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Approaching coupled cluster accuracy with
a general-purpose neural network potential
through transfer learning
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Kipton Barros2, Sergei Tretiak 2,4, Olexandr Isayev 6 & Adrian E. Roitberg1

Computational modeling of chemical and biological systems at atomic resolution is a crucial

tool in the chemist’s toolset. The use of computer simulations requires a balance between

cost and accuracy: quantum-mechanical methods provide high accuracy but are computa-

tionally expensive and scale poorly to large systems, while classical force fields are cheap and

scalable, but lack transferability to new systems. Machine learning can be used to achieve the

best of both approaches. Here we train a general-purpose neural network potential (ANI-

1ccx) that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry,

isomerization, and drug-like molecular torsions. This is achieved by training a network to DFT

data then using transfer learning techniques to retrain on a dataset of gold standard QM

calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is

broadly applicable to materials science, biology, and chemistry, and billions of times faster

than CCSD(T)/CBS calculations.
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T
he central questions in modern chemistry relate to the
identification and synthesis of molecules for useful appli-
cations. Historically, discoveries have often been serendi-

pitous, driven by a combination of intuition and experimental trial
and error1,2. In the modern age, the computer revolution has
brought about powerful computational methods based on quan-
tum mechanics (QM) to create a new paradigm for chemistry
research3,4. At great computational expense, these methods can
provide accurate chemical properties (e.g., energies, forces, struc-
tures, reactivity, etc.) for a wide range of molecular systems.
Coupled-cluster theory systematically approaches the exact solu-
tion to the Schrödinger equation, and is considered a gold stan-
dard for many quantum chemistry applications5–7. When CCSD
(T) (coupled cluster considering single, double, and perturbative
triple excitations) calculations are combined with an extrapolation
to the complete basis set limit (CBS)8,9, even the hardest to predict
non-covalent and intermolecular interactions can be computed
quantitatively10. However, coupled-cluster theory at the level of
CCSD(T)/CBS is computationally expensive, and often impractical
for systems with more than a dozen atoms.

Since the computational cost of highly accurate QM methods
can be impractical, researchers often seek to trade accuracy for
speed. Density functional theory (DFT)11–13, perhaps the most
popular QM method, is much faster than coupled-cluster theory.
In practice, however, DFT requires empirical selection of a den-
sity functional, and so DFT-computed properties are not as
reliable and objective as coupled-cluster techniques at guiding
experimental science. Even stronger approximations can be made
to achieve better efficiency. For example, classical force fields are
commonly employed to enable large scale dynamical simulation
such as protein folding14, ligand-protein docking15, or the
dynamics of dislocations in materials16. These models are often
fragile; a force field fit to one system may not accurately model
other systems17. An outstanding challenge is to simultaneously
capture a great diversity of chemical processes with a single
linear-scaling model potential.

Machine learning (ML) methods have seen much success in the
last decade due to increased availability of data and improved
algorithms18–20. Applications of ML are becoming increasingly
common in experimental and computational chemistry. Recent
chemistry related work reports on ML models for chemical
reactions21,22, potential energy surfaces23–27, forces28–30, atomi-
zation energies31–33, atomic partial charges32,34–36, molecular
dipoles26,37,38, materials discovery39–41, and protein-ligand
complex scoring42. Many of these studies represent important
and continued progress toward ML models of quantum chemistry
that are transferable (i.e., applicable to related, but new chemical
processes) and extensible (i.e., accurate when applied to larger
systems). These advances aim to revolutionize chemistry through
applications to chemical and biological systems. Since molecular
dynamics simulations underpin much of computational chem-
istry and biology, transferable, accurate, and fast prediction of
molecular energies and forces is particularly important for the
next generation of linear-scaling model potential energy surfaces.

Transferable and extensible ML potentials often require
training on very large data sets. One such approach is the ANI
class of methods. The ANI-1 potential aims to work broadly for
molecules in organic chemistry43. A key component of this
potential is the ANI-1 data set, which consists of DFT energies for
22M randomly selected molecular conformations from 57k dis-
tinct small molecules44. This vast amount of data would be
impractical to generate at a level of theory more accurate than
DFT45. However, advances in machine learning methodologies
are greatly reducing the required data set sizes. The ANI-1x data
set, constructed using active learning, contains DFT data for 5M
conformations of molecules with an average size of 15 atoms25.

Active learning iteratively adds new QM calculations to the data
set for specific cases where the current ML model cannot make a
good prediction. Despite the much smaller size of the ANI-1x
data set, potentials trained on it vastly outperform those trained
on the ANI-1 data set, especially on transferability and extensi-
bility benchmarks. Even with the success of the ANI-1x potential,
its true accuracy is still reliant upon the accuracy of the under-
lying DFT data.

A remaining challenge is to develop ML-based potentials that
reach coupled-cluster-level accuracy while retaining transfer-
ability and extensibility over a broad chemical space. The diffi-
culty is that data sets with CCSD(T)-level accuracy are very
expensive to construct and therefore tend to be limited in che-
mical diversity. Previous studies have trained on high-quality QM
data for small molecules at equilibrium conformations46,47 and
for non-equilibrium conformations of a single molecule48. A
limitation is that ML models trained on data sets which lack
chemical diversity are not expected to be transferable or exten-
sible to new systems. The present work uses transfer learning49,50

to train an ML potential that is accurate, transferable, extensible,
and therefore, broadly applicable. In transfer learning, one begins
with a model trained on data from one task and then retrains the
model on data from a different, but related task, often yielding
high-accuracy predictions51–53 even when data are sparsely
available. In our application, we begin by training a neural net-
work on a large quantity of lower-accuracy DFT data (the ANI-1x
data set with 5M non-equilibrium molecular conformations25),
and then we retrain to a much smaller data set (about 500k
intelligently selected conformations from ANI-1x) at the CCSD
(T)/CBS level of accuracy. Such a high-quality and diverse data
set is a first of its kind for training machine learning-based
potentials. The resulting general-purpose potential, ANI-1ccx,
and data set exceeds the accuracy of DFT in benchmarks for
isomerization energies, reaction energies, molecular torsion pro-
files, and energies and forces at non-equilibrium geometries,
while being roughly nine orders of magnitude faster than DFT.
The ANI-1ccx potential is available on GitHub (https://github.
com/isayev/ASE_ANI) as a user-friendly Python interface inte-
grated with the Atomic Simulation Environment54 package (ASE;
https://wiki.fysik.dtu.dk/ase/).

Results
Relative conformer energy. We compare the errors of ANI-1ccx
(trained with transfer learning), ANI-1x (trained on DFT data
only), and direct DFT calculations (ωB97X/6-31g*). We also
compare to a model, ANI-1ccx-R, that was trained only with the
CCSD(T)*/CBS data, i.e., without transfer learning from the DFT
data. CCSD(T)*/CBS is a highly accurate extrapolation to high
level QM. For details see the methods section. To test transfer-
ability and extensibility, we employ four benchmarks to appraise
the accuracy of molecular energies and forces, reaction thermo-
chemistry, and the computation of torsional profiles on systems
consisting of CHNO. The GDB-10to13 benchmark25 is designed
to evaluate relative energies, atomization energies, and force
calculations on a random sample of 2996 molecules containing
10–13 C, N, or O atoms (with H added to saturate the molecules).
The GDB-10to13 molecules are randomly perturbed along their
normal modes to produce between 12 and 24 non-equilibrium
conformations per molecule. HC7/1155 is a benchmark designed
to gauge the accuracy of hydrocarbon reaction and isomerization
energies. The ISOL6 benchmark56 (a subset of the ISOL24/11
benchmark) measures isomerization energies for organic mole-
cules. Finally, we test on the Genentech torsion benchmark57,
which contains 62 diverse organic molecule torsion profiles
(45 containing only CHNO).
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Table 1 provides mean absolute deviations (MAD) and root
mean squared deviations (RMSD) for the ANI potentials and
ωB97X/6-31g*, on the GDB-10to13 benchmark from the
COMP625 benchmark suite. Reference values are recomputed at
the CCSD(T)*/CBS level of theory. Table 1 only considers
conformations within 100 kcal mol−1 of the energy minima for
each molecule. The conformational energy ΔE is the energy
difference between all conformers for a given molecule in the
benchmark25. Methods compared are the ANI-1ccx transfer
learning potential, ANI-1ccx-R trained only on coupled-cluster
data, ANI-1x trained only on DFT data, and the DFT reference
(ωB97X). Our analysis concludes that training a model only to
the smaller CCSD(T)*/CBS data set (ANI-1ccx-R) results in a
23% degradation in RMSD compared with the transfer learning
model (ANI-1ccx). The DFT trained ANI-1x model has a 36%
increase in RMSD over ANI-1ccx. ANI-1ccx performs as well as
the original reference (ωB97X/6-31G*) in the 100 kcal mol−1

energy range on the GDB-10to13 CCSD(T)*/CBS benchmark.
Recall that each ANI model is an ensemble average over eight
neural networks. Without an ensemble of networks, the MAD
and RMSD of ANI models degrades by about 25%25. Supple-
mentary Table 5 provides errors for all methods within the full
energy range of the GDB-10to13 benchmark. Notably, ANI-1ccx
outperforms DFT with an RMSD of 3.2 kcal mol−1 vs. 5.0 kcal
mol−1 for DFT, which means the ANI-1ccx model generalizes
better to high energy conformations than ωB97X/6-31G*.
Supplementary Fig. 3 shows correlation plots for the ANI models
vs. CCSD(T)*/CBS.

Atomization energy. Figure 1 displays a comparison of atomiza-
tion energy deviation from reference CCSD(T)*/CBS for DFT
(blue) and ANI-1ccx (orange) for all conformations in GDB-10to13
within 100 kcal mol−1 of the conformational minima. Compared
with the DFT functional, the ANI-1ccx potential provides a
more accurate prediction of the CCSD(T)*/CBS atomization
energy. The distribution for ANI-1ccx has a standard deviation of
2.3 kcal mol−1, while the DFT distribution is much wider, with a
standard deviation of 6.3 kcal mol−1. The MAD/RMSD for DFT vs.
reference CCSD(T)*/CBS is 15.9/17.1 kcal mol−1, while for ANI-
1ccx it is 1.9/2.5 kcal mol−1. Supplementary Fig. 4 shows an attempt
to correct the systematic shift of the DFT model to the reference
CCSD(T)*/CBS atomization energies via a linear fitting of the
atomic elements in each system. Even after this non-trivial cor-
rection, ANI-1ccx is still more accurate than DFT vs. the more
accurate coupled-cluster atomization energies. The corrected DFT
has a distribution with a standard deviation of 5.5 kcal mol−1 with
MAD/RMSD of 4.9/5.9 kcal mol−1.

Forces. Accurate forces are important for MD simulations and
geometry optimization. Therefore, we explicitly assess force
accuracy as well. It is impractical to obtain forces with the CCSD
(T)*/CBS extrapolation due to extreme computational expense
with existing packages. However, MP2/cc-pVTZ (dubbed here as
MP2/TZ) provides a high-quality alternative. Table 2 compares
MP2/TZ force calculations on the GDB-10to13 benchmark to
MP2/cc-pVDZ (MP2/DZ), ωB97X/6-31G*, ANI-1x, and ANI-

1ccx models. ANI-1ccx provides the best prediction of MP2/TZ
forces compared with all other methods. Notably, ANI-1ccx
forces deviate less from the MP2/TZ target forces than the ori-
ginal ANI-1x DFT trained potential, providing evidence that the
transfer learning process not only corrects energies but forces as
well. Supplementary Fig. 5 also shows a comparison between
ANI-1ccx and experimental results for C-C center of mass radial
distribution functions for cyclohexane.

Reaction and isomerization energy. The HC7/11 and ISOL6
benchmarks address the calculation of reaction and isomerization
energies and are depicted in Fig. 2. For each reaction, reference
energies and calculated energies are provided in Supplementary
Tables 7 and 8. Figure 2 shows the differences between the
computed and the reference energies, for the reaction and iso-
merization energies individually for ωB97X/6-31g*, ANI-1x,
ANI-1ccx, and our CCSD(T)*/CBS. HC7/11 used target MP2/6-
311+G(2df,2p) and ISOL6 used target CCSD(T)-F12a/aug-cc-
pVDZ calculations. The latter is the most accurate simulation
method currently available. As was done in the original bench-
marks, single point energy calculations using all ANI models,
ωB97X, and CCSD(T)*/CBS were performed on the original
benchmark structures. These energies were used to calculate
the reaction energies. For the HC7/11 benchmark, the medium-
sized basis DFT reference ωB97X/6-31g* is not sufficient
for describing the chemistry represented in these complex
hydrocarbon reactions. Likewise, ANI-1x, trained to data from

Table 1 Accuracy in predicting conformer energy differences

on the GDB-10to13 benchmark

ANI-1ccx ANI-1ccx-R ANI-1x ωB97X

MADa 1.46 1.81 1.97 1.42
RMSDa 2.07 2.54 2.79 2.04

aUnits are in kcal mol−1
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Fig. 1 Accuracy in predicting atomization energies. Error of the ANI-1ccx

predicted atomization energy Ea on the GDB-10to13 benchmark relative to

CCSD(T)*/CBS and compared against ωB97X

Table 2 Accuracy for calculating atomic forces on the GDB-

10to13 benchmark

ANI-1ccx ANI-1x ωB97X MP2/DZ

MP2/TZ 3.4/5.3a 4.7/7.1a 3.7/5.9a 4.6/5.9a

aMAE/RMSE in kcal mol−1Å−1
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this functional, closely mirrors the behavior of DFT. Similarly, the
transfer learning-based ANI-1ccx model tends to mirror its
CCSD(T)*/CBS reference calculations and substantially outper-
forms DFT compared with the target reaction energies. Overall
MAD/RMSD on the HC7/11 benchmark for DFT, ANI-1x, ANI-
1ccx, and CCSD(T)*/CBS are 16.4/22.2, 19.1/24.6, 2.5/2.9, and
1.6/1.8 kcal mol−1, respectively. These results are shown in Sup-
plementary Table 6.

Figure 2b displays a similar comparison for the five medium-
sized organic C, H, N, O containing molecules of the ISOL656

isomerization energy benchmark. A similar trend is seen in this
case as with the HC7/11 benchmark, where ANI-1x deviations
tend to correlate with the large deviations of its reference DFT.
The prediction error for the transfer learning-based model is
greatly reduced compared with the DFT trained model and DFT
itself. For the ISOL6 reactions shown in Fig. 2b, overall MAD/
RMSD for DFT, ANI-1x, ANI-1ccx, and CCSD(T)*/CBS are 3.8/
4.7, 4.6/5.3, 1.5/1.8, and 0.5/0.5 kcal mol−1, respectively.

Molecular torsions. Molecular torsions play an import role in
computational drug discovery (e.g., in screening ligands for
favorable protein binding) and in modeling the assembly of soft
materials. Therefore, we compare the new ANI-1ccx transfer
learning-based potential against various QM and molecular

mechanics (MM) based methods from the molecular torsion
benchmark of Sellers et al.57. This benchmark provides a measure
of accuracy for a model at reproducing potential energy profiles
from a diverse set of molecular torsions of small organic molecules
containing the atoms C, H, N, and O. These torsions are repre-
sentative torsions typically found in small drug-like molecules.

Figure 3 provides a comparison of results for three highly
accurate but computationally expensive QM methods, four
moderately computationally expensive QM methods, and two
commonly used small-molecule force fields. These data were
obtained from Sellers et al.57. We also add the ANI potentials
(ANI-1ccx, ANI-1ccx-R, and ANI-1x) used in this work, as well
as CCSD(T)*/CBS reference energy calculations. Other semi-
empirical QM and MM methods studied in Sellers et al. are left
out of this comparison since each one performed worse than
OPLS2005 on the benchmark. Each torsion in the benchmark is
generated through a restrained optimization, where the torsional
degree of freedom is fixed every 10°, and the remaining degrees of
freedom are relaxed through an optimization process. The red
boxes in Fig. 3 represent QM methods (first three from the left)
that are so computationally intense the MP2 restrained optimized
structures were used and single point calculations were performed
for that method. The green QM methods were all optimized using
their own forces. In an ideal setting, all methods would provide
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their own structures for the final energy calculation, though, such
an exercise would be prohibitively computationally expensive for
the more rigorous QM methods. The ANI and MM models also
carried out restrained optimizations using their own forces. The
MP2 structures are not used here because the usefulness of such
efficient methods can only be gauged without the assistance of
less efficient QM methods. The ANI-1x potential, trained to the
ANI-1x DFT data set plus active learning-based dihedral
corrections, obtains a median MAD of 0.47 kcal mol−1 on the
benchmark. The ANI-1x potential performs similarly to MP2/6-
311+G** and to the ANI-1ccx-R potential. The DFT trained
ANI-1x also outperforms OPLS3, one of the most accurate and
widely used small-molecule force fields available. Further, the
transfer learning-based ANI-1ccx potential achieves a median
MAD of 0.23 kcal mol−1, a 51% reduction in error over ANI-1x
vs. the CCSD(T)/CBS target. ANI-1ccx exceeds the performance
of all DFT (B3LYP-D3/6-311+G**, B3LYP/6-311+G**, and
ωB97X/6-31g*) methods utilized in this study, approaching the
accuracy of higher-level, and costlier, ab initio QM methods
(MP2/CBS and MP2.X/CBS). The ANI-1ccx potential achieves
these prediction accuracies without an increase in computational
cost over the original ANI-1x potential. Results for ANI-1x and
ANI-1ccx before and after active learning for dihedral repar-
ameterization can be found in Supplementary Fig. 1. The dihedral
scans used to compute ANI-1ccx’s error can be found in
Supplementary Fig. 6. Each ANI-1ccx restrained optimization
(averaged over the 36 angles for each of the 45 torsions) took
~0.58 s on a single NVIDIA V100 GPU. A similar timing
comparison was reported in Sellers et al.57 for the QM and MM
methods. Compared with this literature result, the ANI model on
a single GPU is (on average) as fast as OPLS3 on a CPU and
6200 times faster than B3LYP-D3 on a CPU. While a GPU to
CPU comparison with the use of different optimization methods
is not exactly a fair comparison, it does provide a sense of
the computational affordability of the ANI potential. Moreover,
the ANI potential scales more easily than QM, exhibiting
linear scaling (compared with O(N3) for the most efficient QM)
on large systems and a smaller pre-factor and better memory
scaling.

Discussion
Great progress has been made in creating faster and more
accurate QM methods, but even in modern computer archi-
tectures the cost involved in the improved accuracy becomes
prohibitive very quickly. With the advent of machine learning, we
can and must make the leap to modern statistical and data-driven
approaches, which have the potential to drive rapid progress in
drug and materials design as well as applications to natural sys-
tems such as proteins. The ANI-1ccx potential (available at
https://github.com/isayev/ASE_ANI) presented in this work is an
attractive alternative to density functional theory approaches and
standard force fields for conformational searches, molecular
dynamics, and the calculation of reaction energies. The avail-
ability of high-quality QM reference data, produced with a new
extrapolation scheme to CCSD(T)/CBS, allowed us to use transfer
learning techniques to build a chemically accurate universal ANI
potential. Accuracy benchmarks show that the transfer learning-
based ANI-1ccx outperforms DFT on test cases where DFT fails
to accurately describe reaction thermochemistry and on small-
molecule torsion benchmarks. After extensive benchmarking, we
conclude that ANI-1ccx captures a broad range of organic
chemistry, with accuracy comparable to QM calculations at the
coupled-cluster level of theory. Comparisons between transfer
learning and naive training to only the small data set of high-
quality QM calculations show that transfer learning is a superior
approach. As such this work offers a computationally efficient
and accurate ML-based molecular potential for general use across
a broad range of chemical systems.

Future work will aim to validate and retrain (if necessary) the
ANI-1ccx potential for applications in condensed phase simula-
tion. For smaller molecular systems, the ANI-1ccx potential is an
accurate and efficient alternative to expensive QM methods and
might find indirect ways to become applicable in such condensed
phase simulation, e.g., using ANI-1ccx to parametrize force fields
for condensed phase simulation. As with any model, ani-1ccx has
limitations. Some of them can be overcome by adding more data
and through active learning methods and retraining. This cate-
gory includes new and different chemical environments, inter-
molecular interactions, ions, new atomic elements and reactions.
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There is a set of limitations that would require the development
of new theory and methods, for instance for recovering long-
range interactions through the addition of coulomb interactions,
to treat multiple electronic excited states or radicals.

Methods
An efficient and accurate CCSD(T)/CBS approximation. Recalculating even
10% of the ANI-1x data set (i.e., 500k molecules) with conventional CCSD(T)/CBS
would require enormous computational resources. Therefore, we developed an
approximation scheme (herein referred to as CCSD(T)*/CBS) that allows highly
accurate energy calculations in a high-throughput fashion.

Our CCSD(T)*/CBS method is a computationally efficient approximation of
CCSD(T)/CBS energies that takes advantage of the linear-scaling domain-
localized DPLNO-CCSD(T) method developed by Neese et al.58 which is
implemented in the ORCA software package59. It provides an affordable
alternative capable of achieving near CCSD(T) accuracy at a fraction of the
computational cost. The DLPNO approximation relies on the MP2 method to
estimate energy contributions from interacting electron pairs and effectively
reduce the active orbital space. Table 3 provides accuracy and timing
benchmarks, clearly showing our CCSD(T)*/CBS approximation provides
accurate energies vs. the CCSD(T)-F12 level of theory60 in a computationally
efficient way. S66 and W4-11 are standard benchmarks for interaction and
atomization energies of small molecules61,62. See Supplementary Table 1 for
a more detailed comparison. Details of our CCSD(T)*/CBS scheme plus
additional benchmarks are given in supplemental information Section S1.1.

Using active learning for CCSD(T)*/CBS data set curation. The existing ANI-
1x active learning generated data set25 is used to train an initial DFT (to the
ωB97X/6-31G* model chemistry63) potential, likewise dubbed ANI-1x. The ANI-
1x data set consists of 5M conformations from 64k small molecules and complexes
of molecules containing only CHNO atoms. All model and training procedures are
detailed in the ANI-1 work43. Section S1.2 provides details of the architecture,
selection of hyperparameters, and held out test set errors. To reduce variance and
increase accuracy, all ANI results presented in this work are the ensemble

prediction of eight ANI neural networks, i.e., the ANI-1x potential used in this
work is an ensemble of eight ANI-1x neural networks trained to different splits of
the ANI-1x data set and the ANI-1ccx network is built by transfer learning from
the eight ANI-1x networks25. The disagreement between predictions of ensemble
members can be used as a proxy to the prediction error, enabling rapid identifi-
cation of molecular conformations where the current ANI model fails.

Despite the efficiency of our CCSD(T)*/CBS extrapolation scheme, optimal
curation of the coupled-cluster data set is still essential since we can only perform a
limited number of these calculations. As a source of structures for CCSD(T)*/CBS
data generation, we choose to systematically subsample the existing data set with
5M molecules, since this data set already provides a pool of highly diverse
molecular configurations and conformations. We begin with an initial random
subsample of 200k data points, then iteratively we select new data for coupled-
cluster calculations according to maximal ensemble disagreement (i.e., query by
committee64). Through three iterations of coupled-cluster data generation using
active learning, we grow the coupled-cluster data set to about 480k molecules. To
further improve the ANI potential’s description of torsion profiles, we also perform
20 iterations of active learning25 on random molecular torsions from small and
drug-like molecules to enhance ANI-1x with about 200k new DFT calculations.
The ANI driven torsion sampling technique is detailed in Section S1.3. Of these
torsion conformations, we randomly select 10% for CCSD(T)*/CBS calculations.
The result is an enhanced ANI-1x DFT data set containing 5.2M data points and a
high-accuracy CCSD(T)*/CBS data set containing about 500k data points.

Training to high-accuracy data using transfer learning. Here we describe the
transfer learning methodology (depicted schematically in Fig. 4) used to create
ANI-1ccx. First, an ANI potential is trained to the DFT data set with the new active
learning torsion data added, yielding a potential equivalent to the ANI-1x poten-
tial25. Note, a single ANI potential is composed of multiple ANI neural network
models. We then retrain each ANI-1x model to the CCSD(T)*/CBS data with
65,280 of the 325,248 optimizable neural network parameters held constant for
each ANI model in the ensemble. Training a single ANI model to the original 5.2
million molecule data set takes ~4 h on a NVIDIA Titan V GPU, while retraining
to the 500k molecule CCSD(T)*/CBS data set takes around 30 min. Neural network
parameters are organized into a set of hidden layers. The ANI models trained in
this work contain four hidden layers; we leave two hidden layers to be optimized

ANI-1x DFT

dataset

(5 M datapoints)

Transfer learning algorithm

Train network Retrain network

CCSD(T)*/CBS

(CC) dataset

(500 k datapoints)

Copy ANI-1x DFT

pretrained parameters

Fixed

Fixed

EANI-1ccx
CCEANI-1x

DFT

Fig. 4 Diagram of the transfer learning technique evaluated in this work. Transfer learning starts from a pretrained ANI-1x DFT model, then retrains to

higher accuracy CCSD(T)*/CBS data with some parameters fixed during training

Table 3 Computational cost and accuracy of our coupled-cluster approximation

CPU-core hoursa Mean absolute deviation from CCSD(T)-F12 (kcal mol−1)

Alanine (13 atoms) Aspirin (21 atoms) S66 W4-11

CCSD(T)/CBS 9.13 427.00 0.03 1.31
CCSD(T)*/CBS (this work) 1.44 7.44 0.09 1.46

aAll calculations are performed on an Intel Xeon E5-2630 v3 @ 2.40 GHz CPU
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during the transfer learning process, while the other two layers are left fixed to
reduce the number of optimizable parameters during the training process and thus
avoid overfitting to the smaller CCSD(T)*/CBS data set. Details of ANI-1ccx’s
performance on its test set are given in Supplementary Table 3. An alternative to
transfer learning is Δ-learning46. With Δ-learning, one trains a new model to
correct for the difference between CCSD(T)/CBS and the existing model pretrained
on DFT data. Although Δ-learning yields similar accuracy to transfer learning, it
needs to evaluate the neural networks twice to make inferences. More information
on Δ-learning and its accuracy is provided in Supplementary Fig. 2 and Supple-
mentary Table 4.

Data availability
All relevant data are available from the authors upon reasonable requests.

Code availability
All code needed to run this model can be found at https://github.com/isayev/ASE_ANI
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