cells. Each grid cell contains information about whether or
not it is occupied. Different frameworks are used for updating the grid, e.g.
Bayesian (Moravec & Elfes 1985, Cho 1990) and fuzzy logic (Fabrizi & Saffiotti
2000, Oriolo et al. 1995). Figure 2.2 gives an example of an occupancy grid
built using a Bayesian approach. The trajectory followed by the robot is shown
along with the outline of the room. The figure is borrowed from (Wijk 2001),
and is a map of the living-room at CAS.

Figure 2.2: Example of a sonar based occupancy grid, built using a
Bayesian approach.

In the thesis by Alberto Elfes, a thorough description is given of the occu-
pancy grid from the basics to more advanced applications of it, for example,
the transformation between a geometric description of the environment to a
grid description and vice versa (Elfes 1989). Results are also presented with
other sensors than sonar and with multiple sensors.

Already in (Moravec & Elfes 1985), but also in, for example, (Elfes 1989),
techniques for finding the position of a robot using the grid representation are
discussed by correlating a local map of the environment to a global one. The
correlation is performed with different map resolutions to reduce the computa-
tional cost.
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One the disadvantages of the occupancy grid technique presented by Moravec
and Elfes is the computationally heavy updating routine. In (Borenstein &
Koren 1989, Borenstein & Koren 1991) a simpler grid updating scheme is ap-
plied where only the cells along the acoustic axis of the sonar sensor are up-
dated. A realistic probability distribution is still achieved by fast sampling.
The computational burden is reduced significantly.

Schiele and Crowley (Schiele & Crowley 1994) evaluate different methods
for matching a local occupancy grid to a global one. The methods under
consideration are to match i) local grid to global grid, ii) locally extracted line
segments to global grid, iii) local grid to global line segments and iv) local
and global line segments. The result of the evaluation is that it is best to
match representations at that same level of abstraction, i.e. grid to grid or
line segments to line segments. Schiele and Crowley also conclude that the
results using grids “are comparable or more accurate than the ones we obtain
with previous work using a parametric model of segments extracted directly from
sensor data”.

2.1.5 Appearance Based Methods

Appearance based methods represent the environment using raw sensor data
or rich descriptions thereof. The downside of the metric methods is that the
sensor data itself typically contains a richer description of the environment than
the features or the grids. Thus, representing the environment using raw sensor
data is not a farfetched idea. By recording sensor data from different positions,
the sensor data acts as signatures of these positions. The idea is similar to
the way topological places are recognized. The difference is that an attempt
is made to create a function from sensor data to an exact robot pose and not
only to, for example, a room. If a local one-to-one mapping can be found from
sensor data to robot pose, it can be tracked. Having a global mapping allows
for global localization by inverting the function. Global one-to-one functions
can almost never be found in practice because most environments, exhibit a
large degree of symmetry, e.g. corridors.

In (Weiss & von Puttkamer 1995) the environment is divided into grid
cells. Whenever the robot enters a grid cell, in which it has not been before, a
scan is acquired. These scans acts as reference scans. When returning to an old
position the reference scans can be used to update the robot pose estimate. The
scan matching algorithm presented in (Lu & Milios 1995, Lu & Milios 1997b, Lu
& Milios 1997a) also uses laser reference scans. In (Gutmann & Schlegel 1996)
different scan-matching algorithms are compared. Figures 2.3 gives an example
of how a map built using laser scans can look. The raw laser scans are acquired
approximately every meter, in groups of four, throughout the environment,
giving a total of 148 scans. The raw scans are shown in Figure 2.4, where the
odometric drift is clearly visible.
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Figure 2.3: Reference laser scans that are aligned using scan matching.
Scans are collected in the area around the main corridor in the mobile
robot lab.

Figure 2.4: Raw laser scans before being align by scan matching. The
scans are acquired approximately every meter in groups of four.

A method quite different from the others presented above is given in (Wallner
1997, Crowley et al. 1998), where principal components analysis (PCA) is ap-
plied to laser range based localization. In (Sim & Dudek 1999) a PCA technique
is used to extract landmarks from images. The map is a set of such landmarks.
Localization is performed by extracting landmarks and comparing them to the
map. PCA techniques are successfully applied to other domains of robotics as
well, e.g. object recognition (Murase & Nayar 1995).
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d1

Figure 2.5: One dimensional example of pose uncertainty situation.

d1

Figure 2.6: Example of a probability density function after incorporating
measurement and knowledge about the sensor.

2.2 Pose Estimation

In this section an overview of some of pose estimation techniques is given. Some
of the methods are only applicable if an initial estimate of the robot is given.
Others can cope with global initial uncertainty.

In the Bayesian framework the aim is to find p(xk|z0, z1, . . . , zk), where xk

is some time-varying signal and {zi} are measurements (Sorenson & Stubberud
1968). This problem is known as the Bayesian filtering problem, optimal fil-
tering or stochastic filtering. A more complete description of the state of the
system than p(xk|z0, z1, . . . , zk) is not possible (Alspach & Sorenson 1972).
However, in general it is inadequate to describe the state with a finite set of
parameters. When p(xk|z0, z1, . . . , zk) is well represented by a Gaussian, the
mean and the covariance give a full description of the state. Most of the lo-
calization methods below represents a way of approximating the distribution
p(xk|z0, z1, . . . , zk). Estimating the pose is thus very much about representing
uncertain pose information.

Consider the simple one-dimensional example given in Figure 2.5. The
robot is positioned at some distance d1 away from a vertical structure. Assume
for the time being that this is the only structure in the environment. The
probability density function (PDF) after a measurement of the structure may
look like in Figure 2.6.
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In a real world scenario the pose space is not one-dimensional, but rather
three-dimensional1. Sensors are not perfect and the environment contains
many, many structures. Some of the structures might also be hard to tell
apart. The real challenge in mobile robot localization lies in performing cor-
rect data associations between sensory data and the environmental model. If
the matching can be done, the localization problem is reduced to a standard
estimation problem, where the sources of the all measurements are known.

Most indoor mobile robots are equipped with wheel encoders. Knowing
the size of the wheel and the wheel configuration makes it possible to estimate
the motion of the robot. The information given in this way if referred to as
odometric information. Figure 2.7 shows the PDF after the robot has moved
to the right. Using the odometric information to predict the new pose of the
robot makes the PDF spread out. The better the odometric information is, the
closer the predication step is a plain translation of the PDF. From this example
it is easy to understand that a good understanding of the odometry is needed
to make an accurate prediction.

Figure 2.7: Probability density function after robot motion before mea-
surement update.

The pose estimation problem can be broken down into two steps, prediction
and measurement update as in Figure 2.8. The prediction step is in princi-
ple not needed if the robot at any point in time can determine its pose with
enough accuracy directly and unambiguously from sensor data. In real world
applications this is rarely the case.

Predict

Update
World
model

Laser

Sensors

Odometry

Figure 2.8: Pose estimation can, in general, be divided into two steps,
prediction and measurement update.

1In general it is a six dimensional space for a rigid body. Motion in the plane and rotation
around one axis reduces it to three dimensions though.
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2.2.1 The Data Association Problem

One of the fundamental problem in mobile robot localization and all sensor
based estimation is that of data association. Data association refers to the
process of determining the origin of the measurements. An important part
is also to reject outliers, as unmodeled objects in the environment cannot be
used to localize. Either the map is augmented with the new structure or the
measurement coming from it must be neglected.

Let z be a measurement and let M be the environmental representation (the
map). Data association can then be defined as for each z finding a correspon-
dence in M. How this correspondence is defined depends on the representation
of M. With a feature based map (2.1) the data association problem consists
of classify z as either

• a measurement of a map feature fj ∈ M, or

• a measurement of something not represented in the map.

2.2.2 Outline

In the remainder of this section different methods for estimating the robot
pose are discussed. The focus is on the representation of pose uncertainty. The
methods are grouped into

Dead-Reckoning:
Having an initial estimate and odometric information makes it possible
to calculate the motion of the robot. No absolute pose information is
used and thus the error in the pose estimate is unbounded.

Topological:
Just like the map can be represented as a graph, the knowledge about
the pose can be kept in a graph structure. The location of the robot is
not given as coordinates, but rather as being in a particular place, such
as a room.

Gaussian PDF:
The most used representation for uncertain robot pose information is the
Gaussian PDF, often applied in conjunction with the Kalman filter.

Gaussian Sum PDF:
Multiple Gaussians can be used to represent multi-modal distributions
which arise as soon as the uncertainty becomes too large. A bank of
Kalman filters is one way to implement this approach.

Position Probability Grids:
By dividing the pose space into small cells, each representing one possible
pose, a discrete approximation of the PDF can be made. With a fine
enough discretization of the state space, any functional form of the PDF
can be represented.
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Monte Carlo Methods:
The Monte Carlo methods use a set of samples to represent the PDF.
Any PDF can be represented given that the number of samples is infinite.
Finite sized sample sets allow for an efficient approximation of the PDF.

2.2.3 Dead-Reckoning

Some tasks only require the robot to move short distances. If the robot has
a good initial pose estimate, odometric information can be used to keep track
of the pose of the robot. Here the odometric information is considered deter-
ministic. As soon as the robot moves over longer distances, external sensor are
required to keep the pose uncertainty bounded.

2.2.4 Topological

Localization in a topological map is not about finding the (x, y)-position of the
robot, but rather finding on which node the robot is located. In the topological
approaches, the accuracy of the odometric information is often less important.
However, odometry is still used to indicate approximately in which direction
the robot is moving.

In (Nourbakhsh 1998) it is argued that “the real-world is so fine grained that
any attempt to plan using a highly detailed model of reality to solve this problem
(localization) is doomed because of enormous computational complexity”. A
simple sonar based recognition system is used to determine if the robot is in a
hallway, an intersection or if there are any doors open or closed on the sides.
Dervish, as the robot is called, operates in a typical hallway environment.
When going from one node to the next in the graph, the sonar sensors are
monitored. Knowing the width of the corridor makes it possible to tell if a
new node is reached. The hallways have the same width everywhere and thus
a small change in width can be associated with a closed door. Open doors or
intersecting hallways both show up as openings to the sonar sensors. To tell
the two apart, odometry is used to measure the width of the opening. Doors
are assumed to be more narrow than hallways. Each node in the graph is given
a certainty values, which represents the relative likelihood of the robot being
there. When the robot moves the certainty values are propagated along the
edges. When reaching a new place the expected characteristics of the place can
be compared with the measured one and through this process the true position
can be singled out.

By making the recognition of places better the robot does not have to move
as much. This is the idea pursued in (Kortenkamp & Weymouth 1994) where
the sonar sensor is only used to detect a place. Vision is then used to recognize
which place the robot is at.

Simmons and Koenig (Simmons & Koenig 1995) use a partially observ-
able Markov model to estimate the pose of the robot. The topological model
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is similar to (Nourbakhsh et al. 1995), but is augmented to incorporate the
approximate distance between the topological nodes. Where Nourbakhsh et
al only encode the pose of the robot to be on a node or an edge, Simmons
and Koenig discretize the edges into one by one meter squares. Each of these
squares are further divided into four different states, one per possible direction
of motion, i.e. north, west, south and east. Using only four directions is mo-
tivated by the assumption of all corridors having right angles. In (Koenig &
Simmons 1998) it is said that “for office navigation, the added expressiveness
of being able to model arbitrary pose distributions outweighs the decrease in
precision from discretization, especially since coarse-grained representations of
uncertainty is often sufficient”. The corridor edges connecting the topological
nodes are modeled as Markov chains (see Figure 2.9).

BA

Figure 2.9: The corridor edge connecting two topological nodes A and B
is modeled as two Markov chains in (Simmons & Koenig 1995). Interme-
diate states corresponding to the same position are shown as one circle for
illustration purposes.

Depending on if the robot moves from A to B or from B to A it enters
a different chain. This setup incorporates the fact that it is often easier to
calculate how far the robot has traveled from a node than it is to calculate
how far there is to the next one. To account for the uncertainty in length, a
finite transition probability is given to jump from intermediate states to the
end node. In the example in Figure 2.9 the corridor length is between three
and five meters. Each state holds a probability of the robot being there. The
control action, a, sent to the robot is used to update the probability of the
different states, s, according to (Simmons & Koenig 1995)

p(s′k+1) = K
∑

sk

p(s′k+1|sk, a)p(sk), (2.2)

where p(s′k+1|sk, a) is the transition probability from sk to s′k+1 given the action
a and K is a normalization factor. Observations, z, from external sensors are
used in a similar way to update the probabilities

p(sk+1) = Kp(z|s′k+1)p(s
′
k+1), (2.3)

where p(z|s′k+1) is the probability of making observation z from state s′k+1.
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In (Ulrich & Nourbakhsh 2000) the map consists of reference image his-
tograms acquired with a panoramic color CCD camera. When using the map
for localization new images are captured and the same type of image histograms
are created. Each image gives six histograms, one for each color band in the
HSV and normalized RGB spaces. These histograms are then matched against
the reference histograms. Each color band histogram carries one vote. The
output is an image classification and a confidence measure. Knowing the ini-
tial position of the robot limits the range of reference histograms that has to
be considered in each step.

2.2.5 Gaussian PDF

The Gaussian distribution is the most commonly used way to represent the
uncertainty of the robot. There are good reasons for this as pointed out in
for example (Maybeck 1979). First, because there are often many different
independent sources of uncertainty. When they are added together they ap-
proach the Gaussian function. Secondly, the knowledge about the uncertainty
is seldom larger than knowing the first and second moment. The strongest
motivation though ought to be that with a Gaussian assumption the filtering
distribution p(xk|z0, . . . , zk) can be evaluated exactly (Doucet 1998). In one
dimension the Gaussian function is completely specified by the mean x̄ and the
variance σ2

x according to

f(x) =
1

σx

√
2π
e−

1
2 (

x−x̄
σx

)
2

. (2.4)

Using a Gaussian approximation of the PDF in Figure 2.6 might yield Fig-
ure 2.10.

Figure 2.10: Using a Gaussian approximation.

When going to higher dimensions, the value to estimate becomes a vector
x = (x1, x2, . . . , xN )T and the scalar variance becomes a covariance matrix
P = E(x − x̄)(x − x̄)T . The Gaussian PDF is now given by

f(x) =
1

√

|P |(2π)N
e−

1
2 (x−x̄)P−1(x−x̄)T

. (2.5)
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The Kalman Filter

The Kalman filter is a key component in many implementations using the
metric map representations (especially the feature based ones), providing a
good setting for pose prediction, sensor fusion and data association. It orig-
inates from the 1960’s (Kalman 1960) and is described in numerous books,
e.g. (Gelb 1974, Maybeck 1979, Anderson & Moore 1979). How to use the
Kalman filter for mobile robot localization is presented in (Crowley 1995) and
(Durrant-Whyte 1994). An introduction to the Kalman filter can be found in
(Kailath et al. 2000, Welch & Bishop 2001).

As put by (Maybeck 1979), “the Kalman filter is simply an optimal recur-
sive data processing algorithm”. The key here is that it is a recursive algorithm,
which means that measurements can be incorporated into the estimate as they
arrive and that no batch processing is required. Having to process all measure-
ment data at every time step soon becomes too time consuming. The Kalman
filter provides the optimal estimate of the quantity x given some measure-
ments z if three assumptions hold. The system must be linear and the noise
associated with the process model and the measurements must be white and
Gaussian. White noise is not correlated in time and has the same power for
all frequencies, which in turn implies infinite noise energy. Hence, white noise
does not exist in reality. Having the same power for all frequencies is only of
practical importance if the system effected by the noise has an infinitely large
bandwidth. Such systems do not exist either and thus as long as the noise has
the same power for all frequencies within the bandwidth of the system it can
be considered white.

The Kalman filter algorithm can be divided into two parts, a prediction or
time update step and a correction or measurement update step (see Figure 2.8).
Let xk denote the true pose at time step k. Let furthermore uk be the input
signal to the system, which could be control signals to the motors or odometric
data. Here xk is referred to as the state of the system and captures everything
there is to know about the robot pose. This is the key to the recursive algo-
rithm, everything that previous measurements have provided about the pose is
encoded in xk. Assuming that the system is linear it can be written as

xk = Fxk−1 +Guk−1 + wk−1 (2.6)

zk = Hxk + vk (2.7)

where F is referred to as the system matrix. The matrix G specifies how the
input effects the state (the pose), H is the measurement matrix, wk ∼ N(0, Qk)
is the process noise and vk ∼ N(0, Rk) is the measurement noise. The processes
wk and vk are assumed to be independent. The matrix H encodes the map,
i.e. the relation between robot pose and measurements.

In a perfect world2 where F and G are known without error and with no
process noise, (2.6) can be used together with the input signal uk to keep track

2Some might argue against this definition of a perfect world
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of the robot pose if the initial pose is known. This is basically the assumption
made when the odometry is used without any external measurements, in dead-
reckoning.

In the presence of noise and with an imperfect model there are errors. Let
x̂k|k−1 denote the a priori estimate of the robot pose at time step k using
all measurements until that time k − 1. Let also x̂k|k denote the a posteriori
estimate of the pose when all measurements until time k are used. To keep
track of the quality of the measurements, Pk|k−1 denotes the a priori estimation
error covariance and Pk|k the a posteriori ditto. The prediction or time update
step of the Kalman filter is given by

x̂k|k−1 = F x̂k−1|k−1 +Guk−1

Pk|k−1 = FPk−1|k−1F
T +Qk−1. (2.8)

The measurements zk taken from the system are used to correct the esti-
mate. The innovation νk = zk−Hx̂k|k−1 provides information that the Kalman
filter is unable to predict and is small when the prediction is good.

Sk = HPk|k−1H
T +Rk (2.9)

Kk = Pk|k−1H
TS−1

k (2.10)

νk = zk −Hx̂k|k−1 (2.11)

x̂k|k = x̂k|k−1 +Kkνk (2.12)

Pk|k = (I −KkH)Pk|k−1 (2.13)

whereKk is the Kalman gain and Sk is the covariance of the innovation process.
Many, not to say most, real systems are non-linear. Approximation tech-

niques to handle non-linear systems surfaced shortly after the Kalman filter
was suggested (Cox 1964). The extension to the non-linear case is called the
extended Kalman filter (Jazwinski 1970), and is nothing but a linearization of
the system around the current state estimate. The success of the EKF depends
on how well the system is approximated by the linearization. The non-linear
systems considered in the thesis can be written as

xk = f(xk−1,uk−1,wk−1) (2.14)

zk = h(xk,vk). (2.15)

To get the a priori estimation error covariance, the Jacobian of the function f
has to calculated with respect to x and w. Defining

Fk =
∂f

∂xk

∣
∣
∣
∣
x̂k−1|k−1,uk−1,0

(2.16)

Wk =
∂f

∂wk

∣
∣
∣
∣
x̂k−1|k−1,uk−1,0

, (2.17)
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the time update equation of the EKF are given by (2.18)

x̂k|k−1 = f(x̂k−1|k−1 ,uk−1, 0)

Pk|k−1 = FkPk−1|k−1F
T
k +WkQk−1W

T
k . (2.18)

For the measurement update the Jacobians of the function h with respect to x
and w are needed,

Hk =
∂h

∂xk

∣
∣
∣
∣
x̂k|k−1,0

(2.19)

Vk =
∂h

∂vk

∣
∣
∣
∣
x̂k|k−1,0

. (2.20)

The measurement update equations are given by

Sk = HkPk|k−1H
T
k + VkRkV

T
k

Kk = Pk|k−1H
T
k S

−1
k

νk = zk − h(x̂k|k−1, 0)

x̂k|k = x̂k|k−1 +Kkνk

Pk|k = (I −KkHk)Pk|k−1. (2.21)

Data Association

The standard estimation techniques, like the Kalman filter, assumes that the
correspondence between the measurement and the map is known. It is only
by knowing this that the measurement equation can be defined correctly. One
common way of handling the data association problem is to use the Mahalanobis
distance, which loosely speaking is the Euclidean distance normalized with the
covariance. The Mahalanobis distance, ρ, is defined as

ρk = νkS
−1
k νT

k . (2.22)

The Mahalanobis distance defines a χ2-distribution (Bar-Shalom & Fortmann
1988). To accept a match between a measurement and its believed origin in
the environment the Mahalanobis distance has to fulfill

ρk ≤ γ, (2.23)

where γ determines the size of the so-called validation gate. The value of γ
depends on the dimension of the measurement and with what probability a true
match should be classified as such. The size of the validation gate increases
with Pk|k−1 and Rk according to (2.9) in combination with (2.22).
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d1

d2

∆d

Figure 2.11: The robot must associate the measurement with the correct
vertical structure and thus has a matching problem.

Consider Figure 2.11, where a second vertical structure is introduced behind
the first one. Note also that the closest vertical structure is somewhat lower
than the one further away. If the range sensor is mounted high on the plat-
form there is a risk that the sensor overshoots and instead of d1 measures the
distance d2. If the uncertainty in the pose estimate or the uncertainty in the
measurement is large, both vertical structures might pass through the gate. In
such a situation the nearest neighbor technique is often applied and the match
corresponding to the smallest Mahalanobis distance is taken to be the true
one. This example illustrates that the uncertainty which can be allowed in a
Kalman filter based system is a function of the complexity of the environment
and the quality of the measurements. The smaller ∆d is, the harder it is to
tell two structures apart and thus the smaller the uncertainty must be kept to
avoid ambiguous matchings.

The simple Gaussian representation works well when the uncertainty is
small and the PDF is uni-modal, i.e. as long as measurements can be matched
to the map unambiguously. When the matching is ambiguous, the Gaussian
representation is not anymore suitable. Using the same sensor model and also
taking into account the probability of measuring d1 and d2 respectively one
might arrive at the PDF shown in Figure 2.12 after processing a measurement.

∆dd1

d2

Figure 2.12: Assuming the nearest object is more likely to reflect, it gives
the highest probability for the robot’s position.
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Figure 2.13: Using multiple Gaussians to represent the PDF.

2.2.6 Gaussian Sum PDF

It is quite natural to look for an extension of the single Gaussian representation.
Figure 2.13 suggests that using two Gaussians is quite close to the true PDF.
The PDF is thus a sum or mixture of Gaussians, where each Gaussian can
be viewed as one hypothesis about the robot pose (Jensfelt & Kristensen 1999,
Roumeliotis & Bekey 2000, Reuter 2000). The advantage of this representation
is that it is defined by few parameters, one vector and one matrix for each
Gaussian. The EKF can still be applied which allows for efficient computations.

Every time a measurement is matched to the map there is chance that
the match is wrong. A proper implementation must take this into account.
Each ambiguous match leads to a branching into two hypotheses, one which
corresponds to the possibility that the match is correct and one where it is
assumed that the match is false. This causes an explosion in the number of
hypotheses. To keep down the computation cost the hypotheses tree must be
pruned.

2.2.7 Position Probability Grids

The single Gaussian distribution presented in Section 2.2.5 provides high accu-
racy but is limited to uni-modal distributions. The purely topological methods
from Section 2.2.4 can handle multi-modal distributions but the pose informa-
tion is coarse. The Gaussian sum approximation can both provide high accu-
racy and represent multi-modal PDFs, but demands advanced data association
schemes and pruning techniques. Inspired by the occupancy grids (Moravec &
Elfes 1985) and the topological approaches (Nourbakhsh et al. 1995, Simmons
& Koenig 1995) the position probability grid came about (Burgard et al. 1996,
Fox, Burgard & Thrun 1999). Each cell in the grid corresponds to one possi-
ble pose of the robot or, using the same terminology as for the Kalman filter,
each cell corresponds to one possible state of the robot. Whereas (Simmons
& Koenig 1995) use a discretization of one by one meter and 90◦ the position
probability grid is finer grained to improve the accuracy in pose.
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Figure 2.14: Using a grid approximation of the PDF.

Going back to the true PDF from Figure 2.12 this could be represented
as shown in Figure 2.14. Using the position probability grids for localization
involves two steps (Burgard et al. 1996), which are more or less the same as
the ones used to update the partially observable Markov model in (Simmons &
Koenig 1995). Let x denote a robot state (a cell) in the grid G. Assuming that
the robot can only be inside the known world, the probability of cells outside
can be put to zero.

1. In the first step the probability values in the grid are updated using
information from the odometry. This step has a smoothing effect on the
PDF (compare Figure 2.7). The new probability of each cell is given by
the probabilities to arrive there from any cells in the grids. Let p(x|x′,u)
denote the probability that the robot gets to cell x from cell x′ given the
odometric information u. The probability of each cell is thus given by

P (x) = α
∑

x′∈G

P (x′)p(x|x′,u) (2.24)

where α is a normalization factor. As P (x 6∈ G) = 0 by assumption,
α =

∑

x∈G P (x). This does not account for the fact that parts of the
space is occupied according to the environmental map. Therefore the
probability of each state is scaled with a factor β · (1 − p(occ(pos(x)))),
where pos(x) is the position corresponding to state x and occ(pos(x)) is
the probability that pos(x) is occupied.

2. In the measurement update step, each grid cell is updated with the prob-
ability of obtaining the observed measurement from that pose given the
map of the environment. This has the intuitive effect that grids cells from
which the predicted measurement is close to the actual measurement is
strengthened. The computational cost for this step depends to a large
extent on the representation used for the map. In (Burgard et al. 1996)
an occupancy grid is used as map, in combination with sonar sensors. To
make the computations feasible, only a discrete number of possible range
readings are considered.
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How well the true PDF is approximated depends on the size of the cells in
the grid. In (Burgard et al. 1996) each cell is 15× 15 cm2 and an angular reso-
lution of 2◦ is used. Using only 8 sonar sensors in a small 4× 4 m2 single room
environment, each update takes 6 seconds on a 90 MHz Pentium computer.
To deal with the computational issues (Fox et al. 1998) introduces a more ef-
ficient implementation. Two techniques are combined: i) pre-computation of
the expected distance reported by the sensor from all states and ii) only use
cells with probability higher than some threshold in the computations. The
computational burden can in this way be reduced several orders of magni-
tude. For a larger environment integrating all the information from a sensor
scan takes 120 seconds even with the efficient implementation. The grid based
methods do not only require a massive computational burden, the memory
requirements are also high, in excess of 100MB according to (Fox, Burgard,
Dellaert & Thrun 1999).

In (Burgard, Fox & Henning 1997) it is pointed out that the position proba-
bility grid can approximate the true PDF better than the single Gaussian used
in Kalman filter based methods. The example brought up is the case when
the robot is close to an known obstacle, e.g. a wall. In this case the probabil-
ity should be zero that the robot is located in the wall. The single Gaussian
however puts a non-zero probability everywhere which is wrong.

2.2.8 Monte Carlo Methods

Monte Carlo methods have become increasingly popular over the last few years
in robotics. The methods have been around since the 60’s (Handschin & Mayne
1969, Handschin 1970), but was prevented from being widely used because
of their dependency on computer power. During the last couple of decades
the computer power has reached a level high enough to make the methods
applicable. For a historical overview of the Monte Carlo methods see (Neal
1993). Having been applied in other research fields, they came into robotics
primarily via (Isard & Blake 1996, Isard & Blake 1998). Here the so-called
condensation3 algorithm is presented and used for image contour tracking.

The Kalman filter approaches of Sections 2.2.5 and 2.2.6 uses a Gaussian
approximation for p(xk|z0, z1, . . . , zk) and the position probability grid of Sec-
tion 2.2.7 discretizes it. In the Monte Carlo methods a sample set is used to
represent p(xk|z0, z1, . . . , zk).

The grid approach from the previous section is also, in a way, a sample
based method, where the environment is uniformly sampled. With a sample
set, the sampling can instead be done where there is a need. Each sample,

s
(i)
k , in the sample set has a corresponding state, x

(i)
k and weight π

(i)
k . Letting

N → ∞ the sample set

S =
{

(x
(i)
k , π

(i)
k ) | i = 1, . . . , N

}

,

can be made to approximate p(xk|z0, z1, . . . , zk) arbitrarily well.

3
conditional density propagation



2.2 Pose Estimation 31

A thorough discussion on Monte Carlo methods can be found in for example
(Pitt & Shephard 1999, Doucet 1998) and an introduction to the methods in
(Mackay 1996). The Monte Carlo methods were brought into the field of mobile
robot localization in 1999 (Dellaert, Fox, Burgard & Thrun 1999, Dellaert,
Burgard, Fox & Thrun 1999, Fox, Burgard, Dellaert & Thrun 1999) under the
name Monte Carlo Localization (MCL).

Importance sampling is one component in many Monte Carlo methods, and
requires that p(xk|z0, z1, . . . , zk) can be evaluated up to a multiplicative con-
stant, i.e. p(xk|z0, z1, . . . , zk) = Cpp

∗(xk). Let q(xk) = Cqq
∗(xk) be another

function that can be evaluated up to some multiplicative constant. Samples

s
(i)
k , drawn from q(xk), are given weights

π
(i)
k =

p∗(x
(i)
k )

q∗(x
(i)
k )

(2.25)

to compensate for the difference between q(xk) and p(xk|z0, z1, . . . , zk).
MCL as well as condensation is based on what is known as Sampling

Importance Resampling (SIR). Here a second step is added to the algorithm,
which can be characterized by survival of the fittest and is closely related to
genetic algorithms. Looking at the sample set at time k, the samples with the
highest weight (the fittest) are more likely to be part of the next sample set.
MCL is nothing but SIR applied to mobile robot localization. The algorithm
can be summarized in the following steps:

1. Initialize the set by drawing N samples from the initial PDF. In case of
global localization, this is typically a uniform distribution, i.e. the known
environment is uniformly sampled, both in position and in orientation.
The weights of the initial samples are uniformly set to 1

N
.

2. Propagate the density approximation forward using information from the
odometry measurements. This corresponds to the prediction step of Fig-

ure 2.8. For each sample draw a new sample with pose x
(i)
k+1 from the

distribution p(x
(i)
k+1|x

(i)
k ,uk) where uk is the odometric data.

3. Set the weights of the samples to π
(i)
k+1 := p(zk|x(i)

k+1)π
(i)
k+1. This gives

high weights to samples that corresponds to poses from which it is likely
to measure zk.

4. Create a new sample set by drawing samples from the current set in a way
that the probability of letting a sample move on to the next generation
is proportional to its weight. After the resampling step all samples are
given equal weight again, 1

N
.

5. Go back to step 2.
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In loose terms the Monte Carlo localization method can be viewed as a
clever way of allocating computational resources where they are needed. In
MCL sampling is primarily done where the probability is high. This makes
approximation of the PDF better at the same time as resources are not wasted
in regions where it is not as important to have a good approximation.

Depending on the size of the environment and the initial uncertainty differ-
ent sample set size are needed. With 10,000 samples the computational load
on a Pentium III 500 MHz is about 14% (Thrun, Fox & Burgard 2000). As a
comparison, what took 120 seconds to compute using position probability grids
takes 3 seconds (Fox, Burgard, Dellaert & Thrun 1999) using MCL.

For the SIR algorithm to work, enough samples have to be used so that
there are samples at the true robot pose. It is only by having samples at the
correct pose that the filter converges to the true pose. The required number
of samples increase with dimension. This is often referred to as the curse of
dimensionality.

2.3 Strategy for Investigation

The goal of the thesis is to investigate different methods for real world, indoor,
mobile robot localization, typically in a domestic or office type setting. The
localization process must work in real-time and leave enough computational
resources for other parts of the system to run in parallel, i.e. it must have a
low complexity. Another requirement is that the method is robust and that it
scales to large environments and are not only applicable in a small lab area.

From a map complexity point of view the topological map representation
is by far the best. However, due to the lack of metric information this rep-
resentation is ruled out, since this is a prerequisite for some tasks. The grid
based methods are general in that few assumptions have to be made about
the characteristics of the environment. The price is a high level of complexity
that makes these methods scale badly to larger environments. The appearance
based methods make the coupling between a certain robot platform and the
map quite tight, for example, the reference scans acquired in a cluttered room
at different heights will be drastically different. The hypothesis in the thesis is
that the feature based method provides the best way to achieve a representa-
tion that allows for efficient use of the computational resources. The features
should be large scale structures that can be utilized by as many different robot
platforms as possible and be robust over time.

Table 2.1 summarizes some of the characteristics of the different represen-
tations used when estimating the pose of the robot. Dead-reckoning is not part
of the table, since this method is not a valid option when the application is a
service robot that will operate for hours, performing various tasks. Given that
the map is represented by large scale non-unique features, the purely topolog-
ical localization scheme can also be disregarded. Left are four approaches to
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repr. Accuracy Complexity multi-modal
Gaussian PDF high low no
Gaussian sum high medium yes
Pose grid medium high yes
Sample set high medium yes
Topological low low yes

Table 2.1: Summary of characteristics for the pose estimation techniques.

pose estimation. Clearly, if the goal is a low-complexity algorithm, the Gaus-
sian PDF in combination with the extended Kalman filter provides the best
setting. To facilitate such a solution the pose uncertainty must be kept small
though, which is typically not the case during (re-)initialization. To solve the
global localization problem a multi-modal pose distribution must be utilized.
The position probability grid and the sample based approach are closely related,
but the grid technique suffers from a level of complexity that is not compat-
ible with the goal of scalability. When deciding between the sample based
and the Gaussian sum representation the decision is not obvious. The sample
based technique is clearly more general, not being restricted by the Gaussian
assumption, but there are no large real world examples of the Gaussian sum
approximation applied to mobile robot localization.

As a course of action the following is therefore proposed. At first investigate
the use of the single Gaussian PDF and the extended Kalman filter in a setting
where the initial pose is known (Chapter 3). After that, investigate both the
Gaussian sum approximation (Chapter 4) and the sample based representation
(Chapter 5). While the topological map representation was ruled out at the
lowest level, the advantages regarding the scalability can still be made use of at
a higher level. As a final step, investigate methods for building the map with
the complexity constraint enforced (Chapter 6) by taking the best from both
worlds, i.e. accurate metric information from the feature based representation
and scalability from the topological.

2.4 The Minimalistic Model

Much effort is spent in the literature to make more and more complicated
models, capturing finer and finer details. In contrast to this the thesis inves-
tigates what is termed minimalistic models. With this approach the question
is not how detailed, but rather how simple can the model be. The idea with
a minimalistic model is that it should capture the large scale structure of the
environment and that such a description is robust over time. Thinking about
a typical indoor environment, the most dominant large scale features are the
walls that define the border of the rooms. The walls are not likely to move
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with time, and if they do it is not by chance. The primary feature in the work
to follow is therefore lines. Another benefit with walls is that they will appear
in a floor plan and can therefore be extracted directly from there. A typical
room will in this framework be described by four walls, forming a rectangle,
but any polygonal shape can be handled.

Thinking once again of a typical indoor environment and of the rectangular
room model it is clear that using only these large scale lines will not be enough
in all situations. If a robot needs to find its position in a quadratic room, there
is no way to tell the four walls apart. Four equally likely hypotheses results.
One remedy is to to allow all detectable lines in the environment to be put into
the map. However, this does not comply with the idea of having a minimalistic
description of the world. Furthermore the features in the map are no longer
robust over time. Having a floor plan still in mind, another feature type that
can extracted is the door. If door refers to the actual opening, it is also stable
over time.

It is evident that using the minimalistic models put high requirements on
the sensor being used. To extract the sparse map information a sensor is needed
with high angular resolution. Due to the wide beam of the sonar sensor, the
natural choice falls on a laser scanner, which is able to detect parts of walls
even when they are partly covered by clutter. Vision does not fit well with the
minimalistic model and is sensitive to, for example, lighting conditions. The
laser sensor will therefore be used as the main sensor in the thesis.

As discussed in Appendix B the laser sensor does not always detect all ma-
terials. To rely completely on the laser sensor is therefore not wise. In (Wijk
et al. 1998, Wijk & Christensen 2000) a scheme based on triangulation is pre-
sented for extracting natural sonar point landmarks. These point landmarks do
not fully comply with the minimalistic model as the point landmarks often cor-
respond to movable objects such as chairs, bookshelves and tables. Extensive
experiments have shown though that in many environments enough point land-
marks do in fact remain unchanged to allow for successful localization (Wijk
et al. 1998, Wijk & Christensen 2000).

Figure 2.15 shows the map with all features. The doors are marked as thick
dark lines. The walls modeled as lines are also marked. As can be seen the
rooms are modeled as rectangles. The points are shown as small dots, typically
placed along the walls where there are book shelves, tables and door frames
that give good sonar reflections.

2.4.1 Lines

As was explained above, the lines used in the minimalistic environmental model
are assumed to correspond to large scale structures, typically resulting in four
lines per room. With a strict definition of a line, the features used in the thesis
should be called line segments as they are of finite length. However, line will
be used in the meaning of line segment if nothing else is said.
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0 20m

Figure 2.15: The feature map M. The map consists of two floors con-
nected by an elevator. Note that the rooms are modeled as rectangles. The
doors are marked as thick lines and the sonar point landmarks as small
dots.
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Figure 2.16: Left: Three different feature types shown in the living-
room. The four walls define the rectangular line model. There are two
doors. The point landmarks are marked with dots and can be seen close
to corner like structures, such the table and the shelves. Right: 3D model
of the living-room.

In the so-called living-room in the mobile robot lab at CAS, the four lines
form a rectangle. The living-room is shown from above with the map features
superimposed in the left subfigure of Figure 2.16. In the right subfigure the
living-room is shown in much greater detail. It is evident that some of the
lines are difficult to detect. This is especially true for platforms where the laser
sensor is placed close to the floor.

The lines in the map are all measured by hand using a tape measure or
a floor plan of the building in question. The total number of lines is 136,
distributed among 34 rooms.

2.4.2 Doors

Doors are difficult to extract reliably using 2D data only. In this work only open
doors are considered, as detecting closed doors is especially hard. The method
for extracting door features is based on a set of templates, which captures
many of the encountered door configurations, but far from all. The templates
are shown in Figure 2.17. The dotted lines with dashed arrows indicate that all
points between the end point of the line must lie on the other side of the line
for the door detector to acknowledge it as a door. The wall segment marked
as solid has to be detected, whereas the dashed ones are only shown to make
the scene more clear. In all templates the width of the door has to be between
a minimum and maximum value.



2.4 The Minimalistic Model 37

findParLines() findInRight2Lines()

find3Lines()findOutRight2Lines()

findThickWall2Lines() findThickWall3Lines()

Figure 2.17: The templates used when detecting door features.

The goal is to construct a door extractor that rather not detects a door
than reports one where there is none, i.e. a low rate of false positives at the
cost of a higher rate of false negatives.

The building in which the mobile robot lab is situated used to be a hospital,
and has thick concrete walls which makes detecting doors hard. When observed
from the side it is not possible to see through a door. Seeing through a door is
a cue common to all templates in (Figure 2.17).

The model includes 72 physical doors. However, half of these doors lead to
rooms that are not in the model and can thus only been seen from one side.
This is taken care of by introducing a “door” feature for each side the robot
can detect the door. With this definition of a door feature, there are 108 door
features in the map.
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Object

Figure 2.18: The position of the reflecting object can be found by calcu-
lating the intersection of the the circular arcs. However, before doing so, a
data association problem need to be addressed using for instance a voting
scheme (Wijk 2001).

2.4.3 Points

The basic idea is to use triangulation to improve the quality of the sonar data.
Sonar data typically suffers from, for example, specular reflections and cross
talk. To be able to get more accurate information, integration over time is
necessary. Keeping in mind the physics of the sonar sensor, the information
about the position of the target which reflected the sound is limited to knowing
that it is somewhere on an arc (2D assumption about the world). Assuming
that the target which caused the reflection is “sticking out”, the point of re-
flection of the target will be almost the same even if the robot has moved. If it
somehow can be established that it was the same target which gave rise to two
reflections, triangulation can be used to find the true position of the target.
The true position is given by the intersection of the circular arcs as illustrated
in Figure 2.18.

The accuracy in the triangulation depends on the angle to the target relative
to the direction of robot motion, as well as the distance traveled between the
two sonar readings. By doing the triangulation, outliers are filtered out and
a better estimate of the true position of the target can be established. The
number of sonar readings successfully triangulated can be taken as a measure of
the quality of the triangulation and the probability that it really originates from
a true target. The crux is to know which readings to use for the triangulation.
A scheme called Triangulation Based Fusion (TBF) is developed to solve this
problem, see (Wijk et al. 1998, Wijk 1998, Wijk & Christensen 2000) for more
details. The total number of point features in the map is 738.



Chapter 3

Pose Tracking

“Tracking in a cluttered environment is characterized by
uncertainty in the origin of the measurements”

(Bar-Shalom 1989)

When the initial pose of the robot is known, it is enough to track the pose
over time. This is the case, for example, when the robot starts at a re-charging
station or the user supplies it with the pose upon starting the system. The
odometric system gives information about the relative motion of the robot.
This information can be integrated over time to give an estimate of the robot
pose which is valid when moving over short distances. Over longer distances,
however, the errors in the odometric information will accumulate and result in
an unbounded pose estimation error. For an autonomous mobile robot which
operates for hours performing various tasks, external sensors must be utilized to
bound the pose estimation error. As explained in Chapter 2 the main problem
in estimating the pose of the robot is to determine the origin of the measure-
ments. That is, which parts of the environment produced the measurement.
If the origin of the measurement is known, i.e. the correspondence problem is
solved, the pose estimation problem becomes an exercise in mathematics. How-
ever, in the real world few decisions are made without uncertainty. This is true
for mobile robot localization as well. Every time a measurement is processed
there is a risk that a mistake is made.

In most implementations of feature based localization the update step of
Figure 2.8 can be divided into three parts according to Figure 3.1. First fea-
tures are extracted from senor data to create higher level information from the
raw data. Using the a priori pose estimate and the environmental model, a
prediction can then be made about the location of the features. In the match-
ing step the extracted features are compared to the predicted features. How
well they match is often judged by evaluating the Mahalanobis distance (see
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Figure 3.1: Feature based pose estimation.

Section 2.2.5). Finally pairs of extracted and predicted features considered as
matched are used to update the pose estimate.

Extraction of features from raw sensor data can be a difficult task in a clut-
tered environment. Although the minimalistic environmental model provides
robust features that remain in the same position over time they are sometimes
hard to detect in the presence of clutter, e.g. in Figure 2.16 it is evident that
all walls are partly occluded by non-modeled objects.

The minimalistic model contains three features; lines, doors and sonar point
landmarks. The line feature will be used in this chapter as it provides the best
conditions for being extracted even in the presence clutter using a laser sensor.
Thus, this chapter presents a pose tracking method based on the line features,
and it is shown that the large scale line structures provide enough information
even in cluttered areas.

Section 3.1 defines the problem and discusses ideas of how to extract features
from the minimalistic model. How the features are described and more in detail
how they are extracted is presented in Section 3.2. Some implementation details
are given in Section 3.3 followed by real world experiments in Section 3.4. A
summary and discussion is given in Section 3.5.

3.1 Theory and Background

Here it is assumed that the probability density function for the robot pose can
be represented by a uni-modal distribution. To justify this assumption the data
association problem must be solved, i.e. measurements must be matched to the
map without ambiguity. It is also assumed that the state of the system can
be completely described by the pose of the robot, x = (x(W ), y(W ), θ)T . The
superscript (W ) indicates world coordinates. Appendix C and, in particular
Figure C.1, explain this further. It is implicitly assumed that the world is
stationary, or at least that everything that is not stationary can be considered
as noise. For simplicity (x, y) is henceforth used to denote (x(W ), y(W )) if
nothing else is said.
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Given the initial pose of the robot, an estimate thereof can be calculated
at every time instant using odometric information. Knowing the approximate
pose of the robot also simplifies the data association problem considerably (see
Section 2.2.1). Sensor data that is likely to belong to the features in the map
can be extracted effectively, and be used for updating the pose estimate and
thus bound the estimation error.

There are many ways to mathematically handle a problem of this nature.
It is clear that it is an estimation problem and in some sense an optimization
problem. To incorporate the information from the sensors to calculate the best
possible estimate of the pose, it is necessary to specify what is meant by “best”.
Often, ”best” is defined in the least square sense and the same definition is used
here.

To perform the least square error estimate of the robot pose in real-time,
a recursive algorithm is needed. The alternative is to store all acquired in-
formation and do a complete calculation at every time instant, in which case
the computation cost grows with time. The price for real-time performance
is that once a piece of information is used it is lost forever. There is no way
of going back to reconsider a decision regarding, for example the data associ-
ation and it is thus of vital importance that the number of errors is kept to
a minimum. Hybrid methods found in between these two extremes exist. By
keeping a buffer of information gathered over the last iterations it is possible
to go back and reconsider a decision as long as it was made within the span
of the buffer. Such a scheme is presented in (Engelson & McDermott 1992) in
the context of map building. The problem with such an approach is that it
often takes considerable amount of time before a mistake is discovered. The
size of the buffer becomes large and the computation effort required to redo
the calculations can no longer be handled in real-time.

The Kalman filter(Kalman 1960) framework has been used by numerous
researchers for pose tracking and proven to be a good solution for sensor fusion
(Leonard & Durrant-Whyte 1991a, Leonard et al. 1992, Forsberg, Larsson,
Åhman & Wernersson 1993, Rencken 1994, Crowley 1989, Crowley et al. 1998,
Gutmann et al. 1999, Arras & Tomatis 1999). The Kalman filter gives the
optimal least square error estimate of the pose given the information at hand,
assuming that the model of the system is linear and that all sources of noise are
white and Gaussian (see Section 2.2.5). Most real world systems are non-linear
in nature, and therefore the extended Kalman filter (EKF) must be utilized. A
description of the EKF was given in Section 2.2.5. To underline the dependency
on the map the measurement equation (2.15) is rewritten as

zk = h(xk,M,vk). (3.1)
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Figure 3.2: Feature based pose tracking when the feature extraction
is performed on sensor data that are matched point wise to predicted
features.

3.1.1 Line Extraction

As discussed above there is no return once a measurement is incorporated
into a non-buffered recursive algorithm for state estimation. This can have
devastating consequences for the tracking performance. In the worst case it
can result in divergence. The covariance matrix, Pk, is used as a measure of
the uncertainty in the pose estimate. Using an erroneous measurement can shift
the estimate away from the true value but still reduce the covariance matrix.

In the general feature based tracking scheme, features are extracted from
raw data and then matched to the map. Detecting modeled lines partially
occluded by clutter is difficult. Assuming an estimate of the robot pose is given,
the position of measurement points from the laser can be predicted using (3.1).
The feature extraction can be summarized in two steps;

1. classify each point as belonging to a particular model features or as an
outlier

2. estimate the parameters of the feature.

Figure 3.2 shows the proposed scheme as opposed to the general feature based
pose estimation scheme from Figure 3.1.

3.2 Algorithm

This section describes the measurement model used in the EKF framework
and how the line features are represented and extracted. It is clear that the
success of the method rests on its ability to reliably extract the few lines that
are represented in the minimalistic model.
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3.2.1 Feature Description

To describe the extracted line features, the parameter vector (ρ, α, l) is used.
This is part of the representation used in (Crowley et al. 1992). Here ρ is the
perpendicular distance to the line, α is the line orientation and l is the length
of the line (see Figure 3.3). The lines in the world model are augmented with
the coordinates of the start and the end point, which are used when calculating
visibility constraints. The features f in (2.1) are thus given by

f = (ρ, α, l, xs, ys, xe, ye). (3.2)

By definition a line can be seen if the start point is to the right of the end point
when looking at the line.

r = (x, y)

β

l

(xs, ys)

ρm

ρ

αm

α

θ

X
(W )

Y
(W )

Y
(RC)

X
(RC )

(xe, ye)

Figure 3.3: A line is defined by the perpendicular distance ρ and the ori-
entation α. In the map these parameters are measured relative to the world
coordinate system and are denoted (ρm, αm). The start point (xs, ys) and
the end point (xe, ye) are used to define the position of the line and its
direction. The pose of the robot can be defined by (x, y, θ) in Cartesian
coordinates or alternatively (r, β, θ) in polar coordinates.

3.2.2 Measurement Model

A line segment can in principal constrain all three degrees of freedom of a mo-
bile robot. It gives reliable evidence about the perpendicular distance to line
and the relative angle. The position along the map line can also be constrained
if the length of the line segment is taken into account. This latter information
is typically more unreliable though as detection of end points in the presence
of clutter is difficult. A reliable indication that an end point is found is if the
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the corner between two lines can be identified. Using these two lines together
constrains all degrees of freedom even if the individual lines only provide per-
pendicular distance and relative angle. Therefore only ρ and α are considered
to be measurements in EKF equations. Assume Fk lines are detected and are
passed on as measurements at time k and let

zi
k =

(
ρi

αi

)

= hj(xk,M,vi
k), i = 1, . . . , Fk (3.3)

denote the i:th measurement generated by the j:th feature of M, where vi
k is

the measurement noise. Using the notation from Figure 3.3 the function hj

can be written

hj(xk,M) =

(

ρj
m −

√

x2
k + y2

k cos(βk − αj
m)

αj
m − θ

)

, (3.4)

where ρj
m is the distance to the j:th modeled line from the origin of the world

coordinate system and αj
m is the corresponding angle. The parameters βk and

rk are defined in Figure 3.3. The Jacobian of h with respect to the state xk

(needed in the EKF) is given by

Hj =

(

Hj
11 Hj

12 0
0 0 −1

)

, (3.5)

where

Hj
11 = −xk

rk
cos(βk − αj

m) − yk

rk
sin(βk − αj

m) (3.6)

Hj
12 = −yk

rk
cos(βk − αj

m) +
xk

rk
sin(βk − αj

m) (3.7)

rk =
√

x2
k + y2

k (3.8)

βk = arctan(yk, xk). (3.9)

For certain robot-line configurations (3.4) predicts a negative distance ρj . This
is taken care of by changing the sign of ρj and adding π to αj in these cases.
The measurement equation is then changed to

hj(xk,M) =

(√

x2
k + y2

k cos(βk − αj
m) − ρj

m

αj
m − θ + π

)

, (3.10)

with Jacobian

Hj =

(

−Hj
11 −Hj

12 0
0 0 −1

)

. (3.11)

The overall measurement vector zk is given by stacking the individual mea-
surements. Let j(i) denote the index of the map feature that corresponds to
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the i:th measurement. With this notation the measurement equation can be
written

zk = h(xk,M) =






hj(1)(xk,M)
...

hj(M)(xk,M)




 . (3.12)

Figure 3.4: Using the predicted pose of the robot in combination with
map information, validation gates can be defined. The first step contains
a local Range Weighted Hough Transform driven by data via a validation
gate. The second step is a least square method using data from a second
validation gate.

3.2.3 Line Extraction

Extracting features from noisy data is an example of the more general parame-
ter estimation problem, for which many algorithms exist. Most line fitting algo-
rithms used in robotics have their origin in computer vision. The iterative end-
point fit algorithm is one such example, developed for fitting lines to edge points
in images (Duda & Hart 1973). This method is used in (Crowley 1985a) to ex-
tract lines from densely sampled sonar data. In (Castellanos & Tardós 1999) a
similar technique divides the set of points into homogeneous regions (the lines)
and spurious regions. In both of these cases the data are rather clean. Applying
these algorithms on severely cluttered data will at best result in many small
line segments, some of which may originate from the modeled line. An exam-
ple of a method that handles large amount of clutter is the Hough transform
(Hough 1962, Illingworth & Kittler 1988). For range sensor data the Range
Weighted Hough Transform (RWHT) is more appropriate (Forsberg, Åhman
& Wernersson 1993).

To extract the modeled lines from severely cluttered data a two step ap-
proach is proposed, which uses two different line extraction algorithms in com-
bination with validation gates (see Figure 3.4). The first line extraction al-
gorithm is robust against outliers, but provides only limited accuracy. The
second step provides accuracy assuming that the input data is “clean”. When
the pose uncertainty of the robot is small, the first step can be bypassed. In
the following subsections the different parts of the line extraction algorithm are
described in detail.
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Figure 3.5: Parameters that define the validation gate, where ρ̂ and α̂
give the position of the gate and δ and γ the size. The parameters ϕs and
ϕe are used for visibility constraints.

Validation Gates

In this chapter the validation gates are not defined by the Mahalanobis distance
as in Section 2.2.5. Instead the validation region is described by the six-tuple

G = (ρ̂, α̂, δ, γ, ϕs, ϕe)
T . (3.13)

Figure 3.5 shows an illustration of the parameters that define the location and
size of the validation gate. Here ρ̂ is the predicted distance to the line feature
and α̂ is the predicted angle of the normal to the line. These two entities define
the pose of the gate. The smallest width of the gate δ, and the opening angle,
γ, define the size of the gate. The parameters ϕs and ϕe constitute the visibility
constraints, which prevent the algorithm from attempting to detect a wall that
is not in the field of view of the sensor.

Range Weighted Hough Transform

The RWHT is computationally expensive when applied directly. To keep down
the computation cost a local version of the RWHT is used with a limited
Hough Space, centered around the expected values, ρ̂ and α̂. The RWHT aims
at providing the second stage of the filtering algorithm with a better estimate
of the line, thus paving the way for a tighter validation gate and cleaner data.

The main purpose of this first filtering step is to handle situations where
ρ̂ and α̂ are only rough estimates of the line parameters. That is, when the
modeled line does not fall in the middle of the gate. Standard least squares
algorithms are sensitive to outliers, which calls for a narrow gate, whereas the
RWHT allows the validation gates to be more open.
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Figure 3.6: The least square estimate minimizes the sum of squared
perpendicular distances di.

Least Square Line Fitting Algorithm

A point (xi, yi) on a line defined by the parameters (ρ, α) satisfies

xi cosα+ yi sinα = ρ. (3.14)

If, instead, the point is given in polar coordinates (ri, ϕi) it satisfies

ri cos(ϕi − α) = ρ. (3.15)

When fitting a line to real data, the points do not line up perfectly and (3.15)
is not satisfied exactly. The perpendicular distance, di, between the line and a
point is given by

di = ri cos(φi − α) − ρ. (3.16)

In a typical least squares line fitting algorithm the sum of the squared di’s is
minimized (see Figure 3.6), i.e.

arg min
(ρ,α)

∑

i

(ri cos(φi − α) − ρ)
2
. (3.17)

The solution is given by (Deriche et al. 1992)

α∗ =
1

2
arctan(

b

a− c
) − π

2
(3.18)

ρ∗ = x̄ cosα∗ + ȳ sinα∗, (3.19)
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where

x̄ =
1

N

∑

xi (3.20)

ȳ =
1

N

∑

yi (3.21)

a =
∑

(xi − x̄)2 (3.22)

b = 2
∑

(xi − x̄)(yi − ȳ) (3.23)

c =
∑

(yi − ȳ)2. (3.24)

(3.25)

With the simplifying assumption that each data point has the same Cartesian
uncertainty, the measurement covariance matrix, R, can be calculated accord-
ing to (Deriche et al. 1992)

R =
aσ2

yy − bσ2
xy + cσ2

xx

(a− c)2 + b2

(
1 −e
−e e2

)

+





0 0

0
σ2

yy cos2 ϕ+ σ2
xx sin2 ϕ− 2σ2

xy sinϕ cosϕ

N



 , (3.26)

where

e = ȳ cosα∗ − x̄ sinα∗ (3.27)

ϕ = (α∗ +
π

2
). (3.28)

3.2.4 Sequential Measurement Update

As all lines are extracted from the same laser scan, the measurements are
correlated. To handle the measurements correctly this correlation should be
accounted for. However, to reduce the computational burden, it is neglected.
By doing so the measurement update can be performed sequentially, treating
each detected feature as a new measurement in the EKF. The complexity of
the EKF update is linear in the number of measurements. The algorithm as a
whole is also linear in the number of lines that are visible in each step.

3.3 Implementation

In this section implementation specific details are discussed, map structure,
feature selection, etc. From here on, it is also assumed that a laser scanner is
used with a 180◦ field of view.
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3.3.1 Map Structure

To make the task of building the map easier, the map is broken down into
smaller areas mostly corresponding to rooms. Each such area is given a local
coordinate system. All features within an area are expressed in local coordi-
nates. This means that locally the map can be made quite accurate. When
combining all areas into the complete map, the transformation between a global
coordinate system and each area is applied and tracking is done in global coor-
dinates. The line features are stored on a room-by-room basis which allows fast
access of the features for a particular area, as there is no need to loop through
the entire map to find the features.

3.3.2 Line Length Threshold

The length of an extracted line, l, is used to reduce the risk of making errors
in the data association. Only line measurements that satisfy

l ≥ lmin (3.29)

are used for updating. The shorter a line is, the larger the likelihood that it
is not a part of the map M. Short line segments have a much higher risk
of originating from some line like structure which happens to be close to the
modeled line. To avoid this the threshold lmin is chosen as

lmin = 1 m. (3.30)

Figure 3.7: From most places in a rectangular room, two or three walls
satisfy (3.29).

3.3.3 Feature Selection

The laser scanner is sensitive to occlusions as all laser beams originate from a
single point and thus an obstacle placed directly in front of the sensor renders
it blind. Using lines only from the one room makes the system sensitive, as
only two or three walls satisfy (3.29) from most positions (see Figure 3.7). It is
also difficult to detected the end walls in corridors when the robot is far away
from them. Therefore, visible features in adjacent rooms are also considered
for tracking purposes.
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Figure 3.8: The visibility constraints for seeing a line in a room is given
by (3.31) and (3.32).

Visibility constraints are used to determine which lines can be detected.
These constraints are easiest to express in sensor coordinates (marked by su-
perindex (S)). A line in the current room is visible if it satisfies the following
criteria:

Direction condition: arccos(ē
ϕ

(S)
e

· ē
ϕ

(S)
s

) > 0 (3.31)

In field of view: (0 ≤ ϕ(S)
s ≤ π) ∨ (0 ≤ ϕ(S)

e ≤ π) (3.32)

where ϕ
(S)
s and ϕ

(S)
e are the angles to the start and end point of the line

respectively and ē
ϕ

(S)
s

and ē
ϕ

(S)
e

the corresponding unit vectors (see Figure 3.8).

A line in an adjacent room is visible if it can be seen through the door
leading to that room, i.e.

arccos(ē
ϕ

(S)
e

· ē
ϕ

(S)
dr

) > 0 ∧ arccos(ē
ϕ

(S)
dl

· ē
ϕ

(S)
s

) > 0, (3.33)

where ϕ
(S)
dl and ϕ

(S)
dr are the angles to the left and right door post, respectively

(see Figure 3.9). Additional constraints have to added to handle non-convex
polygonal line models.

3.3.4 Lower Bound on State Covariance Matrix

There is an explicit assumption in the EKF that the measurements are inde-
pendent. When this is not the case the result is an overly optimistic estimate
of the error covariance P . The size of the Kalman filter gain, Kk in (2.21),
depends on the size of the covariance matrix, P . When P is small the Kalman
gain is small. A small gain means that the measurements do not influence
the pose estimate much, which makes the EKF more susceptible to unmodeled
disturbances.
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Figure 3.9: A line in a neighboring room must satisfy (3.33) in addition
to (3.31) and (3.32).

A simple, but effective, way to deal with this is to put a lower bound on
the uncertainty when the robot is moving. The lower limit for the diagonal
elements of P are chosen as

Pxx,min ≥ (30 mm)2

Pyy,min ≥ (30 mm)2

Pθθ,min ≥ (0.065
π

180
rad)2.

Keeping the diagonal elements above the lower limits can be realized by adding
a diagonal matrix with only positive or zero elemements to P , which preserves
the positive definiteness of P .

3.3.5 Changing Room

Another situation when special care needs to be taken is when the robot passes
between two rooms, i.e. when the robot goes from one local coordinate system
to another. In this situation it is difficult to correctly specify the transformation
between the two local room coordinate systems. This is dealt with by inducing
noise into the system covariance matrix P when passing from one room to
another according to

P := P + E, (3.34)

where

E =





1002 mm2 0 0
0 1002 mm2 0
0 0 (2 π

180 )2 rad2



 . (3.35)
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3.3.6 Parameters

There are a few parameters that have to be specified. These parameters are
given rough values based on simple reasoning. Most of the parameters have
been chosen once and never been changed after that. This means that they do
not have an optimal value with respect to robustness, accuracy or what ever
metric is chosen. This is intentional as an algorithm that requires tuning of
parameters is sensitive to changes. Not having to tune parameters can be seen
as an sign of robustness. A sensitive algorithm typically performs badly when
a different environment is considered or when the parameters are not carefully
tuned.

3.4 Experiments

The pose tracking algorithm presented in this chapter is the backbone of the
localization system in the ongoing Intelligent Service Robot (ISR) project and
as such is tested every time the system is used. In most experiments the pose
tracking algorithm is run along with the rest of the system that provides the
capability to go from any point to any other point in the map while avoiding
obstacles. No active control of the sensing direction is performed. The exper-
iments are performed during normal working hours, when people are walking
around and doors are opened and closed, i.e. a dynamic environment.

Most of the experiments are performed on the lower floor of the mobile robot
lab at the Centre for Autonomous Systems (CAS) with a Nomad200 robot
platform (see Appendix D). However, results are also presented from different
environments which strengthen the claim that the minimalistic environmental
model is sufficient in many indoor environments.

3.4.1 Evaluation in Cluttered Environments

The minimalistic model aims to represent features which are robust over time.
The question is if they can be reliably extracted from sensor data. The aim of
this experiment is to show that even in severely cluttered areas the algorithm
is able to find and use the few points which originate from the modeled lines.
Before this can be done however clutter must be defined. To make the definition
easy, everything that is not modeled can be considered as clutter. There are
different types of clutter though, a distinction is here made between structured
and unstructured clutter.

Unstructured clutter:
Individual objects in the environment that do not contain large line struc-
tures, e.g. table legs and flower pots.

Structured clutter:
Individual objects in the environment that contain large line structures
such as a cupboard, or a collection of individual objects that line up to
a, not necessarily connected, line structure.
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Figure 3.10: Two views from a severely cluttered room. Most of the
clutter is unstructured. The validation gates effectively remove all but the
data that is close to the predicted position of the map lines.

Unstructured clutter is typically harmless unless its occluding effect gets
too large, whereas structured clutter can distract the line extraction and cause
loss of track. The latter depends on the spatial separation between the clutter
and modeled features. A cupboard placed in the middle of a room cause less
problems than if it is close to a wall. The allowed spatial separation depends on
the uncertainty in the pose estimate. Clutter that does not enter the validation
gates does not cause data association errors.

Unstructured Clutter

In Figure 3.10 parts of a severely cluttered room is viewed. Figure 3.11 shows
one laser scan used as input to the pose tracking algorithm. The dark dots
denote laser data that have passed the second validation gate (see Section 3.2.3).
The brighter dots represent the laser data that fall outside the validation gates
and are therefore rejected. As can be seen, none of the modeled features (the
walls) are fully visible. The left and lower walls are barely detectable. They
occupy approximately 65◦ and 60◦ field of view, respectively. For the lower
wall only 17 points are validated or less than 15% of the points. For the left
wall the situation is somewhat better with 18% of the potential points visible.
As long as the robot is able to track two non-parallel walls in the room the
uncertainty is kept small and the association problem can be solved. Looking
at the data points that are rejected, the left wall is first to cause problems when
the uncertainty increase. The computer monitors shown in the left subfigure
of Figure 3.10 form structured clutter. If the corresponding data points are let
through the first validation gate, the Hough transform selects this as the line
to track. The three other walls are the most dominant line structures in the
corresponding directions and can thus tolerate a larger uncertainty.
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Figure 3.11: The dark dots represent laser data that are validated to
belong to modeled lines and the brighter are rejected data. The solid lines
satisfy (3.31) and (3.32), i.e. they are in field of view. The dashed line is
not visible as (3.31) is not satisfied, as the robot is on the wrong side of
the line. The large filled circle is the estimate robot position. The pictures
in Figure 3.10 are captured from approximately this position.

The conclusion is thus that any amount of clutter can be handled as long
as it does not enter the validation gate and there is data from modeled lines in
the gates. When the clutter enters the validation gate the modeled line must
have the strongest response in the local version of the RWHT. This is often
true for unstructured clutter.

Structured Clutter

Figure 3.12 shows a different situation. The pictures are taken from the corridor
intersection in the lower left corner in Figure 2.15. The left picture shows the
view when approaching from the right. A large unmodeled wall cupboard
occupies most of the field of view. This situation is different from the cluttered
room in the previous section as the cupboard has the same orientation as
the wall behind, and furthermore cuts off almost all sight of it. Besides the
unmodeled wall cupboard this scene is free from clutter.

It is clear that the uncertainty must be kept small enough to keep the cup-
board outside the validation gate. The cupboard is located 0.39 m in front of
the wall. The size of the validation gate depends on the level of uncertainty.
In Figure 3.13 the result for different levels of uncertainty is given. The left
subfigure illustrates how the cupboard is classified as the wall when the gate
is artificially made wider. As a result the estimate of the robot pose becomes
biased by 0.39 m. The covariance matrix does not give any indication that
something is wrong and the result is a biased EKF-estimate. The right sub-
figure shows the result when the gate is small enough to keep the cupboard
outside. The data points from the cupboard are then rejected as clutter and
the EKF-estimate is un-biased.
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Figure 3.12: Corridor intersection with a large wall cupboard. When
approaching the intersection from the side shown in the left subfigure the
cupboard acts as structured clutter if it is not modeled.

Figure 3.13: Left: If the uncertainty is too large when approaching the
intersection the cupboard falls inside the validation gate and is falsely
associated with the modeled wall. Right: The data association problem is
eliminated if the uncertainty is small enough to keep the cupboard outside
the validation gate.
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The cupboard hides most of the wall from view when the robot approaches
from the right, as shown in Figure 3.12. The short piece of wall that is visible
to the left of the cupboard in the left subfigure of Figure 3.12 is not long
enough to meet the minimum length requirement, (3.29). The robot cannot
update the position along the corridor until it gets close to the intersection
where points on both sides of the cupboard can be detected. Under normal
circumstances the validation gates are able to separate the wall and cupboard
since the spatial separation is relatively large. To increase robustness however,
the wall cupboard can be entered into the map. The simplest change to the
model is to add a single line where the cupboard is and let the wall behind
start to the right of the cupboard (right subfigure of Figure 3.12). Figure 3.14
shows how the failure from the left subfigure of Figure 3.13 is changed to a
correct classification of the data with the same initial uncertainty.

Figure 3.14: Augmenting the model with the large wall cupboard.

3.4.2 Accuracy

The previous section demonstrated that the algorithm is robust to large amounts
of clutter. Accuracy is another performance criterion for a pose tracking algo-
rithm. It is secondary to robustness but still important in some applications.
Where robustness can be tested by making many experiments, accuracy is
harder to measure. A true measurement of accuracy requires ground truth to
compare with. The position accuracy of the robot can be measured by hand
when the robot is standing still. However, this only gives a measure of the
accuracy when the EKF has converged. If the robot can see two non-parallel
walls the estimation error is the result of inaccuracies in the environmental
model and sensor alignment more than anything else. If no wall is visible the
accuracy is also affected by the quality of the predictions based on odometry.
When the robot is moving measuring the pose by hand is not feasible. Another
way is to store all sensor data and manually align it with the environmental
model to get the ground truth, but this approach is too time consuming.
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SE
x

y

Figure 3.15: The trajectory followed by the robot for innovation eval-
uation. The distance between two crosses corresponds to 20 seconds of
traveling.

A third alternative is to look at the innovation sequence, νk. The innovation
expresses the difference between the measurement and the prediction. Assume
that the association problem is solved, i.e., the origin of the data points are
known. Then a small innovation is a strong indication that the pose estimate
is good. A large variance in the innovation sequence indicates high noise levels
for the process or the measurement noise. When the innovation has a bias it
is a sign of a systematic error. The source of such errors can, for example,
be an erroneous environmental model. A small variance does not imply that
the pose estimate is good if an incorrect data association is made at some
stage, which Figure 3.13 is an example of. Using the innovations as a measure
of the accuracy requires that the data associations are correct. It therefore
limits its use for on-line monitoring of the filter performance. Figure 3.15
shows the trajectory followed by the robot in a small experiment to measure
the accuracy. The robot starts and stops in the same room and travels in the
corridor in between. The experiment lasted 188 seconds during which time
the robot traveled 40 meters. The crosses mark 20 second intervals along the
trajectory. Each iteration in the run is studied manually to see which lines are
detected and the data associations are manually verified.

Each modeled line has an associated innovation. The innovation is a two
component vector. One component for the perpendicular distance to the line, ρ,
and one regarding the orientation, α. No line in the map can be seen during the
whole experiment. However, the modeled lines are all parallel or orthogonal.
For this experiment, the walls are therefore divided into two groups. One group
of lines that are parallel to the global y-axis and one parallel to the x-axis. The
lines parallel to the y-axis give evidence about the x-coordinate of the robot
pose and vice versa. The first available innovation from each of these groups
are plotted as a function of time in Figure 3.16. The dashed curves correspond
to the standard deviation in the x and y directions respectively. There are
two major characteristics of the figure that warrant further explaining. The
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Figure 3.16: The innovations in the x and the y directions over the
trajectory in Figure 3.15. The upper figure is x and the dashed curve
is the estimated standard deviation (

√
Px). The lower figure shows the

corresponding values in the y direction. The bias in the x-error after
approximately 20 seconds and again after 160 seconds occurs when the
robot changes room and can detect lines both inside the room and in the
corridor. The standard deviation of the innovation is 12.4 mm in x and
16.2 mm in y, with mean values of -0.8 mm and -1.4 mm, respectively.

first one occurs roughly 20 seconds after the start. Looking at Figure 3.15 the
robot is passing the door at this point in time. When the robot is close to
the door it can see lines both inside the room and in the corridor at the same
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mean std

x -0.8 mm 12.4 mm

y -1.4 mm 16.2 mm

Table 3.1: The mean and the standard deviations of the innovations in
the x and y directions. This is a possible measure of the accuracy of the
pose tracking method.

time. These measurements might not agree, as the transformation between the
corridor and the room is difficult to measure, causing the filter to average and
hence creating a bias. The same effect is seen after 160 seconds when going back
into the initial room. Roughly 80 seconds into the run the innovation jitters as
well. This corresponds to the robot being in the middle of the corridor where
the walls are 0.15 m further apart than modeled (in order to keep the model
simple). In a corridor the uncertainty is typically small sideways but larger
along the corridor. The robot is able to reject the unmodeled wall as long as
it can detect the wall on the other side to keep the uncertainty down.

Possible measures of accuracy based on the innovations is the mean and the
standard deviation. Table 3.1 shows these values for the experiment presented
above. The bias is most likely caused by modeling errors. The width of the
corridor is, for example, not constant with local variations on the order of
10-50 mm. The width is a function not only of the position in the xy-plane
but also on the height it is measured at. Most measurements for the map are
acquired at floor height.

The accuracy is not the same everywhere. This was seen in Figure 3.16. The
lower subfigure shows that there are few updates of the y coordinate between 20
and 120 seconds, when the robot travels in the corridor, either with the sensor
not facing the short wall or too far away from it. Figure 3.17 shows how the
standard deviation changes when traveling along the corridor from the position
marked with an ’S’ to the position marked with an ’E’. The uncertainty ellipses
are magnified a factor of four to make them easier to examine. The figure is
also stretched perpendicular to the corridor for the same reason. The overlaid
curve shows the standard deviation in y, i.e., along the corridor, as a function
of the position. From the figure it is clear that the robot is unable to detect
any lines along the corridor until having traveled approximately one quarter of
the corridor length. At this point the robot detects a line in the nearby room
(perpendicular to the corridor) and the uncertainty drops drastically. After
this the uncertainty increases again until the center section is reached. Here a
niche on the left hand side provides the features. Two more updates shortly
after this are the result of detecting lines through the doors on the side again.
The final slow decrease in uncertainty is due to detecting the short corridor
end wall. Relatively few points are initially accumulated by the end wall which
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makes the measurement more noisy and hence does not reduce the uncertainty
as much. The uncertainty perpendicular remains more or less constant during
the passage, as the long walls are always visible.

S

E

σ
y

Figure 3.17: Uncertainty when traveling along the corridor. The ellipses
are magnified by a factor of four to make them easier to examine. The
width of the corridor is somewhat stretched. The curve overlaid shows
the pose uncertainty along the corridor. The decrease in uncertainty when
traveling in the corridor comes from detecting lines in neighboring rooms.

3.4.3 Long Term Experiment

Tracking the position in a small area is not a good measure of the robustness
of a pose tracking algorithm, as the odometric error does not have much effect.
Typically it is the drift in orientation that causes the largest errors. Further-
more, each area is mapped separately and it can be expected that the quality
of the local map is quite good. The transformations between the rooms are
more uncertain. Some of the rooms has a threshold which must be traversed
to enter the room. These can cause large unmodeled odometric errors. Moving
the robot throughout the environment tests the influence of all these sources
of errors.

Figure 3.18 shows the path followed by the robot in a longer experiment.
The total distance traveled is 740 m, the average speed is 0.14 m/s and the total
time is 90 minutes. A considerable amount of time is spent on passing between
rooms as the robot must slow down to do so. Along the track, different types
of environments are encountered. Starting from the living-room (Figure 3.19)
the robot moves through the corridor to the adjacent offices. These rooms are
so small that the allowable movement of the robot is limited (see Figure 3.20).
The small offices are divided into two parts, leaving limited sight of two of the
walls. No problems are found in these rooms during any of the runs.
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0 20m

Figure 3.18: The track followed by the robot during the long-term ex-
periment, two loops around the lower floor of at CAS. This trajectory is
740 m long which took 90 minutes for the robot.

The corridor at the ground floor of the laboratory is approximately 55 m
long and the width is about 2.3 m (see Figure 3.21). It is obvious that the
problem in the corridor is to maintain a good estimate of the position along
the direction of the corridor. When moving far away (≈ 15 − 20 m) from the
short walls, they can no longer be used reliably for an EKF update, because
too few data points are accumulated. The detection of the short walls are
made even more difficult if there is clutter in front of them. Because lines from
neighboring rooms are used as well, a good estimate of the position along the
corridor can still be maintained if some of the doors are open, providing a view
of the walls inside. The standard deviation in the position estimate reached a
maximum value of about 0.25 m in the corridors.
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Figure 3.19: The living-room.

Figure 3.20: A typical office at CAS.

Figure 3.21: The corridor outside the living-room.

Tracking is maintained for the duration of the run, the limiting factor in
this experiment being the battery capacity and not the tracking algorithm.
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3.4.4 Different Environments

To test the robustness of the approach even further it is also evaluated in other
environments. The important thing to show with this experiment is that the
approach is not tailored to one specific environment and that it can also be run
on different types of platforms.

S

E

0 10m

Figure 3.22: The trajectory followed by the robot in one of the tour
sessions during a demonstration in the area around the atrium in the main
building at KTH. The jerky trajectory is caused by people blocking the
path of the robot.

Student Tour Guide in the Atrium

One experiment is performed during a demonstration around the atrium in the
main building on the KTH campus. The robot acts as a tour guide for students
on visit. The area in which the robot moves is 20× 20 meters. Approximately
100 people are constantly moving around in the area. Many of them are curious
and block the way of the robot. A model of the environment was acquired
by hand, measuring the most dominant walls in the environment. A Nomad
SuperScout platform (see Appendix D) is used in this demonstration as it is
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small and therefore more appropriate for demos made outside the lab as it can
easily be carried.

The trajectory from one of the tour guide sessions is shown in Figure 3.22.
This trajectory is about 143 meters and 33 minutes long and the robot is at all
times surrounded by curious high school students. The robot keeps the track
well during this tour and all other tours except in one case where the robot
after 20 minutes of motion drives into something that makes the orientation
change suddenly without the odometry detecting it. After this the track is
lost and the robot can no longer perform its tour guiding duties. This incident
highlights some important things. The EKF cannot handle large unmodeled
disturbances in the odometry. Had the same change in orientation occurred
gradually over some distance, track could have been maintained. According to
the process model it is only by robot motion that the uncertainty in the pose
estimate increases. Disturbances that occurs when the robot is moving slowly
or is standing still is therefore particularly nasty. When the pose is lost another
mechanism must be activated for re-localizing the robot. Such mechanisms are
discussed in Chapters 4 and 5.

Figure 3.23: Floor plan of the bar area at Heaven with the minimalistic
model overlaid with dashed lines.
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Tour Guide At Heaven

During another demonstration the Nomad SuperScout is once again used. In
this demo the area is quite small, but the number of people is overwhelming.
A floor plan of the area is shown in Figure 3.23, where the minimalistic line
model is overlaid in the figure (the dashed lines). Note how the four horizontal
lines at the top of the floor plan are lumped together into one line and that the
bar in the middle is included in the model for extra line support.

Figure 3.24: There are 200-400 people in the bar area. The robot can
only move on the lower side of the bar, and then just barely for all the
people.

When the demonstration takes place there are between 200 and 400 people
in this area. People are moving in and out of the immediate bar area in groups
which makes the actual number of people hard to determine. Figure 3.24 shows
parts of the crowd. It is only on the lower side of the bar and a bit on the
left of it that it is possible for the robot to move at all. Just like in the other
demonstration people are curious. As the Scout robot only reached to the
knees, some people almost stumbled over it. In a situation like this it is thus
not enough to passively avoid obstacles. The robot must have the ability to
foresee the motion of people and actively avoid them. At present the robot
unfortunately lacks this skill.

Much of the time is spent blocked by people. Once in a while the crowd
opens up to let the robot pass. Figure 3.25 shows photos of the robot negoti-
ating peoples legs.

With so many people so close, a clear view of a wall is rare. However, most
of the time small pieces of the walls are visible. These few data points are
enough to update the pose estimate. This is a good illustration of one of the
benefits of using a laser scanner versus the sonar sensor. In a dense crowd,
the sonar sensor cannot detect anything but the surrounding legs. Figure 3.26
shows two snapshots taken from the laser.
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Figure 3.25: The SuperScout robot navigates between peoples legs.

Figure 3.26: Bits and pieces of the walls are visible most of the time.
The closer people come to the robot, the more the sensor is occluded.

Several experiments are performed during the day and the conclusion is
that tracking in this dense crowd is not a problem except for one thing. When
the robot is standing still or moving slowly it is sensitive to disturbances in the
odometric information as discussed in the previous section. When the crowd
is dense, contact with people is inevitable. Currently there is no way to detect
these contacts.
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3.4.5 Lower Update Rate Limit

The faster the algorithm is run the better the prediction can be made about the
robot pose. If robustness is the only thing that counts, the faster the better.
In an integrated system each process should try to consume only as much as it
needs and not be too greedy. It is therefore of interest to investigate how fast
the pose tracking algorithm must be run to provide reliable tracking.

Simply put, the question does not have an answer if the environmental
model is not specified. It all comes down to being able to solve the data
association problem. In an environment with many line like structures that are
parallel and close, the uncertainty must be kept small to distinguish between
them. If there are only a few easily distinguishable features, a large uncertainty
does not pose a problem and a low update rate can be allowed.

For this experiment the data from the 90 minutes run presented in Sec-
tion 3.4.3 is used. It is necessary to have a large data set so that as many
different situations as possible are encountered. For each update rate the whole
data set passed through. The performance is judged by visual inspection. For
each iteration all points that pass the first and the second gate are examined
along with the number of lines that are detected. When the update rate is
lowered it is expected that at some point the track is lost.

Even with an update rate of as low as 0.05 Hz the robot tracks the pose. The
uncertainty now becomes larger, but not large enough to cause erroneous data
associations. Somewhere around 0.04 Hz it breaks down, when passing from
the living-room out into the corridor. An update rate of 0.04 Hz means that
the robot is forced to rely on only odometric information for 25 seconds, during
which it can move a significant distance. Updating at this rate does not reduce
the uncertainty in the pose enough to maintain tracking, i.e. the diffusion in
prediction step cannot be compensated for enough by measurements. This
experiment shows that the update rate under normal operating conditions can
be much lower than 2-3 Hz which is used by default. The particular result is
dependent on the platform being used, especially the odometric performance,
the environment and the speed of the robot.

3.5 Discussion

In this chapter a low complexity, robust and accurate pose tracking algorithm
based the EKF framework and the minimalistic environmental is presented.
The minimalistic environmental model provides robustness using only the large
scale structures, such as the four dominating walls of a room. Such features are
likely to be robust over time and are relatively easy to extract due to their size,
allowing for low computational complexity. The low complexity of the approach
is particularly important in an integrated system with limited computational
resources.
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Experiments show that the method can handle a high density of clutter
and is able to track the position for long periods of time. The limiting factor
being the capacity of the batteries and not the method. The battery issue is
currently being addressed by the construction of a re-charging station, suitable
for automatic docking.

Experiments also show that a simple model for the uncertainty of the line
parameters is enough and that the EKF can be run at low frequency and still
maintain tracking. It is important to note that updating with low frequency
increases the risk of losing track when something which is not captured by the
odometric model occurs. Example of such events are slippage on thresholds or
collisions with people as in Section 3.4.4. A topic for future research is therefore
to augment the pose tracker with means to detect when these events occur, e.g.
by comparing relative motion information from a gyro and the odometry as in
(Borenstein & Feng 1996a).



Chapter 4

Multiple Hypothesis

Localization

The method presented in Chapter 3 made the assumption that the initial pose
was known. This chapter deals with the problem of finding the robot pose using
no prior pose information, but the map of the world is assumed to be known.
This problem is referred to as global localization or pose initialization. A typical
scenario when global localization is needed is when the power is turned on and
the robot must find its pose in the world. Having only the ability to track the
pose over time as provided by the previous chapter implies that the user must
supply the initial pose. This could be circumvented by always letting the robot
start at the same pose, for example, the place where it recharges. However, if
the robot loses track during a mission and is in need of re-initialization the user
might not be there to help. An autonomous mobile robot thus needs global
localization skills.

The results from Chapter 3 show that a high degree of robustness and
accuracy can be achieved using a Gaussian representation for the robot pose
uncertainty. However, this representation is only a good model if the data
association problem can be solved. This means that the uncertainty must be
kept small relative to the spatial separation of mapped as well as unmapped
environmental features. In global localization this criterion is not met and
the Gaussian representation cannot be used. The main limitation is the uni-
modality of the distribution.

The same criticism is often brought forth as an argument for using non-
continuous pose representations, such as the topological (Simmons & Koenig
1995, Cassandra et al. 1996) and the grid (Burgard et al. 1996). However,
combinations of multiple uni-modal distributions can be used to represent the
overall PDF. In (Sorenson & Alspach 1971) it is shown that a sum of Gaus-
sians distributions can approximate any PDF arbitrarily well. The condition
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Robot view Possible poses

Figure 4.1: The idea behind the Multiple Hypothesis algorithm. Detect-
ing a feature, a door in this case, infer possible robot poses given that
there is a true correspondence in the map.

for convergence is however that the covariance of each Gaussian approaches
zero and that the number of Gaussians tend to infinity. Using infinitely many
Gaussian PDFs is not possible and thus, as is often the case, approximations
must be considered. This chapter investigates the use of a small number of
Gaussians to approximate the PDF. The Gaussian distributions ignore the fact
that the probability for the robot being in certain poses should be zero, for
example, where there is a wall. However, here the working hypothesis is that
the Gaussian distribution gives a sufficient approximation. The desire is after
all to find the robot pose and not to make the best possible approximation of
the true PDF.

Consider Figure 4.1 and assume that the world consists of four walls and
three doors and that the robot observes a door. Assume furthermore that the
observation has a true correspondence in the map. Matching the detected door
against the map yields six possible robot poses, one on each side of the three
doors. A weighted sum of six uni-modal PDFs is then a good approximation
for the overall PDF. Each of these can be viewed as one hypothesis about the
pose of the robot.

The remainder of the chapter is divided into five main sections where the
Multiple Hypothesis Localization (MHL) approach is described. Section 4.1
defines the problem and introduces the representation in more detail, while
Section 4.2 describes the algorithm. Some implementation details are given in
Section 4.3. Real world experiments are presented in Section 4.4 that demon-
strates the applicability of MHL. The chapter closes with a summary and a
discussion.
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4.1 Theory and Background

The global localization problem studied in this chapter can be formulated as
follows. Estimate the state of the robot, x, using information from internal
(e.g. odometry, gyros) and external sensors (e.g. sonar, laser) and a map of the

environment. The state of the robot is given by its pose x =
(
x(W ), y(W ), θ

)T

(see Appendix C), which for ease of notation is denoted x = (x, y, θ). The state
is modeled to evolve according to

xk = f(xk−1,uk−1,wk−1), (4.1)

where uk is the relative movement according to the odometric system and wk

is the process noise accounting for errors in the model. The process noise is
assumed to be independent of the state x.

Features are extracted out of raw sensor data from the external sensors.
The map M, which the robot uses for localization, is a set of features, i.e.,

M = {fj | j = 1, . . . ,M} , (4.2)

where M denotes the number of features in M and the features, fj, are given
in world coordinates. The map can be divided into T subsets where T is the
number of different feature types,

M =
{
Mt | t = 1, . . . , T

}
. (4.3)

The map is not complete, that is, not all features in the environment are
represented in M. This is in part due to the minimalistic model, but it is also
unrealistic to assume that the map is complete as real world environments are
never truly static. The external measurements are modeled as

zk = h(xk,M,vk), (4.4)

where zk is a vector of feature measurements and vk is measurement noise.
Contrary to the previous chapter it is not possible to assume that the ori-

gin of the measurements can be determined unambiguously, i.e. the pairing
between zk and M is not known. In the previous chapter the problem was
alleviated by keeping the uncertainty small enough to allow straightforward
matching. However, global localization is the process of initializing the pose
estimate, i.e. finding the pose without prior knowledge. In general the data
association problem cannot be solved directly unless all features are unique.
Figure 4.1 shows one such situation, where a detected door gives several pos-
sible poses for the robot. The problem of finding the pose of the robot can
equivalently be formulated as the problem of associating to each measured fea-
ture a corresponding map feature. When the correspondences are determined
the pose can be estimated based on the known position of the map features.
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The problem presented here is closely related to the problem of multi-target
tracking encountered in, for example, air surveillance applications. The tracked
targets in these applications are aircrafts of different kinds. In global localiza-
tion of a mobile robot, as the problem is posed in this chapter, each hypothesis
about the robot pose is tracked. As pointed out in (Mazor et al. 1998) the
mathematical structure of the optimal tracking algorithm is well known. How-
ever, the complexity of an optimal tracking algorithm (the Multiple Hypothesis
Tracker (MHT), also known as the Track Split Filter (TSF)), is too high to be
realizable in practice. The high computational complexity comes from the ex-
ponential growth in the number of hypotheses that have to be maintained, due
to the fact that a hypothesis is split every time a data association is ambiguous.
The original hypothesis splits into one hypothesis for each possible association.
The resulting hypotheses are then split when new associations are ambiguous
and so on. The result is a tree structure where each leaf representing one pos-
sible choice of the ambiguous data associations. Given finite computational
resources, only a suboptimal solution can actually be implemented.

To complicate matters further, the map is not complete and the feature
detectors are not perfect. Therefore each feature measurement is a result of
one of the following events:

• Measurement of a map feature.

• Measurement of a feature in the environment that is not in M.

• False positive, i.e. no feature correspondence in the environment, mapped
or unmapped (an outlier).

All matches are thus ambiguous because there is always some probability that
the measurement is a false positive or an unmodeled feature. The probability
of each of the events depends on the quality of the feature detector, the robot
pose and the map. A more complete description uses the entire state of the
world, incorporating for instance moving people, and not only the map and the
robot pose. This, however, is not feasible in practice.

4.1.1 Hypothesis Representation

Let H(i) denote the i:th hypothesis about the robot pose x given some assump-
tions about the data associations. Each hypothesis, H (i), is defined by a robot
pose estimate, x(i) and a corresponding covariance matrix, P (i). The covari-
ance matrix defines how the probability mass is distributed (see Section 2.2.5).
Each hypothesis also has a weight attached to it which measures the proba-
bility that the hypothesis is correct, π(i) = Pr(H(i)). The hypothesis H(i) is
hence represented by

H(i) =
{

x(i), P (i), π(i)
}

. (4.5)
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Assuming that the weight of the hypotheses sum to one is equivalent to as-
suming that one of the hypotheses is correct. Such a model is only possible
if the map is complete and the feature detectors are perfect. In all other
cases there is some probability that all hypotheses are wrong. To account for
this possibility a zero hypothesis, H (0), is introduced. The probability mass

of H(0) is π
(0)
k = Pr(H(0)) and specifies the probability that no hypothesis,

H
(i)
k , i = 1, . . . , Nk, is correct at a given time step k.

Combining the hypotheses into a Gaussian sum, the PDF of the robot pose
given measurements z0, . . . , zk can be approximated by

p(xk|z0, . . . , zk) ≈ π
(0)
k +

Nk∑

i=1

π
(i)
k N (x

(i)
k , P (i)), (4.6)

where Nk is the number of hypotheses at time k and the weights satisfy

π
(0)
k +

Nk∑

i=1

π
(i)
k = 1. (4.7)

The zero hypothesis can be viewed as a uniform distribution assigning equal
probability to all possible robot states. The introduction of the zero hypothesis
has the additional advantage that the initial uniform PDF can be modeled by

π
(0)
0 = 1. When new hypotheses are created, the probability mass is taken from

the zero hypothesis. The stronger the evidence is for a hypothesis, the more
probability mass is taken from H (0). A perfect detection of a unique feature
results in all probability mass being transferred to one hypothesis. In a real
application integration over time is needed to gather enough evidence to single
out the true hypothesis.

4.1.2 Pose Hypothesis Update

If measurements can be associated with the different hypotheses, the EKF used
in the previous chapter can be applied to update the pose estimate of the hy-
potheses. The EKF only updates the pose estimates of the different hypotheses
and not their probability of corresponding to the true pose. Using Bayes’ rule

the probability of hypothesis H
(i)
k , after incorporating the information in zk, is

proportional to

Pr(H
(i)
k |zk) ∝ Pr(zk|H(i)

k ) Pr(H
(i)
k ), i = 1, . . . , Nk. (4.8)

Normalization is performed by enforcing (4.7).

In (4.8) the term Pr(zk|H(i)
k ) expresses the probability of observing zk given

that the robot is at the pose suggested by hypothesis H
(i)
k . This quantity is

estimated based on the map and models of the feature detectors. Assuming
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that zk is a feature of type t, the probability Pr(zk|H(i)
k ) can be expanded

using the mutually exclusive events that the measurement is triggered by a
real feature or a phantom feature (false positive). Introduce V t as the event
that a feature of type t is detectable by the sensors and the complement V̄ t

that it is a phantom feature. The expression for Pr(zk|H(i)
k ) is then given by

Pr(zk|H(i)
k ) = Pr(zk|V t) Pr(V t|H(i)

k ) + Pr(zk|V̄ t) Pr(V̄ t|H(i)
k ). (4.9)

Here Pr(zk|V t) denotes the probability of making the observation zk given
that a feature of type t is visible to the sensors. In other words, Pr(zk|V t) is a
model of the reliability of the detector extracting a visible feature of type t from

sensor data. The second factor, Pr(V t|H(i)
k ), gives the probability of a feature

of type t being visible from the pose given by hypothesis H
(i)
k . The second

term expresses the probability of making the observation even though such a
feature cannot be seen, i.e. the probability of a false positive. As the map is
not complete a distinction must be made between detecting a modeled or an
unmodeled feature. The unmodeled features do not provide any information.
Introducing the notation V t ∈ Mt as the event that there is a modeled and

detectable feature of type t, the probability Pr(V t|H(i)
k ) can be divided into

Pr(V t|H(i)
k ) = Pr(V t ∈ Mt|H(i)

k ) + Pr(V t 6∈ Mt|H(i)
k ) (4.10)

as a feature cannot be modeled and unmodeled at the same time. With this
(4.9) expands to

Pr(zk|H(i)
k ) = Pr(zk|V t) Pr(V t ∈ Mt|H(i)

k ) +

Pr(zk|V t) Pr(V t 6∈ Mt|H(i)
k ) +

Pr(zk|V̄ t) Pr(V̄ t|H(i)
k ).

(4.11)

From (4.11) it is clear how devastating it is to assume a complete map and
perfect detection when such is not the case. Such an assumption is equivalent
to the last two terms in (4.11) being equal to zero. Detecting an unmodeled

feature or getting a false positive thus makes Pr(zk|H(i)
k ) evaluate to zero and

hence hypothesis H
(i)
k is incorrectly rejected.

4.1.3 Exploration

Due to the uncertain nature of any sensor data, it is only by integrating in-
formation over time that any level of certainty can be reached. For successful
localization it is thus important that the robot is exposed to a rich set of
features, through efficient exploration of the environment. For best results the
exploration must be connected to the localization, i.e. the information gathered
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Figure 4.2: An active exploration strategy uses the information gathered
by the localization procedure to select an action. Feedback can be given
from the exploration module directly or indirectly through the environ-
ment.

by the localization procedure must influence the robot motion. Such an explo-
ration strategy is referred to as active. Initially, before the localization system
has gathered any information, the exploration has to be passive. The coupling
between the exploration and the localization can be either direct or indirect
through the environment. The indirect connection between exploration and
localization is always present, since new features come into view as the robot
moves. An active strategy can be seen as closing the loop between localization
and exploration (see Figure 4.2).

4.2 Algorithm

To simplify matters it is assumed that the feature measurements can be treated
independently. This allows for a sequential treatment of the detected features.
Without loss of generality it is henceforth assumed that zk is a single feature
observation.

4.2.1 Feature Detectors

The features are extracted from sensor data using so called feature detectors.
Each detector is specialized in detecting a certain feature type. They can be
viewed as matched filters, tuned to certain patterns in the sensor data. In this
thesis all features are defined by the user, but in principal any feature could be
used. Figure 4.3 gives a simple illustration of the setup.

To ensure as much independence as possible the detectors keep a list of
all features detected so far. Quoting (Simmons & Koenig 1995) “repeatedly
using the same sensor in the same location will usually produce highly corre-
lated results”. The positions of all detected features are stored in odometric
coordinates, which is a natural choice as the true pose is unknown. All ex-
tracted features are matched to the list of already detected features. Only
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Figure 4.3: Each feature type has a dedicated detector. A list of already
detected features is kept to ensure that only new features are reported and
used for localization.

those features that do not match any in the list are reported to the localization
algorithm and thus used to find the pose of the robot. In the matching with
already detected features no compensation is done for odometric drift. Hence,
when the robot has drifted a certain amount old feature may be reported again.
At this point the assumption about independent measurements is not as strong.

4.2.2 Pose Candidates

It is clear that the number of hypotheses influence the computational resources
required to run MHL. How hypotheses are initiated is therefore a key issue.
In (Fortmann et al. 1983) it is pointed out that with large amounts of false
measurements, it is not possible to initiate a new hypothesis based on each
new measurement. In the target tracking literature it is therefore common
to initiate new targets when a few consecutive measurements support their
existence.

Each detected feature generates “guesses” about the robot pose, when com-
bined with the map (compare Figure 4.1). In MHL these are approximated by
a sum of Gaussian PDFs. If zk is an observation of a feature, fj ∈ M a Gaus-
sian sum approximation of p(xk|zk) results in one Gaussian being placed at
the true robot pose (solid robot icon in Figure 4.1). Here the Gaussians in the
approximation of p(xk|zk) are referred to as pose candidates, and are denoted

C
(j)
k . Each pose candidate is defined by a pose, y

(j)
k , and a corresponding

covariance matrix, R
(j)
k , just like a hypothesis. Hence

C
(j)
k =

{

y
(j)
k , R

(j)
k , fj

}

, (4.12)

where fj is the map feature to which the observation is matched.
The candidates act as measurements of the hypotheses. If candidate C(j) is

a measurement of hypothesis H (i) then the measurement equation is modeled
as

y
(j)
k = x

(i)
k + v

(j)
k , (4.13)

where v
(j)
k has covariance matrix R

(j)
k .



4.2 Algorithm 77

Sensor data

Feature extraction

MATCH
existing?

NO

YES

Update hypothesis Create hypothesis

feature?
Creative

YES

Generate pose candidates

Figure 4.4: Detected features are used to generate pose candidates, which
are matched to the hypotheses and then used to update the correspond-
ing hypothesis. Unmatched candidates from creative features initiate new
hypotheses.

Localization is realized by updating the hypotheses with matching candi-
dates. Turning every unmatched candidate into a hypothesis soon exhaust the
computational power of any computer, therefore a mechanism is needed for
selecting which candidates to turn into hypotheses. The characteristics of the
different features and their corresponding detectors are used to determine how
candidates become hypotheses. To this end, two different types of features are
distinguished between, creative (C) and supportive (S). The creative features
carry enough strength to initiate new hypotheses whereas the supportive fea-
tures can only give support to existing hypotheses. Characteristic for creative
features is that they produce a relatively small number of candidates and that
the detector has a low rate of false positives. The first criterion stops the num-
ber of hypotheses from growing too fast whereas the second ensures that the
hypotheses have a reasonable probability of being true. A supportive feature
is typically easy to detect and is encountered frequently in the environment.

4.2.3 Matching Candidates to Hypotheses

Matching candidates to existing hypotheses is an important step in MHL. Er-
rors in this step can have devastating effects on the overall performance. There
are several techniques suggested for the data association. Usually, each hypoth-
esis has a validation gate defined around it in which a measurement/candidate

must fall (see Section 2.2.5). To test whether candidate C
(j)
k matches hypoth-



78 4 Multiple Hypothesis Localization

esis H
(i)
k the residual

νi,j
k = y

(j)
k − x

(i)
k . (4.14)

is defined. The Mahalanobis distance, ρi,j
k , between C(j) and H(i) at time k

can be expressed as (2.22)

ρi,j
k = νi,j

k (Si,j
k )−1(νi,j

k )T , (4.15)

where Si,j
k is given by (2.9) and (4.13)

Si,j
k = P

(i)
k +R

(j)
k . (4.16)

The minimalistic environmental model provides a sparse representation of
the environment. Candidates are typically clearly separated as long as they
are generated by modeled features.

4.2.4 Hypotheses Initiation and π
(0)
k

The unmatched creative candidates are used to initiate new hypotheses. Mak-
ing a hypothesis out of a candidate is easy since they have the same repre-
sentation (compare (4.5) and (4.12)). The weight that is assigned to a new
hypothesis depends on the weight of the zero hypothesis, the map and the
quality of the feature detector in question. A correct hypothesis is generated
as soon as a modeled creative feature is detected. The probability that no
correct hypothesis exists is thus the probability that only unmodeled and false
positives are detected so far. The probability that zk is the result of an un-
modeled feature or a false positive conditioned on H (0) is given by the two last
terms in (4.11)

Pr(zk|V t) Pr(V 6∈ Mt|H(0)) + Pr(zk|V̄ t) Pr(V̄ t|H(0)). (4.17)

Put differently, this is the probability that H (0) remains true. The comple-
ment is the probability that the true pose is found among the new hypotheses.
Assuming that all U unmatched candidates are just as likely each of the new
hypotheses are initialized with probability

1

U
∆π

(0)
k , (4.18)

where

∆π
(0)
k = π

(0)
k (1 − [ Pr(zk|V t) Pr(V t 6∈ Mt|H(0)) +

Pr(zk|V̄ t) Pr(V̄ t|H(0))
]) (4.19)

is the probability mass subtracted from the zero hypothesis.
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Initiating New Hypotheses

π
(0)
k := π

(0)
k − ∆π

(0)
k

∆π
(0)
k := π

(0)
k

(
1 −

[
Pr(zk|V t) Pr(V t 6∈ Mt|H(0)) + Pr(zk|V̄ t) Pr(V̄ t|H(0))

])

i := Nk

For all unmatched candidates C
(j)
k , j ∈ U

i := i+ 1
x

(i)
k = y

(j)
k

P
(i)
k = R

(j)
k

π
(i)
k = 1

U
∆π

(0)
k

Nk := i
pi

(0)
k := pi

(0)
k − ∆π

(0)
k

Figure 4.5: The U unmatched candidates are turned into hypotheses.

4.2.5 Pruning the Hypotheses Tree

To save computation time, the hypothesis tree must be pruned, i.e. the number
of hypotheses must be reduced.

Probability Thresholding

A straightforward way of discarding hypotheses is to use a lower threshold on
the allowed probability of a hypothesis. Let η be this lower limit. Hypotheses
that are kept must thus satisfy

π
(i)
k ≥ η, k = 1, . . . , Nk. (4.20)

The probability mass of a removed, too weak, hypothesis is returned to H (0).

Outside the Known Environment

Even though the map is not complete it can still be assumed that the envi-
ronment is bounded and that these bounds are known. Hypotheses that are
significantly outside the boundaries can thus be discarded. The corresponding
probability mass is not returned to the zero hypothesis but is instead redis-
tributed among the other hypotheses through normalization according to (4.7).

Occupied Areas

Similar to being outside the map is when a hypothesis is in an area which
is known to be occupied. Examples of such areas are at the positions where
walls are located. Monitoring for this criterion is difficult as the hypotheses
have spatial uncertainty. Removing a hypothesis on false grounds must be
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avoided as it could be the true hypothesis. Applying this criterion in practice
is considered to be associated with too much risk and is therefore not used.

Merging Hypotheses

Yet another way to reduce the number of hypotheses is to match and merge
hypotheses. If two hypothesis satisfy

(x
(i)
k − x

(j)
k )(P

(i)
k + P

(j)
k )−1(x

(i)
k − x

(j)
k )T < γ, (4.21)

where π
(i)
k ≥ π

(j)
k is assumed without loss of generality, hypothesis H

(j)
k is

deleted and

π
(i)
k := π

(i)
k + π

(j)
k . (4.22)

The overall MHL algorithm is summarized in Figure 4.6.

Algorithm: Multiple Hypothesis Localization (MHL)
Wait for feature

Generate pose candidates

Predict new pose for all hypotheses using (2.18)

Nk+1 := Nk

Loop over all candidates C
(j)
k

Loop over all hypotheses H
(i)
k , i = 1, . . . , Nk

if (C
(j)
k matches H

(i)
k ) according to (2.23)

Update H
(i)
k using (2.21) and (4.11)

else (C
(j)
k ∈ C)

Initiate new hypothesis as in Figure 4.5

H
(i)
k+1 := H

(i)
k , i = 1, . . . , Nk+1

Normalize π
(i)
k+1, i = 1, . . . , Nk+1 using 4.7

Prune hypothesis tree according to Section 4.2.5

Re-normalize

Figure 4.6: The overall MHL algorithm.

4.2.6 Exploration

In (Burgard, Fox & Thrun 1997) the exploration strategy is based on mini-
mizing the entropy of p(xk|z0, . . . , zk). The concept of entropy comes orig-
inally from thermodynamics. The kind of entropy used in (Burgard, Fox &
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Figure 4.7: An example of a graph used for exploration planning

Thrun 1997) is called logical entropy and measures the amount of disorder.
The entropy is maximized with total disorder. Minimizing the entropy is the
same as gathering probability mass in one place. The exploration strategy is
thus directly related to the aim of localization.

In (Cassandra et al. 1996) partially observable Markov decision processes
(POMDPs) are used as the basis for the decisions in a topological localization
scheme. Various heuristics are presented to make the POMDPs computation-
ally tractable.

An efficient exploration strategy avoids visiting the same place twice and
strives to lead the robot to areas where there are many (hopefully discrimi-
native) features. As the exploration is not the focus in this chapter a simple
strategy based on a topological description of the environment is used, where
the edges indicate straight and obstacle free paths. Each node and edge is given
utility and cost values respectively. Let ni denote the i:th node. The utility
value, ui, of node ni measures the information content that can be acquired in
its neighborhood. The cost, cij , of an edge connecting nodes ni and nj mea-
sures the cost of traveling between the two nodes. Figure 4.7 shows a small
environment with a corresponding topological graph. The cost, cij associated
with an edge is given by its length,

cij = dist(ni, nj). (4.23)

The one exception to this rule concerns edges going through a door. Passing
through a door takes longer time than driving within a room as the robot has
to slow down through a narrow passage. This is accounted for by adding an
extra cost, cdoor, to these edges

cij =

{

dist(ni, nj) + cdoor, ni and nj connected by door

dist(ni, nj), otherwise.
(4.24)

The utility of a node ni is given as the sum of the utility of the features
visible from ni. For simplicity the utility is assumed to be constant for all
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features of the same type. Let ut denote the utility of a feature of type t. An
extension to using individual utility values is straightforward. The utility, ui,
of a node, ni, is now given by

ui =

T∑

t=1

|Vt(ni)|ut, (4.25)

where |Vt(ni)| is the number of visible feature of type t from node ni.
Given the utility of the nodes and the cost of the edges the overall explo-

ration strategy is divided into two phases which are explained below.

1. Initialization

The aim of the first phase is to generate a set of hypotheses. At startup, when
no hypotheses exist, the active exploration strategy has no input and cannot
yet be used. During this time the robot moves in one direction as long as there
is free space and then selects a new direction based on the current sensor data.
This simple strategy does not guarantee good coverage, but has proven to be
sufficient in most cases. Upon seeing the first creative feature, hypotheses are
created with equal weights. It is not until more features are detected that the
hypotheses start to differ in weight. The simple exploration behavior is active
until the probability of the best hypothesis reaches a certain threshold, πthres,
i.e. switching is done when

max
i=1,... ,Nk

π
(i)
k ≥ πthres. (4.26)

2. Selection

The aim of the second phase is to single out the true hypothesis. To achieve
this the robot must move to new locations to detect new features. Using a
topological representation this corresponds to visiting new nodes. Assuming
that the best hypothesis is the true hypothesis, an estimate of the robot pose is
given. The first decision taken by the exploration behavior is to get the robot
to the closest node according to the pose estimate. Once on the graph the
strategy is to follow the edges between the nodes. The next node to visit is
selected by maximizing the expected utility using a one step horizon, i.e., only
the closest nodes that have not yet been visited are considered. This is an
example of greedy/myopic planning.

When the robot fails to move to the next selected node, it is indication
that the pose estimate is wrong. Ruling out a hypothesis completely based
on such a failure is not possible as the map is not complete and the edges
cannot be guaranteed to be free from obstacles. However, the probability of
the hypothesis is reduced,

π
(i)
after := π

(i)
before Pr(move fail|H(i)). (4.27)



4.3 Implementation 83

The larger πthres is chosen, the longer the first strategy is active. In an
environment that is both feature rich and easy to explore using random walk,
this results in few and strong hypotheses. If πthres is chosen low on the other
hand, the second stage typically starts with many hypotheses that are approx-
imately equally probable. The parameter πthres has to be chosen low enough
to be applicable in all parts of the environment.

4.3 Implementation

So far the description of MHL has been general. This section describes some of
the implementation details. This includes, for example, presenting the features
being used and a motivation for how to categorize them into being creative or
only supportive.

line door point pair

Pr(z|V t) 0.7 0.5 0.5

Pr(z|V̄ t) 0.15 0.25 0.05

Table 4.1: Observed detector performance for different features.

4.3.1 Feature Detection Models

In this implementation of MHL three different feature types are considered:
lines, doors and points. As illustrated by Figure 4.3, each feature has a ded-
icated detector. The performance of these detectors determine the quantities
Pr(z|V t) and Pr(z|V̄ t) in (4.11), which are shown in Table 4.1 for the different
feature types. The values of Pr(z|V t) and Pr(z|V̄ t) are given by evaluating the
detectors over a large set of data. To fully specify (4.11),

Pr(V t|H(i))

is also needed for all feature types t. Assume that candidate C
(j)
k matches

hypothesis H
(i)
k and is generated by V t ∈ Mt. It is then natural to set

Pr(V t 6∈ Mt|H(i)) = 0 (4.28)

as the candidate would not have been created without the feature being in the
map, which gives

Pr(V t|H(i)) = Pr(V t ∈ Mt|H(i)) (4.29)

according to (4.10).
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In (Larsson et al. 1994) an expression is presented for the probability of

C
(j)
k being an observation of V t ∈ Mt given H

(i)
k

p(V t ∈ Mt|H(i)
k ) =

1
√

(2π)3|Si,j
k |

e−
ρ

i,j
k
2 , (4.30)

where ρi,j
k is given by (4.15). The probability Pr(V t ∈ Mt|H(i)

k ) is estimated
as

Pr(V t ∈ Mt|H(i)
k ) = e−

ρ
i,j
k
2 . (4.31)

In the same way Pr(V t|H(i)
k ) is taken to be Pr(V t 6∈ Mt|H(i)

k ) when H
(i)
k and

C
(j)
k do not match, where Pr(V t 6∈ Mt|H(i)

k ) is modeled as a global constant
for each feature type t, representing the quality of the map.

The following subsections describe how candidates are generated for the differ-
ent features. Since the platform moves when the features are detected and it
is difficult to determine exactly when the sensor data was acquired, extra un-
certainty is added to the measurement covariance matrix Rk for all candidates

Rmotion
k =





σmotion
xy 0 0

0 σmotion
xy 0

0 0 σmotion
α



 . (4.32)

Lines

The line feature is characterized by its ability to give accurate information
about the perpendicular distance and relative angle to the robot. When match-
ing a line segment to the map only those two degrees of freedom have strong
constraints. Figure 4.8 illustrates how a candidate is created by matching the
line segment to a map line feature. The larger the difference in length is, the
larger the uncertainty of the pose candidate is along the line. A match is as-
sumed possible if the detected line is shorter than or equal in length to the map
line feature, i.e.

l ≤ L, (4.33)

where l and L are defined in Figure 4.8.

The covariance matrix, R
(j)
k , is built from several contributing factors. For

simplicity it is assumed that R
(j)
k is block diagonal, so that the uncertainty

in position and orientation can be treated independently. The position uncer-
tainty is easiest to express in a coordinate system with one axis (y) parallel
to the map line feature. In this coordinate system the position covariance is
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Figure 4.8: Each match between a detected line feature and a map line
feature generates one pose candidate. A line feature gives limited informa-
tion about the pose along the map line, hence the elongated uncertainty
ellipse.
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Figure 4.9: The Gaussian distribution is a rough estimate of the PDF for
the match along a map line feature. The probability should be the same for
a match all along the line as the thick dashed curve shows. To approximate
this, the Gaussian must be given a large variance. The difference in length
in this figure is L− l = 2 m.

assumed to be diagonal. In the x-direction, i.e., perpendicular to the line, the
variance is modeled as

σ2
xline

= σ2
c + d2σ2

α. (4.34)

Here σ2
c is the variance in the perpendicular direction, σ2

α is the variance in
orientation of the line and the parameter d is defined in Figure 4.8. The uncer-
tainty along the y-direction of the map line depends on the length difference,
L − l. The Gaussian assumption is a rather poor approximation in this direc-
tion as the probability of matching the detected line to any part of the map
line feature should in fact be the same (the thick dashed curve in Figure 4.9).
To achieve this the variance along the line must be made artificially high. In
practice this has the effect that no, or very little, information is left in this
direction.
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The variance is set to

σ2
yline

= 4((L− l) + ∆Lmin)2, (4.35)

where ∆Lmin keeps the variance from becoming too small when the detected
line and the map line feature have the same length. In this implementation
∆Lmin = 0.3 m. An alternative approach is to use a Gaussian sum approx-
imation for correspondences where L − l is large, i.e. to divide the elongated
candidates into several smaller ones.

The covariance matrix for the position uncertainty of the candidate must
be expressed in the world coordinate system. This is achieved by applying a
rotation matrix to it. Let ψ be the direction of the map line feature. The
rotation matrix between the line coordinate system and the world coordinate
system is then given by

Θ =

(
cosψ − sinψ
sinψ cosψ

)

, (4.36)

and the position covariance matrix can then be written

R
(j),xy

k = Θ

(
σ2

xline
0

0 σ2
yline

)

ΘT . (4.37)

The total pose covariance of a line candidate can now be expressed in world
coordinates as

R
(j)
k =

(

R
(j),xy

k 0
0 σ2

α

)

+Rmotion
k , (4.38)

where Rmotion
k is defined in (4.32).

In Figure 4.10, the true robot position is marked by the black dot. A line
segment is detected at the lower corner of that room. The candidates resulting
from the detected feature are shown as dashed ellipses. As the detected line
segment is only three meters long, candidates resulting from matches with the
corridor lines are quite elongated. The longer the detected line is the fewer the
matches are.

There are relatively few line features in the map (M line = 136). From
this perspective the line feature is a creative feature. However, it fails on not
properly constraining all three degrees of freedom. Therefore the line feature
is only used as a supportive feature.

Doors

The door feature constrains all degrees of freedom of the robot, but can be
treated very much like the line feature. Some doors can only be seen from one
side as they lead to unmapped areas. This is handled in the model by assigning
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Figure 4.10: The true robot pose is given by the black dot in the center
room. Detecting the the line feature in the lower corner of that room
results in the candidates marked as dashed ellipses.

a door to each direction that a physical door can be traversed. The benefit of
this is that each match with a map door feature only gives one candidate.
Figure 4.11 shows the uncertainty ellipse that results from detecting a door.
The door feature constrains the position along the door better than a line does,
but the uncertainty in orientation and perpendicular distance is larger. This
is an effect of the thick walls (≈ 0.4 m) in the building where the experiments
are performed.

For the door feature there are two coordinate systems in which the different
contributions to the overall covariance matrix are easiest expressed. The first
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Figure 4.11: A door feature constrains all degrees of freedom of the
robot. The angle of the door and the perpendicular distance to it are
rather uncertain because of the thick walls.

one is the same as for the line feature

σ2
xdoor

= σ2
c (4.39)

σ2
ydoor

= ((W − w) + ∆Wmin)2, (4.40)

where W is the width of the map door feature and w is the width of the
detected door. The parameter ∆Wmin has the same purpose as ∆Lmin for the
line feature and is here 0.2 m. The perpendicular uncertainty σc is 0.4 m, to
account for the thick walls. To get this part of the covariance matrix into world
coordinates the rotation matrix (4.36) is used

R
(j),1
k = Θ

(
σ2

xdoor
0

0 σ2
ydoor

)

ΘT . (4.41)

The second coordinate system to consider is the coordinate system defined
by the direction of observation, ϕ. The x-axis of this coordinate system is
marked with D2 in Figure 4.11,

σ2
xD2

= r2door cos2(σα) (4.42)

σ2
yD2

= r2door sin2(σα). (4.43)

where rdoor is the distance from the robot to the door. The rotation matrix
that relates the coordinate system with the world coordinate system is given
by

ΘD2 =

(
cos(ψ + ϕ) − sin(ψ + ϕ)
sin(ψ + ϕ) cos(ψ + ϕ)

)

. (4.44)

Using ΘD2 the second contribution to the position covariance can be expressed
as

R
(j),2
k = ΘD2

(
σ2

xD2
0

0 σ2
yD2

)

ΘT
D2. (4.45)
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This results in the total covariance matrix in world coordinates becoming

R
(j)
k =

(

R
(j),1
k +R

(j),2
k 0

0 σ2
α

)

+Rmotion
k . (4.46)

Figure 4.12: The candidates that are generated from a detected door.
The true robot pose is marked by the black dot and the detected door is
to the right of the robot. One candidate is generated for each side a door
can be detected.

Figure 4.12 shows the candidates when detecting a door feature. As before
the true robot position is marked by the black dot. The door that is detected
is the one to the right, marked with the thick line.

In summary the door feature is a logic choice for being a creative feature.
There are only 108 door features, therefore relatively few candidates are cre-
ated. Each correspondence between map and observation constrains all three
degrees of freedom which means that the candidates have a relatively well con-
centrated probability mass.
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Figure 4.13: Every match between a detected point and a map point
feature constrains the robot pose to be on a circle.

Pairs of Points

A point feature is not well suited to create pose candidates from. Even if
the correspondence problem is solved, i.e. the identity of the map feature is
known, the possible robot poses are along a circle with the radius equal to the
distance to the point (see left subfigure of Figure 4.13). The right subfigure of
Figure 4.13 shows the xy part of p(x|z). It is clear that it is not possible to
approximate this with a Gaussian PDF.

C
(j+1)
k

C
(j)
k

Figure 4.14: Matching a point pair to the map gives two pose candidates.
The points cannot be distinguished between and can thus be combined
with the map pair in two ways.

Another approach is to combine points to form pairs. Figure 4.14 shows a
situation where the robot has detected two points marked as black dots. Since
the points are indistinguishable the matching can be done in two ways. Hence,
every detected pair of points that are matched to a map pair generates two
candidates. These candidates are marked with small circles in Figure 4.14 and
are better approximated by Gaussian PDFs. The uncertainty is assumed to be
equal in the x and y directions and uncorrelated, yielding a diagonal covariance
matrix.
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The map contains 738 point features. Combining every point with every
other point gives

(
738
2

)
= 263, 175 possible pairs. Clearly, many of these pairs

are never observed. Therefore only point combinations where the points are
closer than 10 m and further apart than 1 m are considered. A further con-
straint is that the points are in the same room. With these constraints 9,578
pairs can be formed.

The distance between the points in a detected pair can be used to prune
the number of possible map matches. A correspondence is assumed possible
only if

| dist(p1, p2) − dist(fpoint
1 , fpoint

2 )| < dpp. (4.47)

Figure 4.15: The true robot position is marked by the black circle. Two
point features are detected to the right of the robot (dark circles). The
candidates are marked with dashed ellipses. The two map point features
are connected with the corresponding candidate.

Figure 4.15 illustrates how the candidates are distributed when two points
are combined to form a pair and matched to the map. Two points are detected
to the right of the robot, one on each side of the door opening. There is
a true correspondence in the map for this point pair and thus a candidate
is generated at the true robot pose. Criterion (4.47) effectively narrows the
number of possible candidates down to 640 in this case. Still, as can be seen,
there is quite a dense collection of candidates in some areas where clusters of
points have approximately the right distance between them.
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In summary, pair features formed by two point features constrain all three
degrees of freedom and give candidates with a comparably small distribution
of probability mass. The downside of the pair feature is that there are so
many of them. In a typical situation between 300–700 matches are found
for each detected point pair. Each pair match can be combined in two ways
which often gives in excess of a thousand candidates. This influx of hypotheses
soon exhausts the computer. The pair feature must therefore be considered as
supportive, and not be given the power to create new hypotheses. In (Wijk
2001) a method is developed that exploits the visibility constraint on the points
in the map. With such a scheme the number of matches can be reduced by
more than an order of magnitude. Then the pair feature is better suited for
being a creative feature.

4.3.2 Hypotheses Splitting

Applying hypothesis splitting in full scale as in the optimal MHT filter is not
possible, but the mechanism of splitting hypotheses is still of interest. In this
implementation a split creates two identical copies, one which is updated using
the matching candidate (accounts for the possibility that it was a true match)
and one which is not. To limit the exponential growth, only creative candi-
dates are give the ability to cause a split and the hypotheses are merged again
after the update if they then match. When merging two split hypotheses, the
probability is added and the pose estimate of the updated hypothesis is used.

4.3.3 Pruning the Hypotheses Tree

As described in Section 4.2.5 hypotheses that are too weak are joined with
the zero hypothesis to reduce the computational demand. The parameter η in
(4.20) is chosen as 0.001. Section 4.2.5 also presents a way to discard hypotheses
by checking if the corresponding pose is outside the known environment, which
is implemented by testing each pose hypothesis against the rectangular room
models in the minimalistic map. The uncertainty of the pose estimates are
not explicitly accounted for. Poses that are more than one meter outside any
rectangle is assumed to be outside and hence the corresponding hypothesis is
discarded. Experiments show that this is a sufficient approximation. Care has
to be taken when the uncertainty of the hypotheses become large though.

4.3.4 Exploration

The topological graph that is needed for the exploration strategy is automat-
ically generated. It is based on so called goal points that are manually dis-
tributed throughout the environment. These goal points represent positions
to which the robot can be commanded and are part of the already existing
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feature Utility [m]
line 1
door 5
point pair 0.5

Table 4.2: Utilities value for different features

system. The procedure to turn the set of goal points into a topological graph
is given by

1. Let each goal point be a node.

2. Connect nodes in a room with edges. Keep the number of edges down
by not allowing the connections of a node to have directions that are to
close.

3. Add nodes in front of every door connect pairs of nodes through the
corresponding doors.

4. Connect the door nodes with the closest node in the room.

5. Calculate the utility value for each node.

6. Attach a cost to each edge.

The resulting graph is shown in Figure 4.16 where each node is marked as a dot
and the edges are marked as lines. The thick lines mark edges going through
a door. The dark nodes are goal points and the lighter ones are nodes before
the doors.

The switching between the two steps of the exploration strategy presented
in Section 4.2.6 is done when (4.26) is fulfilled. Here πthres = 0.02 is used.

To complete the description of the exploration, the cost and utility values
must be specified. Each feature is given a utility value, which is expressed in
distance (see Table 4.2). The creative door is given the highest utility value
and the point pair the lowest. The selection of utility value is based purely on
intuition and no optimality claim is made. A more detailed implementation
takes into account which features have already been detected, as these should
not be allowed to provide the same amount of utility to nodes any more.

As already stated in Section 4.2.6 the cost of traversing an edge is given
by the distance between the nodes. Having a high cost for passing a door,
as suggested by (4.24), means that the robot prefers to explore as much as
possible without passing a door. In highly symmetric environments, passing
through doors is often the only way to resolve the symmetries. In such cases a
negative cost can be assigned to the door, effectively making it a utility. In the
experiment below the cost for passing a door is set to cdoor = 10. The choice
is motivated by the fact that the door passage algorithm is rather slow.
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0 20m

Figure 4.16: The topological graph used for exploration. The nodes are
marked as dots, dark(normal) and light(doors). The edges are marked as
lines where the thick lines mark edges that go through a door.
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Failing to execute a motion command to go along an edge is used as evi-
dence that the corresponding hypothesis is incorrect and the probability of the
hypothesis is reduced by a factor Pr(move fail|H (i)). The goal points on which
the graph is based are designed so that the robot is able to go between them.
As Figure 4.16 shows, most of the edges are in corridors which by definition
must be passable. The penalty for a motion command failure is thus set high,
Pr(move fail|H(i)) = 0.2.

4.4 Experiments

MHL is tested on two different robots in two different environments. One is
at CAS and the other is DaimlerChrysler Research and Technology in Berlin.
The results presented below are from CAS. For the result from DaimlerChrylser
please refer to (Jensfelt & Kristensen 2001).

4.4.1 Experimental Design and Execution

To evaluate the performance of any global localization scheme it is important
to use many different initial conditions. If testing is performed in a small area,
the results do not necessarily generalize. Good results are just as likely to be
due to tuning as a good algorithm. Therefore the robot must be started from
different initial configurations and in as many different areas as possible. Here,
20 different start positions throughout the environment are used to evaluate
MHL.

To get a measure of the performance the pose tracking algorithm described
in Chapter 3 is used to get the ground truth during the experiments. The
experiments are terminated when the probability of the strongest hypothesis is
above a certain threshold,

max
i=1,... ,Nk

π
(i)
k ≥ 0.9. (4.48)

Figure 4.17 shows the trajectories followed by the robot during the active
exploration. Some trajectories are omitted to keep the plot intelligible. The
start and end points are labelled with ‘S’ and an ‘E’, respectively. The numbers
by the arrows indicate the trajectory numbers, used later for easy referencing.
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Figure 4.17: The true trajectories of the robot for the experiments. Some
trajectories are omitted to keep the plot intelligible. The start and end
points are labelled with ‘S’ and an ‘E’, respectively.
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Run ∆x [m] ∆D [m] time [s] Mpair Mline Mdoor

1 3.79 7.84 129.5 7(9) 13(13) 2(2)
2 4.88 15.66 238.1 11(20) 8(8) 3(3)
3 10.40 15.99 244.0 24(40) 13(14) 3(4)
4 4.96 9.62 354.4 5(18) 8(8) 2(5)
5 12.05 22.25 293.6 11(34) 19(19) 4(4)
6 6.44 20.01 409.0 6(32) 11(12) 3(3)
7 4.60 29.56 395.9 19(38) 24(24) 2(2)
8 5.21 6.74 121.5 14(21) 12(13) 3(5)
9 12.93 22.22 280.5 19(40) 35(37) 4(5)

F 10 4.07 12.77 287.1 3(20) 12(14) 1(3)
11 4.68 13.14 274.1 7(21) 10(11) 2(3)
12 13.08 14.25 246.5 7(26) 15(21) 5(5)
13 3.61 7.19 183.6 9(18) 6(6) 3(3)
14 7.59 13.56 252.6 22(35) 6(11) 3(3)
15 31.42 42.78 536.1 19(53) 26(29) 3(7)
16 5.85 15.90 236.1 7(31) 11(14) 2(5)
17 15.83 30.74 473.1 13(58) 21(26) 3(3)
18 5.02 7.74 168.6 8(21) 8(10) 5(6)
19 4.73 10.47 224.6 3(18) 9(10) 3(3)
20 6.87 58.17 362.5 27(54) 77(79) 2(2)

avg. 8.4 18.8 285.6 12(30) 17(19) 3(4)

Table 4.3: Results from experiments at CAS. An F in the first column
denotes that the localization failed. ∆x is the straight path distance be-
tween start and end point of the exploration, whereas ∆D is the total
distance traveled. Runs 6, 7, and 20 illustrate that the difference between
these two distance measure can be quite large. The fourth column gives
the time from start until (4.48) is reached. The last three columns contain
the number of features that are matched to the winning hypothesis versus
the ones that are detected (in parentheses).

4.4.2 Evaluation of Experiments

Table 4.3 summarizes the results from the experiments at CAS, where the robot
localizes successfully in 19 of the 20 runs. The table provides various statistics
from the different runs. The straight path distance between the start and the
end point of the exploration is given by ∆x, whereas ∆D is the total distance
traveled. The time until (4.48) is fulfilled is given in the fourth column. A
failure is indicated by a ’F’ in the first column. The last three columns contain
the number of features that were matched to the winning hypothesis versus the
total number of detected features (in parentheses).
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Figure 4.18: The trajectory followed by the robot in run no. 3. The
numbers along the trajectory give the time since the run started (seconds).

To further analyze the experimental data some of the runs are discussed in
more detail.

Run no. 3

In the third run the robot starts in the corridor. The complete trajectory is
shown in Figure 4.18, where the numbers along the trajectory give the time
since the experiment started. The first creative feature that is detected is the
door leading to the living-room on the left of the starting point. The door,
in combination with lines and pairs, results in the best hypothesis being the
correct one when the second step of the exploration strategy starts. The robot
starts by going to the closest node in the corridor and then follows the graph
along the corridor and into an office.

Figure 4.19 shows the matching statistics for the best hypothesis as a func-
tion of time. The solid curves are the number of detected features and the
dashed curves are the number of features that are successfully matched to the
best hypothesis. The weight of the best hypothesis as a function of time is
shown in Figure 4.20 along with the number of hypotheses as a function of
time. The decrease in weight after about 200 s is caused by a split of the best
hypothesis upon seeing a door. Figures 4.19 and 4.20 are based on an off-line
experiment performed at a later stage with the data collected during run no. 3
and do therefore not exactly comply with the statistics in Table 4.3.
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Figure 4.19: The matching statistics for the best hypothesis (estimated
off-line) as a function of time since the start of the experiment. The solid
curves denotes the total number of detected features and the dashed line is
the number of those that was successfully matched to the best hypothesis.
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Figure 4.20: The number of hypotheses (solid line) versus the weight
(scaled by a 100) of the best hypothesis (dashed line), plotted as function
of time since the experiment started.
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Run no. 4

In run no. 4 the robot was placed in a small office on the lower floor (see
Figure 4.17), which is cluttered, leaving the robot limited room to maneuver,
and thus making the initial exploration slow. To disambiguate the office from
the office next to it, the robot must reach the corridor, which it does after 330
seconds. Once in the corridor and having detected the door to the other office
the robot is localized after another 25 s (approx.).

Run no. 10

Run no. 10 starts in the isolated room on the upper region on the lower floor.
This room is identical in size to the room a bit further down in the map. In
this experiment the robot did not localize correctly. Instead of the room it is
in, it reports being in the similar room further down. The winning hypothesis
matched 3 out of 20 pairs, 12 out of 14 lines and 1 out of 3 doors. The matching
ratio for the true hypothesis was 0 pairs out of 20, 6 lines out of 14 and 2 doors
out of 3. The reason for the bad matching result is that this room has been
completely restructured since the map was constructed. The furniture has
been rearranged completely which effects the point landmark pairs. A wall
previously completely covered with cupboards is now uncovered, resulting in
one of the sides in the rectangular line model not matching anymore.

Run no. 15

In run no. 15 the robot starts on the lower end in the map on the upper floor and
traveled upwards. The robot is not able to detect any of the (at the time) closed
doors on the left hand side of the corridor. It is not until the robot reaches the
kitchen in the middle of the corridor that the true pose can be singled out. The
total time until successfully localized is 536 seconds, i.e. nearly ten minutes.
This is a result of the exploration strategy switching between different best
hypotheses in the corridor. Waiting for a motion command to fail is a time
consuming way to rule out a hypothesis.

Run no. 20

In the last experiment, run no. 20, the robot is placed in the almost feature-less
left hand side corridor on the lower floor, where it is only able to detect one of
the doors in this corridor as the others are closed. When the second phase of the
exploration starts the robot travels up the corridor. The same map line features
are observed from all nodes up to the end of the corridor. As the utility of the
nodes is not updated based on which features are detected, the robot continues
up the corridor expecting to detect new features. It is not until reaching the
last node that the robot travels back. When coming to a region where new
features can be seen the robot is localized. The 10 strongest hypotheses all
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matched the same number of lines and doors, highlighting the high degree of
symmetry. However, the point landmark pairs eventually singled out the true
hypothesis. Had the robot initially traveled down towards the other corridor,
it would have localized faster and with less ambiguity.

Summary of Experiments

To summarize the experiments presented in this chapter and the ones presented
in (Jensfelt & Kristensen 2001) from DaimlerChrysler, successful localization
is achieved in 19 out of 20 runs and 18 out of 20 runs respectively. When the
localization fails or is inefficient it can be traced back to one of the following
properties of the current implementation

• No hypotheses are generated and thus localization is not possible unless
a modeled creative feature is detected (compare run no. 3 at Daimler-
Chrysler in (Jensfelt & Kristensen 2001)).

• The greedy-one step exploration strategy is sometimes unable to present
the robot with new features. This is in part caused by not updating
the utility values of the different nodes to account for features that are
already detected. A clear example of this is run no. 20 in this chapter.

• If the map differs significantly from the environment it models, localiza-
tion might also fail as illustrated by run no. 10 above. However, this is
true for any localization algorithm and not a specific property of MHL.

4.5 Summary

This chapter has presented the first thorough investigation of how Multi Hy-
pothesis Tracking techniques can be applied to the problem of mobile robot
localization. Using a Gaussian sum approximation of the pose distribution al-
lows for the use of the extended Kalman filter, providing a computationally
efficient way of fusing information. It also allows for high accuracy without
having to trade it for high memory consumption. Bayesian probability theory
is used for evidence fusion, which permits explicit modeling of feature detector
and map uncertainty. The result is the so-called Multiple Hypothesis Localiza-
tion (MHL) scheme.

Results from extensive tests in real world experiments in two different en-
vironments and with two different platforms show that MHL work well. This
is underlined by 19 out of 20 successful localizations and 18 out of 20, respec-
tively. The cause of the failures are identified, and are explained by the simple
exploration strategy, only initiating hypothesis when detecting doors and an
outdated map in some areas.

Although the results are very good, it is only a first attempt at using Mul-
tiple Hypothesis techniques for large scale mobile robot localization. Future
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research include investigating more advances exploration strategies and more
elaborate data association schemes, see e.g. (Uhlmann 1995). Further, different
pruning and merging schemes in combination with other hypotheses splitting
procedures are also interesting for investigation.



Chapter 5

Monte Carlo Localization

The Bayesian filtering problem, i.e. finding p(xk|z0, . . . , zk) is in general a non-
linear filtering problem. Analytic approximations are presented in Chapters 3
and 4, where the PDF is represented by a single Gaussian or a sum thereof re-
spectively. Although the results are good, it is inherently true that the success
rests on how well the true PDF can be approximated. The single Gaussian is
shown to be good for tracking applications but is insufficient as soon as the
PDF is multi-modal or has a wide tail. A sum of Gaussians can handle larger
uncertainties but still rests on a Gaussian assumption and suffers from an ex-
ponential growth in the number of Gaussian terms needed. Discretizing the
state space into a mesh suffers from an extreme computational burden. In this
light it is natural to look for yet another way to represent the PDF. Some-
where between the Gaussian sum approximation and the mesh approach the
Monte Carlo methods are found. Here the idea is that instead of an analytic
approximation of the PDF or a discretization of the whole state space a set of
samples is kept. Under the right conditions these samples can then represent
any given PDF assuming that enough samples are used. The theory behind
these methods is as old as the Kalman filter.

The outline of the chapter is as follows. Section 5.1 gives a rather detailed
description of the the theory behind the Monte Carlo methods to underline
some issues that must be considered in a real-time implementation. In Sec-
tion 5.2, a Monte Carlo method applied to mobile robot localization is pre-
sented along with two suggested approaches for improvements. Details on how
these are implemented in the special case of feature based global localization is
given in Section 5.3. Extensive experiments showing a significant improvement
using the two suggested approaches are presented in Section 5.4 accompanied
with a comparison between using different combinations of features. Finally a
summary and discussion is given.
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5.1 Theory

Before describing the theory behind the Monte Carlo methods, the global lo-
calization problem is repeated to make the discussion more concrete.

Problem Statement Given a set of measurements Zk = {z0, . . . , zk} ac-
quired at time steps 0, 1, . . . , k estimate the state xk. Here is the pose of
the mobile robot, i.e. xk = (xk, yk, θk). The evolution of the system can be
described by

xk = f(xk−1,uk−1,wk−1) (5.1)

where uk is odometric data and wk is the process noise and accounts for the
approximation error in f . Measurements are generated by

zk = h(xk,M,vk) (5.2)

where M is the map and vk is the measurement noise. Estimation of xk

is achieved by estimating the PDF p(xk|Zk) from which any function of xk

conditioned on the measurements can be calculated.

Using Bayes’ theorem, p(xk|Zk) can be rewritten as (Handschin & Mayne
1969)

p(xk|Zk) =

∫
p(xk−1|Zk−1)p(xk|xk−1)p(zk|xk)dxk−1

∫ ∫
p(xk−1|Zk−1)p(xk|xk−1)p(zk|xk)dxk−1dxk

(5.3)

Expanding this further by recursive use of Bayes’ theorem yields a k-dimensional
expression of integrals. Monte Carlo methods, or simulation based methods as
they are also known as, are used for evaluating the high dimensional expression
numerically in an efficient way by recursive propagation of the PDF in the form

of a sample set. Let s
(i)
k = (x

(i)
k , π

(i)
k ) denote the i:th sample with x

(i)
k denoting

the corresponding robot pose and π
(i)
k the weight of the sample. The sample

set at time k is thus given by

Sk = {s(1)k , . . . , s
(Nk)
k }, (5.4)

where Nk is the number of samples. Note that the sample set size, in general,
is time dependent.

5.1.1 Evaluating Function Expectations

It is often not the density function itself that is of interest but rather the ex-
pected value of some function. If p(xk|Zk) is sampled with equally weighted
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samples an approximation of the expected value for any function r(xk) condi-
tioned on the measurements Zk can be calculated as

Ep(·|Zk) [r(xk)] ≈ 1

Nk

Nk∑

i=1

r(x
(i)
k ). (5.5)

The strong law of large numbers gives that the approximation can be made
arbitrarily good in the limit Nk → ∞ (Doucet 1998). An estimate of the
robot pose can be acquired by letting r(xk) = xk. That this might not always
be the best way to estimate the pose is discussed later in the chapter (see
Section 5.3.5).

5.1.2 Bayesian Importance Sampling

As it is hard in general to sample from any function and in particular from an
unknown function such as p(xk|Zk), other methods must be used to generate a
sample set that represents the density function p(xk|Zk). Importance sampling
(IS) is such a method. The simple idea behind the method is best illustrated
by rewriting the expression for the expectation value of some function r(xk),

Ep(·|Zk) [r(xk)] =

∫

r(xk)p(xk|Zk)dxk

=

∫

r(xk)
p(xk|Zk)

q(xk|Zk)
q(xk|Zk)dxk.

Introducing πk(xk) = p(xk|Zk)
q(xk|Zk) yields

Ep(·|Zk) [r(xk)] =

∫

r(xk)πk(xk)q(xk|Zk)dxk (5.6)

= Eq(·|Zk) [r(xk)πk(xk)] (5.7)

where it is assumed that q > 0 if p > 0. The evaluation of the expected value
with respect to p has thus shifted to evaluating the expected value with respect
to q weighted with π. If the function q(xk|Zk) can be sampled and the samples

are given weights π
(i)
k =

p(x
(i)
k

|Zk)

q(x
(i)
k

|Zk)
, the weighted sample set

Sk = {(x(i)
k , π

(i)
k ) | i = 1, . . . , Nk} (5.8)

is an approximation of p(xk|Zk). By letting Nk → ∞ the density approxima-
tion can be made arbitrarily good and the expectation value can be expressed
as

Ep(·|Zk) [r(xk)] ≈ 1

N

N∑

i=1

r(x
(i)
k )π

(i)
k . (5.9)
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The distribution q is called the importance function (Doucet 1998) or the sam-
pler density (Liu & Chen 1998).

For this method to work in the current form it must be possible to calculate
πk(xk) and hence evaluate p(xk|Zk). The distribution p(xk|Zk) is unknown but
it can be shown (Doucet 1998) that Ep(·|Zk)[r(xk)] can be approximated by

Ep(·|Zk) [r(xk)] ≈
∑Nk

i=1 r(x
(i)
k )π

(i)
k

∑Nk

i=1 π
(i)
k

(5.10)

where π
(i)
k (xk) is redefined as

π
(i)
k (x

(i)
k ) =

p(Zk|x(i)
k )p(x

(i)
k )

q(x
(i)
k |Zk)

. (5.11)

By normalizing the weights according to

π̄
(i)
k :=

π
(i)
k

∑Nk

i=1 π
(i)
k

. (5.12)

the expectation value can now be expressed as

Ep(·|Zk) [r(xk)] ≈
Nk∑

i=1

r(x
(i)
k )π̄

(i)
k . (5.13)

In (Liu & Chen 1998) a sample set {(x(i)
k , π

(i)
k ) | i = 1, . . . , Nk} drawn from a

distribution q is said to be properly weighted with respect to the the distribution
p if for any integrable function r

lim
Nk→∞

∑Nk

i=1 r(x
(i)
k )π

(i)
k

∑Nk

i=1 π
(i)
k

= Ep(·) [r(xk)] . (5.14)

5.1.3 Sequential Importance Sampling (SIS)

For an online implementation it is important to be able to calculate the weights
recursively. Assuming that the importance function can be decomposed as

q(xk|Zk) = q(x0|Z0)
k∏

l=1

q(xl|xl−1, Zl) (5.15)

the weights can be recursively calculated as (Krishnamurthy 2000)

π
(i)
k =

p(zk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, Zk)
π

(i)
k−1. (5.16)
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This method is referred to as Sequential Importance Sampling (SIS) and was
proposed already in the 1960’s (Handschin & Mayne 1969, Handschin 1970).
The initial sample set is created by drawing from the prior p(x0). This function
encodes all a priori knowledge about the state. In a global localization scenario
the initial sample set is given by sampling the pose space uniformly.

When computing the weight π
(i)
k , p(xi

k|x
(i)
k−1) can be calculated from the

system equation (5.1) as (Gordon et al. 1993)

p(x
(i)
k |x(i)

k−1) =

∫

p(wk−1)δ(x
(i)
k − f(x

(i)
k−1,uk,wk−1))dwk−1. (5.17)

This is a prediction of how the samples moves based on the odometric infor-
mation and the known characteristics of the system noise wk. The function

p(zk|x(i)
k ) in (5.16) gives the probability of making observation zk from the

pose x
(i)
k and can be calculated from (5.2) as (Gordon et al. 1993)

p(zk|x(i)
k ) =

∫

p(vk)δ(zk − h(xk,vk))dvk. (5.18)

5.1.4 Selection of Importance Function

Taking a step back, the aim is to be able to sample from the unknown distribu-
tion p(xk|Zk). The problem has now been transfered to being able to sample
from some other distribution q(xk|Zk). Many different suggestions have been
made for q in the literature. The simplest choice is to make it a constant, only

dependent on the state and not the observations, i.e. q(x
(i)
k |Zk) = q(x

(i)
k ). The

downside of this choice is that the information at hand in the form of (5.1) and
(5.2) is not used. When deciding on an importance function it is worth keeping
in mind that high-dimensional distributions often have the probability mass
concentrated to a small region (Mackay 1996). If the localization procedure is
successful that region should correspond to the region close to the true robot
pose. With a fixed importance function this fact cannot be exploited. The
region where the probability mass is concentrated is called the typical set, T ,
of the distribution. In (Handschin & Mayne 1969, Handschin 1970) a more
intuitive importance function is chosen, namely

q(x
(i)
k |Zk) = p(xk|xk−1). (5.19)

With this choice of importance function (5.16) simplifies to

π
(i)
k = π

(i)
k−1p(zk|x(i)

k ). (5.20)

Now the system model is used in the design of the importance function, but
not the observations.
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q
p

Figure 5.1: When the importance function approximates the true PDF
well, fewer samples are needed for a good approximation.

5.1.5 Sampling/Importance Resampling (SIR)

Using Sequential Importance Sampling in practice often leads to a huge range
in the magnitude of the weights. Samples with low weight contributes very
little to the approximation of p(xk|Zk). The closer the importance function
is to p(xk|Zk), the smaller the variations are between the weights and the
fewer samples, Nk, are needed to make the sample set a good approximation
of the distribution p(xk|Zk) (Smith & Gelfand 1992). Figure 5.1 illustrates the
problem. To the left where p is large q is small. The samples are drawn from q
and thus many samples are needed to get good sample support where q is small.
On the right side, q is large and many samples are generated, but p is small and
the weights are low. The function p can still be approximated arbitrarily well
but the number of samples that is needed is large. For reasons of efficiency it
is thus of interest to redistribute the resources, i.e. the samples. To this end an
intermediate step where the sample set is resampled is introduced (Rubin 1987).
The idea is that sample support should be shifted from regions where the
sample weights are low to regions where the weights are higher. Resampling
increases the chance for good samples to amplify themselves and in doing so
give more weight to the importance function in that region and provide better
future estimates. Resampling is achieved by drawing samples from the sample
set and letting the probability of drawing a particular sample be proportional

to its weight. Let {(x̃(i)
k , π̃

(i)
k ) | i = 1, . . . , Nk} denote the sample set after

the normal importance sampling step and normalization of the weights. The

resampling step generates a new sample set {(x(i)
k , π

(i)
k ) | i = 1, . . . , Nk} by

drawing samples from the old set such that

p(x
(j)
k = x̃

(i)
k ) = π̃

(i)
k for any i, j (5.21)

This method is presented in (Smith & Gelfand 1992, Gordon et al. 1993) under
the name Bootstrap filter, (Liu & Chen 1998) call it SIS with resampling (SISR)
and (Rubin 1987) refer to it as Sampling/Importance Resampling (SIR).
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5.1.6 Discussion

The available resources on a mobile robot, and the requirement of online cal-
culations, put a limit on how many samples that can be used. This means that
the samples that are available must be used in the best possible way. When
using SIR the samples typically cluster in regions corresponding to poses that
best support the observations. However, unless the importance function is a
good approximation of p(xk|Zk), there might be very few samples in the typ-
ical set T of p(xk|Zk). Samples in regions where p(xk|Zk) is small has little
effect of on the PDF approximation. With a finite number of samples and an
importance function with low support in T the algorithm might collapse. In
(Gordon et al. 1993) it is said “Through this process, the representation of the
PDF may become most inadequate within a few steps. Indeed if there is no
system noise, all the N samples may rapidly collapse to a single value.” Two
methods to overcome the problem are suggested in (Gordon et al. 1993). One
is called roughening and the other prior editing. Roughening adds an indepen-
dent jitter to each sample after the prediction step. This is similar to simulated
annealing discussed in e.g. (Neal 1993, Mackay 1996). The word annealing
comes from the process of first heating and then cooling down metal or glass
to make it less brittle. Heating the metal gives the molecules more energy to
move and find “their right place” in the material. In simulated annealing the
heating corresponds to increasing the jitter so that the samples are allowed to
adjust and provide a better estimate of the PDF. With time the temperature
is lowered, i.e. the jitter is decreased.

Getting back to the methods proposed by (Gordon et al. 1993), prior editing
adds an acceptance test for the samples being resampled. By evaluating (5.2) at
the pose corresponding to a sample a prediction is given for the measurement.
If the measurement is too far from the prediction the sample is rejected and
another one is drawn. Nothing is said about how to handle outliers. In the
case where only a few samples fulfill the test all samples are shifted to the
corresponding poses. If there are no samples that fulfill the acceptance test the
algorithm apparently deadlocks. In either case the estimation is destroyed. A
better alternative is to reject the samples with some probability that depends
on the reliability of the measurement. This avoids the deadlocks and leave
room for accounting for the possibility of an outlier.

The success of all the methods described so far rests on the assumption
that the initial pose distribution, p(x0), is known and can be well represented
by the initial sample set. When Nk → ∞ this is not a problem, but in every
real situation Nk < ∞. It is in most cases reasonable to assume that the
environment surrounding the robot is bounded. Still, in a large environment
the initial sample set is sparse and there is no guarantee that there is a sample
at the correct pose. To guarantee sample support everywhere Nk → ∞ is
needed which is only the dream of a mathematician and not the reality of a
roboticist.
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There is no such thing as a perfect feature detector and unique features do
not grow on trees either. When starting from a uniform prior, several iterations
are needed before the probability mass is shifted to the typical set when using a
realistic sensor model. The approximation is thus vulnerable to outliers during
the first iterations. If the first observation is an outlier the samples close to the
true pose are likely to have low weights since they do not match the erroneous
observation. Chances are then high that they are removed from the sample set.
This in turn means that unless many samples are used, a global localization
algorithm based on the SIR method might not be successful. Two methods for
improving the sample support are presented in the next section.

5.2 Algorithm

In this section the SIR algorithm applied to mobile robot localization is de-
scribed in more detail. Two ways of improving the performance by modifying
the standard SIR algorithm are also suggested. All algorithms presented below
are initialized in the same way (see Figure 5.2). Any knowledge of the initial
pose of the robot is encoded in p(x0) which is assumed known.

Initialization
Draw N0 samples from the known p(x0)

Give the samples equal weights π
(i)
0 = 1

N0

S0 =
{

(x
(i)
0 , π

(i)
0 )|i = 1, . . . , N0

}

approximates p(x0)

Figure 5.2: Initialization of Monte Carlo Localization algorithm

5.2.1 Monte Carlo Localization

In robotics the SIR algorithm was first applied in vision based tracking (Isard
& Blake 1996, Isard & Blake 1998) under the name condensation. The first
application of SIR on mobile robot localization is presented in (Dellaert, Fox,
Burgard & Thrun 1999, Fox, Burgard, Dellaert & Thrun 1999) where it is
called Monte Carlo Localization (MCL). The latter name is used in the thesis
as it gives a fair connection to the origin of the method.

Monte Carlo Localization can be described by a three step algorithm (see
Figure 5.3). The first two steps correspond to the two steps given by Figure 2.8
and the last one is the resampling step in which the samples are redistributed
to reduce the variance in the sample weights.
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Algorithm: MCL

Prediction Step
For each i = 1, . . . , Nk−1:

Draw x̄
(i)
k from (5.17)

π̄
(i)
k = 1

Nk−1

S̄k =
{

(x̄
(i)
k , π̄

(i)
k ) | i = 1, . . . , Nk

}

approximates p(xk|Zk−1)

Measurement Update Step
For each i = 1, . . . , Nk−1:

x̃
(i)
k = x̄

(i)
k

π̃
(i)
k = π̄

(i)
k p(zk|x̃(i)

k ) (5.16)

Normalize all weights through division by
∑Nk−1

i=0 π̃
(i)
k

S̃k =
{

(x̃
(i)
k , π̃

(i)
k ) | i = 1, . . . , Nk

}

approximates p(xk|Zk)

Resampling Step
For each i = 1, . . . , Nk:

Draw j from {1, . . . , Nk−1} such that Pr(j = l) = π̃
(l)
k

x
(i)
k = x̃

(j)
k

π
(i)
k = 1

Nk

Sk =
{

(x
(i)
k , π

(i)
k ) | i = 1, . . . , Nk

}

also approximates p(xk|Zk)

Figure 5.3: The Monte Carlo Localization algorithm. The sample sets
S̃k and Sk approximate the same distribution, p(xk|Zk), but with different
sample poses.

5.2.2 Suggestion 1: Random Sampling

Using Nk < ∞ leads to a situation where there might not be any samples
close to the true pose. The outcome of MCL is thus dependent on the initial
sample set. Samples can only be generated from other samples. Small per-
turbations are induced in the sample set by the noise term wk in (5.1) used
in the prediction step. These perturbations help to catch small discrepancies
between the estimated and true state given a good initial estimate. However,
they are not in general able to populate regions in the pose space which lack
sample support. The possibility that the initial sample set does not populate
the typical set T of the true PDF must thus be taken into account. If T is not
populated, the sample set needs to be reinitialized as it does not contain any
information about the true state. Re-initialization corresponds to setting the
prior p(xk−1) to be a uniform distribution, i.e. every state is just as likely. If
p(xk−1) is uniform then so is the importance function, p(xk|xk−1).
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Algorithm: MCL with Random Sampling

Prediction Step
For each i = 1, . . . , N r

k−1:

Draw x̄
(i)
k from a uniform distribution

For each i = (N r
k−1 + 1), . . . , Nk−1:

Draw w
(i)
k from p(wk) and let x̄

(i)
k = f(x

(i)
k−1,uk−1,w

(i)
k−1)

π̄
(i)
k = 1

Nk
∀ i = 1, . . . , Nk−1

Measurement Update Step
Same as in Figure 5.3

Resampling Step
Same as in Figure 5.3

Figure 5.4: Adding samples from a uniform distribution.

Introduce rr as the ratio of samples that are drawn from a uniform prior
instead of the standard importance function, where rr can be viewed as the
probability that the typical set is not populated and re-initialization is needed.
The MCL algorithm with random sampling is shown in Figure 5.4.

The idea of sampling from a uniform distribution can also be found in (Fox,
Burgard, Dellaert & Thrun 1999, Jensfelt, Wijk, Austin & Andersson 2000,
Lenser & Veloso 2000).

5.2.3 Suggestion 2: Planned Sampling

Drawing samples from a uniform distribution is a rather ineffective way of ex-
ploring the state space. Unless rrN is large, the probability is still small to draw
a sample inside the typical set of the true PDF. The importance function (5.19)
does not depend on the last observations. Assuming the measurement zk has a
correspondence in the environmental model, p(xk|zk) has support in T . With
this quality it could be used to sample from, i.e. be used as an importance
function,

q(x
(i)
k |Zk) = p(xk|zk). (5.22)

Using (5.22) as importance function corresponds to creating new hypotheses
from p(xk|zk) in Chapter 4. This approach is here called planned sampling as
samples are generated in a planned way.

Due to imperfect sensors and an imperfect environmental model, p(xk|zk)
might lack support in some regions just like (5.19). Combining the two impor-
tance functions is likely to give better total support and thus in the end a better
approximation of p(xk|Zk). Let rp denote the ratio of samples to draw from
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Algorithm: MCL with Planned Sampling

Prediction Step
For each i = 1, . . . , Np

k−1:

Draw x̄
(i)
k from p(xk|zk)

π̄
(i)
k = α 1

Nk
where α is defined by (5.23)

For each i = (Np
k−1 + 1), . . . , Nk−1:

Draw w
(i)
k from p(wk) and let x̄

(i)
k = f(x

(i)
k−1,uk−1,w

(i)
k−1)

π̄
(i)
k = 1

Nk

Measurement Update Step
Same as in Figure 5.3

Resampling Step
Same as in Figure 5.3

Figure 5.5: Algorithm for MCL with planned sampling

the alternative importance sampling function p(xk|zk). When calculating the
weights of the samples with this importance function (5.16) does not simplify
to (5.20). To get a properly weighted sample set, the full form of (5.16) must
be used, i.e.

π
(i)
k =

p(x
(i)
k |x(i)

k−1)

p(x
(i)
k |zk)

︸ ︷︷ ︸

α

p(zk|x(i)
k )π

(i)
k−1 = αp(zk|x(i)

k )π
(i)
k−1. (5.23)

The approach suggested in this section (previously published in (Jensfelt,
Austin, Wijk & Andersson 2000, Jensfelt, Wijk, Austin & Andersson 2000))
is similar to the work recently published in (Lenser & Veloso 2000), but was
developed independently of these results. In (Thrun, Fox & Burgard 2000)
different methods for obtaining a properly weighted sample set are further
investigated.

5.3 Implementation

So far in this chapter the measurements have been kept general, but henceforth
the measurements are assumed to be features. Several features can typically be
detected from a single sensor scan. To make the calculations more tractable it
is assumed that even if multiple features are detected from the same scan they
are independent, and also that the features in the measurement vector, zk, are
sorted in ascending order with respect to time.
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Implementation: MCL

Prediction and Measurement Update Step

x̃
(i)
k := x

(i)
k−1

π̃
(i)
k := π

(i)
k−1

For each feature measurement zl
k:

For each i = 1, . . . , Nk−1:

x̃
(i)
k := f(x̃

(i)
k ,uk−1,l,w), w ∈ p(wk−1)

π̃
(i)
k := π̃

(i)
k p(zl

k|x̃
(i)
k )

Normalize all weights through division by
∑Nk−1

i=0 π̃
(i)
k

Resampling Step
Same as in Figure 5.3

Figure 5.6: Implementation of the MCL algorithm for feature based
localization.

5.3.1 Monte Carlo Localization

The first two steps of the MCL algorithm are iterated over the set of extracted
features zk. The resampling step is performed once at the end. The reasoning
behind this is that performing the resampling step after individual measure-
ments makes the overall algorithm more sensitive to outliers. As previously
discussed a false measurement is likely to give samples close to the true state
low weights and hence make the chances of them surviving the resampling step
smaller. Fusing several measurements makes the system less sensitive, as cor-
rect measurements compensates for possible outliers. The MHL technique from
the previous chapter has an effective way of representing wide spread clusters
of probability mass. To achieve the same with a sample set, many samples are
needed, typically with low weight. It is then increasingly more likely that the
samples will be removed in the resampling step even though the overall cluster
has a large probability.

The implementation is depicted in Figure 5.6 where uk,l denotes the motion
reported by the odometry between extraction of features zl

k and zl−1
k .

5.3.2 Planned Sampling

Drawing samples from p(xk|zk) is nontrivial as zk could be any combination
of features. The choice of p(xk|zk) as an importance function was based on
the observation that it is likely to approximate p(xk|Zk) well. Sampling from
individual p(xk|zj

k) is easier than sampling from p(xk|zk) and the support is
likely to be approximately the same.
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Implementation: MCL with Planned Sampling

Prediction and Measurement Update Step

x̃
(i)
k := x

(i)
k−1

π̃
(i)
k := π

(i)
k−1

For each l = 1, . . . , Fk:

For each i = 1, . . . ,
∑l−1

j=1 n
p
k(zk, j):

x̃
(i)
k := f(x̃

(i)
k ,uk−1,l,w), w ∈ p(wk−1)

For each i = (1 +
∑l−1

j=1 n
p
k(zk, j)), . . . ,

∑l
j=1 n

p
k(zk, j)):

Draw x̃
(i)
k from p(xk|z(j)

k )

For each i = (1 +
∑l−1

j=1 n
p
k(zk, j)), . . . , Nk−1:

x̃
(i)
k := f(x̃

(i)
k ,uk−1,l,w), w ∈ p(wk−1)

π̃
(i)
k−1,l := π̃

(i)
k p(zl

k|x̃
(i)
k ) ∀ i

Resampling Step
Same as in Figure 5.3

Figure 5.7: Implementation of MCL with planned sampling for feature
based localization. Note that part of the sample set is replaced for each
detected feature.

This means that drawing Np
k samples from p(xk|zk) is replaced by drawing

np
k(zj

k) samples from p(xk|zj
k), where

Np
k =

N
p
k∑

j=1

np
k(zk, j). (5.24)

In this implementation np
k(zk, j) depends only on a quality measure, q(t), which

in turn only depends on the feature type t

np
k(zk, j) =

q(type(z
(j)
k ))

∑Fk

l=1 q(type(z
(l)
k ))

Np
k (5.25)

where Fk is the number of detected features in step k.
To get a properly weighted sample set, the planned samples must be weighted

according to (5.23). At first glance it seems like a trivial task as p(x̄
(i)
k |x̄(i)

k−1)

is given by (5.17). This is however not true when x̄
(i)
k is drawn from p(x

(i)
k |zj

k).

In this case p(x̄
(i)
k |x̄(i)

k−1) is most likely a very small number. To avoid this a
heuristic is applied and α is set to 1. It is immediately noted that this choice
of α gives too much weight to samples that match a single measurement but
does not necessarily agree with previous measurements. The resulting sample
set does not converge to p(xk|Zk) as N → ∞. If it can be shown that the
performance is enhanced by using planned sampling, the natural next step is
to weigh the sample set properly.
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Figure 5.8: This plot shows how 1,000 samples are propagated along a
straight line path using the motion model (5.26).

5.3.3 Motion Model

When generating samples from p(xk|xk−1) in the prediction step of the MCL
algorithms the following model is used





xk

yk

θk



 = f(xk−1,uk−1,wk−1)

=





xk−1 +Dk−1(1 + wd
k−1) cos(θk−1 + χk−1)

yk−1 +Dk−1(1 + wd
k−1) sin(θk−1 + χk−1)

θk−1 +Dk−1w
θ
k−1



 , (5.26)

where

wk =
(
wd

k w
θ
k

)T

uk = (∆xk ∆yk)
T

Dk =

√

(∆x
(R)
k )2 + (∆y

(R)
k )2

χk = arctan(∆y
(R)
k ,∆x

(R)
k ) ∈ (−π, π].

The variables wd
k and wθ

k are assumed to be independent, zero-mean and nor-
mally distributed variables, according to

wd
k ∼ N (0, σd) wθ

k ∼ N (0, σθ). (5.27)
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The input signal, uk, to the motion model (5.26) is the relative motion predicted
by the odometric system between time steps k−1 and k. The larger σd and σθ

are, the more diffusion is added in the prediction step. Standard MCL requires
robot motion for the sample set to converge to the true PDF, because the
diffusion is the only process that allows the samples to change to new poses. For
convergence it is also important that the sensor data provide more information
than the diffusion caused by the motion dissipates. Figure 5.8 shows how an
initially compact sample set diffuses when using uncertain odometric data.

5.3.4 Features

The minimalistic environmental model described in Section 2.4 consists of three
different features; lines, door and points. The lines and the doors are extracted
from laser data and the points from sonar data. Just like in Chapter 4 the
combination of two points into a pair is also considered as a feature type.

The feature detectors are not perfect and neither is the map. Only features
in the map can be used to provide information about the absolute pose of the
robot. Introduce C as the class of measurements that originate from unmodeled
features or phantom measurements and Ct a as subclass of C consisting of
measurements of feature of type t. Let Pr(zj

k ∈ Ct|M,x) be the probability of
detecting a feature from class Ct from pose x given the map M. To simplify
matter this probability is assumed to depend only on the feature type, i.e.

Pr(zj
k ∈ Ct|M,x) = Pr(zk ∈ Ct) = const. (5.28)

The two main functions to be described for each feature are p(zj
k|xk) and

p(xk|zj
k), where p(zj

k|xk) is needed in the measurement update step to update

the weights of the samples and p(xk|zj
k) when generating planned samples. Let

p(f t
i |xk) be the probability of detecting the i:th feature of type t from pose xk

where t is the same type as zj
k. The probability p(zj

k|xk) is then given by

p(zj
k|xk) ∝ Pr(zj

k ∈ Ct) + (1 − Pr(zj
k ∈ Ct)) max

i=1,... ,|Mt|
p(f t

i |xk). (5.29)

When determining the quality factor, q, for each feature type, t, the ability
of the features to produce planned samples close to the true robot pose are
considered. Here the quality is defined as the probability to draw a sample
within 0.5 m from the true robot pose.

To achieve good performance of MCL it is necessary to use a pessimistic
noise model for the feature detectors, i.e. the extracted features must be given
an artificially high level of uncertainty. Low feature noise means that p(xk|zj

k)

is very peaky and few samples are thus given high weight. The peakier p(xk|zj
k)

is, the more samples have to be used. This problem is addressed in (Thrun,
Fox & Burgard 2000).
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Lines

Lines are detected using the Hough Transform. Given a detected line segment
it can be matched against the map and the most likely robot poses can be
calculated (compare with the pose candidates in Chapter 4). Sampling from
the corresponding distribution is performed by repeating the following for each
planned sample

1. Randomly select a map feature that satisfies (4.33).

2. Draw a sample along the L− l long middle part of the center line (parallel
to the wall) of the ellipse shown in Figure 4.8.

To save computations sampling is thus only done at the most likely distance
from the map line feature. The function p(xk|zj

k) is modeled as

p(f line
i |xk) =







e
− 1

2

(

( νρ

σline
d

)2+( να

σline
α

)2+( h

σline
h

)2
)

(4.33) holds

0 (4.33) does not hold

where νρ and να corresponds to the innovations in the Kalman filter in Chap-
ter 3, and h is the distance outside the flat region in Figure 4.9 (inside the flat
region h = 0).

Approximately 50% of the lines that are extracted with the Hough Trans-
form corresponds to lines that are in the map when evaluated over a large part
of the environment, which leads to

Pr(zk ∈ Cline) = 0.5.

On average an extracted line segment matches 70 map line features and
the average value for L − l in (4.8) is 7 m due to the many long corridor
lines. Using the strategy described above to generate planned samples, the
total length along which samples are drawn is 70x7=490 m. The probability
of the measurement having a true correspondence in the map is given by

1 − Pr(zk ∈ Cline) (5.30)

and hence the probability to draw a sample within 0.5 m from the true pose is
given by

q(line) =
0.5 m · (1 − Pr(zk ∈ Cline))

490 m
≈ 5 · 10−4.

Doors

Door are extracted from laser data in the same way as described in Sec-
tions 2.4.2. The treatment of doors is the same as for lines with the exception
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of having larger uncertainty in the direction perpendicular to the door. The
extra uncertainty comes from the large wall thickness of the building.

The performance of the door detector and the quality of the map is given
by

Pr(zk ∈ Cdoor) = 0.3. (5.31)

in the environment under consideration.
The door is a powerful feature, both because there are relatively few doors

in the environment (Mdoor = 108), but also because there is a distinct peak in
p(xk|zdoor) for each door. The quality factor for doors is

q(door) =
1 − Pr(zk ∈ Cdoor)

108
= 6 · 10−3.

Points

The total number of points in the map is M point = 738. A brute force imple-
mentation of the maximization in (5.29) involves looping through all features in
the map. The point features are typically detected at short distances (< 5 m),
hence only the points that are close to the current sample need to be taken
into account. The points are therefore stored in a grid (5 × 5 m2 cells) over
the environment to allow fast access of the points that are close to a certain
position. Through this construction the size of the map no longer affects the
computation cost directly, only indirectly through the number of samples that
has to be used.

The function p(fpoint
i |xk) is modeled as

p(fpoint
i |xk) ∝ e

− 1
2

(

( νd

σ
point
d

)2+( να

σ
point
α

)2
)

(5.32)

where νd and να are the innovations in distance and angle to the point feature
respectively.

Sampling is done by randomly selecting one matching map feature and
then randomly select one position along the corresponding possible circle (see
Figure 4.13).

Normally on 30% of the detected points are in Cpoint, but in some parts
the performance drops to 50%. Therefore the conservative probability

Pr(zk ∈ Cpoint) = 0.5,

is chosen.
A detected point feature carry little value, as a point feature always matches

all map features of that type and the support area of p(xk|zj
k) is rather large.

A detected point feature is on average 1.5 m away from the robot, which gives

q(point)
(1 − Pr(zk ∈ Cpoint)) · 0.5

738 · (2π1.5)
≈ 3 · 10−5.
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Pairs

Just like for the point features the pairs are stored in a grid structure to reduce
the access time. Matching a pair feature to the map gives rise to two possible
robot poses (see Figure 4.14). The likelihood function for detecting a pair
feature from pose xk is modeled as

p(fpair
i |xk) ∝ e

− 1
2

(

( ∆d

σ
pair
d

)2+( ∆α

σ
pair
α

)2
)

(5.33)

where ∆d and ∆α are the distance and angle innovations respectively.
Sampling from p(xk|zj

k) is performed by first randomly select a one of the
matching pair features and than place one sample in the center of one of the
two circles from Figure 4.15. To save computations, all samples are thus placed
at one of the the peaks of the distribution.

As a pair is constructed from two points, the probability of at least one
point being incorrect (and hence the pair) is

Pr(zk ∈ Cpoint) = 1 − (1 − Pr(zk ∈ Cpoint))2 = 0.75.

On average a pair is matched with 650 map features which yields the quality
measure (remember that pairs can be matched in two ways)

q(pair) =
1 − Pr(zk ∈ Cpoint)

2 · 650
≈ 2 · 10−4.

The assumption of independence between measurements do not hold if both
points and pairs are used at the same time. The quality values for the two
features hint that the pairs provide a more effective importance function. On
the other hand p(zk|xk) is less of an approximation for the points than for the
pairs. For these reasons the best of both worlds are used, i.e. planned samples
are generated from the pairs but the points are used to update the weight of
the samples.

A more thorough description of the use of sonar point features applied to
MCL is found in (Wijk 2001), where a more effective scheme is developed to
take advantage of the fact that points can typically only be observed from
certain directions.

5.3.5 From Sample Set to State Estimate

The sample set approximates p(xk|Zk), but in most cases the information that
is sought is the best possible estimate of the robot pose. One way to define
this is to use the conditional expectation value

Ep(·|Zk)[xk] =

∫

xkp(xk|Zk)dxk (5.34)
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or when using the sample set approximation

Ep(|Zk)[xk] ≈
Nk∑

i=1

x
(i)
k π

(i)
k . (5.35)

In Chapter 3 this method is used. There is however one major difference,
the distribution is uni-modal as the task is pose tracking. Here on the other
hand the distribution is by nature multi-modal. For example if there are two
peaks that have accumulated most of the probability mass the expectation
value is somewhere in between the two. An alternative is to use the maximum
a posteriori estimate of the robot pose, i.e.

x̂k = argmax
x̂k

p(x̂k|Zk). (5.36)

In this context it is tempting to use the sample with the highest weight before
the resampling step as the estimate. This however results in an estimate that
represent the pose corresponding to the sample that best fit the observations in
a given iteration and not necessarily the peak of p(xk|Zk). In the thesis a grid
is used to find an estimate of the robot pose. The grid consists of 1×1 m2 cells
covering the entire known environment, and each grid cell is given the total
weight of all samples that fall within this cell. The estimate is then found by
looking for the cell with the highest weight.

5.4 Experiments

Two different experiments are performed. The first one is intended to evalu-
ate the performance increase gained by using random and planned sampling
with the standard MCL algorithm. The second experiment demonstrates the
strength that fusion of features give compared to using them one by one. Fixed
sized samples sets are used in the experiments. An adaptive scheme is proposed
in for example (Fox, Burgard, Dellaert & Thrun 1999). In the experiments pre-
sented below the algorithm is run once every 5 seconds if any new features have
been reported. This low frequency is chosen to be sure that the results can in
fact be achieved in real time.

5.4.1 Collecting Evaluation Data

To evaluate the performance of the standard MCL algorithm and the two ex-
tensions it is important that they be tested under the same conditions. Fur-
thermore as the methods rely on drawing samples at random from various
distributions the performance is not the same even if the same algorithm is
run twice on the same set of data. To reduce the influence of chance, the algo-
rithms are run ten times on several sets of data and the average performance
measured.



122 5 Monte Carlo Localization

0 20m

1

2

3

4

5

6

7

8

9

10

Figure 5.9: The different trajectories for the MCL experiments at CAS
are marked with numbers. The point features are omitted to make the
figure less cluttered.
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The data sets are collected using a Nomad200 robot (see Appendix D). Ten
different areas are covered. These areas represent different types of environ-
ments that are encountered at CAS. The trajectories followed by the robot are
shown in Figure 5.9. Each trajectory is given a number.

The data is collected using a simple exploration behavior. The behavior
is designed to take the robot to open spaces. It has no memory of where the
robot has been before. Each trajectory consists of ten minutes of robot motion.
The distance covered by the robot is to a large extent a function of the area
it is in. In small, cluttered, offices the amount of motion that is allowed is
limited. A corridor area on the other hand allows for long distances of motion.
It should be emphasized that no active exploration strategy is used. Such a
strategy makes the evaluation much more difficult as the motion of the robot
becomes a function of the localization algorithm.

To judge success of localization the true trajectory followed by the robot
is recorded using the pose tracking algorithm of Chapter 3. The localization
experiment is terminated when either one of two conditions is satisfied. The
first condition is that the probability of the best pose estimate is larger than

pth = 0.9(1 − rr − rp). (5.37)

The reasoning behind decreasing the threshold when using random sampling
is that a fraction rr of the samples is drawn from a uniform distribution and
hence the threshold is in effect defined on the probability mass that is left. For
planned sampling a fraction rp of the samples are drawn from the alternative
importance function and due to the lack of proper weighting this probability
mass is also removed. The second condition upon which an experiment is
terminated is at the end of the collected data set, i.e. when no convergence is
detected after approximately ten minutes.

5.4.2 Evaluation: MCL

With N → ∞ the sample set approximates p(xk|Zk) arbitrarily well. In a real
application a finite sample set size must be used. For real time performance
with this implementation the limitation in the number of samples that can be
used is approximately 20,000 on a Pentium III 450 MHz. This is not a large
number of samples considering that the environment is approximately 900 m2,
only 22 samples per square meter if the environment is sampled uniformly.
When considering that the angle must be estimated as well, the sparseness is
even clearer. To test the influence of the sample set size, global localization is
performed along the ten trajectories with different N . Table 5.1 summarizes
the results for four different sample set sizes. For each trajectory-N -pair the
number of successful localizations over the ten runs is presented along with the
average number of iterations.

Just as is expected the number of successful localizations increases as the
number of samples is increased. It is also clear that the local characteristics
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MCL
Exp N = 10, 000 20, 000 50, 000 100, 000

1 2 (21) 4 (30) 6 (45) 7 (33)
2 0 (-) 6 (38) 8 (32) 10 (35)
3 0 (-) 0 (-) 0 (-) 0 (-)
4 0 (-) 2 (62) 1 (46) 4 (71)
5 1 (44) 3 (27) 5 (23) 4 (27)
6 4 (33) 1 (19) 9 (33) 10 (31)
7 0 (-) 1 (56) 3 (64) 4 (67)
8 5 (35) 9 (18) 1 (16) 10 (14)
9 2 (34) 4 (46) 6 (38) 9 (26)
10 1 (42) 0 (-) 2 (20) 3 (18)

Avg 15% (34) 30% (33) 50% (33) 61% (33)

Table 5.1: Result when running the MCL algorithm over varying sample
set sizes N . Each column give number of successful localization out of
ten. The average number of iterations until (5.37) is satisfied is given in
parentheses.

of the environment influences the performance heavily. A clear example of
this is trajectory 3 for which no successful localization is given. Trajectory 3
is in a corridor with very few features (compare run no. 20 in Section 4.4).
There are three doors in this corridor but they are not detected during the
experiment. Bare corridor walls result in very few point landmarks as well.
The same explanation can be given for the poor results for trajectories 4 and
5. The experiment performed in the room marked by 10 shows bad results as
well. This room is identical to the room beneath it in the map when looking
only at door and line features. Due to the large amount of clutter it is not
possible to see all four walls in the room. The small size of the room limits the
motion and few features are detected.

In the room marked by 8 and the corridor marked by 9 localization is almost
completely successful when using the largest sample set size (N = 100, 000).
Room 8 is unique in size and all walls can be detected using the Hough trans-
form. With the help of the door and the point features localization is both
reliable and fast in this room. The corridor marked with 9 also give good re-
sults. The main difference between this corridor and corridors 3 and 4 is that
most of the doors are open. This provides door features, but also views of the
rooms inside from which valuable line features can be extracted.

5.4.3 Evaluation: Random Sampling

The poor results with the standard MCL algorithm when used in conjunction
with the minimalistic environmental model can to some degree be explained
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Random sampling with N = 50, 000
Exp rr = 0.01 0.1 0.2 0.4

1 2 (16) 5 (40) 6 (38) 10 (55)
2 9 (36) 9 (34) 10 (34) 10 (52)
3 0 (-) 0 (-) 0 (-) 0 (-)
4 2 (42) 4 (55) 3 (57) 4 (65)
5 3 (20) 3 (40) 6 (36) 10 (48)
6 8 (24) 10 (37) 9 (59) 0 (-)
7 3 (78) 4 (99) 7 (82) 2 (88)
8 10 (16) 10 (17) 10 (16) 10 (19)
9 6 (31) 8 (20) 9 (43) 9 (67)
10 2 (24) 7 (41) 9 (39) 8 (24)

Avg 45 (30) 60 (38) 69% (43) 63% (48)

Table 5.2: Results when varying the ratio rr of random sampling when
N = 50, 000. A clear improvement is seen when comparing the best column
in this table (rr = 0.2) with the N = 50, 000 column in table 5.1.

by the fact that each detected feature does not in itself give much information
about the pose. Seeing a point is next to worthless and so is seeing a single
line. The minimalistic model contains only very few features and so unless all
features in an area are seen it is hard to tell the areas apart. As an example all
rooms to the left of corridor 9 have the same width. This means that unless the
upper and lower walls are both detected all rooms match the measurements.
In (Fox, Burgard, Dellaert & Thrun 1999) raw sensor data is used as input
to the MCL algorithm. The raw sensor data is richer in its description of the
environment.

Table 5.2 summarizes the results when experimenting with different values
for rr, the ratio of samples that should be drawn from a uniform distribution in
each step. The sample set size N is chosen as 50,000. It is not at all surprising
to see that rr = 0.01 does not change much. 500 samples spread uniformly over
900 m2 has little effect. The increase in performance for higher values of rr

shows that adding samples from a uniform distribution have a positive effect.
The best performance is achieved with rr = 0.2 out of the tested values for
rr. Noticeable is also that the number of iterations needed for the algorithm
to converge increase with increasing rr. When rr becomes larger the chance
that samples are removed from the typical set, T , is also increased. In the end
of the convergence most of the samples are gathered in a small region of the
state space. The random samples are thus mostly taken from this region and
therefore slows down the convergence. Convergence speed although being an
interesting characteristic of a localization algorithm is secondary to reliability.
It must therefore be concluded that drawing some fraction of the sample set
from a uniform distribution increases the performance of the MCL algorithm.
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Planned sampling with N = 10, 000
Exp rp = 0.01 0.02 0.05 0.1

1 5 (47) 8 (32) 10 (40) 10 (42)
2 10 (31) 10 (27) 10 (30) 10 (36)
3 0 (-) 0 (-) 0 (-) 0 (-)
4 5 (64) 7 (64) 9 (68) 0 (-)
5 8 (23) 10 (28) 10 (24) 9 (27)
6 10 (29) 10 (31) 6 (33) 0 (-)
7 8 (93) 10 (82) 8 (122) 0 (-)
8 10 (9) 10 (8) 10 (10) 10 (22)
9 10 (25) 10 (18) 10 (19) 10 (29)
10 7 (34) 10 (36) 10 (23) 10 (27)

Avg 73% (37) 85% (36) 83% (40) 59% (31)

Table 5.3: Result when varying the ratio rp of samples drawn from the
alternative importance function. The best column in this table (rp = 0.02)
is superior to any column in tables 5.1 and 5.2 although the sample set
size N is only 10,000.

5.4.4 Evaluation: Planned Sampling

Random sampling improves the performance but is not able to achieve con-
vincing reliability. With rr = 0.2 the percentage of successful localizations is
still only 69%. In addition this result is achieved with a sample set size which
cannot be handled in real time. The main reason for the failure of MCL and
random sampling is lack of sample support at the true pose. Planned sampling
is designed to alleviate this problem. To guarantee real time performance the
experiments are performed with N = 10, 000. With this sample set size the
standard MCL algorithm resulted in only 15% convergence. The correspond-
ing number for random sampling is approximately 40% convergence. Table 5.3
shows the results of varying the ratio, rp, of samples drawn from the alternative
importance function. Far superior results are achieved in all these experiments
compared to the ones in Sections 5.4.2 and 5.4.3. Ratios 0.01, 0.02, 0.05 and
0.1 are evaluated. Best results are given with rp = 0.02, i.e. when 2% of the
samples are drawn from the alternative importance function. The performance
drops when increasing rp too much, because the improperly weighted planned
samples create strong sample support in regions that currently matches the
data well, irrespective of the previous samples.

5.4.5 Comparison of Algorithms

Figure 5.10 shows a comparison of standard MCL against adding random and
planned sampling for different sample set sizes N . The curves give the per-
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Figure 5.10: Convergence to true position (%) vs. sample set size N .
The solid line represents MCL, the dashed-dotted line represents random
sampling and the dashed line represents planned sampling. The maximum
level that could be reached was 90% because one of the ten data sets
contained too few detectable features. Each point in the graph corresponds
to 100 experiments!

formance averaged over the ten different trajectories. The random sampling
algorithm is evaluated with rr = 0.2 which gave best results in the experiments
in Section 5.4.3, and planned sampling is evaluated with rp = 0.02.

That planned sampling is superior to the two other algorithms is beyond
doubt. Random sampling is also significantly better than the standard MCL
algorithm. Fixing a certain level of performance, the three different algorithms
require drastically different sample set sizes and thus computational resources.
Standard MCL requires between 2 and 2.5 times more samples than with ran-
dom sampling and 40 to 50 times more samples than with planned sampling.

5.4.6 Combining Different Features

Four different features are used in the experiments presented so far, lines, doors,
points and pairs. In the following experiment the strengths and weaknesses of
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the individual features are investigated as well as the benefit of combining them.
The best results in the previous experiments with planned sampling are

achieved using rp = 0.02. In all experiments presented below this is the setting
being used, together with N = 10, 000 to ensure real-time performance.

The accuracy which a feature provides for localization is to a large degree
a question of how many dimensions it can establish constraints on. Consider
a wall in a corridor, this line feature on its own does only provide information
about the perpendicular distance to the wall and the orientation of the robot,
but with high accuracy though. Using line features in environments where
non-parallel lines can be detected provide high accuracy. Doors do not provide
good accuracy because of the thick walls in the old hospital building. Points can
provide excellent accuracy if the matching problem is solved, i.e. the correct
map feature is matched to the detected feature, but this is difficult since the
point map features have very little separation in some areas.

Planned sampling with N = 10, 000, rp = 0.02
Traj\feat L D T P

1 1 (29) 0 (-) 1 (60) 0 (-)
2 10 (60) 0 (-) 3 (52) 0 (-)
3 0 (-) 0 (-) 0 (-) 0 (-)
4 0 (-) 0 (-) 0 (-) 0 (-)
5 8 (44) 0 (-) 1 (89) 0 (-)
6 0 (-) 0 (-) 0 (-) 0 (-)
7 6 (118) 0 (-) 1 (71) 0 (-)
8 10 (47) 0 (-) 4 (78) 2 (64)
9 2 (32) 0 (-) 0 (-) 0 (-)

10 1 (38) 0 (-) 0 (-) 0 (-)

avg. 38% (60) 0% (-) 10% (69) 2% (64)

Table 5.4: Summary of running 10 experiments for each trajectory and
feature. Character codes: L - Line, D - Door, T - Point and P - Pair.

Single Feature Using only one feature give poor results. Table 5.4 shows
the result for the four different features used alone. The line feature gives the
best result with 38 successful localizations out of the 100 experiments. The
second best single feature is the point feature. The doors and the pairs are
next to useless when used alone. The point and the line feature are both easy
to detect. The line feature is easiest of all features to detect and the number of
lines in the map is relatively small. Doors are hard to detect. The pair feature
is more frequent than the doors but still a rare feature compared to lines and
points. Figure 5.11 shows the localization performance along trajectory 9 for
the different features. The probability mass within 1 m from the true robot
pose is plotted versus time. It is evident that the point and the line feature are
the only features that provide enough information to get the algorithm to start
converging. No clear signs of convergence is visible for the pair and the door
features. A feature that is rare is not able to overcome the diffusion caused by
the uncertainty in the odometric information. Even if sample support exist at
the true state, the information dissipates too fast.



5.4 Experiments 129

0 200 400 600

0

20

40

60

80

100

0 200 400 600

0

20

40

60

80

100

(a) L (b) D

0 200 400 600

0

20

40

60

80

100

0 200 400 600

0

20

40

60

80

100

(c) T (d) P

Figure 5.11: Each sub-figure shows the result of 10 attempts to perform
global localization along trajectory 9 using different features. For each
experiment the percentage of the total weight of the samples within 1 m
of the true pose is shown on the vertical axis. The dashed lines mark the
threshold used for a successful localization. The same scale is used in all
figures to highlight the differences.
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Planned sampling with N = 10, 000, rp = 0.02
Traj\feat LD TP DP DT LT LP

1 1 (15) 3 (57) 0 (-) 2 (53) 10 (38) 0 (-)
2 10 (47) 10 (42) 0 (-) 9 (34) 9 (45) 10 (42)
3 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
4 0 (-) 0 (-) 0 (-) 0 (-) 7 (54) 4 (78)
5 7 (47) 7 (87) 0 (-) 0 (-) 10 (22) 10 (36)
6 3 (54) 0 (-) 0 (-) 0 (-) 10 (42) 4 (55)
7 3 (119) 2 (67) 0 (-) 0 (-) 10 (90) 9 (117)
8 4 (29) 10 (66) 0 (-) 0 (-) 10 (9) 10 (13)
9 9 (41) 3 (57) 0 (-) 0 (-) 9 (35) 8 (34)

10 1 (24) 0 (-) 0 (-) 2 (65) 7 (22) 3 (51)

avg. 38% (49) 35% (62) 0% (-) 13% (42) 82% (40) 57% (51)

Table 5.5: Summary of running 10 experiments for each trajectory and
feature combination. Character codes: L - Line, D - Door, T - Point and
P - Pair.

Combining Two Features Table 5.5 shows the results of combining two
features. As in Table 5.4 the number of successful localizations is shown along
with the average number of iterations for convergence. Figure 5.12 shows the
performance along trajectory 9. The conclusions induced by the experiments
with single features are here strengthened. The infrequent pair and door fea-
tures do not even combined provide enough information to get convergence.
Combining any of these two features with the line or the point feature boost
the performance though. A comparison of Figures 5.11(a) and 5.12(a) illustrate
the effect that the door feature has. By sampling from the alternative impor-
tance function based on observations of doors, sample support around the true
pose is quickly established and the result is made less dependent on the initial
sample set. Combining the door feature with the point feature has a similar
effect as shown by Figures 5.11(c) and 5.12(d). Note that neither of the runs
shown in Figure 5.12(d) reach the required threshold for being classified as a
successful localization and thus do not show up in Table 5.5. The performance
is greatly improved though.

The pair feature is similar to the door in its effect on the performance. When
combined with a frequently observed feature that can more than compensate
for the diffusion caused by motion, the performance is greatly improved. The
improvement is not as large as when using the door feature, but still signifi-
cant. Looking at Table 5.5 the most significant improvement is achieved when
combining lines and points. In 82 cases out of 100 a successful localization is
obtained. The only information not contained in the line and the point fea-
tures combined is the information from the doors. Since doors are infrequently
detected this loss does not cost much in performance.
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Figure 5.12: Each subfigure shows the result of 10 attempts to perform
global localization along trajectory 9 when combining two features. For
each experiment the percentage of the total weight of the samples within
1 m of the true pose is shown on the vertical axis. The dashed lines mark
the threshold used for a successful localization.
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Figure 5.13: Each subfigure shows the result of 10 attempts to perform
global localization along trajectory 9 when combining three or all features.
For each experiment the percentage of the total weight of the samples
within 1 m of the true pose is shown on the vertical axis. The dashed lines
mark the threshold used for a successful localization.
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Planned sampling with N = 10, 000, rp = 0.02
Traj\feat DTP LTP LDP LDT LDTP

1 2 (59) 80 (26) 1 (12) 9 (37) 8 (32)
2 8 (32) 10 (33) 10 (37) 10 (27) 10 (27)
3 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
4 0 (-) 7 (59) 7 (84) 8 (59) 7 (64)
5 0 (-) 10 (22) 10 (30) 10 (23) 10 (28)
6 1 (70) 10 (36) 9 (54) 10 (34) 10 (31)
7 2 (80) 9 (108) 7 (116) 8 (88) 10 (82)
8 4 (84) 10 (10) 10 (12) 10 (9) 10 (8)
9 6 (58) 9 (36) 10 (27) 10 (19) 10 (18)

10 2 (61) 10 (16) 7 (30) 8 (19) 10 (36)

avg. 25% (57) 83% (38) 71% (45) 83% (34) 85% (36)

Table 5.6: Summary of running 10 experiments for each trajectory and
feature combination. Character codes: L - Line, D - Door, T - Point and
P - Pair.

Combining Three and All Features Having used features alone and in
combinations of two, most of the characteristics of the different features have
already been acquired. Combing three or all of them thus only act as a veri-
fication of the conclusion drawn so far. Points and pairs are derived from the
same sensor data and therefore contain the same information. Hence, com-
bining these two feature with a third is not much different from using only
one of the two in combination with the third. The pair feature is somewhat
better as a basis for the alternative importance function and somewhat faster
convergence is to be expected. Comparing Tables 5.5 and 5.6 shows that the
line and point combination on average needs 40 iterations for the 82 successful
localizations. Adding the pairs feature changes this to 38 iterations and 83
successful localizations which is an insignificant improvement.

5.5 Summary

In this chapter the Monte Carlo technique are outlined in general and the ap-
plication of the Sampling/Importance Resampling (SIR) algorithm to mobile
robot global localization are discussed in more detail. SIR is known as Monte
Carlo Localization (MCL) in the localization literature and was applied to the
problem in (Dellaert, Fox, Burgard & Thrun 1999). Due to limitations in
the computational resources a finite sample set size must be used. In a large
environment this leads to a sparse sample set and the probability of having
sample support in areas where the conditional PDF p(xk|Zk) is significant be-
comes increasingly smaller. Two approaches for improving the performance
of the standard MCL algorithm are presented. By drawing samples from a
uniform distribution in each iteration the performance increases. For similar
performance the required sample set size is cut in half and with that the com-
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putational demand. The observation that p(xk|zk) is likely to be significant
where p(xk|Zk) is significant led to the introduction of an alternative impor-
tance function that boosted the performance significantly. Using this second
approach lowers the required sample set size by a factor of 40-50 for similar
levels of performance compared with the standard MCL algorithm.

A thorough investigation of the effects of combining different features is also
presented. Four different features are considered; lines, doors, points and pairs.
It is concluded that the features can roughly be divided into two groups. Those
that are infrequent and whose main purpose is to act as a good basis for the
alternative importance function and those that are frequent and makes sure
that the algorithm converges. The pair and the door feature belong to the first
group and the point and the line to the second. These two groups are similar
to the division in Chapter 4 in terms of creative and supportive features. The
line and the door feature are extracted from laser data whereas the point and
pair come from sonar data. Using only one sensor modality is found inefficient,
however, combining both laser and sonar yields a significant improvement in
performance.



Chapter 6

Hierachical Simultaneous

Localization and Mapping

“The recovery of robust, coherent, and useful spatial models
from sensor data is currently probably the single largest bot-
tleneck in the development of autonomous robotic systems,
and constitutes itself into one of the fundamental challenges
in Robotics and Computer Vision”

(Elfes 1989)

The localization methods presented in Chapters 3-5 have one thing in common,
they all assume the existence of a map of the environment. As already men-
tioned in Chapter 1, a service robot should be able to construct the map on
its own. It was also concluded that building a map requires that localization is
performed simultaneously. This process is known as simultaneous localization
and mapping (SLAM). This chapter investigates feature based SLAM with a
focus on methods to deal with the scaling issue that standard SLAM algo-
rithms suffer from. The aim is to construct a minimalistic description of the
environment. That is, not to make the most detailed map possible, but rather
try to capture the large scale and robust features that are successfully used in
the previous chapters.

6.1 Background

Many methods for SLAM have been suggested in the literature. Not surpris-
ingly there is a tight coupling between the map representation being used and
the approach taken to SLAM. Brooks mentions two desirable properties of a
map (Brooks 1984):
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• “It should be stable. Small variations in observations should almost ev-
erywhere lead to structurally isomorphic representations.”

• “It should be mostly monotonic. Usually when additional observations
are made the representation of the world should be augmented rather than
being restructured. This need not always be the case.”

Three main directions can be identified in the literature: topological, grid-
based and feature-based approaches. As the thesis deals with feature-based
localization emphasis is placed on these methods.

In topological techniques the environment is modeled as a graph, in the ex-
treme case completely without geometric information. Localization is achieved
by recognizing places/nodes. A subway map is an example of a topologi-
cal map. Here the nodes corresponds to stations and are identified by their
name. One advantage with this is that: “movement errors do not accumulate
globally in topological maps as they do in maps with a global coordinate sys-
tem since the robot only navigates locally, between the places” (Kortenkamp
& Weymouth 1994). Topological mapping scales well to large environments
since the amount of information that is stored is limited to the description of
the places/nodes. One of the major disadvantages with topological SLAM is
that it typically is quite difficult to reliably recognize a place. The problem of
determining if a node has been visited before is referred to as the am-I-there-
yet -question in (Brooks 1984, Brooks 1985), or alternatively put, have we been
here before?

Ever since the introduction of the occupancy grid by Moravec and Elfes
(Moravec & Elfes 1985), the grid based mapping techniques are widely used
for mapping and localization. As discussed in Chapter 2 each grid cell holds a
value that represents the probability that it is occupied by an object. A typical
implementation of grid-based SLAM is to keep a local and a global grid. The
global grid is where the overall map is stored and the local map is used to
update it. By matching the local map to the global map a measurement is
given of the position of the robot. The local map can also be used to improve
the global map. An inherent problem with grid based methods is that they are
computationally expensive and consume much memory.

In (Thrun, Burgard & Fox 2000) an approach to SLAM is presented that fits
somewhere between the feature based and the grid based techniques (compare
appearance based methods in Section 2.1.5). It uses scan-matching to build
the map and a sample based method to perform localization.

6.1.1 Feature-Based SLAM

Most of the work on feature-based SLAM can be traced back to (Smith et al.
1987), where stochastic mapping is presented, which is an extended Kalman
filter based approach to SLAM. The robot pose and the location of all map
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features are collected in one large state vector. Both the robot pose and the lo-
cation of the map features are updated when mapped features are re-observed.
In essence, localization is performed within the current map, and when the
robot enters new areas the state vector is augmented with new features. The
two main steps of stochastic mapping are prediction and update. In the pre-
diction step the control signals to the robot or odometric information is used
to predict the state at the next time step. In the update step measurements of
features are used to update the robot pose and the mapped features.

The EKF gives only an approximative solution. A linearization must be per-
formed around the predicted state before the update can be done. Estimation
errors give linearization errors which eventually can cause divergence. Moutar-
lier and Chatila address this problem in (Moutarlier & Chatila 1990) where
the relocation-fusion approach is presented. The update step from (Smith
et al. 1987) is divided in two steps. In the first one, relocation, only the robot
pose estimate is updated using the measurements. Linearization is then done
around the updated robot pose before the features are updated in a fusion step.

A direct implementation of stochastic mapping has a O(N 3) complexity,
where N is the number of mapped features. The problem is referred to as
the map scaling problem. It is the correlation terms that result in the high
complexity. An attempt to reduce the correlations to a level where they can be
neglected is presented in (Leonard & Durrant-Whyte 1991b). The reduction is
achieved by noticing that the correlations are the result of updating the robot
pose with an uncertain map features or updating the map features with uncer-
tain robot pose. Neglecting the correlations are motivated by only performing
an update with confirmed robot poses and confirmed features. Confirmed is
defined by the covariance being smaller than some threshold in which case it
is approximated to zero. As soon as the robot starts moving the robot pose is
uncertain and it is therefore necessary to acquire the first feature before motion
has started.

The map scaling issue is approached in (Uhlmann 1995) where Covariance
Intersection (CI) (also known as Gaussian Intersection) is applied. CI is ap-
plicable even when the correlations are unknown and provides a conservative
estimate of the covariance. The overly optimistic estimate that typically re-
sults when neglecting the correlation terms in standard stochastic mapping,
as pointed out in e.g. (Castellanos et al. 1997), is here replaced by an overly
pessimistic estimate.

Another approach to the cross-correlation problem is presented in (Csorba
& Durrant-Whyte 1997, Csorba et al. 1997), where a relative frame of reference
is used. That is, the positions of the features are given only in relation to other
features and not to some absolute frame of reference. One disadvantage, which
is pointed out in (Csorba et al. 1997), is that there is no good way to go from the
relative map to a map in an absolute frame of reference, leading to a situation
where all users of the map (e.g. for planning) must work in the relative frame
of reference.
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Important contributions to feature-based SLAM are also given in (Castellanos
& Tardós 1999). The main contribution here is the combination of many fea-
tures. It is typically assumed that a feature can only match a feature of the
same type. This limitation is alleviated by the introduction of so-called bind-
ing matrices that relate different features. In this way a plane can be used to
update an edge for example.

In (Dissanayake et al. 2000) yet another approximation technique to full
SLAM is proposed. It is noted that the removal of features from the state vector
does not lead to any inconsistencies, only loss of information. By carefully
selecting which features to remove performance is only slightly reduced. The
scheme for removing features is based on only keeping the best features that
are no longer visible. That way the robot can still re-localize when it returns
to a position it has already been to, and the number of features that have to
be maintained is reduced.

Cox and Leonard only consider map building and not the full SLAM prob-
lem in (Cox & Leonard 1994). The mapping problem is cast as a multiple
hypothesis problem, where each hypothesis represents one way of interpreting
the measurements, i.e. one map. The position of the robot is assumed to be
precisely known. Applying this technique on SLAM is a true challenge as each
hypothesis on its own suffers from the map scaling problem.

6.1.2 Hierarchical SLAM

Here, a hierarchical approach to SLAM is argued for, i.e. H-SLAM. Neglecting
the correlations between features altogether has been shown to cause failure.
On the other hand, even though the state vector is carefully pruned, the com-
plexity still limits the size of the environment that can be handled. At some
point the environment has to be divided into smaller units.

A two-layer hierarchy is here considered. As the environment becomes large
the number of levels in the hierarchy can be increased, for example, the lowest
levels could be rooms, the second floors and the third level in the hierarchy
could correspond to buildings. The idea of a hierarchical map structure is not
new.

In (Hébert et al. 1996) the environment is divided into local maps. The
division is here driven by the desire to create local maps that are independent
of the odometric errors. This is possible by measuring the relative position of
the features.

Chong and Kleeman also use a local map strategy in combination with an
advanced sonar sensor array which is capable of localizing and classifying sim-
ple indoor features (Chong & Kleeman 1997). The division into submaps is
here driven by a desire to reduce the memory and the processing requirements.
Furthermore the strategy addresses the problem of divergence caused by error
accumulation from, for example, inaccurate odometric models and lineariza-
tions. Each submap maintains full correlation information. A new submap
is created when the uncertainty within the current submap exceeds a certain
threshold.
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Figure 6.1: Using square submaps to build a map. The borders between
the submaps often end up in inconvenient locations. Here the intersection
between the upper and lower row of submaps are in the middle of a corridor
which leads to a large feature overlap and unnecessary switching between
the submaps.

This chapter is mainly based on the Decoupled Stochastic Mapping (DSM)
technique presented in (Feder 1999), where, like in (Chong & Kleeman 1997),
each submap maintains full correlation information, but correlations between
submaps are only given through the use of a common coordinate system. The
submaps are fixed in size and are distributed in a grid structure (see Figure 6.1).
The crucial step when dividing the world into submaps is to correctly handle
the transition between submaps. Care has to be taken to ensure a consis-
tent error estimate, but at the same time global convergence is desired so that
the uncertainty must not be excessively overestimated. While the grid based
submap allocation strategy is easy to implement, the intersections between the
submaps often end up in inconvenient positions. In Figure 6.1 the border be-
tween the upper row of submaps and the lower is in the middle of the corridor.
This gives two undesirable consequences. First, the features that can be de-
tected when moving in the corridor are the same irrespectively of whether the
robot is in the upper row of submaps or the lower. This results in a significant
overlap of features between the submaps. Second, the robot is likely to change
submap more often than with a better distribution of submaps.

The map used in the previous chapters is made manually. Each room is first
mapped individually and then their relative positions are estimated. Guided
by this, it is more natural to use one submap for each room (see Figure 6.2).
Switching between submaps is now done only when going through a door. To
incorporate corridors and other regions that are not really rooms, the concept
of room is expanded to an area. The door concept is also expanded to gateway,
which connects two areas.
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Figure 6.2: Using one submap per room (area in general). The division
between the submaps is now more natural and each area is more accurately
mapped as it is contained in one submap.

6.1.3 Outline

The remainder of this chapter is organized as follows. In Section 6.2 the the-
ory of standard feature-based SLAM is briefly outlined, whereas Section 6.3
describes the DSM technique and some other algorithmic details. Section 6.4
compares standard SLAM with H-SLAM regarding map quality and complex-
ity. The suggested room based map allocation strategy is also compared with
the original grid based method. Furthermore, an active strategy for room based
mapping in cooperation with a user is presented as a possible scenario for how
mapping can be accomplished in a service robot application.

6.2 Theory

The state vector, xk, incorporates the location of all N mapped features,
{xi

k, i = 1, . . . , N} as well as the robot pose and is thus given by

xk =








xr
k

x1
k
...

xN
k







. (6.1)

The SLAM problem can be formulated as augmenting and estimating xk given
measurements of the environment, i.e. estimating both xr

k and {xi
k, i = 1, . . . , N}

and adding new features if needed.
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Let x̂k|k denote the estimate of the state vector at time k. The correspond-
ing estimation error covariance matrix can be decomposed as

Pk|k =








P rr P r1 . . . P rN

P 1r P 11 . . . P 1N

...
...

. . .
...

PNr PN1 . . . PNN







, (6.2)

where P rr is the covariance matrix of the robot pose estimate, and P ii the
covariance matrices for the features. The correlations between different features
and the robot pose are given by the off-diagonal submatrices. The estimated
state vector x̂k|k together with the covariance matrix Pk|k is often referred to
as a stochastic map. This term highlights the fact the the map is not fixed, it
is being estimated as the robot moves along.

6.2.1 Prediction

The robot pose and the feature locations are given in a fixed global coordinate
system. Moving the robot therefore only effects the estimate of the robot
pose x̂r . The update is based on the motion model for the robot,

x̂r
k|k−1 = f(x̂r

k−1|k−1 ,uk, 0) (6.3)

where the zero corresponds to the best prediction of the process noise wk (2.14).
With the simplifying assumption that wk is independent of the state, the co-
variance matrix P rr

k|k−1 approximately evolves as

P rr
k|k−1 = FxrP rr

k−1|k−1F
T
xr + FuQkF

T
u (6.4)

where Qk is the covariance matrix of the process noise and Fxr and Fu are the
Jacobians of f evaluated in (x̂k−1|k−1,uk). The covariance for the features do
not change by moving the robot, but the correlations between the robot pose
and features do. These are updated according to (Moutarlier & Chatila 1990)

P ri
k|k−1 = FxrP ri

k−1|k−1. (6.5)

6.2.2 Update

To reduce the uncertainty, features extracted from sensor data must be success-
fully matched to the stochastic map. The measurement vector zk containingM
observed features is given by the, in general non-linear, measurement equation

zk = h(xk,vk) =






z1
k
...

zM
k




 =






h1(xr
k,x

o1

k ,v
1
k)

...

hM (xr
k,x

oM

k ,vM
k )




 . (6.6)
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It is here assumed that the l:th measurement zl
k corresponds to the o(l):th

mapped feature x
o(l)
k where o(l) ∈ [1, . . . , N ]. Using the standard equations for

the extended Kalman filter yields (2.21) the update equations

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1, 0)) (6.7)

Pk|k = (I −KkHk)Pk|k−1 (6.8)

where Kk is the Kalman gain and Hk is the Jacobian of h with respect to xk

evaluated in x̂k|k−1. The Kalman gain is given by

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1, (6.9)

where Rk is the measurement covariance matrix. It is assumed that the mea-
surements are independent, which gives that Rk is a block diagonal matrix,

Rk =






R1
k . . . 0
...

. . .
...

0 . . . RM
k




 . (6.10)

As noted in (Moutarlier & Chatila 1990) the matrix Hk is quite sparse. The
larger the state vector is, the sparser Hk is. By taking this into account the
computational complexity is reduced from O(N 3) to O(MN2). The matrix
(HPHT +R) can be divided into submatrices given by

[HPHT +R]l,m =H l
xrP rr(Hm

xr )T +H l
xo(l)P

o(l)r(Hm
xr )T +

H l
xrP ro(m)(Hm

xo(m))
T +H l

xo(l)P
o(l)o(m)(Hm

xo(m))
T + δlmR

l

(6.11)

where l,m = 1, . . . ,M ,

δlm =

{

1, l = m

0, l 6= m
. (6.12)

and the time indices are omitted. The matrix (PHT ) can be divided in a
similar way into

[PHT ]i,l = P ir(H l
xr)T + P io(j)(H l

xo(l))
T (6.13)

where i = 0, . . . , N , l = 1, . . . ,M and x0
k = xr

k.

6.2.3 Augmenting the Map

When the SLAM process starts, the state vector only contains the robot pose.
Without any features in the map there is no way to keep the uncertainty
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bounded. Extracted features that do not match any feature in the map are
natural candidates for inclusion. However, every new feature in the map in-
creases the computation cost. Therefore, care has to be taken as to which
features to add.

Given a measurement zl, introduce the function t that transforms the mea-
surement into the global reference frame of the map. The new map feature is
then given by

x̂N+1 = t(x̂, zl) (6.14)

and the state vector can be augmented as

x̂ :=

(
x̂

x̂N+1

)

. (6.15)

The covariance matrix of the new feature is, using a first order approximation,
given by

PN+1N+1 = TxrP rr(Txr)T + TzlRl(Tzl)T , (6.16)

where Txr and Tzl are the Jacobians of t. This equation makes the difference
between mapping, where the pose is assumed known, and SLAM explicit. The
uncertainty in the robot pose estimate propagates directly to the uncertainty
of the new map feature. This coupling between the robot pose and the new
map feature is however not what makes SLAM so computationally intensive.
This comes instead from the correlation between the robot pose and features,
i.e. the off-diagonal elements of P . The correlations between the new feature
and the robot pose and the old features are given by

PN+1i = TxrP ri, i = 0, 1, . . . , N, (6.17)

where once again the robot state is given index i = 0.

6.3 Algorithm

There are two fundamental problems with the approach presented above. One
is the computational complexity and the other is the data association. Even if
the spareness ofH is exploited the algorithm is still O(MN 2). In a large enough
environment this is a problem. The limit in the number of features that can be
handled is highly dependent on the environment and the feature types being
used. As has been the case in all chapters so far, the data association problem
must be solved for successful executions of the algorithms. In the context of
SLAM, it is crucial to find correct correspondences between the measurements
and the map features. In the previous chapters an error in the data associations
caused a loss of track. In SLAM however, the problem is more severe. An error
in the data association cannot only lead to errors in estimating the robot pose,
it can destroy the entire map.
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6.3.1 Data Association

Data association is performed with validation gates in innovations space (see
Section 2.2.5) and a nearest neighbor strategy. The innovation covariance ma-
trix, Sk, in (2.22) must now explicitly account for the uncertainty of the map
feature as well, and is given by (Feder 1999)

Si,j = Hxi

(
P rr P ri

P ir P ii

)

(Hxi)T +Rl. (6.18)

6.3.2 Adding Features to the Map

All unmatched features are added to the state vector directly, but only as un-
confirmed features. Correspondences between measurements and unconfirmed
features are not exploited to update the state estimate. To reach the status of
confirmed, a feature has to be supported by new observations within a certain
time window. In this way the number of features do not grow too large, but
new features still benefit from other observations. When traveling in a new
area there is typically a set of unconfirmed features out of which some become
confirmed and some are rejected. It is only by re-observing features that the
uncertainty can be reduced. Constantly augmenting the map without ever
re-observing features does not lead to a decrease in uncertainty. Determining
when a feature is confirmed is thus of critical importance. Therefore there is
a tight coupling been the ability to re-observe features and the way the robot
can move when building a map.

6.3.3 Reducing the Number of Features in the Map

Reducing the number of features in the map is important. It is of interest, not
only from a computational point of view, but also because of the underlying
concept of the minimalistic model. As described above, features are deleted
from the map when they are not confirmed fast enough. Another way to
reduce the number of features is to remove features that are too close to some
other feature. Too close is defined by the Mahalanobis distance just like when
matching measurements to features. The error between two features is given
by

νi,j = xi − xj = H

(
xi

xj

)

, (6.19)

where H is

H = (I − I) . (6.20)

The error covariance in (2.22) is given by

Si,j = H

(
P ii P ij

P ji P jj

)

HT = P ii − P ij − P ji + P jj . (6.21)
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6.3.4 Dividing the Map Into Submaps

The Decoupled Stochastic Mapping (DSM) technique from (Feder 1999, Leonard
& Feder 1999) is an approximation technique where instead of creating one map
covering the entire environment, local submaps are used. All submaps share a
common coordinate system. Each submap has its own estimate of the robot
pose and keeps a full covariance matrix.

The state of a submap is frozen as soon as the robot leaves the submap.
Hence, the robot pose and the state of the features is only updated in the cur-
rent submap, making the technique scale to larger environments. By limiting
the size of the submaps the computational demand can be upper bounded, but
the memory required still increases with the size of the environment. However,
all but the current submap can be stored on disk.

An important part of DSM is how to move between the submaps and still
guarantee a consistent estimate, i.e. that the estimation error covariance ma-
trix are not underestimated. Three different cases of submap traversal is dis-
tinguished between:

1. moving from an existing submap to a new submap,

2. moving between two existing submaps from a newer submap to an older
submap and

3. moving from an older existing submap to a newer existing submap.

Creating a New Submap

Initializing a new submap is trivial, however, when to do it is a more subtle
question. Since there is a global coordinate system, the robot pose from the
old submap is simply entered as the first state in the state vector of the new
submap. The covariance of the pose estimate is also copied into the covariance
matrix of the new submap. Let A be the old submap and B the new. The
initialization of B is then given by

Bx = Ax r, (6.22)
BP = AP rr . (6.23)

Cross-Map Vehicle Relocation

If the robot leaves submap B for submap A it needs to relocate in that submap.
Switching to using the old robot pose estimate from submap A is clearly not
possible as it still contains the last estimate of the robot pose. There is no
new information about the features in submap A, and so these feature state
estimates are still the same. Since the submaps have a common coordinate
system the pose estimate from submap B can be moved into submap A. It is,
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however, important to make sure that the state estimate remains consistent.
This is achieved by the so-called cross-map vehicle relocation step,

Ax :=








Bx r

Ax 1

...
Ax N

A







, (6.24)

AP :=








AP rr + BP rr AP r1 . . . AP rNA

AP 1r AP 11 . . . AP 1NA

...
...

. . .
...

AP NAr AP NA1 . . . AP NANA







, (6.25)

where the robot pose uncertainty of the old submap A is increased by the
uncertainty from submap B.

Cross-Map Vehicle Update

Uncertainty propagates from submap to submap through (6.23) and (6.25).
Unless there is some scheme to also let newer submaps benefit from the lower
uncertainties in previous submaps, the global uncertainty can never be de-
creased in a submap once it is created. This is applicable when again moving
back from submap A to submap B. Submap A was created before submap B
and as such has a smaller global uncertainty. The so-called cross-map vehicle
update step can here be applied. It is a two step process where the robot
pose estimate from submap A is used as a measurement of the robot pose in
submap B. Due to the correlation between the robot pose and the features
in a submap such strategy cannot be applied directly as it incorrectly reduces
the uncertainty of the features. For this purpose a de-correlation step is added
before the update is performed.

Step 1: De-correlation In the de-correlation step the old information about
the robot pose in submap B is removed by replacing it with a random pose
within the submap and inflating the robot pose covariance. To counteract the
incorrect reduction in feature uncertainty caused by the update, the feature
uncertainties is also increased (see (Feder 1999) for a justification).
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Bx :=








Bφ
Bx 1

...
Bx N

B








(6.26)

BP :=








BP rr + BΦ BP r1 . . . BP rNB

BP 1r BP 11 . . . BP 1NB

...
...

. . .
...

BP NBr BP NB1 . . . BP NBNB








(6.27)

Here Bφ is a random pose in submap B and BΦ is a covariance matrix cor-
responding to a level of uncertainty that surpasses the size of the submap.

Step 2: Update In the second step the robot pose from submap A is used
as a measurement in submap B. The measurement equation corresponding to
measuring the robot pose, i.e.

z = H Bx +w = Bx r +w (6.28)

where z = Ax r, Q = E[wwT ] = AP rr and H = [I33 0]. Updating the state
vector Bx and error covariance BP is then performed using the standard EKF
update formulas (2.13).

6.4 Experiments

In this section an evaluation is made of the standard SLAM algorithm versus H-
SLAM with the two different approaches for allocating submaps, square grids
and room based. An evaluation is also presented for using the extra degree
of freedom that a pan-tilt unit provides to detect lines which otherwise are
hard to detect. A minimum length of 1 m is used for the line features in the
experiments.

6.4.1 A Small Illustration

First a small example is given to show how the submaps are allocated and how
the features are distributed between the submaps. This comparison is based on
data collected when driving a Nomad200 between the living-room and one of the
nearby offices, back and forth two times. Figure 6.3 shows the resulting map,
containing 54 line features when using standard SLAM. The trajectory followed
by the robot is also given. By comparing the map with the real environment,
errors in the data associations are clearly visible. For example, in the lower
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Figure 6.3: A small scale SLAM experiment with 54 features. The robot
drives back and forth between the living-room and a nearby office twice.
Errors in the data associations are visible in the lower part of the corridor
and the inner wall of the living-room where there are many lines close
together where there should be only one line.

corner of the corridor there are several lines where there should be only two
perpendicular ones. The same is true for the inner wall in the living-room.
There are no time stamps on the laser sensor data, i.e. registration between
laser data and odometric information is difficult. The low bandwidth over the
serial connection with the laser sensor gives a transfer time of approximately
0.2-0.3 s for each scan. The robot is not running a real-time operating system
and the code is not written to guarantee fixed process scheduling. The errors
in the registration can therefore be considerable in some cases. Some of these
issues can be addressed by using more advanced verification schemes.

Based on the same data, the results of the H-SLAM algorithm with square
grids are shown in Figure 6.4. In total, the method results in 74 features.
Because of the the way the submaps are allocated there is a considerable feature
overlap between the submaps. The individual submaps are shown to the right
in Figure 6.4. The dotted lines mark the borders of the submaps. This example
is a worst case scenario for the grid strategy as the grid-maps are allocated with
45◦ to the environment. In the current implementation the submaps are aligned
with the odometric coordinate system when the map is initialized. To get the
best out of a square grid approach, the orientation of the grids must be chosen
wisely, which is hard given that the task is to map an unknown environment.

Figure 6.5 shows the result of yet again using the same data, but now
with the room based submap allocation strategy. The gateways between the
submaps are defined by the user in the current implementation. The submaps
are now more intuitively distributed. The total number of features is 65 and
there are three submaps, one for each room the robot visits. The difference in
the number of features is not so large, but the alignment problem is addressed
automatically by having one submap per room.
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Figure 6.4: Small example of H-SLAM with square grid submaps. The
leftmost figure shows all submaps overlaid. The dotted lines mark the
border of the submaps. The four other figures show the features from the
different submaps. There are 74 features in total with 42, 17, 4 and 11,
respectively in the four submaps.

Figure 6.5: Small example of H-SLAM with room based submaps. The
leftmost figure shows all submaps overlaid with 65 features in total. The
three figures on the right show the different submaps with 23, 30 and 12
features, respectively.
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6.4.2 Lower Floor at CAS

The computational complexity becomes noticeable when the environment is
larger. The total computation time in the three cases in the previous example
was 41 s, 34 s and 30 s, respectively. To test the ability to build a map of a
larger environment, the lower floor at CAS is tested using a Nomad200 robot,
controlled with a joystick. The robot travels a total distance of 388 m over a
period of 44 minutes (average speed of 0.14 m/s).

0

50

100

150

200
250

300

350

0 20m

S

E

Figure 6.6: The resulting map when using the standard SLAM algorithm.
The arrows with number mark distance traveled along the trajectory. The
raw odometric data is also shown (inner plot).
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The map that results when applying the standard SLAM algorithm is shown
in Figure 6.6. The robot trajectory is also shown along with indications of dis-
tance traveled every 50 meters. The raw odometric pose estimate is also shown
in the inner plot. The strong line support in a corridor makes the corridors
become almost straight. That they are not perfectly straight is because the
robot is not able to associate all small line pieces from a corridor wall to one
line. There are some errors in the length of the corridors, but that is to be
expected as there is little information in that direction. The map consists of
114 lines and the total computational time to build it is 340 s. This is only
12% of the total time of the experiment, but due to the complexity it becomes
increasingly difficult to maintain real-time performance when the number of
features increases. It is when the robot is translating and rotating fast that
the problems manifest themselves as these are the cases when fast updating is
most needed. In a real application this means that the robot has to discard
valuable information while the old is being processed.

Figure 6.7 shows the map that resulted when using square submaps, 20 by
20 meters in size, with a 2 m overlap. The corridor outside the living-room is
now somewhat more bent as it is divided into four submaps. In the middle of
the corridor there is a large collection of lines from three different submaps that
corresponds to the same physical wall. Information is only shared between the
submaps when the robot travels between them. This means that when the robot
travels along the corridor for the first time, an empty submap is created three
times. All prior information about features in the corridor is left behind in the
previous submap. This effect is even more clear in the leftmost corridor where
a new submap is allocated almost exactly at the time when the odometry starts
to drift much more rapidly (compare inner plot of Figure 6.6). The robot is able
to find its way back to the living-room, but the quality of the map suffers. The
total computation time for this map is 185 s and the total number of features
is 166. These features are divided as 43, 17, 26, 18, 11, 19, 16, 7 and 9 between
the submaps. The reduction in total computation time is 50% compared to
standard SLAM. More importantly, no more than 43 features are processed at
the same time which allows for some margin to the real-time threshold. By
aligning the square grids with the dominant wall directions of the environment
(see Figure 6.8), better results are achieved. The leftmost corridor still shows
clear signs of the submap intersection, but it is not as severe as before. However,
the topmost area that was previously well mapped now suffers the effects of
being in the intersection between three submaps. This example illustrates the
problems that are caused by using a fixed submap strategy.
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Figure 6.7: H-SLAM with square grids on the lower floor at CAS.

0 20m

Figure 6.8: H-SLAM with aligned square grids on the lower floor at CAS.
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0 20m

Figure 6.9: H-SLAM with room based submaps on the lower floor at
CAS.

Figure 6.9 shows the resulting map when assigning one map to each room.
Also in this case the corridor is somewhat bent. If the robot had traveled all the
way up the corridor before entering the offices on the sides, the effect would
not have been as obvious as the robot would stay within the same submap.
The horizontal corridor in the Figure 6.9 is split by two doors and is hence
divided into three different submaps. Effects of this are clearly visible in the
center of the corridor where the corridor lines from the different submaps do
not quite line up. The total computation time to build the map is 182 seconds
166 feature are used in total, divided as 7, 38, 6, 7, 15, 14, 8, 10, 18 and 28.

Figure 6.10 shows the estimated standard deviations for the position esti-
mation errors in the x and y directions. The angular uncertainty results in
large uncertainty in the x direction when the robot travels up the corridor (x
is perpendicular to the corridor). The uncertainty in the y direction is reduced
by detecting lines in the rooms on the side of the corridor. Notice how the
uncertainty drops again when the robot travels back to the area outside the
living-room, close to where it started. The uncertainty reaches its maximum
at the top of the leftmost corridor. The H-SLAM algorithms mostly give a
larger uncertainty than the standard SLAM algorithm, as is to be expected.
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Figure 6.10: The uncertainty in x and y direction for SLAM, H-SLAM
with grids and H-SLAM with room based submaps. Notice how the uncer-
tainty decreases when the robot reaches a position it has already been at.
When traveling along the corridor to the left and then up the uncertainty
reaches its maximum.

There are instances when the estimated uncertainty is smaller though. One
such example is when the robot comes out of the room above the two offices in
the main corridor. This could be an indication of an inconsistency.

6.4.3 The Atrium in the Main Building

The lower floor at CAS does not contain any loops. It is when the robot
travels in a loop that SLAM is really put to the test. For successful handling
of such loops the robot must be able to associate new measurements to map
features introduced in the map when the loop was started. For this purpose
the data that was gathered during the demonstration described in Section 3.4.4
in the area around the atrium in the main building is once again used. Here
a Nomadic SuperScout robot moves autonomously while giving guided tours.
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Figure 6.11: The map built using standard SLAM. The true trajectory
followed by the robot is also shown in the figure. Every 25 m is marked
with an arrow to indicate the direction of motion. The loop around the
atrium is successfully closed and the resulting map match the handmade
map (dashed lines) quite well. 67 line features are used in total.

There are many people around the robot and it is therefore not able to detect
lines at long distances. The total distance traveled is 165 m and the total time
is close to 22 minutes (average speed is 0.12 m/s).

Figure 6.11 shows the map built using the standard SLAM algorithm. Also
shown in this figure is the robot trajectory during the run with marks every
25 m. The total number of lines is 67 and the total computation time is 75 s.
The robot closes the outer loop in the area twice. When traveling into new
areas on the first lap, the uncertainty grows steadily. When the robot revisits
the area where it started it is able to associate the measurements with already
stored map features. When this happens the low uncertainty associated with
the initial features in the map is propagated back through the map by means
of the correlation terms in the covariance matrix. Had the robot not been able
to solve the association problem it would add new features to the map and the
uncertainty would keep growing. Also in this map there are clear signs of errors
in the data associations, for example, in the lower right corner. Three door leafs
have also been added to the map, one in the lower right corner, and two in the
upper left. Since the door leaf are highly dynamic they are undesirable features
in the map, but in the current implementation this problem is not addressed.
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Figure 6.12: The map resulting from H-SLAM with square grids. The
map contains 82 (41, 20, 9 and 12) line features to compare with 67 for
standard SLAM. The loop is successfully closed twice and the resulting
map matches the handmade map (dashed lines) quite well.

Figures 6.12 shows the resulting map for the square grid based H-SLAM
approach. The environment is smaller than at CAS and so four 20 by 20 meters
square grid submaps are enough. In this small environment, one submap can
cover the entire robot trajectory, if the localization of it is chosen carefully. The
map contains 82 line features in total, divided as 41, 20, 9 and 12 on the different
submaps. The total computation time is 58 s to compare with 75 s for standard
SLAM. Since the environment is smaller, the cost for feature extraction is still
dominant in the total amount of computations that are spent. Comparing the
generated map with the handmade one (dashed lines) shows them to be quite
consistent. The only significant discrepancy is in the total vertical distance on
the left side which is underestimated. Just like when mapping the lower floor
at CAS, features from the different submaps do not match perfectly. However,
the loop is successfully closed which is the most important part of the test.

The result of the second approach to H-SLAM, with room based submaps
is shown in Figure 6.13. In total, 85 features are used and the computational
time is 54 s. The features are distributed among six different submaps as 3, 33,
11, 18, 12 and 8. The somewhat smaller total computation time is most likely
explained by the smaller submaps where the largest one contains 33 compared
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to 41 for the square grid map. The loop is also this time closed successfully.
However, notice how the wall in the upper left room is modeled with many line
features. The reason for this is that this wall can be seen clearly from three
of the submaps. Besides from this, the room based submap technique give a
more consistent map of the environment where features which are represented
in several submaps are closer together.

0 10m

Figure 6.13: The map resulting for H-SLAM with room submaps. The
map consists of six submaps with 3, 33, 11, 18, 12 and 8 features, respec-
tively, which makes 85 features in total. The map is consistent with the
handmade map except for the two lines in the lower right corner. Errors in
the data association are also visible in the upper left corner where several
lines are close together.
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The estimated standard deviation of the position estimation error is shown
in Figure 6.14. Until the loop is closed for the first time the uncertainty in-
creases. Upon closing the loop there is an almost instantaneous drop in the
uncertainty down to a level that is close to the initial one. The uncertainty in
the x direction is reduced much later for the room based H-SLAM algorithm.
This is the result of the submap division. There are simply no features with
the right orientation in the corresponding submap.
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Figure 6.14: The uncertainty in the x and y directions. The uncer-
tainty grows almost monotonically until the first loop is closed. When this
happens the uncertainty is reduced significantly. The uncertainty when
traveling around the second loop is smaller because a map already exists.
For every additional loop the map is improved.
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6.4.4 Active H-SLAM: “Turner & Hooch”

The experiments from Chapters 3-5 give strong indications that pose tracking
and global localization can be performed using a minimalistic model of the en-
vironment. However, depending on the height of the sensor and the position of
the robot, the walls can be heavily occluded, which makes minimalistic mapping
difficult. This is reflected by the sparse submaps of rooms in e.g. Figure 6.5.
Rooms are typically more cluttered than corridors and thus it is harder to de-
tect lines. For this reason it is of interest to investigate methods that actively
seek to improve the map in regions where it is sparse.

The target for the methods developed in the thesis is a service robot appli-
cation. Although the robot must have the ability to generate a map representa-
tion from sensor data, it is not clear that it has to do so entirely autonomously.
In fact a certain degree of interaction between the user and the robot might
be necessary. The robot has to be taught the names of locations that the user
wants the robot to be able to go to, i.e. there is a need for a common lan-
guage. In this section a semi-automatic mapping method is investigated. The
user presents the robot with the different areas and gives them names that can
later be used for referencing. This strategy is inspired by the movie “Turner &
Hooch” in which Tom Hanks’ character shows a dog all the rooms of his house
and instructs the dog about whether it is allowed in there or not. A typical
scenario with a robot might look like:

1. User: “Robot, this is the living-room, start mapping it and let me know
when you are done.”

2. The robot explores the room until it is satisfied with the map.

3. Robot: “The living-room is now mapped. Guide me to the next area”.

4. The user guides the robot to the door leading out in the corridor.

5. User: “Robot, you can now enter the corridor and start mapping it. Let
me know when you are done here”

6. and so on . . .

When a room is mapped the robot can also be shown important positions
within the room, e.g. a sofa or a bookshelf. By guiding the robot to a posi-
tion there is no need for the user to know anything about coordinate systems,
representations, etc.

Mapping Objective

In the minimalistic framework, the objective is to build a model of each area
which only captures the large scale structures. If two line features in the map
can be verified to correspond to the same wall in the environment the number
of map features can be reduced by one. This saves computations and brings
the map closer to a minimalistic description of the environment.
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Figure 6.15: What is occluded at sensor height is often free higher up.
By mounting the laser sensor at a pan-tilt unit this can be utilized and
the two line segments found on either side of the cupboard can be joined.

Strategy

The strategy taken here for mapping a room can be divided into two steps,
hypotheses generation and hypotheses verification, where hypothesis refers to a
hypothesis about the existence of a wall. Let such a hypothesis be denoted by
W (i).

As the name implies the hypotheses generation step aims at forming hy-
potheses about where the large scale line structures are. A brute force so-
lution is to let the robot move around at random and extract lines, which
are then combined to form wall hypotheses. However, there are more struc-
tured procedures. In (Hinkel & Knieriemen 1988) the so-called angle histogram
is used to find the most likely wall directions. Another voting based tech-
nique is the Range Weighted Hough Transform (RWHT) (Forsberg, Åhman &
Wernersson 1993) applied in Chapter 3. The disadvantage of the angle his-
togram is that it assumes right angles between the walls, whereas the RWHT
does not. The downside of the Hough Transform is that it is computation-
ally expensive, but this is of little concern as the hypotheses generation is a
bootstrapping step and the Hough Transform is therefore used.

In the hypotheses verification step the robot attempts to actively verify
the different wall hypotheses by positioning itself at a favorable position and
directing the sensors towards the hypothesized wall. Most platforms are limited
to turning the sensors in different directions in the plane. With this limitation
concluding that two lines in fact belong to the same wall is difficult. If, however,
the sensor can be tilted, verification becomes easier. Typically the walls are
much less occluded higher up. By mounting a laser scanner on a pan-tilt unit
it is possible to analyze the wall at different heights (see Figure 6.15).
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When all wall hypotheses, W (i), have either been verified or rejected the
map is evaluated to make a decision if it complete or not. When the map is
found not to be complete further exploration is needed, otherwise the robot
robots back to the user that the room is mapped.

Figure 6.16: The result of combining two horizontal laser scans to give a
360◦ view of the living-room. Notice how the left and the lower walls are
almost completely occluded when using a Scout robot with the sensor at
0.5 m above ground.

Hypothesis Generation

Figure 6.16 shows an example of what the living-room looks like when com-
bining two scans of the horizontal plane, using a SuperScout robot with the
sensor at approximately 0.5 m above the floor. The left and the lower walls are
here almost completely occluded, whereas the right and the upper wall create
two strong wall hypotheses using the RWHT. By comparing this scene with the
maps of the living-room acquired by the Nomad200 robot (see e.g. Figure 6.5),
it is clear that it is much more difficult to map a room when the sensor is as
low as on the SuperScout robot.

In most areas, the intersection points between the walls and the ceiling are
easy to detect, and can thus be used to find the walls. Detecting these points
can be achieved by mounting the laser scanner on a pan-tilt unit. Wall hy-
potheses can then be generated from the estimated intersection points by only
considering the xy-coordinates and applying the RWHT. Figure 6.17 shows the
result of tilting the laser sensor so that it scans vertically. The left subfigure
shows the scan in Cartesian coordinates and the right one in polar coordinates.
Clearly, in this case, the intersections between the walls and the ceiling are
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given by the two peaks in the polar plot. Figure 6.18 shows the location and
configuration of the laser sensor with respect to the room. If the sensor is
rotated to scan the ceiling the data shown in Figure 6.19 can be acquired. The
estimated intersection points between the walls and the ceiling are marked as
dark dots. Figure 6.20 shows the intersection points projected to the horizon-
tal plane. Comparing this data with the data acquired at sensor height (see
Figure 6.16) confirms the hypothesis that the walls are more clearly visible at
ceiling height.
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Figure 6.17: A vertical laser scan in Cartesian (left) and polar (right)
coordinates. The intersections between the ceiling and the walls are given
by the two peaks in the polar plot. The negative direction is east in the
Cartesian coordinate system.

Figure 6.18: The scene that resulted in Figure 6.17. Note how the sensor
is tilted 90 backwards to give a view of the ceiling. The left photo shows
the wall facing east and the right photo the west wall.



6.4 Experiments 163

Figure 6.19: The result of scanning with the sensor tilted 90◦ to give
vertical scans. The estimated intersection points between the walls and
the ceilings are marked with dark dots.

Figure 6.20: The estimated intersection points projected on the xy-plane.
The walls are now easier to detect than in a horizontal scan.
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Hypotheses Verification

To get a good view of a potential wall given by W (i), the robot positions itself
in the middle and at a distance d from W (i) (see Figure 6.15). When choosing
d there are two competing issues. The risk of something occluding the sensor
increases with d, but the larger d is the easier it is to get a good view above an
object placed in front of the wall, .e.g. a bookshelf. The distance d is chosen as
a compromise where the width, b, and height, B, of typical objects are assumed
to be less than 0.4 m and 2 m respectively. The ceiling height, H , is larger
than 2.3 m and the height of the sensor above ground is 0.5 m. The condition
to barely see the wall above an object can then be calculated as

d

H − h
=

b

H −B
⇒ d ≈ 2 m. (6.29)

At this distance from a wall hypothesis, W (i), the pan-tilt unit is used to scan
perpendicular to W (i) from ceiling height to ground level. The merging of line
segments is left to the SLAM algorithm through the mechanism described in
Section 6.3.3. If the robot fails to move to a desired vantage point it tries to
scan the wall anyway from the position where the motion failure was reported.

A wall hypothesis, W (i), is assumed to be verified if all map lines that are
close to W (i) add up to a length that is more than 30% of the length of W (i).
When this condition is not met W (i) is rejected and assumed to be the result
of for example structured clutter.

While moving between the different vantage-points lines are constantly ex-
tracted to provide input to the SLAM algorithm to reduce the position error
and include all visible lines in the map.

Mapping the Living-Room

To test the above scheme an experiment is performed in the living-room, which
is one of the rooms that was previously sparely modeled. This time the living-
room is mapped using a SuperScout robot with the laser sensor approximately
0.5 m above ground, to compare with the Nomad200 where the laser is 0.9 m
above ground. The map that results is shown in the left subfigure of Figure 6.21.
Even if the SuperScout robot is driven into every corner of the room providing
the best possible view of the different walls, the map is even sparser than, for
example, the map in Figure 6.5. That this is the case can be understood by
studying Figure 6.22 which shows photos from the room when the model was
acquired. The inner wall in the living-room is almost completely occluded by
sofas, a table, chairs, a bookshelf and a large robot. The line in the middle of
the room comes from the table. The door leaf of the door out into the corridor
is also included in the map. This is undesirable as this feature is not stable
over time and methods for classifying it as such are needed. The line in the
lower corner of the room comes from the niche that is visible in the right photo
in Figure 3.19.
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When the active scheme is used, and scans are taken at different heights
the model becomes more complete (right subfigure of Figure 6.21). Due to the
amount of clutter in front of the inner wall the robot is not able to verify that
the to line segments in the middle belongs to the same wall. On the outer wall
the robot has successfully joined the lines detected on either side of the door
opening by using data from high up on the wall. Notice also how one of the
door leafs have been included in this map as well.

Figure 6.21: Left: Model build when only searching for lines in the
horizontal plane. Right: Active H-SLAM.

Figure 6.22: Photos from the living-room when map was built.
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6.5 Summary

In this chapter the SLAM problem is studied. An hierarchical approach, H-
SLAM, is proposed to overcome the map scaling issue that otherwise inevitably
stops SLAM from being applied in large environments. The Decoupled Stochas-
tic Mapping (DSM) approach presented in (Feder 1999) is used as the basis for
the hierarchical approach, where the environment is divided into local submaps
sharing a common coordinate system. It is shown that the original submap al-
location strategy sometimes leads to poor performance as it is impossible to
control where the intersections between the submaps end up. Instead a room
based strategy is proposed to give a more accurate description of the individual
rooms, if not the entire environment. A comparison is presented both between
SLAM and H-SLAM and between the two submap allocation strategies.

None of the maps from the two environments are perfect. There is plenty
of room for improvements. Improving the data associations results in fewer
map features. It is also important to further investigate the consistency of the
DSM algorithm that H-SLAM is currently based on. The underestimation of
the estimation error that is seen in Figure 6.10 indicates such a problem.

The active H-SLAM approach presented at the end of the experimental
section is a first attempt to get a more complete description of the environment.
The improvement gained by adding the extra degrees of a pan-tilt unit is clearly
established. At the same time it gives one possible scenario for how mapping
can be done in cooperation between the robot and the user.



Chapter 7

Summary and Future

Research

7.1 Summary

Autonomous mobile robots in the service of mankind are getting closer to
becoming a reality. There are already many examples of mobile robots, but
none which are truly autonomous. In manufacturing industry, robots have until
recently been synonymous with fixed robots or robots that are constrained to,
for example, a gantry. In times when every possibility to reduce production
costs must be considered, mobile robots are of great interest. They would allow
for much faster changes to the production line. The extra flexibility comes at
the price of higher complexity. In a highly constrained assembly line type of
environment the robot can use its precise mechanics to alleviate many of the
problems that researchers in the robotics community have dedicated their lives
to. Navigation and localization take other forms in such a setting. By confining
the robots to areas where humans are not allowed, the robots do not have to
avoid unknown obstacles. Localization is replaced by the problem of reaching
well defined positions, typically with an accuracy far below a millimeter.

There are examples of robots that do move around in factory environments,
but they are typically guided by bar codes on the walls, magnetic tapes on
the floor or active beacons. If a robot could localize itself using the natural
environment, there would be large savings in the infrastructure and much more
flexible production line could be achieved. If the horizon is widened to include
all applications for mobile robots, the benefits are even higher for a system that
can localize itself using only information from the natural environment. One
such application is a service robot that can perform various tasks in a domestic
or office environment.
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The work presented in the thesis focuses on the problem of localization in the
context of a service robot type of application. The environment is thus assumed
to be indoor and semi-structured. The methods that have been presented do
not rely on any artificial landmarks, but instead utilize the natural structures
of the environment. The working hypothesis throughout the thesis has been
the use of minimalistic models. Contrary to many approaches presented in the
literature, the philosophy behind the minimalistic models is not to make the
most detailed model possible, but rather capture the large scale structures of
the environment. Three basic types of features have been used; lines, doors
and points. In the minimalistic model of the environment the lines typically
correspond to the dominant walls of a room. These kinds of lines assume the use
of a sensor with high angular resolution or a sparse, uncluttered environment.
The latter is unrealistic for most indoor office or domestic settings and thus a
laser scanner has been the primary sensor modality. Doors are also dominant
features in most indoor environments and they are natural to model as they
act as gateways between different areas/rooms. One single sensor modality
is not enough in all situations, for example, glass is transparent to the laser.
To complement the laser sensor and the line and door features, point features
extracted from sonar data have also been considered.

In Chapter 1 the problem of localization was roughly divided into three
subgroups, pose tracking, global localization and map acquisition. This thesis
presents contributions to all of these problems. Before pose tracking and global
localization can be performed there has to be a map. The map was initially
acquired by hand, on a room by room basis. The transformation between the
rooms where then estimated. Although the minimalistic modeling approach
allows for a relatively simple map construction, it is a tedious job in a large
environment. In a service robot application the robot must be able to build
it own representation of the environment. Partly because installation would
otherwise be too expensive, but also because the environment may change over
time.

When building a map without any prior knowledge and without access to
the true pose of the robot, localization has to be performed at the same time
as the mapping. The process is referred to as simultaneous localization and
mapping (SLAM). Most existing approaches to SLAM are based on Kalman
filters. While performing well in small environments, the computational com-
plexity is too high for medium or large sized environments. Chapter 6 presented
an approach to mapping that allows the user to guide the robot through the
environment and introduce different areas that the robot should know about.
An area is often a room, but not restricted to such. In most office or domestic
environments, each such an area is small enough for SLAM to be directly appli-
cable. The complete map is divided into submaps, each built using a standard
SLAM algorithm. The mapping is done in an active way within each submap.
The laser sensor is mounted on a pan-tilt unit and can therefore detect lines
that would otherwise be difficult to detect. In the initial phase of the explo-
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ration the attention is directed towards the height of the ceiling as it typically
provides a much less occluded view of the walls of a room. The walls detected
in this way are then used to guide the robot to positions from which the walls
are likely to be visible. Although being only an initial implementation, the
advantages with adding the extra degrees of freedom provided by the pan-tilt
unit have clearly been established.

When a map of the environment exists it is possible for the robot to per-
form global localization and pose tracking. Once again looking at it from an
application point of view, the global localization comes before pose tracking.
Starting with global uncertainty to find the pose involves finding correspon-
dences between the sensor data and the environmental model. Under normal
circumstances it is not possible to solve these correspondences unambiguously
unless sensor data is integrated over time.

In a feature based setting, each possible correspondence between a detected
feature and a map feature gives one candidate to the pose of the robot. In
Chapter 4 hypotheses about the robot pose were created from these possible
correspondences. It was assumed that each hypothesis could be modeled using
a Gaussian PDF. A Kalman filter was assigned to each hypothesis to track the
corresponding pose estimate. Bayesian probability theory was used to update
the probabilities of hypotheses being correct, given the evidence provided by
the measurements. A computationally efficient implementation was achieved
by keeping the number of hypotheses small. To this end the feature types
were divided into two groups, supportive and creative. The supportive features
cannot create new hypotheses, only provide support for already existing ones.
An active exploration strategy utilizing a topological graph description of the
environment was used in the experiments. Although being a greedy algorithm,
the active exploration was shown to be sufficient in most situations. Experi-
ments were performed in two different types of environments, one old hospital
building and a modern office environment. The experimental results showed
that the Multiple Hypothesis Localization (MHL) was able to correctly find
the pose of the robot in all but a few cases. The failures were the result of
poor environmental modeling and the exploration strategy that was not able
to successfully locate a creative feature. The work presented in this chapter is
the first thorough investigation of the use of a multiple hypothesis approach to
localization.

In Chapter 5 the Monte Carlo Localization (MCL) method, that recently
have gained a lot of attention, was evaluated in the minimalistic setting. The
Monte Carlo methods use a sample set to represent the pose distribution. Any
PDF can then be represented assuming that enough samples are used. It
was concluded that in a highly symmetric environment with non-distinct fea-
tures the computational resources needed to provide reasonable performance
surpasses what is available on any mobile robot platforms today. The main
problem can be traced back to not having sample support at the correct pose.
That is, there are no samples close to the correct robot pose. Two different
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improvements were investigated. In the first, new samples were introduced in
each iteration from a uniform distribution. In the second, new samples were
introduced similar to the way hypothesis are created in MHL, i.e. samples were
added based on possible correspondences between detected feature and map
features. It was shown that the first method offered a reduction of the number
of samples to roughly half. The second method was shown to offer a even higher
reduction and still get significantly improved performance. An evaluation was
also presented of the use of different combinations of features.

Once the pose of the robot is found, either using one of the global lo-
calization strategies or supplied by the user, it is possible to rely on simpler
methods for maintaining the pose estimate. Not having to perform a global
search for the correspondences between the map and detected features allows
for more efficient implementations. Chapter 3 presents one such pose tracking
approach. While the two global localization strategies can handle any feature
based representation, the pose tracking algorithm was tailored to the minimal-
istic model. Only the line feature was used for pose update. The doors where
used to determine the visibility conditions between the different rooms. The
large scale features gave way for an algorithm that was shown to be operational
even in dense clutter. The key to success being the ability to single out the
few data points that belong to the modeled lines. Experiments were presented
from three different environments and with two different robot platforms. Two
more platforms (see Section D.3) have also been successfully tested but these
experiments were left out from the presentation due to space limitations.

7.2 Future Research

In this section some of open problems will be outlined:

The correspondence problem, i.e. matching measurements with either pre-
vious meaurements or with a model of some sort is still an open question. This
problem is also referred to as data association. In this work and in the major-
ity of other work gating techniques have been used for this problem. However,
there are many situations, especially when the uncertainty becomes larger, that
such approaches are not sufficient. Solving the data association problem would
undoubtedly be one of the greatest achievements not only in robotics but in all
fields of science that deal with sensor data of uncertain origin.

The problem of simulataneous localization and mapping (SLAM) is still
an open problem, especially in a large scale environment. Chapter 6 and other
work are only scratching the surface of large scale SLAM. Many of the problems
can be traced back to the data association problem.

As seen in Chapter 3 it is of uttermost importance to have mechanisms for
fault detection. An autonomous system must be able to detect failures and
preferrable counteract them. The sooner the causing events are detected the
easier it is to handle them. Examples are slippage when driving over a threshold



7.2 Future Research 171

or when the robot bumps into a person in a dense crowd. The introduction
of inertial sensors to the system would greatly contribute to improving the
performance in these situations.

The focus has been on estimating the pose without much thought to the
mission at hand for the overall system. There are many situations when high
accuracy is not needed. Going from one side of a corridor to the other does not
justify knowing the pose of the robot with millimeter accuracy. As long as the
destination at the other side of the corridor is reach, the task is solved. The
underlying philosophy is thus that of task oriented localization, i.e. letting the
localization depend on the task at hand.

In connection with task oriented localization, active control of the the direc-
tion of attention for various sensors is also important. Not only because it can
improve performance, but also because it most likely demands less computa-
tions to extract information from where it is easiest to access. The pan-tilt unit
used for the mapping in Chapter 6 provides a good setting for such experiments.

In Chapter 5 it was shown how the robustness can be increased by com-
bining different sensor modalities. Only sonar and laser sensors have been
evaluated, but sensor fusion can be taken much further than this, by combin-
ing heterogenous sensors. Vision is the sensor that offers the largest potential
source of information. Despite being sensitive to for example varying lighting
conditions, valuable information is still to be found. In a global localization
task a door offers so much more information than just the relative position
to the robot. Typically there are signs and names in the vicinity of the door
giving strong evidence about the location.

When working with a large scale system, integration inevitably becomes
a major issue. Even if the different modules existed and were robust there
are currently no methods to combine them to create a large scale system in an
systematic manner. It is thus clear that systems integration in itself constitutes
one of the fundamental problems that needs to be addressed. It is only by
building and testing real world system that the real issues arise.

Another point that must be brought forth is the need for really long term
experiments. The long experiments presented in this thesis is a step in that
direction, but the length of the tests should be measured in days and weeks
and not hours. Related to this is the problem of the power supply. Currently
most robots used batteries that limit their autonomy to between 2 and 5 hours.

On a more detailed level there are also some suggestions for future work:
The second approach presented in Chapter 5 provided a great improvement

in the ability to find the pose of the robot. However, as was seen in some of the
experiments the samples drawn from the alternative importance function dis-
tracted the pose estimation. These samples always give support to the regions
that match the current measurements the best, which is due to the improper
weighting. Proper weighting schemes are thus an important step for the future.

Comparing the result from Chapter 5 and 4 it is clear that an active ex-
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ploration strategy offers a great advantage. The hypothesis framework used in
MHL provides a perfect platform for applying various more advanced explo-
ration techniques. Extracting hypotheses from the sample set of MCL is also
possible. Initial work in this direction is given in (Seiz et al. 2000).

A more thorough comparison of Multiple Hypothesis Localization and Monte
Carlo Loclaization would also be of great interest.

The interaction between the robot and the human in the map building
presented in Chapter 6 can also be improved. Graphical feedback and speech
input/output will contribute to a powerful demonstration of localization.

Alternatives to the decoupled stochastic mapping technique used in Chap-
ter 6 are also of interest. Instead of having a common coordinate system, an
alternative approach is to let each submap have its own coordinate system and
instead estimate the transformations between submaps. In essence this corre-
sponds to letting each submap be a feature on a higher level in the hierarchy.
Standard SLAM can then be performed on all levels.
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Appendix A

Odometric Model

A.1 Introduction

Since most platforms so far in robotics research are wheeled, the use of en-
coders to measure the rotation of the wheel axes has become more or less
standard. The common term for this kind of information is odometry. Odom-
etry can provide information about the change in the pose of the platform.
The odometric information is extracted using sensors which count the number
of rotations for the wheel axes and the steer axes. Typically, high resolution
encoders are used for this purpose. The angle information is discretized, and
the number of “ticks” are counted. The resolution is normally high though and
the discretization is only problem when measuring slow rotations.

As with all sensors, a model of the odometry provides valuable informa-
tion about performance and limitations. Any odometric model, however good,
is at best an approximation of the true kinematics. When using odometry
for pose predictions, the most critical part of the estimation is the ability to
estimate the orientation of the platform. Even a small error in the orienta-
tion, θ, of the platform eventually leads to large errors in the position. By
careful modeling, these systematic errors can be made small (Borenstein &
Feng 1996b, Borenstein 1998). Non-systematic errors on the other hand cannot
be captured by the model and leads to devastating errors. A common source
for non-systematic errors is wheel slippage.

Indoor platforms normally have much better odometric quality than out-
door once because of the non-planar surfaces which face outdoor platforms.
It is important to keep in mind the conditions under which the final product
is going to operate. In many labs, the floors are smooth and the odometric
system is accurate. Relying on odometry to a large extent may prove fatal if
the floor surface is changed by e.g. placing a carpet on the floor.
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Borenstein and Feng present a benchmark test called the University of
Michigan Benchmark test (UMBmark) to evaluate the performance of the odo-
metric system (Borenstein & Feng 1995, Borenstein & Feng 1996b). The key
is to identify the systematic errors and thereby being able to compensate for
them. They report that “the vehicle’s odometric accuracy (with respect to sys-
tematic errors only) increased by at least one order of magnitude” when the
compensation is made. Methods for detecting (extended UMBmark) and com-
pensating for non-systematic errors are also developed.

In (Borenstein 1998) results are presented for the commercially available
mobile robot called “OmniMate” which show that the IPEC-method (internal
position error correction) described in e.g. (Borenstein et al. 1996) successfully
compensates for non-systematic errors, giving a overall increase in accuracy of
one order of magnitude.

Since localization is an important part of a mobile robot and as the odo-
metric information is both cheap and easy to use it has become a central part
of most localization systems. The odometry is typically highly reliable over
short distances, but degrades with the distance as there is nothing that bounds
the positioning error.

There are different kinematic designs of mobile robots. This design in-
fluences the performance of the odometry to a large extent. To construct a
platform with high performing odometry, it is important to carefully think the
kinematic design through.

The main contribution in this Appendix is the development of a model for
the odometric system on a synchro drive robot. The aim is a model that can
be used in an iterative update procedure, such as a Kalman filter. The model
should provide an estimate of the robot motion as well as the uncertainty in
this estimate. It is also desirable that the model be consistent in the sense
that it should give the same result independent of how the path is segmented.
In (Chong & Kleeman 1996) such a model is developed for a differential drive
robot. Just like in (Chong & Kleeman 1996) the model rests on the assumption
that the robot moves on circular arcs. Such an assumption is commonly made,
see e.g. (Fox et al. 1997).

A.2 Synchro-Drive Robot

The synchro drive vehicle is based on the concept of having all wheels moving
synchronously. Each wheel can move around two axes. One axis for translation
and one for steering. The motion of the wheels are synchronized by a chain or
a belt.

Figure A.1 illustrates the idea that all wheels are connected and one way to
make the wheel translate as well as steer. Translation is achieved by rotating
the inner axis (α). The outer axis steers the wheel, giving them an angle φ.
The platform itself does not turn when the wheels turn, meaning that the
orientation, θ, of the platform with respect to a global frame of reference is
ideally constant. The direction of motion in world coordinates, γ, is given by
γ = θ + φ.
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Figure A.1: Left: Synchro drive configuration of the Nomad200 robot.
Right: Example of synchro drive wheel.

A.2.1 Odometric Model

Let the pose of the robot be x = (x(W ), y(W ), θ), where (x(W ), y(W )) is the
position in world coordinates and θ is the orientation of the robot coordinate
system (see Appendix C). Henceforth the position in world coordinates is
denoted (x, y) to save space. It is assumed that the robot moves along circular
arcs, with radius r. This is motivated by the fact that that any path can be
divided into a set of arcs. The special cases of such a motion is a straight line
(r = ∞) and turning on the spot (r = 0).

Introduce ∆γ as the change in direction of motion from one time step to
the next (see Figure A.2), i.e.

γk+1 = γk + ∆γk. (A.1)

Two consecutive poses (xk, yk) and (xk+1, yk+1) are related by
{
xk = xrot

k + r cos(γk − π
2 ) = xrot

k + r sinγk

yk = yrot
k + r sin(γk − π

2 ) = yrot
k − r cos γk,

(A.2)

and
{
xk+1 = xrot

k + r cos(γk+1 − π
2 ) = xrot

k + r sin γk+1

yk+1 = yrot
k + r sin(γk+1 − π

2 ) = yrot
k − r cos γk+1

, (A.3)

where (xrot
k , yrot

k ) denotes the coordinates of the center of rotation for the arc
motion.
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(xrotk , yrot
k )

rk

(xk, yk)

(xk+1, yk+1)

γk+1

γk

∆γk

Dk

θ

O(R)

O

rk

Figure A.2: The motion of the robot is approximated to be on arcs.

From (A.2) and (A.3), the pose of the robot at time k + 1 is easily found
as a function of the pose at time k

{
xk+1 = xk + r (sin γk+1 − sin γk)
yk+1 = yk − r (cos γk+1 − cos γk) .

(A.4)

Assuming the steer angle in robot coordinates can be measured without
uncertainty, e.g. using high resolution encoders, the definition of the pose, xk,
can be changed to (x, y, γ). Let uk = (Dk,∆γk) be the input to the odometric
model, where Dk is the distance traveled along the arc and ∆γk is the change
in motion direction. With this notion the radius of the motion is given by

rk =
Dk

∆γk

. (A.5)

Note that a negative rk corresponds to turning clock wise and a positive rk

corresponds to turning counter clock wise. The odometric model can now be
written

xk+1 = f(xk,uk) =





xk + rk (sin(γk + ∆γk) − sin γk)
yk − rk (cos(γk + ∆γk) − cos γk)

γk + ∆γk





=





xk + Dk

∆γk
(sin(γk + ∆γk) − sin γk)

yk − Dk

∆γk
(cos(γk + ∆γk) − cos γk)

γk + ∆γk



 . (A.6)
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A.2.2 Non-Systematic Errors

Let Pk denote the covariance matrix of the pose estimate at time k. Using a
first order approximation, Pk may be updated according to

Pk+1 =

(
∂f

∂xk

)

Pk

(
∂f

∂xk

)T

+

(
∂f

∂uk

)

Σk

(
∂f

∂uk

)T

(A.7)

=

(
∂f

∂xk

)

Pk

(
∂f

∂xk

)T

+Qk,

where Σk is the covariance matrix for the odometric input uk. The two Jaco-
bians in (A.7) are given by

∂f

∂xk

=





1 0 rk (c γk+1 − c γk)
0 1 rk (s γk+1 − s γk)
0 0 1



 (A.8)

∂f

∂uk

=






1
∆γk

(s γk+1 − s γk) − Dk

(∆γk)2 (s γk+1 − s γk) + Dk

∆γk
c γk+1

− 1
∆γk

(c γk+1 − c γk) Dk

(∆γk)2 (c γk+1 − c γk) + Dk

∆γk
s γk+1

0 1






=





1
∆γk

(s γk+1 − s γk) − rk

∆γk
(s γk+1 − s γk) + rk c γk+1

− 1
∆γk

(c γk+1 − c γk) rk

∆γk
(c γk+1 − c γk) + rk s γk+1

0 1



 , (A.9)

where (A.5) has been used and c and s denote cos and sin respectively. The
matrix Σk is assumed to be diagonal

Σk =

(
σ2

Dk
0

0 σ2
∆γk

)

, (A.10)

i.e. the error in distance traveled is independent of the error in change of motion
direction. In view of the findings in the previous section, this assumption is
clearly not valid. However, using too many parameters in the odometric model
has the downside though that they become difficult to identify. The error made
by neglecting the correlation terms is judged not to be significant.

The variance in distance traveled is assumed to depend only on the distance
traveled, i.e.

σ2
Dk

= kD|Dk|, (A.11)

which can be written

σ2
Dk

= kD|rk∆γk| (A.12)

using (A.5).
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The variance in change in motion direction on the other hand depends both
on distance traveled, Dk, and the change in motion direction ∆γk,

σ2
∆γk

= kγ
γ |∆γk| + kD

γ |Dk| = (kγ
γ + kD

γ |rk|)|∆γk| = kγ(rk)|∆γk|. (A.13)

Now divide the k:th step into N sub-steps, i = 1, . . . , N , such that x0
k = xk

and xN
k = xk+1 as well as P 0

k = Pk and PN
k = Pk+1. With this notation (A.7)

can be written as

Pk+1 = PN
k =

(

∂f

∂xN−1
k

)

PN−1
k

(

∂f

∂xN−1
k

)T

+

(

∂f

∂uN−1
k

)

ΣN−1
k

(

∂f

∂uN−1
k

)T

.

(A.14)

By recursively expanding P i
k on the right hand side of (A.14) the following is

obtained

Pk+1 =

(

∂f

∂xN−1
k

)



(

∂f

∂xN−2
k

)

PN−2
k

(

∂f

∂xN−2
k

)T

+

(

∂f

∂uN−2
k

)

ΣN−2
k

(

∂f

∂uN−2
k

)T




(

∂f

∂xN−1
k

)T

+

(

∂f

∂uN−1
k

)

ΣN−1
k

(

∂f

∂uN−1
k

)T

=

(
N−1∏

i=0

∂f

∂xi
k

)

Pk

(
N−1∏

i=0

∂f

∂xi
k

)T

+

N−1∑

i=0










N−1∏

j=i+1

∂f

∂xj
k





(
∂f

∂ui
k

)

Σi
k

(
∂f

∂ui
k

)T




N−1∏

j=i+1

∂f

∂xj
k





T



 . (A.15)

The first factor in the second expression of (A.15) can, using (A.8), to be
written as

N−1∏

j=i+1

∂f

∂xj
k

=





1 0 rk
(
c γN−1

k − c γi+1
k

)

0 1 rk
(
s γN−1

k − s γi+1
k

)

0 0 1



 . (A.16)

With the help of this, the first term of (A.15) can be written (remembering
that x0

k = xk)





1 0 rk
(
c γN−1

k − c γk

)

0 1 rk
(
s γN−1

k − s γk

)

0 0 1



Pk





1 0 rk
(
c γN−1

k − c γk

)

0 1 rk
(
s γN−1

k − s γk

)

0 0 1





T

. (A.17)
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Introduce Qk for the second term of (A.15), made up of a sum of Qi
k,

Qk =
N−1∑

i=0

Qi
k. (A.18)

To evaluate Qi
k, start with

(
∂f

∂ui
k

)T




N−1∏

j=i+1

∂f

∂xj
k





=







1
∆γi

k

(
s γi+1

k − s γi
k

)
rk

(

− 1
∆γi

k

(
s γi+1

k − s γi
k

)
+ c γN−1

k

)

− 1
∆γi

k

(
c γi+1

k − c γi
k

)
rk

(
1

∆γi
k

(
c γi+1

k − c γi
k

)
+ s γN−1

k

)

0 1






.

(A.19)

By letting N → ∞ the path traveled between time k and (k + 1) is split in
infinitesimally small segments. When N → ∞, the change in orientation in
each individual step ∆γi

k → 0 and thus γN−1
k → γk+1. The error made by

extending the sum to N instead of N − 1 also goes to zero as N → ∞. It is
useful to recall the following relations

lim
ǫ→0

(sin(α+ ǫ) − sinα) = ǫ cosα (A.20)

lim
ǫ→0

(cos(α+ ǫ) − cosα) = −ǫ sinα (A.21)

lim
N→∞

(
∂f

∂ui
k

)T




N∏

j=i+1

∂f

∂xj
k



 =





c γi
k

(
c γk+1 − c γi

k

)

s γi
k

(
s γk+1 − s γi

k

)

0 1



 . (A.22)

Using (A.22) and (A.10) the elements of Qi
k can be found to be:

Qi
k,11 =σ2

Di
k
c2 γi

k + σ2
∆γi

k
r2k
(
c γk+1 − c γi

k

)2
(A.23)

Qi
k,12 =σ2

Di
k
c γi

k s γi
k + (A.24)

σ2
∆γi

k
r2k(c γk+1 − c γi

k)(s γk+1 − s γi
k)

Qi
k,13 =σ2

∆γi
k
rk(c γk+1 − c γi

k) (A.25)

Qi
k,22 =σ2

Di
k
s2 γi

k + σ2
∆γi

k
r2k
(
s γk+1 − s γi

k

)2
(A.26)

Qi
k,23 =σ2

∆γi
k
rk
(
s γk+1 − s γi

k

)
(A.27)

Qi
k,33 =σ2

∆γi
k
. (A.28)

Using (A.12) and (A.13) and summing up the elements of Qi
k, Qk can be found.

Note that the sum is the definition of the Riemann integral with respect to γ i
k.



182 A Odometric Model

This is illustrated with the element Qk,11

Qk,11 = lim
N→∞

N−1∑

i=0

Qi
k,11

= lim
N→∞

N−1∑

i=0

[

c2 γi
kσ

2
Di

k
+ r2k

(
c γk+1 − c γi

k

)2
σ2

γi
k

]

= lim
N→∞

N−1∑

i=0

[

c2 γi
kkD|rk∆γi

k| + r2k
(
c γk+1 − c γi

k

)2
kγ |∆γi

k|
]

= lim
N→∞

N−1∑

i=0

[

c2 γi
kkD|rk| + r2k

(
c γk+1 − c γi

k

)2
kγ

]

|∆γi
k|

= sign(∆γk) lim
N→∞

N−1∑

i=0

[

c2 γi
kkD|rk| + r2k

(
c γk+1 − c γi

k

)2
kγ

]

∆γi
k

= sign(∆γk)

∫ γk+1

γk

(

kD|rk| c2 x+ r2kkγ (c γk+1 − cx)
2
)

dx

= (kD|rk| + r2kkγ) sign(∆γk)

∫ γk+1

γk

c2 xdx

+ r2kkγ sign(∆γk)

∫ γk+1

γk

(
c2 γk+1 − 2 c γk+1 cx

)
dx

=

{

cos2 x =
1

2
(1 + c(2x))

}

=
1

2
(kD|rk| + r2kkγ) sign(∆γk)

(

∆γk +
s(2γk+1) − s(2γk)

2

)

+ r2kkγ sign(∆γk)
(
∆γk c2 γk+1 − 2 c γk+1 (s γk+1 − s γk)

)
(A.29)

The rest of the elements of Qk can be found in the same manner to be

Qk,12 = −|rk|kD + r2kkγ

4
sign(∆γk) (c(2γk+1) − c(2γk))

+ r2kkγ sign(∆γk)

(
1

2
∆γk s(2γk+1) + c(2γk+1) − c(γk + γk+1)

)

(A.30)

Qk,13 = rkkγ sign(∆γk) (∆γk c γk+1 − s γk+1 + s γk)

= {rk sign(∆γk) = |rk|}
= |rk|kγ (∆γk c γk+1 − s γk+1 + s γk) (A.31)

Qk,22 =
1

2
(kD|rk| + r2kkγ) sign(∆γk)

(

∆γk − s(2γk+1) − s(2γk)

2

)

+ r2kkγ sign(∆γk)
(
∆γk s2 γk+1 + 2 s γk+1 (c γk+1 − c γk)

)
(A.32)



A.2 Synchro-Drive Robot 183

Qk,23 = rkkγ sign(∆γk) (∆γk s γk+1 + c γk+1 − c γk)

= |rk|kγ (∆γk s γk+1 + c γk+1 − c γk) (A.33)

Qk,33 = kγ |∆γk|. (A.34)

Straight Line Motion

A special case for the arc motion is when the robot moves along a straight line.
This corresponds to rk → ∞ and ∆γk → 0. Keeping (A.5), (A.12) and (A.13)
in mind along with (A.20), (A.21) and γk+1 = γi

k + N−i
N

∆γk, (A.23)-(A.28) can
be written

lim
N→∞, rk→∞
Dk=rk∆γk

Qi
k,11 = kD

|Dk|
N

c2 γk +

kD
γ

|Dk|
N

(
Dk

∆γk

)2(

−N − i

N
∆γk s γk

)2

= kD|Dk| c2 γk

1

N
+

kD
γ |Dk| (Dk)

2
s2 γk

(N − i)2

N3
(A.35)

lim
N→∞, rk→∞
Dk=rk∆γk

Qi
k,12 =

1

2
kD|Dk| s(2γk)

1

N
−

1

2
kD

γ |Dk| (Dk)
2
s(2γk)

(N − i)2

N3
(A.36)

lim
N→∞, rk→∞
Dk=rk∆γk

Qi
k,13 = kD

γ

|Dk|
N

Dk

∆γk

(

−N − i

N
∆γk s γk

)

= −kD
γ |Dk|Dk s γk

N − i

N2
(A.37)

lim
N→∞, rk→∞
Dk=rk∆γk

Qi
k,22 = kD|Dk| s2 γk

1

N
+

kD
γ |Dk| (Dk)2 c2 γk

(N − i)2

N3
(A.38)

lim
N→∞, rk→∞
Dk=rk∆γk

Qi
k,23 = kD

γ |Dk|Dk c γk

N − i

N2
(A.39)

lim
N→∞, rk→∞
Dk=rk∆γk

Qi
k,33 = kD

γ |Dk|
1

N
. (A.40)
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A standard handbook in mathematics provides the following information about
sums

n∑

x=0

x =
n(n+ 1)

2
≈ n2

2
(A.41)

n∑

x=0

x2 =
n(n+ 1)(2n+ 1)

6
≈ n3

3
. (A.42)

The elements of Qk can now be found by evaluating the sums and letting
N → ∞.

Qk,11 = |Dk|
(

kD c2 γk +
1

3
kD

γ (Dk)
2
s2 γk

)

(A.43)

Qk,12 =
1

2
|Dk|

(

kD − 1

3
kD

γ (Dk)
2

)

s(2γk) (A.44)

Qk,13 = −1

2
kD

γ |Dk|Dk s γk (A.45)

Qk,22 = |Dk|
(

kD s2 γk +
1

3
kD

γ (Dk)
2
c2 γk

)

(A.46)

Qk,23 =
1

2
kD

γ |Dk|Dk c γk (A.47)

Qk,33 = kD
γ |Dk|. (A.48)

A.2.3 Systematic Errors

The odometric error can be divided into a systematic and a non-systematic er-
ror. By calibrating the odometric system, the systematic error can be reduced.
In a probabilistic framework, the error is often assumed to be independent over
time, zero-mean etc. With these assumptions it is clear that a systematic error
is highly undesired as it violates the assumptions.

To determine the systematic errors on the Nomad200 platform, an experi-
ment is devised where the robot is driven approximately 10 m in one direction.
Table A.1 summarize the data from the experiments by showing the true dis-
tance traveled based on tape measurements, the distance traveled according to
odometry, the ratio between real and the odometric distance, the initial robot
orientation, θstart, the steer angle, φ = γ− θ and the change in orientation ∆θ.

Clearly the variation in the distance ratio is small and thus this parameter
can be well approximated by a constant. Let this ratio, or scaling factor, be
denoted by β, i.e.,

D = βD(R). (A.49)

The mean value for the scaling factor is

β = 1.0066, (A.50)

a 0.66% scale error in other words.
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Table A.1 shows a correlation between the steer angle, φ, and the change
in orientation, ∆θ. Figure A.3 illustrates this more clearly, by plotting ∆θ as
a function of φ. The wheels are mechanically linked, both in translation and
rotation. If one of the wheels has a different radius it will result in slippage
and hence a friction force, Ffric, causing a moment of rotation, Mfric. With the
notation from Figure A.1 the rotational moment is given by

Mfric = −L sinφFfric ∝ − sinφ. (A.51)

The friction force, Ffric, depends on the surface properties. Compensating
for this systematic rotation of the platform thus means that the friction force
must be estimated on-line. This is an interesting problem on its own. When
the surface material is the same throughout the environment so is the force.
Overlaid on the experimental data is the curve −2.2◦ sinφ. The drift in robot
orientation per meter distance traveled in direction φ is therefore modeled as

−2.2 sinφ deg/s. (A.52)

A.3 Summary

In summary a consistent odometric model is derived based on an assumption
that the robot path can be approximated by circular arcs. This model is of
interest, for example, when propagating the uncertainty in the prediction step
(2.18) of an extended Kalman filter. The process noise covariance matrix Q is
derived in general as well as in the special case of straight line motion. Parts
of the systematic error on a Nomad200 platform are also identified.
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D D(R) D/D(R) θstart ≈ φ ∆θ
[mm] [mm] [1] [deg] [deg] [deg]
9825.0 9762.1 1.006446 10.1 79.9 -1.830
9792.6 9723.4 1.007116 42.4 47.6 -2.150
9801.1 9736.2 1.006663 70.8 19.2 -1.750
9795.1 9731.0 1.006584 100.8 -10.8 -0.570
9785.5 9723.6 1.006368 131.0 -41.0 0.940
9785.2 9739.8 1.004663 162.6 -72.6 1.980
9905.2 9842.4 1.006374 190.5 -100.5 2.170
9878.7 9813.4 1.006656 220.3 -130.3 0.780
9805.2 9740.5 1.006647 249.7 -159.7 0.800
9875.4 9804.1 1.007267 279.8 -189.8 -0.600
9830.1 9762.6 1.006910 309.9 -219.9 -1.660
9795.1 9726.5 1.007052 338.0 -248.0 -1.890

mean 1.006562 - - -0.315
std 0.000666 - - 1.585

Table A.1: Distance traveled measured with tape measure D and odom-
etry D(R) as well as the ratio between the two along with the change in
robot orientation.
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Figure A.3: The change in robot orientation depends heavily on the
motion direction in robot coordinates, φ. The curve −2.2◦ sinφ (dashed)
is overlaid on the experimental data.



Appendix B

The Laser Sensor

As the laser scanner is the main sensor used in the thesis, a short historical
overview and basic description of the technology will be given for this fantastic
invention called laser. The overview is based on material found in (Hecht 1987).
Those familiar with the laser sensor should move directly to Section B.6 where
the SICK laser scanners are investigated.

B.1 History and Technology

Laser technology is everywhere today, in CD-players, surgery, communications,
etc. Laser stands for Light Amplification by Stimulated Emission of Radiation.
It is based on the fact that an excited atom returns to a lower energy state
by either spontaneously emitting a photon or being stimulated to do so by
electromagnetic radiation. The photon emitted by stimulation is emitted in
the same direction as, and in phase with, the stimulating radiation.

An emitted photon can help stimulate other atoms to emit photons, thereby
causing an avalanche effect. As all atoms strive to be in as low a energy state
as possible, few atoms are in an excited state under normal conditions. In this
case the radiation would instead be absorbed and photons would spontaneously
be emitted. Spontaneous emitted photons are sent out in random directions
and with random phase. The electromagnetic radiation has to be of the right
frequency. To be exact it has to be of the frequency that corresponds to the
difference in the energy between the exited state and the lower state the atom
goes to by emitting a photon.

The idea in a laser is that by pumping the laser media, i.e. exciting the
atoms so that a much higher percentage than normal is excited (called inverse
population), the stimulated emission of photon is going to be the dominating
effect. By putting a pair of reflective surfaces at the end of the laser cavity, the
wave will be reflected back and forth, increasing the energy with every pass in
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the direction of the cavity. In order to sustain the inverse population, energy
has to be fed into cavity to pump the media. By making one of the surfaces
only partially reflective, part of the wave can be taken out of the cavity. The
transmitted energy forms the laser beam.

In July 1961, Maiman announced existence of the first operating laser. It
was a pulsed solid-state ruby1 laser with the center frequency at about 694.3
nm. Shortly after that, in 1961, another team of researchers reported that a
helium-neon, continuous wave gas laser was operating. The helium-neon laser
is the most popular laser today, because it combines ease to use, with a low cost
and possibility to give continuous power in the visible frequency range (632.8
nm). A historical curiosity is that Maiman’s first paper about his discovery
was rejected (Hecht 1987, p. 585). Little did the people who rejected it know
what an impact the new technology would have on science.

After the first discovery new medias and improvements of old techniques
were found at a rapid pace. The first semiconductor laser was operational in
1962, but it could only operate in pulsed mode and only at cryogenic tempera-
tures2. There have been semiconductor laser (also known as diode laser) oper-
ating in room temperate since the 1970s and today the technique has become
irreplaceable in many applications. Semiconductor lasers are small, energy
efficient, have sharp spectrum and can be modulated at very high rates.

It is clear that the laser will continue to play a major role in the field of
science and in everyday life.

B.2 Laser Range Finders

Having found applications in so many areas, it is not surprising that the laser
is used to measure distances. Already in the 1970s NASA made use of laser
techniques for this purpose. At that time the technique had not reached the
right level of maturity to be applicable in a large scale. It is obvious that
measuring distance with light requires high precision electro-optics.

The dominating techniques for laser based range measurements are TOF-
techniques and phase-shift-techniques.

Time-Of-Flight (TOF) In a TOF system a short laser pulse is sent out and
the time until it returns is measured. The ranging principal is thus the same
as for the standard sonar sensor

D =
1

2
cT (B.1)

where c is the speed of light and T is the round trip time. A sensor of this type
is often referred to as laser radar or lidar. To realize such a system, a high

1Ruby is one of the most used laser media still today
2Cryogenic temperatures refer to extremely low temperatures, ranging from -150◦C to the

absolute zero at -273◦C.



B.3 Material Dependence 189

precision means for measuring time is needed. Thinking in terms of a robot
application a range resolution in the order of centimeters is desirable. The
speed of light is approximately 3 · 108 m/s. This means that the precision in
time has to be in the order of 100 ps, corresponding to a frequency of 10 GHz.
It is not difficult to understand that this puts high demands on the equipment.
One advantage with the short pulses is that higher levels of powers can be
used, giving better range coverage, but still keeping a high safety level and low
power consumption. Commercially available systems today have reached below
centimeter accuracy.

Phase-Shift In phase-shift-systems a continuous wave is transmitted. The
idea is to compare the phase of the returned signal with a reference signal
generated by the same source. Using the Doppler shift, the velocity of the
target can be measured in addition to the distance to it.

One problem with a phase-shift-based laser measuring device is that it can
not distinguish between phase-shifts greater than one wavelength from a phase-
shift smaller than one wavelength (Andersen et al. 1992). This means that
ranges above the wavelength of the modulator cannot be distinguished from
ranges below it.

Most of the commercial laser sensors measure the distance in a single di-
rection. By mounting it on a rotating body, a scanning effect can be achieved.
Instead of rotating the whole sensor, there are now commercially available laser
scanners based on a rotating mirror which can cover a large field of view. This
kind of sensor has been used by many researchers, see e.g (Chatila 1985, Hoppen
et al. 1990, Buchberger et al. 1993, Borthwick et al. 1993, Forsberg, Åhman &
Wernersson 1993, Weiss & von Puttkamer 1995, Arras & Vestli 1998, Gutmann
et al. 1998, Fox, Burgard & Thrun 1999).

Compared to the sonar sensor the laser scanner is still very expensive and
one has to weigh the price against the performance. In many applications a
laser scanner might be too expensive (e.g. powered wheel chairs), whereas other
applications are less sensitive to the price (e.g. mining trucks).

It is possible to add one more degree of freedom and let the sensor scan
up-down as well, yielding a 3D scanning device (see for example (Nashashibi
et al. 1992)).

B.3 Material Dependence

In (Ljunggren Klöör & Wernersson 1992b, Ljunggren Klöör & Wernersson
1992a), objects are divided into 6 categories depending on their geometric and
surface characteristics.

1. Flat and smooth surfaces (e.g. buildings, walls, wood)

2. Small isolated objects (e.g. tree trunks, poles, wires)
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3. Depth texture (e.g. bushes, grass, textiles, wool, foam)

4. Transparent and semi transparent surfaces (e.g. windows, plastics, glass)

5. Reflecting surfaces (e.g. mirrors, wet smooth surfaces, polished steel)

6. Absorbing objects (mate dark surfaces, smoke, foam rubber)

It is observed that objects of type 1,2 and 4 dominate in lab scenes whereas
1,2 and 3 are the most common types outdoor. By designing a dedicated filter
to handle data from a particular object type the accuracy of the data can be
increased. Doing this requires that the reflecting objects are identified and
classified.

B.4 Advantages of 2D Laser Scanners

There are many advantages with 2D laser scanners e.g.:

• It is fast, i.e. the measurement can in most cases be considered as instan-
taneous. This means that one does not have to think about compensating
for the motion of the platform between sending and receiving. What stops
laser scanners from working even faster is the mechanics. In a sonar sys-
tem most of the time is wasted, waiting for the pulse to return. When
using laser, the problem is instead to be able to rotate the scanning device
fast enough and at the same time very accurately.

• The range accuracy is fairly good. (Forsberg, Åhman & Wernersson 1993)
reports to have a standard deviation of 20 mm and the new generation
of laser scanners from SICK Electro-Optics has an accuracy better than
10 mm and an angular resolution of 0.25◦.

• The angular resolution is far much better with the laser scanner than
with sonar sensors. The resolution for the PLS laser scanner from SICK
has an angular resolution of 0.5◦ or 0.25◦ depending on operation mode
which is orders of magnitude better than for the sonar.

• The data from the laser scanner can be interpreted directly as the range
to an obstacle in a certain direction. This can of course be said for the
sonar as well if disregarding specular reflections and multiple reflections,
but not for a camera image, which takes a lot of effort to interpret.
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α

Figure B.1: In the normal configuration, the laser scans only in a hor-
izontal plane. By tilting the laser, information can be gathered from a
larger subspace than a plane assuming the platform is moving.

B.5 Drawbacks of 2D Laser Scanners

Among the drawbacks with 2D laser scanners are:

• The sensor provides range information limited to a plane (see Figure B.1)
which means that only a 2D intersection of the 3D world can be sensed.
To get information about other parts of the environment the sensor has
to be mounted on a pan-tilt-unit. Another possible solution is to mount
the sensor so that it intersects the world under an angle α (see Figure
B.1) and instead move the platform.

• The sensor is still expensive. The price will decrease though if an appli-
cation is found that motivates mass production of the sensor.

• Some material appear as transparent for the laser, such as glass. Hence
the laser sensor must be combined with some other source of information
in order to achieve a robust system.

B.6 The SICK PLS and LMS laser scanners

Before extracting information from laser sensor data it is important to know
the underlying characteristics of this data. This warrants a closer look at the
particular sensor used in the experiments of the thesis.

The PLS 200 from SICK Electro-Optics is an example of a TOF laser scan-
ner (see Section B.2). It scans the environment at a rate of 25 Hz using a
rotating mirror. Each scan thus takes 40 ms. Due to the limitation of using a
38.4 kBaud serial connection the highest theoretical data rate is approximately
5 Hz if a 2 bit overhead on each byte is assumed. For most of the experiments
the date rate is between 2 and 3 Hz.
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The angular beam separation is 0.5◦, resulting in 361 range readings, zi =
(ri, φi), covering a 180◦ field of view (see Figure B.1). Some of the experiments
are performed with the more accurate SICK LMS model. In the following, the
results apply to the PLS sensor if nothing else is said, but can be extended to
the LMS with obvious changes.
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Figure B.2: Segment of a scan taken of a wall approximately 5.5 m away
from the sensor. A line marking the location of the wall is added to the
left subfigure. The right subfigure shows the range readings along with
arcs with 50 mm spacing, clearly showing the discretization.

B.6.1 Quantization

The range readings of the PLS sensor are quantized in steps of size ∆r = 50 mm.
Figure B.2 shows a part of a scan taken against a wall approximately 5.5 m
away from the sensor. The discretization is clearly visible in the right subfigure
where the same data is shown with different scaling and circular arcs with
50 mm spacing. Due to the gross discretization it is not easy to get an estimate
of the underlying range distribution, i.e. given that the true range is R what
is the probability distribution for measuring r. To get a better estimate of
the underlying range distribution, an experiment is performed where 100 range
readings, qi,j , i = 1, . . . , 100, are collected at each of 50 (j = 1, . . . , 50), tightly
spaced positions in front of a wall. Let ∆dj , (j = 1, . . . , 50) be the distance
traveled towards the wall according to odometry. Figure B.3 shows a histogram
over qi,j + ∆dj for the PLS sensor. Figure B.4 shows the same for the LMS
sensor. Assuming the odometry to have negligible uncertainty over the short
traveled distance, the spread in the figures are due to the error distribution
inherent in the laser scanner. These distributions clearly resembles Gaussians.
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Figure B.3: Estimated range distribution of the PLS laser sensor. The
distribution is approximated as a Gaussian with a standard deviation of
≈ 24 mm.

The standard deviation can be estimated to 24 mm for the PLS and 5.5 mm
for the LMS. The resulting Gaussians are overlaid in the figures. As the distance
measurements are quantized, only multiples of the quantization step can be
measured, n∆r, n = 0, 1, 2, . . . . Assuming R to be the true distance, the PDF
for the measurements can be written as a sampled Gaussian,

p(n∆r|R) =
e−

1
2 ( n∆r−R

σr
)2

∑

m e−
1
2 ( m∆r−R

σr
)2
. (B.2)

The variance in a measurement error (R− n∆r) depends on the true distance
because of the quantization according to

V (R− n∆r|R) =
∑

n

(R− n∆r)2p(n∆r|R). (B.3)

Figure B.5 shows the corresponding standard deviation as a function of true
distance, R. Here the simplifying assumption is made that the standard devi-
ation for the measurement error of the PLS sensor is independent of the true
distance and equal to the worst case, i.e. approximately 26 mm.

B.6.2 Footprint Size

The laser energy propagates in a cone, just like the ultrasonic energy used in
a sonar sensor. The difference is in the beam width. The beam width of the
laser is less than a degree whereas the standard Polaroid sensor has a full beam
width of approximately 25◦ (Pol n.d.).
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Figure B.4: Estimated range distribution of the LMS laser sensor. The
distribution is approximated as a Gaussian with a standard deviation of
≈5.5 mm.
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Figure B.5: Standard deviation for measurement error as a function of
true distance for the PLS sensor.

The footprint of the laser sensor is the shape that the laser beam has when
it hits an object. To be able to determine the beam width and hence the size
of the footprint, a series of experiments are performed. The laser sensor is
placed approximately 4.7 m away from two wooden boards. The range mea-
sured by one of the beams is studied. By sliding the boards perpendicular to
that laser beam and monitoring the measurement the size of the beam can be
estimated. Figure B.6 illustrates the experimental setup. When the boards are
not detected, the measured distance will be the distance to the wall behind.
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d
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Figure B.6: The footprint of the laser beam is determined by sliding two
boards towards each other with the laser beam in between.

In the first experiment only one of the boards is used. The idea is to look
at what happens when the boards in near the border of the beam. Introducing
the coordinate x as a measure of the board position perpendicular to the beam,
Table B.1 show the resulting measurements. As can be seen from the table the
range measurements do not jump discontinuously from the wall distance to the
board distance. When the board is at position x = 4 the range measurements
jump over a range of 0.4 m, giving measurements in between 5.05 m (in be-
tween) and 5.45 m (wall). In the range x ∈ [4, 11] the measurement are in
between wall and board. This range corresponds to an angle of approximately

7
4700 = 0.0015 rad = 0.085◦, i.e. using a wooden board the laser beam has a
region of approximately 0.09◦ on each side, which generates spurious, so called
phantom measurements.

x [mm] 0 1 2 3 4 5 6 7

range [m] 5.45 5.45 5.45 5.45 5.05–5.45 4.9 4.95 4.85

x [mm] 8 9 10 11 12 13 14 15

range [m] 4.8 4.8 4.75 4.75 4.7 4.7 4.7 4.7

Table B.1: When the laser beam is split between two objects at different
distances, the resulting range measurement will be somewhere in between
the distances to the two objects.
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Figure B.7: Phantom measurements are visible at the sides of the person
being captured by the pan-tilt mounted laser scanner.

To illustrate the phenomena of phantom measurements further a person is
placed in the middle of a room with no other object close by. A laser sensor
mounted on a pan-tilt unit scans the person and the scan points that belong to
the person are plotted in Figure B.7. If there were no phantom measurements
all the scan points would lie on the person. As can be seen though, many of
the measurements at the border of the person end up in the middle of the air
as a result of only partially being reflected by the person.

To determine the size of the beam the two boards are used, sliding them
towards each other. By finding the largest possible separation that results in a
range measurement corresponding to the distance to the boards, the size can
be estimated. The result is that the board can be separated approximately
20 mm. This separation at a distance of 4.7 m is equivalent to a beam width
of approximately 0.25◦. The size of the laser beam, that is strong enough to
give the correct correct measurement, is thus 0.25◦. The size of the beam that
is capable of detecting that there is something in front of the wall, but not
correctly measure the distance, is approximately 0.43◦. As the laser beams are
separated by 0.5◦, there is a blind region between the beams.
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Figure B.8: The reflecting areas are assumed to be the same and can
thus be used to put up an equation to solve for the beam radius R.

Another way to make an estimate of the foot print size is to make the
simplifying assumption that the energy is equally spread over the beam. Using
the fact that the beam is circular in shape an equation can be formulated for the
area that is needed to reflect enough energy to get a correct range measurement.
The origin of the equation can been seen in Figure B.8. Using some geometry
one will find the equation

A = (α1 − sin(α1) = 2(α2 − sin(α2)), (B.4)

where α1 = 2 arccos R−D1

R
and α2 = 2 arccos D2

R
. Solving (B.4) using the

information from the experiments above, i.e. D1 = 9 mm and D2 = 10 mm
yields a beam radius, R ≈ 15.5 mm. This corresponds to a beam width of
0.38◦. The difference between the two results is caused by the assumption of
equally spread energy.

B.7 Summary

In this Appendix a brief description of the technology behind the laser sensor
and a short historical overview has been given. Some advantages and draw-
backs with 2D scanning laser sensors have been outlined. The contribution
is the characterization of the two laser scanners from SICK, the PLS and the
LMS. The effect of quantization and the underlying range distribution are in-
vestigated as well as the beam width. It is concluded that unless the whole
beam is reflected, readings that are somewhere between two objects in depth
can result, so called phantom measurements.



198 B The Laser Sensor



Appendix C

Coordinate Systems

Besides the world coordinate system denoted with super script (W ), three other
coordinate systems are considered. One is the odometric coordinate system,
marked with super script (R). The origin of the odometric coordinate system is
defined by the position at which the robot was turned on, or where the wheel
encoders where zeroed. When the robot moves this coordinate system will
remain fixed with respect to the world coordinate system under ideal condi-
tions. However, due to for example wheel slippage and an imperfect odometric

θ

θ
Y

(W )

X
(R)

Y
(R)

(x(R), y(R))
(x(W ), y(W ))

Y
(RC)

X
(RC)

X
(W )

X
(S)

Y
(S)

Figure C.1: Definition of the state of the robot. The world coordinate
system is not moving. The odometric information is given in the robot
coordinate system. This coordinate system will drift over time due to for
example wheel slippage. The sensor coordinate system is attached to the
laser sensor.
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model, the odometric coordinate system will drift. The third coordinate sys-
tem considered has the same orientation as the odometric coordinate system
but is attached to the center of the robot (super script (RC)). The last coor-
dinate system under consideration is the coordinate system of the laser sensor.
This coordinate system is attached to the laser sensor (S). The many different
coordinate systems all have their purpose. Typically some of the relations or
constrints are expressed easiest in one of the them. An example are the visi-
bility constraints which are easiest expressed in the laser coordinate system.
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The Experimental

Platforms

The two main platforms used in the experiments in this thesis are the No-
mad200 platform and the smaller SuperScout platform, both manufactured by
Nomadics.

D.1 Nomad200

The Nomad200 is a synchro drive platform with three wheels, mechanically
connected. It has 16 standard Polaroid ultrasonic sensors (Pol n.d.) placed
around the top of the body (see Figure D.1). At the lower end of the body 16
IR sensors are placed. The IR sensor are very sensitive to the reflecting material
and has a short range of operation. Therefore they provide more or less binary
information, on/off, and as such are only used for obstacle avoidance. The
upper body can rotate without effecting the direction of motion. This provide
means to actively control the direction of attention for the sensors. A SICK
PLS laser scanner is placed on top of the platform. It scans the environment
approximately 93 cm above the ground, giving it a rather elevated view of its
surrounding. The on-board computer is a Pentium III 450 MHz with 128 Mb
of RAM.
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Figure D.1: Nomad200 platform called Asterix has 16 sonars and a PLS
laser scanner. The upper body of the platform can rotate and thus the
direction of the laser can be controlled.



D.2 Nomad SuperScout 203

Figure D.2: The SuperScout Louie with a PTU mounted LMS. Using the
PTU the direction of the laser scanner can be controlled. In the upright
position the laser is 52 cm above ground.

D.2 Nomad SuperScout

One of the three Nomadics SuperScouts in the lab is shown in Figure D.2.
It is equipped with a SICK LMS laser scanner mounted on a pan-tilt unit
(PTU). The PTU can tilt ±110◦ at a maximum angular velocity of 135◦/s.
In the current configuration tilting more than +75◦ or less than −90◦ will
damage the platform. Panning is possible in the interval ±1080◦ at a maximum
angular velocity of 216◦/s. The cable length sets the limit for the pan angle to
approximately ±90◦. There are 16 sonar sensors place equidistantly around the
platform. The on-board computer is a Pentium MMX 233 MHz with 64 Mb of
RAM, making it the computationally weakest platform of the four experimental
platforms.

The two main wheels of the SuperScout are made of hard plastic and there
is a small caster wheel in the back. Thresholds are almost impossible to traverse
because of the the plastic wheels, but the odometric information is accurate
as long as the surface is smooth. The caster wheel is of the same kind that is
found on suitcases and it often gets blocked by, for example, small stones.
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Figure D.3: Left: The Nomadics XR4000 platform Obelix. Right: Goofy
is a PeopleBot from ActiveMedia

D.3 Other Platforms

The Nomadics XR4000 platform (left photo in Figure D.3) is by far the most
complicated platform in the lab. It has three CPUs. Two of these are running
standard Linux. The third is used to control the PUMA 560 manipulator and
runs the real-time operating system QNX. The platform is equipped with 48
sonar and IR sensor placed in two rings, one at the top of the body and one
at the bottom. The laser sensor is placed inside the main body, looking out
through a thin stripe. The scan plane is 49 cm above ground. The platform
has 4 wheels, each actuated with two motors in a way similar how the wheels
of an ordinary office chair moves. This makes the platform close to holonomic.
This comes at the cost of the by far worst odometric performance of the four
experimental platform. A drift in orientation in the order of several tens of
degrees over less than ten meters of motion is not uncommon.

The so-called PeopleBot is manufactured by ActiveMedia (right photo in
Figure D.3). It is a differential drive robot with two rubber wheel. The rubber
is quite soft which gives the platform a somewhat shaky motion. The SICK
LMS laser scanner is placed only 30 cm above to the ground. Beneath the laser
scanner there are 8 sonar sensors and 8 more are placed at the top, also facing
forward.
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