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Abstract

 

Semantic similarity is central for the functioning of semantically enabled processing
of geospatial data. It is used to measure the degree of potential semantic inter-
operability between data or different geographic information systems (GIS). Similarity
is essential for dealing with vague data queries, vague concepts or natural language
and is the basis for semantic information retrieval and integration. The choice of similarity
measurement influences strongly the conceptual design and the functionality of a GIS.
The goal of this article is to provide a survey presentation on theories of semantic
similarity measurement and review how these approaches – originally developed
as psychological models to explain human similarity judgment – can be used in
geographic information science. According to their knowledge representation and
notion of similarity we classify existing similarity measures in geometric, feature,
network, alignment and transformational models. The article reviews each of these
models and outlines its notion of similarity and metric properties. Afterwards, we
evaluate the semantic similarity models with respect to the requirements for semantic
similarity measurement between geospatial data. The article concludes by comparing
the similarity measures and giving general advice how to choose an appropriate
semantic similarity measure. Advantages and disadvantages point to their suitability
for different tasks.
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1 Introduction

 

Psychologists consider similarity judgement as probably the most central construct in
human cognition (Medin et al. 1993, Goldstone 1994, Gentner and Markman 1995,
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Goldstone and Son 2005). Humans use similarity for storing and retrieving information,
to compare new situations to similar experiences in the past; also category learning and
concept formation hinges crucially on similarity. While computers can process the
binary decision of equivalence or non-equivalence of two things very fast and precisely,
it poses a complex and non-trivial problem to compute similarity. Also in geographic
information science (GIScience), similarity plays a major role in many applications such
as spatial decision support systems, data mining or pattern recognition. Current solutions
developed from classical artificial intelligence and machine learning hardly include
psychological findings about human similarity judgement. Although similarity has long
been the subject of investigation in psychology to understand cognitive processes, there
exists no common theory on semantic similarity measurement. This article provides the
reader with a survey presentation on theories for semantic similarity measurement and
reviews how these approaches – originally developed as psychological models to explain
human similarity judgment – can be formalized and used in GIScience. Since the choice
of an adequate similarity measure influences strongly the functionality of geographic
information systems (GIS), the results of this analysis will help to revise the conceptual
design of a GIS and include cognitively plausible similarity measures.

This survey starts with a short introduction to the field of semantic similarity
(section 2.1) and outlines the peculiarities of geospatial objects and concepts (section 2.2).
From there we derive the requirements which form the basis for our evaluation of
the similarity measures. Sections 3 to 7 each explain a model for semantic similarity
measurement: the geometric model, the feature model, the network model, the alignment
model and the transformational model. Each section about a similarity model is organized
as follows: after introducing the main idea of the model, we describe the knowledge
representation and the applicable similarity measures. We focus on the notion of
similarity and discuss the metric or non-metric properties of the measure. By describing
the representational model separately from the similarity measure we can reveal distinct
underlying notions of similarity for the same representational model. Moreover not all
measures are necessarily as expressive as the representational model and they may
account only for a subset of aspects covered by the representational model. Afterwards
we present prominent representatives of each model. A discussion of the applicability of
the similarity model for semantic similarity measurement in GIS concludes each section.
Section 8 reviews the approaches and gives general advice for selecting one similarity
measure. Advantages and disadvantages point to their suitability for different tasks.
The final section (#9) summarizes the approaches and outlines how they influence
each other.

 

2 Semantic Similarity Measurement in GIS

 

2.1 Notion of Semantic Similarity

 

Two major notions of similarity are found in existing semantic similarity measures:
commonalities and differences or the semantic distance (Figure 1).

 

Commonalities and differences

 

 between two representations of concepts are taken
as one indicator for similarity: the more commonalities and the less differences, the
higher is the similarity. While some similarity assessments base their measurement on
an unstructured comparison, other representations allow for a structured comparison:
the common element must play an analogous role in the representation to increase the
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commonalties between two concepts. To apply 

 

semantic distance

 

 as a notion for semantic
similarity, all concepts must be represented in a common framework with some specified
metric. Some similarity measures use a multi-dimensional space as framework and the
Euclidian or city-block metric for distance measurement. Semantic distance in a tree
or network structure is defined by the length of the shortest path between nodes.
The transformational distance is common to use for representations based on sets of
transformations which can be composed and executed one after another. The distance
is measured via the number of transformations or their complexity.

 

2.2 Geospatial Objects and Concepts

 

In the context of semantic similarity we distinguish two constituents of a conceptual-
ization: objects and concepts. Following the definition by Sloman et al. (1998, p. 192)
a “concept is an idea that characterizes a set or category of objects”, i.e. a geospatial
concept describes the idea that characterizes a geographic feature type. A geospatial
object refers to the single geographic feature. Similarity measures must be able to
deal with objects 

 

and

 

 concepts to measure the interoperability between geospatial data
sources.

The semantics of geospatial objects and concepts is complex and has some special
characteristics: they are typically described by properties such as shape, size and location.
In addition, relations, in particular spatial relations, play a major part in the semantic
description. Therefore we review all similarity measures with respect to their ability to
deal with geospatial objects and concepts and their ability to include properties and
spatial relations in the semantic description.

 

3 Geometric Model

 

The following five sections each present one model for semantic similarity measurement.
As a running example we use the geospatial concept ‘floodplain’: a floodplain is a low
lying, flat area of land which is periodically waterlogged due to flooding. Floodplains
are located next to rivers. Geometric models were first used in psychology to exploit the
analogy to space for measuring similarity (Attneave 1950; Torgerson 1958, 1965):
concepts are modelled within a multi-dimensional space and their spatial distance
indicates the semantic similarity.

Figure 1 Different notions of similarity
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3.1 Knowledge Representation

 

Geometric models are based on the notion of multi-dimensional vector spaces. Each
dimension is used to describe properties of objects and concepts. The value of a property
is separated from its quality and shown as a value on a dimension. This separation
enables the comparison of two properties of the same quality, e.g. tiny is more similar
to small than to huge. Most geometric models focus on modelling only objects. Due to
their singular character they can be represented by vectors specifying one point in the
vector space. In section 3.3 we present conceptual spaces, a geometric model which
accounts also for concepts.

Many parallels can be drawn between geometric models and multi-dimensional
scaling (MDS) (Shepard 1987, Nosofsky 1992), but there exist also some fundamental
differences: MDS uses as input subjects’ judgments about pair-wise similarities and
determines the number of dimensions. The goal is to reach the maximum correlation
between the subjects’ similarity judgments and the corresponding distances in the
multi-dimensional space with a minimum number of dimensions. Geometric models
have a given set of dimensions and determine the values to describe each object. Similarity
can be determined via calculation of the spatial distance.

 

3.2 Similarity Measure

Semantic distance in analogy to spatial distance. 

 

Geometric models use the analogy
of semantic distance to spatial distance: similarity is measured as a function of the
spatial distance. The most commonly used similarity measures are the Minkowski
distance measures (equation 1):

(1)

where 
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 is the number of dimensions, 
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 The Minkowski metric is a generic formula:
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=

 

 1 results in the city-block distance and r 

 

=

 

 2 in the Euclidian distance (Suppes et al.
1989). Similarity is a linear (sometimes also exponentially) decaying function of the
Minkowski distance 

 

d

 

ij

 

 (Attneave 1950, Melara et al. 1992); the absolute identification
confusability – often taken as an indirect measure for similarity – is an exponentially
decaying function of distance 

 

d

 

ij

 

 (Shepard 1958a, b).

 

Metric properties of geometric similarity. 

 

A core property and at the same time the
most heavily criticized property of geometric similarity models are their metric assumptions.
The vector space and therefore also the similarity has to meet the three metric axioms:

 

Minimality

 

. This axiom (equation 2) states that, if the spatial distance between two
concepts is zero, then the concepts are the same. It follows from this axiom that the
maximum similarity exists between a concept and itself.
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Based on several experiments – cognition of Morse code (Rothkopf 1957) or cognition
of rectangles varying in size and reflectance (Attneave 1950) – critics of metric similarity
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claim that the axiom of minimality does not hold for similarity. Other studies state as
well that self-proximities of concepts differ by taking the response time as a measure of
similarity: the same-different judgment takes longer for complex concepts than for simple
concepts (Takane and Sergent 1983). According to Johannesson (2002) these results
cannot simply be transferred to similarity measurement: all experiments demonstrating
the absence of the minimality axiom deal with confusability or response time, but none
with direct similarity judgements.

 

Symmetry

 

. This axiom (equation 3) states that the distance and therefore also the
semantic similarity from one concept to another is the same as vice versa.
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Like Tversky in his experiment of similarity between countries – North Korea is more
similar to Red China than vice versa (Tversky 1977) – many other researchers from
different domains showed that symmetry between concepts does not always hold. He
states that similarity or dissimilarity is judged depending on the prominence or relative
salience of concepts. Although geometric models in general assume symmetry, there
exist geometric models which take asymmetry of similarity into account, for instance
Krumhansl’s distance density model (Krumhansl 1978) or extensions to Gärdenfors’
conceptual spaces such as the Relative Prominence Model (Johannesson 2000).

 

Triangle Inequality

 

. The axiom (equation 4) states that the distance between two concepts
is always smaller than or equal to the distance between both concepts via a third concept.

 

d

 

(

 

i

 

, 

 

j

 

) 

 

+

 

 

 

d

 

(

 

j

 

, 

 

k

 

) 

 

≥

 

 

 

d

 

(

 

i

 

, 

 

k

 

) (4)

It is trivial to come up with examples for similarity judgments that violate the triangle
inequality, e.g. the famous example from James (1892/1961): a lamp is similar to the
moon and the moon is similar to a soccer ball; but a lamp is not similar to a soccer
ball. While the first comparison in this example emphasizes the aspect of providing
light and the second focuses on the shape dimension, it is unclear which dimensions
are used in the soccer ball – lamp comparison. These similarity judgements are based on
different saliencies of properties, which depend on the context. Tversky and Gati (1978)
showed the systematic violation of the triangle inequality when the similarity of two
concepts 

 

A

 

 and 

 

B

 

 was measured on one and the similarity of concept 

 

B

 

 to 

 

C

 

 was measured
on a different dimension. Therefore similarity on different dimensions is not trans-
itive. Krumhansl (1978) and Johannesson (2000) proposed extensions to geometric
models to take into account effects of context changes in the similarity judgement.

Here we would like to emphasize that the triangle inequality as shown in
Equation (4) refers only to semantic distances. Many authors (such as Tversky 1977)
infer from this axiom that triangle inequality holds also for similarity, i.e. from the
equation about the distances d1 

 

+

 

 d2 

 

≥

 

 d3 it is inferred that the similarities s1 

 

+

 

 s2 

 

≤

 

 s3.
Mathematically, this conclusion is not correct.

 

1

 

Requirements and assumptions. 

 

Like all property-based similarity measures the geo-
metric model has some assumptions underlying the dimensions:

1. Independence of representational element: geometric models in general assume
properties to be independent. Independent properties are modelled via orthogonal
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dimensions. Dependent properties can be modelled by dimensions with angles
smaller than 90

 

°

 

, e.g. Raubal (2004).
2. Solvability: the set of properties used to describe a concept must be sufficiently rich

and representative for the conceptualization. A property-set that does not reflect the
human conceptualization can obviously not provide good similarity results.

3. Comparability of representational elements: the equivalence of intervals on dimen-
sions must be preserved across dimensions by normalising the dimensions. To make
dimensions comparable and represent measurands in the same relative unit, we
propose to use standardization methods from statistics such as the z-transformation.

4. Complexity of representation: by adding more information to a description the
semantic distance can only increase and similarity decreases. Therefore geometric models
are suited only for comparison of concepts with an identical number of dimensions.
Alternatively, one may add an additional factor which computes the similarity
depending on the number of dimensions as done in Schwering and Raubal (2005a, b).

 

3.3 Representatives for Geometric Models

 

The most famous representative for geometric models are 

 

conceptual spaces

 

 introduced
by Gärdenfors (2000). Conceptual spaces represent information at a conceptual level and
are formed by a set of quality dimensions. The dimensions are closely connected to qualities
perceivable by the human sensory system. For example, the colour domain is formed
through the integral dimensions hue, saturation and brightness. Objects are represented
as a point in a conceptual space and concepts are modelled as n-dimensional regions.

Krumhansl (1978) proposed the 

 

distance density model

 

 as a geometric similarity
measure. It focuses only on objects and calculates the similarity as a function of the
spatial distance and the density of stimulus points.

 

2

 

 By including the density of the stimulus
points, Krumhansl takes into account that the similarity also depends on the granularity
of objects, i.e. similarity is less in sub-regions with dense stimulus points than with low
density. This similarity measure meets the concerns about minimality and takes into account
that the confusion probability is higher in regions with high density of stimulus points.

 

3.4 Evaluation for Similarity Measurement between Geospatial Data

Objects and concepts. 

 

The representational model of conceptual spaces is developed to
model objects and concepts likewise. However, the similarity measure can only measure the
semantic distance between points in the conceptual space. The semantic distance between
concepts is estimated by reducing the concept to a single exemplar. Gärdenfors proposes
to use the prototypical instance of each concept and measure the semantic similarity
between prototypical instances in place of the whole concept. Prototypes are assumed to
be “central points in the categories they represent” (Gärdenfors 2000, p. 97). Distances
can also be determined by calculating the average distances between a limited number
of exemplars, by determining the distances between convex hulls of each concept or by
dimension-wise distances (Schwering and Raubal 2005a).

 

Properties and spatial relations. 

 

Conceptual spaces represent properties on quality
dimensions, but do not support semantic relations between concepts. Schwering and Raubal
(2005b) proposed an extension to conceptual spaces to model spatial relations as
compound dimensions. However, these “compound dimensions” suffer from the problem
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that the relational structure is hidden in the dimension label and cannot be used for
similarity judgement.

4 Feature Model

Both geometric and feature models use properties to describe concepts. While properties
in geometric models are dimensions with ordered values, properties in feature models are
Boolean: features either hold or do not hold for a concept. Two concepts having the same
feature are similar in some respect. Similarity measures of feature models underlie the
assumption that similarity of concepts increases the more common and the less distinct
features these concepts have. Using feature models to compare concepts and measure their
similarity became popular with Tversky’s famous critique of metric similarity (Tversky 1977).

4.1 Knowledge Representation

The feature model is based on a set-theoretic knowledge representation: concepts are
represented via an unstructured set of features that hold for the specific concept.

Features correspond to components, concrete or abstract properties of the concept.
A wetland (Figure 2) may be described by the feature ‘low vegetation’ reflecting the
component vegetation of a wetland, ‘flat’ for the relief of the wetland, ‘often water-
logged’ for its hydrologic features and ‘area’ for its shape. Like dimensions, features can
represent nominal, ordinal, interval and ratio scaled variables. Features may refer to two
types of dimensions: additive and substitutive dimensions (Tversky and Gati 1982). Features
depending on additive dimensions may be added to the feature set regardless of the other
features in the set. However, features based on substitutive dimensions are not independent
from other features. An example for a substitutive dimension would be the dimension
surface relief: an object can be described as flat or steep, but it cannot have the feature
flat and steep at the same time.3 Substitutive dimensions are therefore collections of
features and any object can have only one feature of the collection (Markman 1999).

Figure 2 The concepts ‘floodplain’, ‘wetland’ and ‘lowland’ are modelled via unstructured
sets of features, which hold for something to be an extension of the concepts
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4.2 Similarity Measure

Feature-matching model. The feature-matching model accounts for the fact that similarity
is not necessarily metric. Concepts are represented as collections of features. By representing
each concept with a different set of features, elementary set operations can be applied
to estimate similarities and differences.

Tversky and colleagues (Tversky 1977, Tversky and Gati 1978, Sattath and Tversky
1987) propose a set-theoretic similarity measure expressing the similarity between
concepts a and b as a function of their common and distinct features (equation 5,
illustrated in Figure 3).

s(a, b) = F(A ∩ B, A − B, B − A) (5)

Intersections or subtractions of feature sets are based only on entire feature matches.
While geometric similarity accounts for intra-dimensional similarity, feature similarity
cannot measure partial matches, e.g. the waterlogged feature ‘periodically waterlogged’
is as distinct from ‘sometimes waterlogged’ as from ‘always waterlogged’. Feature models
allow for representing ordinal and cardinal features, but the similarity measure does not
account for their ordering.

Non-metric properties of feature-based similarity. The feature matching model con-
sists of three components: the distinct features of A to B, the distinct features of B to A
and the common features of A and B. Depending on the weighting of the components in
the similarity function F (equation 5) this function is non-metric. Tversky was probably
the strongest advocate of non-metric similarity. He proved empirically that the three
metric axioms do not hold in human similarity assessment and stated that “minimality is
somewhat problematic, symmetry is apparently false and the triangle inequality is hardly
compelling” (Tversky 1977, p. 329).

Figure 3 The matching feature similarity measures the similarity by applying set-theoretic
operations (A indicates the set of features of concept a and B those of concept b)
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Requirements and assumptions. As the geometric model, the feature model has some
assumptions to provide reliable similarity measurements (Tversky 1977):

1. Independence of representational elements: the degree to which each feature (or
a pair or set of features) shared by two concepts affects similarity must not be
dependent on any other shared feature (or pair or set of features). An example
illustrates the problem (Figure 4): Comparing only the features of the circles lead to
two common versus one distinct feature. The degree of similarity changes, if the
features of the squares are included.

2. Solvability: the feature-set must be sufficiently rich and representative. Like the
other approaches, the feature model measures similarity between representations.
If a representation of a concept is inadequate, i.e. it contains a non-representative
or incomplete set of features, the resulting similarity is necessarily also inadequate.

3. Invariance of representational elements: the intervals between features are assumed
to be equivalent across factors.

4.3 Representatives of the Feature Model

The most famous feature model is the contrast and ratio models by Tversky, which
represent similarity function F as a weighted difference of common and distinctive
feature sets (contrast model, equation 6) or as its normalised version (ratio model,
equation 7).

S(a, b) = θ * f(A ∩ B) + α * f(A − B) + β * f(B − A) (6)

The scale f can either be a simple function determining the cardinality of the set or a
functional reflection of the salience or prominence of the various features.

(7)

Both models reflect Tversky’s assertion that similarity assessment is directional and
asymmetric. Tversky’s non-metric feature-matching models are probably the most

Figure 4 Two spatial scenes are described by a set of features. The similarity between these
scenes depends on the correct alignment of these features (Gentner and Markman
1995, p. 114)
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commonly used measure for similarity among prototype theorists (Laurence and
Margolis 1999).

The Matching-Distance Similarity Measure (MDSM) by Rodriguez et al. (1999)
and Rodriquez and Egenhofer (2003, 2004) is a feature model developed for similarity
measurement of geospatial concepts. It is based on the ratio model, extends it by introducing
different kinds of features and applies it to concepts.

4.4 Evaluation for Similarity Measurement between Geospatial Data

Objects and concepts. Tversky applied the feature-matching model only to objects.
Each object is allowed to have no more than one property from a substitutional property
set. Rodriguez and colleagues ease this restriction: in MDSM they allow also for mutually
exclusive properties.

Properties and spatial relations. The feature-matching model is unable to relate two
objects in a structured way. It can express structure only by compound features such as
‘nextToRiver’. However, since feature models cannot detect any partial feature matches,
no relational similarity is detected between ‘nextToWaterbody’ and ‘nextToRiver’. A
relational representation of these features – e.g. nextTo(floodplain, waterbody) and
nextTo(floodplain, river) – could detect similarity via an alignment of arguments.

5 Network Model

Network models are graph-based and use semantic networks for knowledge representa-
tion. Semantic networks have their roots in psychology, where they were used to model
the human semantic memory.

5.1 Knowledge Representation

The term semantic network encompasses a family of graph-based representations.
Semantic networks are composed of labelled nodes and edges. Nodes represent units of
knowledge, e.g. objects, concepts or properties. Edges link nodes with each other and
represent the relations between them explicitly. However, the graph notation itself isn’t
the decisive point – a semantic network needs a standard terminology and standard
semantics especially for relations between concepts (Luger 2001). Although their repre-
sentational model always has the same structure, network models still differ quite a lot:
depending on the implementation, some network models allow only for taxonomic
relations, others for hyponomic and partonomic and again others include any kinds of
hierarchic and association relations. Some semantic networks restrict the direction of the
relations and assign weights to model their importance.

5.2 Similarity Measure

Like geometric models, network models measure similarity based on the notion of
distance. Most approaches use graph-theoretic algorithms such as the shortest path
algorithm and weighted path length or information theoretic measures for the calculation.
Graph-theoretic similarity measures in semantic networks are metric, if the distance
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between concepts is measured regardless of the direction of the arches. Distance algo-
rithms that take the direction into account compute non-metric similarity: the similarity
is asymmetric, but the triangle inequality holds and self similarity equals always zero.
Information theoretic similarity measures are also non-metric.

Requirements and assumptions. The following requirements and assumptions underlie
the network model:

1. Solvability: the relations between concepts must be sufficiently rich and representa-
tive. The similarity of two concepts can only be measured, if a path between them
exists. Similarity between concepts not being connected via any relation cannot be
computed.

2. Comparability of representational elements: graph-theoretic similarity measures
assume that each relation is relevant for the similarity judgment and has the same
influence on similarity. The distance algorithm valuates each relation equally.
Similarity measures based on information content differ exactly in this point.

5.3 Representatives of the Network Model

Rada et al. (1989) proposed a similarity measure called DISTANCE to compute the
conceptual distance which measures similarity between two concepts within the same
network. DISTANCE was designed for semantic networks with taxonomic relations (later
extended to association relations). It measures the distance between two nodes or sets of
nodes and is defined by the “average minimum path length over all pair-wise combinations
of nodes between two subsets of nodes” (Rada et al. 1989, p. 17). Rada et al. believe
that human similarity judgement is metric and that the asymmetry of similarity between
concepts is not derived “from the asymmetry of similarity [. . .] but from the existence
of another asymmetric relationship between concepts” (Rada et al. 1989, p. 19) such as
fuzzy category-membership.

The feature-based similarity in MDSM (section 4.3) includes relations between
concepts via a semantic neighbourhood.

Resnik (1995, 1999) proposes a semantic similarity measure of concepts based on
the notion of information content. She uses a taxonomy with multiple inheritance as the
representational model. Existing approaches such as DISTANCE assume that all relations
represent uniform distances. Yet, in real taxonomies the distances covered by one single
relation vary a lot. Resnik’s information content-based semantic similarity measure
overcomes these shortcomings: The probability of a concept increased the more
concepts it subsumes, i.e. the higher it is within the ontology. The information content
of a concept can be computed from its probability. By analogy to information theory
(Ross 1998), Resnik defines the information content of a concept as the negative
logarithm of its probability. The similarity of two concepts c1 and c2 is the maximal
information content of all concepts subsuming c1 and c2. Figure 5 illustrates a small
example.

The information content-based similarity measure is symmetric and transitive.
Thus, in contrast to distance by Rada et al., the minimality axiom does not hold for
Resnik’s similarity measure: the similarity from a concept to itself is the negative logarithm
of its information content. Only the single concept on top of the hierarchy reaches the
self-similarity of one.
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5.4 Evaluation for Similarity Measurement between Geospatial Data

Objects and concepts. The network model was intended to model only concepts, but all
similarity measures support semantic similarity assessment between objects as well.

Properties and spatial relations. The strength of the network approach is the represen-
tation of relations between concepts: hierarchic (in Resnik’s approach) and hierarchic
and partonomic (in Rada’s approach and in MDSM) with a possible extension to spatial
relations (Schwering 2004). Pure network models do not describe concepts any further
(e.g. by features or dimensions) though for the similarity measurement network models
can be combined with the feature model like Rodriguez and colleagues did in the semantic
neighbourhood.

6 Alignment Model

The idea of using alignment of elements for similarity measurement arose from the
studies about structural alignment and mapping in analogy by Gentner and Markman
(1994, 1995, 1997). Like the feature model, the alignment model uses commonalities
and differences as notion of similarity, but includes the relational structure in which
properties or relations are found.

6.1 Knowledge Representation

Alignment models represent knowledge in a structured way by adopting Gentner’s
structural alignment framework. Objects are represented by their properties incorporated
into a system of relations that hold between them. Central to this representation are

Figure 5 The probability and the information content depend on the concept’s position in
the taxonomy
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alignment relations which indicate a structural analogy of two representational elements
– properties or relations – belonging to two different objects. Alignment relations must
be structurally consistent and systematic. Structurally consistent relations follow two
constraints: each element corresponds to at most one element (one-to-one mapping) and
the corresponding arguments of each pair of matching relations also match (parallel
connectivity). The one-to-one mapping is difficult to apply in similarity measurement
between concepts (section 6.4). The alignment is called systematic, if there exists a deep
interconnected structure of matching features and relations.

6.2 Similarity Measure

Similarity measurement of alignment models examines the commonalities between
relational structures: while geometric and feature models search only for matching
elements, alignment models also account for whether these matching elements align or not.

Figure 6 shows two scenes where a car (a lorry) is towing a ship (a car). The lorry
towing the car in the left picture is placed in correspondence to the car towing the ship
in the right picture. These are alignable differences. The moon in the left and the right
picture are aligned as well – an alignable match. The birds in the left picture do not have
any correspondence in the right picture and are therefore a non-alignable difference. The
cars in both scenes are similar according to their properties, but they play different roles
in the relational system – one is towing, the other one being towed. This situation – also
called cross mapping – is a non-alignable match. These different types of matches and
mismatches have different influences on the final similarity value: alignable matches
increase the similarity more than non-alignable matches.

Requirements and assumptions. The following assumptions underlie the alignment
model:

1. Independence of representational elements: the alignment model assumes that each
element (or pair or set of elements) used for the description of a scene is independent.

2. Homogeneous structure: the advantages of the alignment model only become evident
when both compared objects have a homogeneous structure. The alignment rules
require a uniform structure to work automatically.

3. Solvability: the set of elements must be sufficiently rich and representative.
4. Comparability of representational elements: the alignment model assumes that each

element has the same influence on the (dis)-similarity.

Figure 6 These scenes show two towing scenes, which contain alignable and non-alignable
matches as well as alignable and non-alignable differences (Gentner and Markman 1995, p. 123)
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6.3 Representative for the Alignment Model

Goldstone (1994) and Goldstone and Medin (1994) introduced the Similarity, Interactive
Activation, and Mapping (SIAM) model, an alignment model for similarity measurement
between spatial scenes. Similarity is measured in an iterative learning process based on
neural networks.

SIAM describes spatial scenes by roles, components of the scene and features: roles
are binary relations with components as arguments, which themselves contain feature
slots filled in with particular values. Figure 7 shows a spatial scene and its description.
Relations describe hierarchical or propositional representations of components, such as
the spatial relation in this example. SIAM computes all possible alignments of features
and relations and iteratively revises inconsistent alignments until it is consistent and
similarity can be determined (Goldstone 1994).

6.4 Evaluation for Similarity Measurement between Geospatial Data

Objects and concepts. SIAM was developed to measure similarity between objects
(spatial scenes). The rule of one-to-one mapping is difficult to apply to similarity between
concepts, if they are described at different levels of granularity. This may entail that
elements describing one concept may correspond to more fine-granular elements of the
other concept. The base concept might be a general concept ‘flooding area’ and the target
concept is a more complex concept ‘floodplain’ having a part ‘water meadow’ (Figure 8).
Both ‘floodplain’ and ‘water meadow’ map to the single concept ‘flooding area’. Alignment
models consider this as inconsistent.

Structural commonalities are certainly important to human similarity judgments,
but SIAM’s determination of alignments is probably too strict to cope with this complex
task of similarity measurement between concepts.

Properties and spatial relations. SIAM supports hierarchical relations as well as pro-
positional representations between objects (e.g. spatial relations). Properties are also
included in the similarity measure: the properties of each object are divided into feature
slots and feature values.

Figure 7 The alignment model proposed by Goldstone describes spatial scenes in a structured
way with roles, components and features
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7 Transformational Model

All similarity measures presented so far describe the concepts according to their
properties and relations and measure similarity based on the comparison of these
descriptions. Transformational models compute similarity in a different way: they define
transformations required to distort one concept into another and similarity is defined in
terms of the number of transformations needed to make concepts transformationally
equal.

7.1 Representational Model

In transformational models concepts are described according to the transformations
needed to make one concept equal to another concept. The representational model
comprises a set of transformations that can be applied to modify concepts. However,
this set of transformations depends greatly on the nature of the concepts: The frequently
used perceptual transformations are not sufficient to describe the relation of conceptual
stimuli. Although in principle transformations are not restricted to being perceptual, the
identification of transformations to modify meaning is not easy. The Rutherford analogy
between the solar system and an atom illustrates the problem: “A miniaturization
transformation could be applied to the solar system. However, this single transformation
is not nearly sufficient; a nucleus is not simply a small sun” (Goldstone and Son 2005,
p. 27). To apply transformational models to conceptual information a set of constrained
transformations must be defined. It is much more tenable to define such a set for
perceptual stimuli than for conceptual.

7.2 Similarity Measure

Transformational models use the number of transformations needed to make one
concept identical to another as the basis for the similarity calculation. The similarity is
assumed to decrease monotonically when the number of transformations increases
(Imai 1977, Wiener-Ehrlich 1980). Hahn et al. (2003) proposed to use the Kolmogorov
complexity as the mathematical foundation to include the complexity of transformations
in the similarity calculation.

Figure 8 In these two spatial scenes the flooding area in the left picture aligns to floodplain
and water meadow, a part of the floodplain, in the right picture
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Metric properties of the transformational model. The transformational model is asym-
metric, but the metric axioms minimality and triangle inequality hold (Hahn and
Chater 1997): the similarity between identical concepts is maximal, because no trans-
formation is required to transform concepts into themselves (minimality axiom). The
transformations required to distort concept A to B concatenated with the transfor-
mations required for distorting B to C are more or equal to the transformations required
for directly transforming A to C (triangle inequality). Hahn and Chater (1997) argue
that similarity in transformational models is asymmetric, because inverse transformations
do not necessarily have the same complexity. For example, transforming a complex
concept ‘China’ with a lot of detailed information into a simple concept ‘North Korea’
with little information simply requires the deletion of the additional information in
‘China’ and the transformation of the remaining information. For the transformation
the other way around – from ‘North Korea’ to ‘China’ – all the detailed information
about ‘China’ must be built up.

Requirements and assumptions. Several assumptions are made for the transformational
model to provide reliable similarity measurements:

1. Solvability: the set of transformations must be sufficiently rich, i.e. it must comprise
at least all transformations necessary to make each of the regarded concepts trans-
formationally equal to another.

2. Comparability of representational elements: to use the number of transformations
as a measure for similarity, the degree to which each transformation affects the
similarity must be equal, i.e. all transformations must be of the same complexity.
The Kolmogorov complexity theory (Vitanyi and Li 1997) makes two transformations
with different complexity comparable.

3. Complexity of representation: the transformation of a simple concept into another
concept being equally simple requires only a simple transformation, while the trans-
formation of two complex concepts described in minute detail is naturally more
complex. Hahn and Chater (1997) propose to solve this problem by measuring the
similarity depending on the complexity of the concepts themselves.

7.3 Representatives of the Transformational Model

Transformational models were applied to perceptual stimuli, usually symbol chains such
as alphabetic strings (Wiener-Ehrlich et al. 1980), chains of filled and unfilled circles
(Imai 1977) or geometric complexes (Hahn et al. 2003). The transformations focus on
the perceptual attributes only. Operations such as mirror, reverse, add symbols are used
to modify the order of symbol chains. Operations modifying the geometric arrangement
are rotation, reflection, translation and dilation (Goldstone and Son 2005). Recently
Hahn et al. (2003) proposed a transformational model based on representational distor-
tion, a theoretical framework for similarity judgments. This model represents concepts
with computer programs to generate them. The inputs of this transformational model are
representations of two concepts A and B. The computer program P to distort or transform
the representation of concept A in the representation of concept B is determined. The
complexity of P is used to measure the similarity: According to Kolmogorov complexity
theory, the complexity of a representation is the length of the shortest computer
program that can generate that representation (Vitanyi and Li 1997).
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7.4 Evaluation for Similarity Measurement between Geospatial Data

Objects and concepts. So far, the transformational model was only applied to relatively
simple objects and perceptual similarity. In general it can be applied to geospatial
concepts and conceptual similarity, but this requires a framework of conceptual trans-
formations. This framework – if general enough this would lead to a semantic reference
system (Kuhn 2003, 2005) – is the core component of the similarity assessment.

Properties and spatial relations. The transformational model uses transformations for
the semantic comparison of objects or concepts. These transformations can refer to the
properties or relations of the respective concept: for instance transform the waterlogged
value from periodically to often or delete the nextTo relation of concept ‘floodplain’ to
represent the concept ‘wetland’. The effort needed to distort one property or relational
structure into another must be defined within the reference framework.

8 Review of Existing Semantic Similarity Measurements

8.1 Review and Comparison

Each of the five similarity measures has a different mathematical foundation, uses
different knowledge representation and notion of similarity. Figure 9 gives an overview
of the semantic similarity measures presented in this survey, Table 1 contrasts their
differences with respect to the knowledge representation and Table 2 with respect to the
notion of similarity.

Geometric-, feature- and alignment models describe concepts directly, while
network- and transformational models use an indirect way by describing a concept’s
relations or transformations to other concepts. Like feature models, alignment models
use features for the semantic description. But the alignment model separates features
into attribute-values pairs (feature slots and feature values) which are ordered like values
on dimensions. Network- and alignment models both use relations, but different kinds:
relations in network models are hierarchic or associative relations only. Alignment
models use hierarchic and associative relations to describe the role of components

Figure 9 Semantic similarity measures are based on different notions of similarity
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within one object and alignment relations to align analogous features or components of
different objects. Transformations can also be seen as an extended kind of alignment
relations: they state not only that there exists a relation, but specify also how these
concepts correspond.

Table 1 Comparing the representational models of various similarity measures1

Representational elements 
Representational structure

Geometric 
Model

Feature 
Model

Network 
Model

Alignment 
Model

Transformational 
Model

Mathematical model
– Multidimensional space X
– Set theory X
– Graph theory X
– Neural network X
– Transformations X

Representational elements
– Dimensions (direct description) X (X)
– Feature (direct description) X X
– Relation (indirect description 

via other objects/concepts)
X X

– Transformation (indirect 
description)

X

Representation structure
– Structured representation X X (X)
– Unstructured representation X X X

1 The X indicates that the criterion holds for the model. The (X) indicates that the criterion holds only for some 
extensions of this model.

Table 2 Comparing the similarity measures of various similarity approaches

Notion of similarity 
Type of match
Degree of match

Geometric 
Model

Feature 
Model

Network 
Model

Alignment 
Model

Transformational 
Model

Applicable to
– Objects X X X X X
– Concepts (X) (X) X X

Notion of similarity
– Semantic distance as dissimilarity X X X
– Commonalities versus differences X X X
– Structural analogy X

Type of match
– No distinction in alignable/

non-alignable match
X

– Only alignable match X
– Distinction in alignable/

non-alignable match
X

Degree of match
– Various degrees [0, 1] X X
– Match versus non-match (0, 1) X
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Structured knowledge representations are important for similarity measurement,
because they “make explicit the relations between elements in a situation, and allow
complex representation to be constructed through the combination of simpler elements”
(Markman 1999, p. 124). The geometric and the feature model are both unstructured
representation, because neither can structure concepts into parts and describe the parts:
the geometric model describes concepts only by dimensional properties, but it relates
properties on one dimension to each other and therefore provides more structure than
the feature model. Network models can relate parts to wholes and various concepts to
each other and therefore are classified under structured representations. The alignment
model uses features and relations for the description: objects are structured in their parts,
described by features and related to other elements. Therefore, the alignment model
allows for a structured representation. Alignment relations specify analogous elements of
the two objects, between which the similarity is measured. Alignment relations enable the
similarity measure to account for structural analogy. The transformational model is a
structured representation: a concept represented by a computer program can be described
at a high level of complexity and the transformations may be arbitrarily complex as well.

Geometric-, feature-, alignment- and transformational models were originally
developed for similarity between objects (Table 2). Gärdenfors proposed conceptual
spaces, a geometric model to compare concepts as well. Rodriguez et al. extended the
feature model for similarity measurement between concepts. Hahn et al. proposed to use
computer programs for the description, which can handle complex concepts. Network
models are based on semantic networks that describe concepts or objects and therefore
measure similarity between both.

Geometric-, network- and transformational models all use distance as a notion of
similarity, but due to their different representational models distance is measured differently:
geometric models measure the spatial distance, network models measure the distance in
graphs and transformational models take the number or complexity of transformations
as distance. These distances are interpreted as the semantic distance of stimuli or the
dissimilarity. The distance must be transformed to a similarity value using either a linear
or exponentially decaying function as proposed in the literature. We assign Resnik’s
similarity measure as well to the group of semantic distance-based similarity measures:
the algorithm computes the common superconcept with the highest information
content. The resulting similarity is comparable with the shortest path length computed
by DISTANCE extended by length of the hierarchic links. The concept probability can be
interpreted as the semantic distance and the function transforming probability into
information content is analogous to the transformation of semantic distance into
similarity. Feature models balance the commonalities and differences. Alignment models
compute similarity according to the degree of matching features (similar to the feature
model), but consider as well the structural analogy between scenes. Feature and
alignment models both compute directly a similarity value.

Alignment models distinguish between different kinds of matches: matches that can
be aligned increase the similarity more than those that cannot be aligned. Geometric
models compare concepts in the same multi-dimensional space, therefore only aligned
dimensions exist. Both models allow for a different degree of similarity, typically
normalised between 0 and 1. Feature models do not align features before matching
them. They distinguish only matching or non-matching features. Network and trans-
formational models do not match relations or transformations: they simply compute the
distance from concept A to B.
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8.2 Choosing a Similarity Measure

The choice of a similarity measure for a certain application is a complex process. In
many cases the requirements already restrict the set of possible approaches: For
instance, to compare semantic descriptions containing only properties and neglecting
relations requires the geometric or the feature model. If you want to compare geographic
features in the context of a spatial scene you can use SIAM; however, SIAM cannot
be used to compare geographic feature types semantically. The metric properties also
determine the suitability of a similarity measure: similarity in a retrieval task is directed
(from the query to the data source elements) and therefore an asymmetric implementation
of similarity makes sense. In an integration task, a symmetric similarity measure is
probably more adequate, because joining two data sources is a symmetric and non-
directed task. The comparison given in the above section can be used to match requirements
with the characteristics of the semantic similarity measures.

In general however, there is no best practise to choose a similarity measure. This
is also because the human similarity judgment process is not always the same. The way
humans perceive similarity is influenced by context and experience (Goldstone and Son
2005):

• The similarity between two concepts depends on other concepts in consideration
when judging the similarity. In human subject tests for example, the similarity
judgment is affected by which objects were presented on previous trials. Similarity
between two concepts decreases when the number of similar concepts increases.
Krumhansl’s distance density model takes this effect into account.

• The similarity between concepts depends on the context which is considered to
play a major role in similarity measurement (Roth and Shoben 1983, Wendell
1994). The geometric and the feature model take context effects into account by
assigning different weighting factors to dimensions or features. The importance of
properties may be perceived differently depending on the task. In a categorization
task humans tend to group individuals together that agree on one or several
properties. All individuals in a category are similar “with respect to” a particular
property (Goodman 1972, Medin et al. 1993). This particular property is con-
sidered very important and significant for the categorization. But the importance of
properties also depends on the concepts themselves. A feature shared by all concepts
of the group in consideration has no diagnostic significance when judging the
similarity between pairs of concepts. The salience of properties depends on the
other concepts in this group. Tversky’s feature-matching model and Johannesson’s
relative prominence model include weighting factors to reflect the importance of
a property.

• The way of judging similarity depends also on the observer. In an experiment Suzuki
et al. (1992) asked experts and non-experts to solve the Tower of Hanoi problem
and judge the similarity of the various states and the goal. While the experts with a
computer science background judge the similarity based on the number of required
moves to distort the puzzle into the goal, non-experts base their judgments on
shared superficial features (Suzuki et al. 1992). The notion of similarity of the
transformational model applies very well to the expert’s way of measuring similarity,
while the feature model is more appropriate to represent the non-experts similarity
judgment process.
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For every domain and application task it must be examined which approach satisfies the
restrictions and can be applied. The suitability of the way of describing concepts –
directly by properties, indirectly by relations or transformations to other concepts or
by a combination of both – and the notion of similarity must be checked in every
individual case.

9 Summary and Outlook

The different approaches for semantic similarity measurement have all their origin in
psychology and reflect how humans compare concepts and judge similarity. Still the
methods of assessing similarity differ greatly. They use different theories on how
humans perceive and structure knowledge about concepts – occupying a region in a
vector space or as a set of features – and on how they define a notion of similarity for
their model. Similarity in feature models and network models are built on different
theories of semantic memory. Alignment models are geared to analogical reasoning and
assume that similarity is a high-level cognitive process. Finally, transformational models
assume that humans base their similarity judgments on the transformational distance
needed to make two concepts transformationally equivalent.

Figure 10 summarizes all five approaches with their various variants by illustrating
their development and how they influenced each other. MDS was the first model used

Figure 10 The development of semantic similarity measures
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to analyze human similarity judgment. Its metric properties were heavily criticized in the
1970s and led to the first non-metric similarity measure: the feature-matching model by
Tversky. Starting from Tversky’s critique of metric similarity, a number of different
approaches developed, which take asymmetric properties into account: Krumhansl’s
distance density model and Johannesson’s RPM are asymmetric variants of the geometric
model. Goldstone developed SIAM, which seizes the non-metric similarity and combines it
with structural analogy. Rada denies Tversky’s criticism and argues for metric similarity.
He developed the algorithm DISTANCE for network models. Resnik’s information
content-based similarity model includes different link distances. The early geometric
models and Tversky’s feature-matching model only accounted for individuals. MDSM
extends Tversky’s model to account for concepts. Gärdenfors’ conceptual spaces are a
geometric model for representations of objects and concepts: they account for prototype
effects by the way concepts are modelled. Conceptual spaces provide a natural way of
measuring similarity via the spatial distance of objects and concepts. Transformational
models picked up the notion of semantic distance, but applied it to a framework of
transformations.

Ongoing research about semantic similarity between geospatial data aims at over-
coming the shortcomings of similarity measures by combining different approaches to
semantic similarity measurement. For example, the Hybrid Model (Schwering 2005)
integrates the geometric model, namely Conceptual Spaces by Gärdenfors, with semantic
networks. This allows using properties as well as relations for the semantic description.
The similarity measure applies the notion of semantic distance like the geometric and the
network model, but also includes structural commonalities like the alignment model. A
combination of various approaches often increases the expressiveness and accounts better
for the complexity of human similarity judgement.

Logic-based representations based on description logics are widely accepted in the
semantic web. Reasoning mechanisms such as subsumption reasoning is used to identify
matching concepts from different ontologies (Lutz and Klien 2006). Current research
investigates the usage of similarity in formal ontologies to compare ontologies (e.g.
Janowicz 2006a, b; Janowicz et al. 2007). Such approaches are applicable to logic-based
ontologies that build the basis for the geospatial semantic web. However, they do not
focus on the explanation of human similarity measurement as the psychologically motivated
approaches presented in this survey do.
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Notes

1 Let similarity s be the decaying function s = 1/(1 + d). From d1 + d2 ≥ d3 with d1 = d2 = d3 = 1
follows s1 = s2 = s3 = 1/2 and s1 + s2 > s3.

2 Stimulus points are the vectors representing objects in a multidimensional space.
3 This does not necessarily hold for concepts, though.
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