
Open Research Online
The Open University’s repository of research publications
and other research outputs

Approaches to semantic web services: An overview and
comparisons
Book Section
How to cite:

Cabral, Liliana; Domingue, John; Motta, Enrico; Payne, Terry and Hakimpour, Farshad (2004). Approaches to
semantic web services: An overview and comparisons. In: Bussler, Christoph; Davies, John; Fensel, Dieter and Studer,
Rudi eds. The Semantic Web: Research and Applications. Lecture Notes in Computer Science, 3053 (2004). Berlin:
Springer, pp. 225–239.

For guidance on citations see FAQs.

c© 2004 Springer

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://kmi.open.ac.uk/technologies/irs/cabralESWS04.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://kmi.open.ac.uk/technologies/irs/cabralESWS04.pdf
http://oro.open.ac.uk/policies.html

Approaches to Semantic Web Services:
An Overview and Comparisons

Liliana Cabral1, John Domingue1, Enrico Motta1,
Terry Payne2 and Farshad Hakimpour1

1 Knowledge Media Institute, The Open University, Milton Keynes, UK
{L.S.Cabral, J.B.Domingue, E.Motta, F.Hakimpour}@open.ac.uk

2 IAM, University of Southampton, Southampton, UK
trp.@ecs.soton.ac.uk

Abstract. The next Web generation promises to deliver Semantic Web Services
(SWS); services that are self-described and amenable to automated discovery,
composition and invocation. A prerequisite to this, however, is the emergence
and evolution of the Semantic Web, which provides the infrastructure for the
semantic interoperability of Web Services. Web Services will be augmented
with rich formal descriptions of their capabilities, such that they can be utilized
by applications or other services without human assistance or highly con-
strained agreements on interfaces or protocols. Thus, Semantic Web Services
have the potential to change the way knowledge and business services are con-
sumed and provided on the Web. In this paper, we survey the state of the art of
current enabling technologies for Semantic Web Services. In addition, we char-
acterize the infrastructure of Semantic Web Services along three orthogonal
dimensions: activities, architecture and service ontology. Further, we examine
and contrast three current approaches to SWS according to the proposed dimen-
sions.

1 Introduction

In recent years, distributed programming paradigms have emerged, that allow generic
software components to be developed and shared. Whilst early versions were little
more than shared libraries of functions with little user documentation and unpredict-
able side effects, it wasn’t until the advent of object-oriented programming and archi-
tectures such as CORBA, that self contained components could be reliably defined,
documented and shared within a distributed environment. Although ideal for some en-
terprise integration and eCommerce, it has only been with the adoption of XML as a
common data syntax that the underlying principals have gained wide scale adoption,
through the definition of Web Service standards. Web services are well defined, re-
usable, software components that perform specific, encapsulated tasks via standard-
ized Web-oriented mechanisms. They can be discovered, invoked, and the
composition of several services can be choreographed, using well defined workflow
modeling frameworks.

Whilst promising to revolutionize eCommerce and enterprise-wide integration,
current standard technologies for Web services (e.g. WSDL [6]) provide only syntac-
tic-level descriptions of their functionalities, without any formal definition to what the
syntactic definitions might mean. In many cases, Web services offer little more than a
formally defined invocation interface, with some human oriented metadata that de-
scribes what the service does, and which organization developed it (e.g. through
UDDI descriptions). Applications may invoke Web services using a common, extend-
able communication framework (e.g. SOAP). However, the lack of machine readable
semantics necessitates human intervention for automated service discovery and com-
position within open systems, thus hampering their usage in complex business con-
texts.

Semantic Web Services (SWS) relax this restriction by augmenting Web services
with rich formal descriptions of their capabilities, thus facilitating automated compo-
sition, discovery, dynamic binding, and invocation of services within an open envi-
ronment A prerequisite to this, however, is the emergence and evolution of the
Semantic Web, which provides the infrastructure for the semantic interoperability of
Web Services. Web Services will be augmented with rich formal descriptions of their
capabilities, such that they can be utilized by applications or other services without
human assistance or highly constrained agreements on interfaces or protocols. Thus,
Semantic Web Services have the potential to change the way knowledge and business
services are consumed and provided on the Web.

Current efforts in developing Semantic Web Service infrastructures can be charac-
terized along three orthogonal dimensions: usage activities, architecture and service
ontology. Usage activities define the functional requirements, which a framework for
Semantic Web Services ought to support. The architecture of SWS describes the
components needed for accomplishing the activities defined for SWS, whereas the
service ontology aggregates all concept models related to the description of a Seman-
tic Web Service.

In this paper we survey the state of the art of current enabling technologies for Se-
mantic Web Services. Further, we examine and contrast three current approaches to
SWS according to the proposed dimensions. The rest of the paper is structured as fol-
lows: in section 2 we provide a general overview of Web services; in section 3 we
provide an overview of the Semantic Web and in particular of those aspects which al-
low the specification of semantic description for Web services. In section 4 we de-
scribe Semantic Web Services according to the dimensions introduced earlier.
Sections 5-7 describe the main existing approaches to delivering SWS. Finally we
compare and discuss the main differences among the approaches presented.

2 Web services

Web Services are changing the way applications communicate with each other on the
Web. They promise to integrate business operations, reduce the time and cost of Web
application development and maintenance as well as promote reuse of code over the
World Wide Web. By allowing functionality to be encapsulated and defined in a reus-
able standardized format, Web services have enabled businesses to share (or trade)

Service
Registry

Service
Requester

Service
Provider

Service
Description

Web
Service

PublishFind

Bind

functionality with arbitrary numbers of partners, without having to pre-negotiate com-
munication mechanisms or syntax representations. The advent of discovery has en-
abled vendors to search for Web services, which can then be invoked as necessary.
For example, a book-selling company may look for shipping services, which they
may later invoke to ensure that books are delivered to the customers. This flexibility
is achieved through a set of well-defined standards that define syntax, communication
protocol, and invocation signatures, which allow programs implemented on diverse,
heterogeneous platforms to interoperate over the internet.

A Web Service is a software program identified by an URI, which can be accessed
via the internet through its exposed interface. The interface description declares the
operations which can be performed by the service, the types of messages being ex-
changed during the interaction with the service, and the physical location of ports,
where information should be exchanged. For example, a Web service for calculating
the exchange rate between two money currencies can declare the operation getEx-
changeRate with two inputs of type string (for source and target currencies) and an
output of type float (for the resulting rate). A binding then defines the machine and
ports where messages should be sent. Although there can be many ways of imple-
menting Web services, we basically assume that they are deployed in Web servers
such that they can be invoked by any Web application or Web agent independently of
their implementations. In addition Web services can invoke other Web services.

Fig. 1. Web Service usage scenario.

The common usage scenario for Web services (fig. 1) can be defined by three
phases; Publish, Find, and Bind; and three entities: the service requester, which in-
vokes services; the service provider which responds to requests; and the registry
where services can be published or advertised. A service provider publishes a descrip-
tion of a service it provides to a service registry. This description (or advertisement)
includes a profile on the provider of the service (e.g. company name and address); a
profile about the service itself (e.g. name, category); and the URL of its service inter-
face definition (i.e. WSDL description).

When a developer realizes a need for a new service, he finds the desired service ei-
ther by constructing a query, or browsing the registry. The developer then interprets

HTTP

XM
L-

S
XM

L

SOAP

WSDL

U
D

D
I

B
EP

L4
W

S

URI

the meaning of the interface description (typically through the use of meaningful label
or variable names, comments, or additional documentation) and binds to (i.e. includes
a call to invoke) the discovered service within the application they are developing.
This application is known as the service requester. At this point, the service requester
can automatically invoke the discovered service (provided by the service provider) us-
ing Web service communication protocols (i.e. SOAP).

Key to the interoperation of Web services is an adoption of a set of enabling stan-
dard protocols. Several XML-based standards (fig. 2) have been proposed to support
the usage scenario previously described.

Fig. 2. Web Services enabling standards

XML schema (XML-S) [2] provides the underlying framework for both defining
the Web Services Standards, and variables/objects/data types etc that are exchanged
between services. SOAP [27] is W3C’s recommended XML-data transport protocol,
used for data exchange over web-based communications protocols (http). SOAP mes-
sages can carry an XML payload defined using XML-S, thus ensuring a consistent in-
terpretation of data items between different services.

WSDL [6] is the W3C recommended language for describing the service interface.
Two levels of abstraction are used to describe Web services; the first defines atomic
method calls, or operations, in terms of input and output messages (each of which
contain one or more parameters defined in XML-S). Operations define the way in
which messages are handled e.g. whether an operation is a one-way operation, re-
quest-response, solicit-response or notification. The second abstraction maps opera-
tions and associated messages to physical endpoints, in terms of ports and bindings.
Ports declare the operations available with corresponding inputs and outputs. The
bindings declare the transport mechanism (usually SOAP) being used by each opera-
tion. WSDL also specifies one or more network locations or endpoints at which the
service can be invoked.

As services become available, they may be registered with a UDDI registry [26]
which can subsequently be browsed and queried by other users, services and applica-
tions. UDDI web service discovery is typically human oriented, based upon yellow or
white-page queries (i.e. metadata descriptions of service types, or information about
the service providers). UDDI service registrations may also include references to

HTTP

XM
L-

S
XM

L

RDF

RDF-S

U
D

D
I

B
EP

W
SOWL

URI

WSDL descriptions, which may facilitate limited automation of discovery and invoca-
tion. However, as no explicit semantic information is normally defined, automated
comprehension of the WSDL description is limited to cases where the provider and
requester assume pre-agreed ontologies, protocols and shared knowledge about opera-
tions.

A service might be defined as a workflow describing the choreography of several
operations. Such a workflow may determine: the order of operation execution; what
operations may be executed concurrently; and alternative execution pathways (if con-
ditional operators are included in the workflow modeling language). Conversely,
workflows are required to orchestrate the execution of several simple services that
may be composed together for forming a more complex service. Various choreogra-
phy and orchestration languages have been proposed such as BPEL4WS [5], and are
currently being evaluated by various industry standardization bodies.

3 The Semantic Web

The Semantic Web is a vision of a Web of meaningful contents and services, which
can be interpreted by computer programs (see for example [1]). It can also be seen as
a vast source of information, which can be modelled with the purpose of sharing and
reusing knowledge. Semantic Web users will be able to do more accurate searches of
the information and the services they need from the tools provided.

The Semantic Web provides the necessary infrastructure for publishing and resolv-
ing ontological descriptions of terms and concepts. In addition, it provides the neces-
sary techniques for reasoning about these concepts, as well as resolving and mapping
between ontologies, thus enabling semantic interoperability of Web Services through
the identification (and mapping) of semantically similar concepts.

Fig. 3. Semantic Web Enabling standards

Ontologies have been developed within the Knowledge Modelling research com-
munity [11] in order to facilitate knowledge sharing and reuse. They provide greater
expressiveness when modelling domain knowledge and can be used to communicate
this knowledge between people and heterogeneous and distributed application sys-
tems.

As with Web Services, Semantic Web enabling standards fit into a set of layered

specifications (fig. 3) built on the foundation of URIs and XML Schema. The current
components of the Semantic Web framework are RDF [13], RDF Schema (RDF-S)
[3] and the Web Ontology Language – OWL [4]. These standards build up a rich set
of constructs for describing the semantics of online information sources.

RDF is a XML-based standard from W3C for describing resources on the Web.
RDF introduces a little semantics to XML data by allowing the representation of ob-
jects and their relations through properties. RDF-Schema is a simple type system,
which provides information (metadata) for the interpretation of the statements given
in RDF data. The Web Ontology language – OWL will facilitate greater machine in-
terpretability of Web content than RDF and RDF Schema by providing a much richer
set of constructs for specifying classes and relations. OWL has evolved from existing
ontologies languages and specifically from DAML+OIL [12].

4 Semantic Web Services

Semantic descriptions of Web services are necessary in order to enable their auto-
matic discovery, composition and execution across heterogeneous users and domains.
Existing technologies for Web services only provide descriptions at the syntactic
level, making it difficult for requesters and providers to interpret or represent non-
trivial statements such as the meaning of inputs and outputs or applicable constraints.
This limitation may be relaxed by providing a rich set of semantic annotations that
augment the service description. A Semantic Web Service is defined through a service
ontology, which enables machine interpretability of its capabilities as well as integra-
tion with domain knowledge.

The deployment of Semantic Web Services will rely on the further development
and combination of Web Services and Semantic Web enabling technologies. There
exist several initiatives (e.g. http://dip.semanticweb.org or http://www.swsi.org) tak-
ing place in industry and academia, which are investigating solutions for the main is-
sues regarding the infrastructure for SWS.

Semantic Web Service infrastructures can be characterized along three orthogonal
dimensions (fig. 4): usage activities, architecture and service ontology. These dimen-
sions relate to the requirements for SWS at business, physical and conceptual levels.
Usage activities define the functional requirements, which a framework for Semantic
Web Services ought to support. The architecture of SWS defines the components
needed for accomplishing these activities. The service ontology aggregates all concept
models related to the description of a Semantic Web Service, and constitutes the
knowledge-level model of the information describing and supporting the usage of the
service.

From the usage activities perspective, SWS are seen as objects within a business
application execution scenario. The activities required for running an application us-
ing SWS include: publishing, discovery, selection, composition, invocation, deploy-
ment and ontology management, as described next.

Service Ontology

Architecture

Activities

register

Post-condition

Pre-condition

outputinput

decomposer

Invocation

Selection

CompositionPublishing

Discovery

matchmaker

invoker

reasoner

SWS

Deployment

Ontology
Management

Cost

Atomic Service

Category

Composite
Service

The publishing or advertisement of SWS will allow agents or applications to dis-
cover services based on its goals and capabilities. A semantic registry is used for reg-
istering instances of the service ontology for individual services. The service ontology
distinguishes between information which is used for matching during discovery and
that used during service invocation. In addition, domain knowledge should also be
published or linked to the service ontology.

The discovery of services consists of a semantic matching between the description
of a service request and the description of published service. Queries involving the
service name, input, output, preconditions and other attributes can be constructed and
used for searching the semantic registry. The matching can also be done at the level of
tasks or goals to be achieved, followed by a selection of services which solves the
task. The degree of matching can be based on some criteria, such as the inheritance
relationship of types. For example, an input of type Professor of a provided service
can be said to match an input of type Academic of a requested service.

Fig. 4. Semantic Web Services infrastructure dimensions.

A selection of services is required if there is more than one service matching the
request. Non-functional attributes such as cost or quality can be used for choosing one
service. In a more specialized or agent-based type of interaction a negotiation process
can be started between a requester and a provider, but that requires that the services
themselves be knowledge-based. In general, a broker would check that the pre-
conditions of tasks and services are satisfied and prove that the services post-
conditions and effects imply goal accomplishment. An explanation of the decision-
making process should also be provided.

Composition or choreography allows SWS to be defined in terms of other simpler
services. A workflow expressing the composition of atomic services can be defined in
the service ontology by using appropriate control constructs. This description would

be grounded on a syntactic description such as BEPL4WS [5]. Dynamic composition
is also being considered as an approach during service request in which the atomic
services required to solve a request are located and composed on the fly. That requires
an invoker which matches the outputs of atomic services against the input of the re-
quested service.

The invocation of SWS involves a number of steps, once the required inputs have
been provided by the service requester. First, the service and domain ontologies asso-
ciated with the service must be instantiated. Second, the inputs must be validated
against the ontology types. Finally the service can be invoked or a workflow executed
through the grounding provided. Monitoring the status of the decomposition process
and notifying the requester in case of exceptions is also important.

The deployment of a Web service by a provider is independent of the publishing of
its semantic description since the same Web service can have serve multiple purposes.
But, the SWS infrastructure can provide a facility for the instant deployment of code
for a given semantic description.

The management of service ontologies is a cornerstone activity for SWS since it
will guarantee that semantic service descriptions are created, accessed and reused
within the Semantic Web.

From the architecture perspective (fig. 4), SWS are defined by a set of components
which realize the activities above, with underlying security and trust mechanisms. The
components gathered from the discussion above include: a register, a reasoner, a
matchmaker, a decomposer and an invoker.

The reasoner is used during all activities and provides the reasoning support for in-
terpreting the semantic descriptions and queries. The register provides the mecha-
nisms for publishing and locating services in a semantic registry as well as
functionalities for creating and editing service descriptions. The matchmaker will me-
diate between the requester and the register during the discovery and selection of ser-
vices. The decomposer is the component required for executing the composition
model of composed services. The invoker will mediate between requester and pro-
vider or decomposer and provider when invoking services. These components are il-
lustrative of the required roles in the SWS architecture for the discussion here as they
can have different names and a complexity of their own in different approaches.

The service ontology is another dimension under which we can define SWS (fig.
4), for it represents the capabilities of a service itself and the restrictions applied to its
use. The service ontology essentially integrates at the knowledge-level the informa-
tion which has been defined by Web services standards, such as UDDI and WSDL
with related domain knowledge. This would include: functional capabilities such as
inputs, output, pre-conditions and post-conditions; non-functional capabilities such as
category, cost and quality of service; provider related information, such as company
name and address; task or goal-related information; and domain knowledge defining,
for instance, the type of the inputs of the service. This information can, in fact be di-
vided in several ontologies. However, the service ontology used for describing SWS
will rely on the expressivity and inference power of the underlying ontology language
supported by the Semantic Web.

Three main approaches have been driving the development of Semantic Web Ser-
vice frameworks: IRS-II [17], OWL-S [19] and WSMF [9]. IRS-II (Internet Reason-
ing Service) is a knowledge-based approach to SWS, which evolved from research on

reusable knowledge components [16]. OWL-S is an agent-oriented approach to SWS,
providing fundamentally an ontology for describing Web service capabilities. WSMF
(Web Service modeling framework) is a business-oriented approach to SWS, focusing
on a set of e-commerce requirements for Web Services including trust and security.
The following sections describe these approaches in more detail.

5 IRS approach

The Internet Reasoning Service - IRS-II [17] is a Semantic Web Services framework,
which allows applications to semantically describe and execute Web services.

IRS-II is based on the UPML (Unified Problem Solving Method Development
Language) framework [18], which distinguishes between the following categories of
components specified by means of an appropriate ontology:

• Domain models. These describe the domain of an application (e.g. vehicles, a
medical disease).

• Task models. These provide a generic description of the task to be solved,
specifying the input and output types, the goal to be achieved and applicable
preconditions.

• Problem Solving Methods (PSMs). These provide abstract, implementation-
independent descriptions of reasoning processes which can be applied to
solve tasks in a specific domain.

• Bridges. These specify mappings between the different model components
within an application.

 The main components of the IRS-II architecture are the IRS-II Server, the IRS-II
Publisher and the IRS-II Client, which communicate through the SOAP protocol. The
IRS-II server holds descriptions of Semantic Web Services at two different levels. A
knowledge level description is stored using the UPML framework of tasks, PSMs and
domain models. These are currently represented internally in OCML [16], an Onto-
lingua-derived language which provides both the expressive power to express task
specifications and service competencies, as well as the operational support to reason
about these. In addition, IRS-II has a special-purpose mapping mechanism to ground
competence specifications to specific Web services.

The IRS-II Publisher plays two roles in the IRS-II architecture. Firstly, it links
Web services to their semantic descriptions within the IRS-II server. Note that each
PSM is associated with exactly one Web service although a Web service may map
onto more than one PSM since a single piece of code may serve more than one func-
tion. Secondly, the publisher automatically generates a wrapper which turns the code
into a Web service. Once this code is published within the IRS-II it appears as a stan-
dard message-based Web service, that is, a Web service endpoint is automatically
generated. There can be more than one type of Publisher or publishing platform, de-
pending on the implementation of the service. This design option allows for the in-
stant deployment of code during publishing as explained before and mediation
between the server and the actual service (code) during invocation.

 A key feature of IRS-II is that Web service invocation is capability driven. The
IRS-II supports this by providing a task centric invocation mechanism. An IRS-II user
simply asks for a task to be achieved and the IRS-II broker locates an appropriate
PSM and then invokes the corresponding Web service.

IRS-II was designed for ease of use. Developers can interact with IRS-II through
the IRS-II browser, which facilitates navigation of knowledge models registered in
IRS-II as well as the editing of service descriptions, the publishing and the invocation
of individual services. Application programs can be integrated with IRS-II by using
the Java API. These programs can then combine tasks that can be achieved within an
application scenario.

6 OWL-S approach

OWL-S (previously DAML-S [9]) consists of a set of ontologies designed for describ-
ing and reasoning over service descriptions. OWL-S approach originated from an AI
background and has previously been used to describe agent functionality within sev-
eral Multi-Agent Systems as well as with a variety of planners to solve higher level
goals.

OWL-S combines the expressivity of description logics (in this case OWL) and the
pragmatism found in the emerging Web Services Standards, to describe services that
can be expressed semantically, and yet grounded within a well defined data typing
formalism. It consists of three main upper ontologies: the Profile, Process Model and
Grounding. The Profile is used to describe services for the purposes of discovery; ser-
vice descriptions (and queries) are constructed from a description of functional prop-
erties (i.e. inputs, outputs, preconditions, and effects - IOPEs), and non-functional
properties (human oriented properties such as service name, etc, and parameters for
defining additional meta data about the service itself, such as concept type or quality
of service). In addition, the profile class can be subclassed and specialized, thus sup-
porting the creation of profile taxonomies which subsequently describe different
classes of services.

OWL-S process models describe the composition or orchestration of one or more
services in terms of their constituent processes. This is used both for reasoning about
possible compositions (such as validating a possible composition, determining if a
model is executable given a specific context, etc) and controlling the enact-
ment/invocation of a service. Three process classes have been defined: the composite,
simple and atomic process. The atomic process is a single, black-box process descrip-
tion with exposed IOPEs. Inputs and outputs relate to data channels, where data flows
between processes. Preconditions specify facts of the world that must be asserted in
order for an agent to execute a service. Effects characterize facts that become asserted
given a successful execution of the service, such as the physical side-effects that the
execution the service has on the physical world. Simple processes provide a means of
describing service or process abstractions – such elements have no specific binding to
a physical service, and thus have to be realized by an atomic process (e.g. through ser-
vice discovery and dynamic binding at run-time), or expanded into a composite proc-
ess. Composite processes are hierarchically defined workflows, consisting of atomic,
simple and other composite processes. These process workflows are constructed using

a number of different composition constructs, including: Sequence, Unordered,
Choice, If-then-else, Iterate, Repeat-until, Repeat-while, Split, and Split+join.

The profile and process models provide semantic frameworks whereby services
can be discovered and invoked, based upon conceptual descriptions defined within
Semantic Web (i.e. OWL) ontologies. The grounding provides a pragmatic binding
between this concept space and the physical data/machine/port space, thus facilitating
service execution. The process model is mapped to a WSDL description of the ser-
vice, through a thin grounding. Each atomic process is mapped to a WSDL operation,
and the OWL-S properties used to represent inputs and outputs are grounded in terms
of XML data types. Additional properties pertaining to the binding of the service are
also provided (i.e. the IP address of the machine hosting the service, and the ports
used to expose the service).

7 WSMF approach

The Web Service Modeling Framework (WSMF) [9] provides a model for describ-
ing the various aspects related to Web services. Its main goal is to fully enable e-
commerce by applying Semantic Web technology to Web services. WSMF is the
product of research on modelling of reusable knowledge components [10].

WSMF is centered on two complementary principles: a strong de-coupling of the
various components that realize an e-commerce application; and a strong mediation
service enabling Web services to communicate in a scalable manner. Mediation is ap-
plied at several levels: mediation of data structures; mediation of business logics; me-
diation of message exchange protocols; and mediation of dynamic service invocation.

WSMF consists of four main elements: ontologies that provide the terminology
used by other elements; goal repositories that define the problems that should be
solved by Web services; Web services descriptions that define various aspects of a
Web service; and mediators which bypass interoperability problems.

WSMF implementation has been assigned to two main projects: Semantic Web en-
abled Web Services (SWWS) [25]; and WSMO (Web Service Modelling Ontology)
[28]. SWWS will provide a description framework, a discovery framework and a me-
diation platform for Web Services, according to a conceptual architecture. WSMO
will refine WSMF and develop a formal service ontology and language for SWS.

WSMO service ontology includes definitions for goals, mediators and web ser-
vices. A web service consists of a capability and an interface. The underlying repre-
sentation language for WSMO is F-logic. The rationale for the choice of F-logic is
that it is a full first order logic language that provides second order syntax while stay-
ing in the first order logic semantics, and has a minimal model semantics. The main
characterizing feature of the WSMO architecture is that the goal, web service and on-
tology components are linked by four types of mediators as follows:

• OO mediators link ontologies to ontologies,
• WW mediators link web services to web services,
• WG mediators link web services to goals, and finally,
• GG mediators link goals to goals.

Since within WSMO all interoperability aspects are concentrated in mediators the
provision of different classes of mediators based on the types of components con-
nected facilitates a clean separation of the different mediation functionalities required
when creating WSMO based applications.

8 SWS approaches comparison

This comparison discusses the delivered results of IRS-II, OWL-S and WSMF
(SWWS) as they represent the main approaches driving the implementation of Se-
mantic Web Service components. The following table shows the high-level elements
of each approach as implemented by the time of this writing fitting into the previously
discussed dimensions of SWS, including the application tools provided as well.

Table 1. Delivered components of current SWS approaches

 IRS-II OWL-S WSMF
SWS Activities Publishing

Selection
Task Achievement

Composition
Discovery
Invocation

Discovery

Architecture Server
Publisher
Client

Daml-s Virtual
Machine
Matchmaker

Service Registry
Profile Crawler

Service
Ontology

Task/PSM Ontology OWL-S WSMO

Application tools IRS Browser and
Editor; Publisher;
Java API

WSDL2DAML-
S

Query interface

The IRS-II approach has concentrated efforts in delivering an infrastructure that

users can easily use from the stage where they have some service code available, to
the semantic markup and publishing of this code, to the invocation of this code
through task achievement. Because services are considered atomic in IRS-II, there is
no semantic description of composed services, although a PSM can embody a control
flow for subtasks. Also, a selection of services is performed for finding which PSMs
can solve the task requested.

The service ontology of IRS-II consists of a Task ontology and a PSM ontology,
which separate the description of what a service does from the parameters and con-
straints of a particular implementation. Additionally, the task ontology can also in-
clude a domain ontology. In IRS, service constraints (e.g. pre-conditions and post-
conditions) must be expressed in OCML but an OWL-to-OCML parser has recently
been completed. An import/export mechanism for OWL-S service descriptions, which
includes the adoption of the properties of the OWL-S Profile is being implemented as
well.

The main contribution of the OWL-S approach is its service ontology, which
builds on the Semantic Web stack of standards. OWL-S models capabilities required

for Web services to the extent of grounding, which maps to WSDL descriptions. Ad-
ditionally, the Daml consortium has put a lot of effort in representing the interactions
among Web Services through the process model of the OWL-S service ontology.

Since the OWL-S service ontology is public and does not prescribe a framework
implementation it has been used as the starting point of individual efforts towards
SWS, for example [15]. Nevertheless, the DAML consortium has implemented some
components of an architecture based on the DAML inference engine [20] [21]. The
invocation activity of OWL-S involves a decomposition of the process model. The
discovery activity demonstrated in [22] relies on the extension of UDDI registry.

The WSMF approach, although delivering a conceptual framework, invested con-
siderable effort in bringing business requirements into account when proposing a con-
ceptual architecture. Some of the outcomes are still in the form of more detailed
specifications. In particular, a service registry has been proposed for which a high-
level query language is defined according to the service ontology [25]. WSMO distin-
guished characteristic is the inclusion of mediators in the ontology specification.

In common with IRS-II, the WSMF approach builds on the UPML framework, tak-
ing advantage of the separation of tasks (goals) specifications from the service speci-
fications.

9 Discussion and Conclusions

A complete solution for delivering Semantic Web Services is on the way. Although
the vision for SWS has been set and many partial solution cases demonstrated (see for
example ISWC 2003) for solving particular issues, only now is the area as a whole
taking shape. This is evidenced by the fast-paced evolution of the underlying stan-
dards and technologies and the proof-of-concept stage of research in the area.

The state of the art of SWS shows that technologies will shape towards accepted
enabling standards for Web Services and the Semantic Web. In particular, IRS-II,
OWL-S and WSMF promise inter-compatibility in terms of OWL-based service de-
scriptions and WSDL-based grounding.

However, an assessment of the delivered results of IRS-II, OWL-S and WSMF ap-
proaches show that Semantic Web Services are far from mature. While they represent
different development approaches converging to the same objective, they provide dif-
ferent reasoning support, which are based on different logic and ontology frame-
works. Furthermore, they emphasize different ontology-based service capabilities and
activities according to the orientation of their approaches.

None of the approaches described provide a complete solution according to the di-
mensions illustrated, but interestingly enough they show complementary strengths.
For example, IRS-II has strong user and application integration support while OWL-S
provides a rich XML-based service-ontology. WSMF has a comprehensive concep-
tual architecture, which covers requirements of one of the most demanding web-based
application area, namely e-commerce. These requirements reflect the way business
clients buy and sell services.

Summarizing, Semantic Web Services are an emerging area of research and cur-
rently all the supporting technologies are still far from the final product. There are

technologies available for creating distributed applications which rely on the execu-
tion of Web services deployed on the WWW, however, these technologies require a
human user in the loop for selecting services available in registries. Semantic Web
technology can be utilised to do the markup and reasoning of Web service capabili-
ties.

We have described the current main approaches to Semantic Web Services: IRS-II,
OWL-S and WSMF. These approaches are complementary in many ways and can be
compared according to different dimensions of SWS.

Nevertheless, there are still a number of issues concerning Semantic Web Services
being investigated in a number of initiatives. These issues range from service compo-
sition to service trust and will have the attention of industry and academia for the next
few years.

References

1. Berners-Lee, T. Hendler, J., Lassila, O.: The Semantic Web. Scientific American,
Vol. 284 (4). (2001) 34-43

2. Biron, P. V., Malhotra, A. (eds.): XML Schema Part 2: Datatypes, W3C Recommen-
dation, 2 May 2001. http://www.w3.org/TR/xmlschema-2/. (2001)

3. Brickley D., Guha R.V. (eds.): RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Proposed Recommendation (work in progress).
http://www.w3.org/TR/rdf-schema/. (2003)

4. Bechhofer, S., Dean, M., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D., Patel-Schneider, P., Schreiber, G., Stein, L.: OWL Web Ontology Language Ref-
erence, W3C Proposed Recommendation (work in progress).
http://www.w3.org/TR/owl-ref/. (2003)

5. BPEL4WS Consortium. Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel

6. Christensen, E. Curbera, F., Meredith, G., Weerawarana, S. Web Services Descrip-
tion Language (WSDL), W3C Note 15. http://www.w3.org/TR/wsdl. (2001)

7. Christoph, B., Fensel, D., Maedche, A.: A Conceptual Architecture for Semantic Web
Enabled Web Services. . http://swws.semanticweb.org/public_doc/D2.1.pdf. (2003)

8. DAML-S Coalition: DAML-S 0.9 Draft Release. http://www.daml.org/services/daml-
s/0.9/. (2003)

9. Fensel, D., Bussler, C. The Web Service Modeling Framework WSMF. Eletronic
Commerce: Research and Applications. Vol. 1. (2002). 113-137

10. Fensel, D. and Motta, E.: Structured Development of Problem Solving Methods.
IEEE Transactions on Knowledge and Data Engineering, Vol. 13(6). (2001). 913-
932.

11. Gruber, T. R. A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition, 5(2). (1993)

12. Joint US/EU ad hoc Committee. Reference Description of the DAML-OIL Ontology
Markup Language. http://www.daml.org/2001/03/reference. (2001)

13. Klyne, G., D., Carroll, J.J. (eds.): Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Proposed Recommendation (work in progress).
http://www.w3.org/TR/rdf-concepts/. (2003)

14. Mandell, D., McIlraith, S. Grounding the Semantic Web: A Bottom-up Approach to
Automating Web Service Discovery, Customization and Semantic Translation. In

Workshop on E-Services and the Semantic Web (ESSW03) in conjunction with
WWW03.

15. McIlraith, S., Son, T. C., Zeng, H. Semantic Web Services. IEEE Intelligent Systems,
Vol. 16(2). (2001) 46-53.

16. Motta E.. Reusable Components for Knowledge Modelling. IOS Press, Amsterdam,
The Netherlands. (1999)

17. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS-II: A Framework and Infra-
structure for Semantic Web Services. In: Fensel, D., Sycara, K., Mylopoulos, J. (vol-
ume eds.): The SemanticWeb - ISWC 2003. Lecture Notes in Computer Science,
Vol. 2870. Springer-Verlag, Heidelberg (2003) 306–318

18. Omelayenko, B., Crubezy, M., Fensel, D., Benjamins, R., Wielinga, B., Motta, E.,
Musen, M., Ding, Y..: UPML: The language and Tool Support for Makiing the Se-
mantic Web Alive. In: Fensel, D. et al. (eds.): Spinning the Semantic Web: Bringing
the WWW to its Full Potential. MIT Press (2003) 141–170

19. OWL-S Coalition: OWL-S 1.0 Release. http://www.daml.org/services/owl-s/1.0/.
(2003)

20. Paolucci, M., Sycara, K. and Kawamura, T.: Delivering Semantic Web Services.
Tech. report CMU-RI-TR-02-32, Robotics Institute, Carnegie Mellon University,
May, 2003

21. Paolucci, M., Ankolekar, A., et al.: The Daml-S Virtual Machine. In: Fensel, D., Sy-
cara, K., Mylopoulos, J. (volume eds.): The Semantic Web - ISWC 2003 Proceed-
ings. Lecture Notes in Computer Science, Vol. 2870. Springer-Verlag, Heidelberg
(2003) 290-305

22. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web Ser-
vices Capabilities. In: Horrocks, I. Handler, J. (eds.): The Semantic Web - ISWC
2002 Proceedings. Lecture Notes in Computer Science, Vol. 2342. Springer-Verlag,
Heidelberg (2002) 333-347

23. Sirin, E., Hendler, J. and Parsia, B. Semi-automatic Composition of Web Services us-
ing Semantic Descriptions. In: Web Services: Modeling, Architecture and Infrastruc-
ture workshop in conjunction with ICEIS2003. (2003).

24. Wu, D., Parsia, B., et al: Automating DAML-S Web Services Composition Using
SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (volume eds.): The SemanticWeb
- ISWC 2003. Lecture Notes in Computer Science, Vol. 2870. Springer-Verlag, Hei-
delberg (2003) 195-210

25. SWWS Consortium. Report on Development of Web Service Discovery Framework.
October 2003. http://swws.semanticweb.org/public_doc/D3.1.pdf

26. UDDI Consortium. UDDI Specification. http://www.uddi.org/specification.html
(2000)

27. W3C. SOAP 1.2, W3C Recommendation. http://www.w3.org/TR/soap12-part0/
(2003)

28. WSMO Working Group. Web Service Modelling Ontology Project. DERI Working
Drafts. http://www.nextwebgeneration.org/projects/wsmo/ (2004)

