
Claremont Colleges

Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

5-1-1985

Approaching Distributed Database
Implementations Through Functional
Programming Concepts
Robert M. Keller
Harvey Mudd College

Gary Lindstrom
University of Utah

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been

accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more

information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Keller, Robert M., and Gary Lindstrom. "Approaching Distributed Database Implementations Through Functional Programming
Concepts." Proceedings of the Fifth International Conference on Distributed Computing Systems (May 1985): 192-200.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Approaching

Distributed Database Implementations

through

Functional Programming Concepts

Robert M .. Keller

Gary Lindstrom

Department of Computer Science

University of Utah

Salt Lake City, Utah 84112

Abstract: The application of functional programming

concepts to the data representation and query!ng aspects

of databases has been discussed by Shipman and

Buneman, et al. respectively. We argue the suitability of a

function-based approach to additional aspects of database

systems, including updating, transaction serialization, and

physical distribution and communication. It is shown how

the NmergeH extension of a purely functional model permits

seriallzable concurrent "primary site" distribution control.

We also present preliminary experimental results which

indicate that a reasonable degree of concurrency is

attainable from the functional approach.

Key phrases: appl icative programming, functional

programming, lenient data constructors, distributed

databases, primary site model, concurrency, distributed

systems.

1. An Applicative Approach to Distributed

Computing
We select as our distributed computing context a model

presenting flexible, logical and physical organization, in

which computing load can be shifted transparently from

one PE to another. It Is based on the notion of appl icative

(or functional) multiprocessing (5, 10J.

Computation in applicative systems proceeds by the

appl ieation of functions (either primitive or programmer­

defined) to data structures as abstract objects, rather than

as expl icitlv modifiable representations in memory cells.

As such, there is no explicit notion of "locking" as is found

in typical discussions of concurrent database systems

Thus, functional programs can give rise to substantial

advantages, including:

£ asiry- real ized concurrency: Due to the absence of visible

side-effects in functional languages, sub-expressions

This work was supported by a grant from the IBM

corporation, and by National Science Foundation grants

MCS 81 -06 177 and MCS 78-03832. A preliminary version

appeared as (12].

CH2149-3/85/0000/0 J92$01.OO©1985 IEEE
192

which exhibit no data dependencies may freely be

evaluated concurrently without reservation. The typical

use of powerful recursion and mapping operators, which

conceptually expand into large expressions with many

independent sub-expressions, provides numerous tasks

which may be concurrently evaluated.

Semantic basis: Functional languages have relatively clean

uniform semantics, facilitating formal reasoning about

programs, and hence their verification;

Modularity: The adoption of the mathematical notion of

function as a basis for programming enhances incremental

understanding and module reusability.

In addition, less obvious features of modern applicative

programming are relevant to distributed systems,

including:

Selective object copying: While new objects are

conceptually created ab InItio whenever they are produced

as a function result, in practice only selected components

are created anew, with references to components of

previously constructed data objects achieving a sharing

effect. Since assignment side-eHects are precluded. this

space-efficient sharing is semantically transparent.

Processing incomplete objects: Through the use of lenient

data constructors (our phrase [10] for the semantic

counterpart of the operational notion of 1 ~ l a z y

evaluation" [4, 7]), data structures need not be constructed

in their entirety before they are used as components in

other structures. For example, a lenient tuple constructor

creates a tuple (1 -dimensional vector) which itself is an

object, the components of which are made positionally

accessible before any of the components are necessarily

completely computed. Several systems supporting such

data constructors have been implemented [2, 13, 22). An

important consequence of this technique is that input

sequences of unknown or infinite length, called streams,

are bona fide data objects. Moreover, the possibility of

overlapped access and generation of lenient data

constructors gives rise to further opportunities to exploit

parallel processing capability [5].

In the database context our goals of programmer freedom

from explicit process and processor management

correspond to two of four forms of transparency

enumerated by Traiger et al. [21]:

Location transparency: "Although data is geographically

distributed and may move from place to place, the

programmer can act as though the data is all in one

node."

Concurrency transparency: "Although the system runs

many transactions concurrently, it appears to each

transaction as though it is the only activity in the system.

Alternately, it appears as though there is no concurrency

in the system."

It may be observed that these forms of transparency arise

naturally in the functional approach to distributed database

design. While we will not touch on the other two forms

of transparency discussed by Traiger, et a!. (replication

transparency and failure transparency), we do not consider

them to be alien to the functional approach, but rather

opportunities for future investigation.

We offer a note on types of concurrency that may be

helpful in understanding certain points brought out in the

remainder of the paper. Concurrent processing can

informally be classified into two types:

Pipelining, in which several (logical) processors operate

on different items in a sequence, the result produced by

one processor being passed on to the next; and

Flooding, in which a set of independent data are operated

on concurrently by a set of processors.

As an example from database systems, we can classify

concurrency such as would occur in the search of several

relations within one transaction as being flooding. On the

other hand, concurrent processing of parts of successive

transactions would be pipelining, this relationship arising

from, e.g., write-read dependencies on particular relations.

Despite the aforementioned advantages of applicative

programming, a number of questions have persisted

concerning the ultimate suitability of the functional

approach for adequately treating certain aspects of

database systems, both physical and logical. These

include:

Updatable objects: How can shared object updating be

modeled without wholesale compromise of the functional

approach?

Distributed access control: How can the fundamentally

non-sequential control model be reconciled with the need

to establish temporal ordering (Le. "serialization") among

conflicting accesses to shared objects? Must this

introduce bottlenecks that severely constrict the potential

distributed evaluation associated with the applicative

approach?

193

Site addressing: What techniques can be used to

represent optional explicit physical node accesses in the

system, as would be required, for example, for the on-line

addition of new database users, and the release of

terminated ones?

Load management: In a true mUltiprocessing setting, a

general solution must be found for the task migration

problem, Whereby overloaded PEs can export portions of

their activity backlog to less burdened neighbors.

The first three of these issues are addressed in this paper.

The last is discussed in [14]. We first indicate a general

method for dealing with updating, indicating how the

applicative viewpoint can be retained without requiring

reconstruction of the entire database when updating. The

sharing and concurrency aspects of this approach are

emphasized. We then show how the approach can be

incorporated into a concurrently-accessed database, and

how concurrency control can be effected. Lastly, we

present evidence of the merit of our approach by giving

figures for degree of concurrency obtained from some

simple experiments.

2. Functional Database Processing

2.1. A Functional Formulation of Transaction Processing

It is common to employ a transaction {nodel in the

application domain of databases, distributed or otherwise.

Briefly, a transaction is a sequence of operations on the

database which must have the effect of uninterrupted

execution. An individual user or application program

interacts with the database system by submitting a stream

of transaction requests ("queries"), from which there is

generated a stream of corresponding transaction

responses.

The functional approach to programming entails

representing the entire programming task in terms of a

specification of objects created from other objects. The

essential contrast with traditional assignment-based

approaches is that the functional approach does not

directly modify any object. However, unneeded objects

may be destroyed (through garbage collection) at the

system's convenience. Consequently, one problem to be

solved is that of representing the phenomenon normally

thought of as database updating.

Our viewpoint is that each transaction reads a database,

and conceptually produces a new instance of it. Thus, we

describe

transaction: databases -- > responses x databases

(We adopt the convention that the plural (e.g. databases) of

a name to indicate the set of objects of that name (e.g.

database).) As mentioned previOUSly, each transaction

produces some response which is returned to the user.

The new database is then used for the nex.t transaction to

be processed, the database resulting from that transaction

is used for the transaction following, etc.

Of course, if the databases in question are large, it is

infeasible to physically produce a new database for each

transaction. However, this is not likely to be necessary if

appropriate structuring techniques are used. There exists

a variety of contemporary methods for logically

decomposing a database and accessing its data. We

indicate how these methods may be used to achieve a

complete logical reconstruction of databases through a

partial physical reconstruction. We shall also argue that in

a paged environment, the time overhead resulting from

this viewpoint is negligible.

The techniques to be described can be applied to any of

the popular structuring schemes, such as the network,

entity-relationship, hierarchical, or relational model [23].

For simplicity, we choose to work with only one of these,

although the level at which we present our approach is

sufficiently high that the details of the model do not

appreciably invade the presentation.

the output databases of apply-stream, as shown in Figure

2-1, we achieve a functional program for the complete

processing. This may also be expressed as a set of

functional equations

old-databases = initial-database 1'\ new-databases

[responses, new-databases] =

apply-stream:[transactions, old-databases]

responses

new-databases

Assume the use of the relational model (cf. [23]) for

concreteness. For notational simplicity in what follows 1

we assume that a relational database is a set of relations l

along with a mapping

names -- > relations

from a set of relation names to the relations themselves,

for purposes of identification. Each relation is a set of

tuples of data Items.

apply-stream

By a query we mean a symbolic description of a

transaction which, for a given database, will produce a

response and a new database. Thus, we assume a

function

translate: queries -- > transactions

which provides such functions from their symbolic

descriptions. Thus, translate must parse the query and

produce a function which is the transaction itself. Here is

where a language capability for "higher-order" (or

function-producing) functions is very useful.

We reemphasize that an incoming query is in symbolic

form. To map a stream of such queries (such as might be

entered from a terminal) into a stream of transactions, we

merely apply translate to each query. Thus, we can say (In

the language FEL [13])

transactions == translate II queries

where II is the apply-ta-all operator, which applies the

function on the left to each component of the stream on

the right.

We have already mentioned the formal nature of a

transaction; each transaction maps a database to a new

database and a response. Let apply-stream be an operator

which applies a stream of transactions one-by-one to a

stream of databases, yielding a pair of streams: the

stream of responses to the transactions and the stream of

databases resulting from the transactions. By feeding to

apply-stream the stream of transactions and a stream of

databases consisting of the initial database followed by

194

1n1 tia l-database

transact1ons

Figure 2-1: Transaction application in graphical form.

Notatlonally, the colon represents the application of the

function on the left to the argument on the right. Brackets

represent tupling; a multi-argument function is

represented as a function applied to the tuple of its

arguments. The symbol 1'\ is the infix form of the lenient

stream-building function "followed-by" which constructs a

stream by following the first argument with the second (a

stream). It should be pointed out that this graph, or

equivalently the system of equations, forms a top-level

functional program for solving the database update

problem.

Similarly, a functional expression for apply-stream may be

given as

apply-stream:[transactions, databases] =

if transactions = []
then [[], []]

else

{

[response, new-database] =
(first:transactions):(first:databases),

[more-responses, more-databases] =

apply-stream[resttransactions,

rest:databases],

RESULT [response I' more-responses,

new-database I'more-databases]

01 = [R1, SO] where Rl = insert-in-relation:[RO, xl

and
}

Here first and rest are the functions which, when applied

to a stream, yield the first object in the stream and the

rest of the stream respectively, and [] represents the

empty stream.

02 = [R1, S1] where 51 = insert-in-relation:[SO, y]

Thus, we see that DO and D 1 both share the relation SO,

while D 1 and D2 share the relation S1. Thus, a net

reconstruction of two relations, rather than four, has taken

place in processing the indicated two transactions.

The principle articulated above generalizes. Clearly, the

greater the number of relations, the more sharing possible,

and thus the less reconstruction. Furthermore, the same

idea can be used withi n the relations themselves.

Supposed that a relation is implemented as a set of pages,

with each page containing a set of tuples, and that there

is a directory page which indexes the other pages. If an

insertion or modification affects only a few pages, then all

other pages can be shared. A new directory structure is

created, the old one being left intact. This is illustrated in

Figure 2-2.

"modified"

page

data pages

7
/ D

"new" directory

directory pages

"old" directory

We now demonstrate how partial reconstruction is

accomplished. Suppose that the initial database is

insert-in-relation: relations x tuples -- >Jelations

which will be used in the implementation of the function

insert-in-db: databases x relation-names x tuples

-- > databases

2.2. Functional Database Updating

To demonstrate how our model can achieve full logical

updating through partial physical updating, it now

becomes necessary to consider typical transactions.

Obviously, a transaction tr is read-only if it returns the

same database as its argument:

tr:db = [...some response.", db]

For such transactions, no physical modification is

necessar.y.

Another type of transaction involves insertion of tuples

into one or more relations, Usually the specific relations

are syntactically derivable from the query, and in a large

number of cases, involve only one relation per transaction.

We assume this to be the case for the sake of illustration

in what follows.

In the same way that we view a transaction as creating a

new database, we also view the insertion of a tuple into a

relation as the creation of a new relation. Thus, we

assume a function

DO = [RO, SO]

where RO and SO are two relations.

transaction sequence:

insert x into R

insert y into S

Consider the

D"modified"

page

The database resulting from the first command is

01 = insert-in-db:[DO, R, x]

Figure 2-2: Sharing of

directories

pages through separate

wh ile that resulting from the second is

02 = insert-in-db:[01, S, yl

= insert-in-db:[insert-in-db:[DO, R, xl, S, y]

But

The technique extends with even further sharing

possibilities by making the directory structure into a tree.

In such methods, a path on the order of log n, where n is

the number of tuples, is traversed to find a given tuple.

Furthermore, insertion or deletion of a tuple requires the

replacement of a number of internal node records of the

same order. Thus, all but a proportion (log n)/n of a
relation can be shared during updating. Moreover, as this

195

sharing is achievable when the result of the update is

expressible as a function of the relation prior to updating,

the functional approach is indeed attractive for such

representations.

2.3. Database Concurrency and Synchronization

Conventional methods for accomplishing concurrent

updates to a database required the systems programmer

to program locks, semaphores, etc. (cf. [23]). In contrast,

the functional approach to updating, as exemplified by the

discussion in the previous section, performs all necessary

synchronization implicitly.

To see how synchronization is accomplished, consider

again the database composed of relations Rand S. Each

transaction yields a new database, which is represented by

a new pair. Thus, if a transaction following the Insert in S

depends only on the R component, it can proceed

immediately without waiting for the S component to be

completely established. We are here relying on the

Hlenient'" aspect of the tupling constructor, [. ...1, i.e. that we

can select and use one component while other

components are as yet uncomputed. Regarding the

previous example, since the relations R1 and 51 in 02 are

cle8l'Iy derivable independently from RO and SO

respectively, the corresponding insertions can be done in

parallel. This means that the database versions can

effectively be pipel i ned through the function apply­

stream, in that different transactions can be processing

constituent objects concurrently.

A corollary use of lenient data constructors is that many

potential sites for concurrent execution within data

structures are available, due to a reduction in the amount

of forced synchronization. Although a stream is produced

conceptually in sequence, at the top level, many elements

of the output sequence are demanded in an anticipatory

fashion, to generate as much parallel execution as

possible.

The degree of potential concurrency is sensitive to the

programming style employed In the transaction functions

and the underlying data structures used. For example, a

great deal of attention has been devoted to exploiting

concurrency in such tree representations using explicit

locking [1, 161 In contrast, the functional approach to

tree-updating induces implicit synchronization. While the

space overhead in the latter is greater due to the

avoidance of in-place modification, the concurrency should

in principle be at least as good or better, since only

essential data dependencies playa role in synchronization.

We also claim that the functional versions are much

simpler to program and therefore less susceptible to error.

2.4. Multi-user Transactions and Serialization

Non-functional aspects of distributed database systems

cannot be represented within the approach outlined thus

far. In the case of several users or application programs

submitting requests on the same database, there is

interaction among them when one transaction modifies a

196

portion of the database which is used by a subsequent

transaction. Hence there is a distinct non-functional

appearance in the customary formulation of such systems.

Nevertheless, there turns out to be a simple way of

specifying the desired behavior in a "pseudo-functional"

manner. This entails the use of a merge (or " m u l t i p l e x ' ~)

operation, which provides an interface consistent with

other functional operators, but is not strictly a function (cl.

(91).

This merge technique is widely known in the functional

programming community, so we treat it only briefly. A

semi-functional definition of a (2-way) merge can be

found in [1 1] and will not be repeated here. Informally, a

merge has as its input several query streams and its

output is an arbitrary interleaving of those streams. We

henceforth refer to a specific interleaving as the merged

stream of requests. The order of interleaving can be that

in which the merge receives the requests. In order to

direct the response for each transaction back to its origin,

a tag indicating that origin must be paired with each

request. The function processing the transactions ignores

the tag, but keeps it associated with the data so that the

response can be routed when desired. (The tagging idea

was also used, for example, in (6].) The discussion below

ignores such tags for simplicity.

A sufficient condition for the standard criterion of

"serializability", (cf. [23]) for the processing of concurrent

transactions is as follows:

Process the merged stream sequentially.

This condition conveniently decomposes the overall

problem into a pseudo-functional part (the merge) and a

purely functional part (the apparently-sequential

processing of the merged stream).

It may appear that this approach loses concurrency;

however this is not the case. We assume an execution

mechanism capable of evaluating independent stream

components concurrently, such as that described in

[10, 14]. Due to the construction of streams and other

data objects with lenient data constructors, executable

operations wi'" be extracted from the merged stream as

they become available, rather than in the implied

sequence. Then the pipelined processing of transactions

can take place, as described earlier. The apparent

bottleneck due to merging is minimized if components of

the transactions are sufficiently independent.

There is a momentary "locking" eHect among transactions

as transaction streams are merged; this establishes a

definite sequence from which concurrent operations are

extracted. In effect, the linkage mechanism underlying the

functional implementation effects the equivalent of a

"timestamp order" execution (c/. [23]) but without explicit

reliance on timestamps. It can thus be seen that the

stream structures induce the effect of version-based

objects [19] on the relations which form the database. It is

further possible to "optimize" the transactions for greater

concurrency among relational components by judiciously

ordering the transactions to be merged, so long as the

order of transactions from each individual stream is

maintained. This is a topic for future research.

Figure 2-3 illustrates the merging of two independent

transaction streams, and one possible decomposition of

the merged stream for concurrent execution. This type of

behavior has been experimentally verified. We re-

emphasize that no clever compilation or locking

techniques need be employed in causing the concurrency

to materialize.

(resulting de-facto parallel execution schedule)

model and primary-copy model (cf. [23]). In the former, at

every instant of time, some site plays the role of the

primary site, through which all transactions must pass for

coordination, regardless of origin. This creates a

bottleneck which is temporary, in the sense that once a

transaction passes through the site, finer grain actions

associated with it may be' done concurrently. In the

primary-copy model, a transaction simply proceeds

without initial coordination, all required coordination being

done at a "primary copy" of each database object. (If the

database is non-redundant, then each object is its own

primary copy.)

insert x into R,
find x in R

insert z into S

f
insert V into S

f
find z in S

The technique demonstrated in this paper is applicable to

the primary-site model. As we have already discussed,

the required coordination can be done in a manner which

is almost completely functional. Although functional

representations for the primary-copy model also appear

possible, they are more complicated, due to the need to

retain the ability to abort transactions to resolve deadlock.

We leave the handling of such behavior to a future

exposition.

(merged transaction stream)

insert x into R

insert z into S

find x in R

insert y into S

find z in S

(input transaction streams)

"insert x into R insert z into S

For sake of simplicity, assume a non-hierarchical "local"

network model, in which the physical connectivity permits

each site to send a message to each other. The

"Ethernet" model [17] is a workable example. An important

Observation is that the network medium acts as one large

merge pseUdo-function. The strearn of messages which

appear on it over time will not be deterministic, but will

consist of an interleaving of messages generated at

different nodes. Interestingly enough, a functional

representation of message handling is possible in a

manner analogous to the handling of merged streams in

Section 2.4. Instead of transactions, we have arbitrary

messages, again accompanied by destination tags, for

ultimate routing of responses. A site effectively selects

the messages directed to it by applying a choose function

to the entire message stream, which selects those

messages having a tag which coincides with the site tag.

Figure 3-1 b illustrates the logical view of a network, the

physical structure of which is suggested in Figure 3-1a.

Figure 2-3: Merging and decomposition of transaction

streams

3. Application fo Physical Aspects of Distributed
Database Systems

3.1. Relevance to the Primary Site Model

Two principal models which have been identified for

distributed database update control are the primary-site

3.2. Site-Selection Pragmas

Logically, the site at which database functions are

processed is irrelevant. However, it mClY be physically

more efficient or otherwise important to choose one site

over another for the application of a given function. For

this reason, we suggest the use of a site pragma as an

option to a function. This pragma can take the form of a

parameter to the function which gives the address of the

preferred site of execution. A tentative form might be

RESULT-ON:[functional-expression, site]

which yields the value of the first argument, but requires

the outermost function to be computed on the specified

site. That function could likewise specify the execution of

subsidiary functions on particular sites, or on its own site,

which it could obtain by evaluating the expression

MY-SITE:[]

197

find x in R

find z in S

insert y into S

To retain functionality, site parameters could be made

unavailable for use by any function except RESULT-ON. If

a primary-site is used, It could consult the root directory

for the overall database to obtain any necessary site

values.

&.

b.

Figure 3-1: Site-based substream selection; a. Physical

network; b. logical merge/choose.

3.3. Secondary Storage Considerations

To further suggest that advantages of functional

programming can be obtained in database applications

without appreciable extra time costs, the paging aspect of

physical implementations may be considered. It Is

common to use a balanced tree strategy in which the size

of a tree node is one physical page, rather than being

based on a specific fan-out. Since the transit time of a

page from secondary to main memory is likely to

dominate the processing time, the cost of reconstructing

the page, ·as required by applicative updates, is likely to be

negligible. Of course, additional parameters and

experimental investigation are necessary to substantiate

this claim.

Space cost is more of a problem. However, there is

reason to believe that some ~ p p l i c a t i o n s will permit

"tcomplete archiv9s N to be cons1 ucted, using e.g. optical.

storage. For others, garbage collection must be used to

reclaim data, the access to which is dropped.

198

3.4. Network Topology

In order to better describe how our approach to database

processing fits into a distributed architecture, we discuss

some aspects of a multiprocessor/network architecture

oriented toward the execution of functional programs. The

ideas here derive from our work presented in [101 with

emphasis on logical interconnectedness, rather than

physical topology. The functional implementation

described there avoids the shared-memory bottleneck

common to many multiprocessors by integrating memory

with processing capability. More specifically, it is

stipulated that a PE shall have both a processor and a

memory which it alone directly accesses.

Access by one processor of another processor's memory

is logically possible, but physically occurs by the former

processor sending a message to the latter containing the

variables to be accessed. After this message makes its

way through the interconnection network, it becomes a

task for the receiving processor. The latter returns a

message containing the contents of the requested

variables, which becomes a task to be executed by the

processor desiring to use the contents of those variables.

The fact that each processor is solely responsible for

direct access to its own memory simplifies considerations

for implementing mutual exclusion. Each processor

effectively becomes a "serializer" of its own local

activities.

The coordination of distributed execution in our model is

simply due to the assignability of a unique system-wide

address to each object, and the ability for the physical

topology to route information to any specified address.

Since a PE will likely have a fixed memory size, such

addressing could be achieved by concatenating a PE

address with the address of a location within a PE. Nodes

which route information within the network must, of

course, take the physical topology into account.

4. Experimental Results

The techniques mentioned in this paper have been

implemented in the functional language FEL [13] and

tested using a simulator which simulates the Rediflow

evaluation mechanism [14].

An experiment was performed which processed 50

transactions on three versions of a database, with 1, 3,

and 5 relations respectively, having a total of 50 tuples

among them initially. The transactions were all either

single-tuple inserts or finds, and the percentage of inserts

was varied through 4, 7, 14, 24, and 38 percent.

For simplicity, a linked-list implementation of both the

database and individual relations was used. Intuitively,

indications of concurrency for this implementation are apt

to be conservative. Tree representations are projected to

be even more efficient, since fewer n o d ~ s need to be

modified on insertion.

The Rediflow simulator [14] has a number of modes

available. The ffrst mode assumes an arbitrary degree of

parallelism (effectively infinitely-many processors), unit

task lengths, and zero communication costs. It is used

primarily to estimate the degree of concurrency in the

application with given input data. In this mode, the

simulator measures maximum and average concurrency in

the form of "ply width", where a ply is a maximal set of

tasks, all of which can be executed in parallel.

Table I displays the results of execution in this mode. It is

notable that the degree of concurrency seems reasonably

high for such a small example. It should also be

mentioned that the observed concurrency can be classified

as the "pipeline ll variety, since, by design, no transaction

entailed the updating of more than one relation.

Table I: Maximum and Average Degree of Concurrency

percent number of relations

updates 5 3

0% 25 14 27 15 39 17
4% 25 14 28 15 45 17
7% 26 14 46 15

14% 26 14 29 13 42 13

24% 24 12 28 11 36 9

38% 24 10 24 9 22 9

A second simulation mode specifies a network topology

and a specific number of processors. In this mode,

communication delay is taken into account. Table II shows

the speedup resulting from the same programs and data

using an 8-node binary hypercube, while Table III shows it

for a 27-node (Euclidean) cube (3x3x3).

Table II: Speedup, 8-node hypercube

percent number of relations

updates 5 3

0% 5.6 5.7 6.2

4% 5.6 5.7 6.1
7% 5.6 5.9

14% 5.4 5.5 5.6

24% 5.2 5.0 4.7

38% 4.8 4.6 4.7

Table III: Speedup, 27 node Euclidean cube

percent number of relations

updates 5 3

0% 7.2 7.6 8.9
4% 7.2 7.6 8.9
7% 7.1 8.9

14% 7.2 7.6 7.8
24% 6.8 6.4 6.1
38% 6.0 6.2 6.0

199

5. Relation to previous work
The use of a functional programming model for database

applications has been only partly explored, notably by

Buneman, et al. (2) and Shipman [20].. However, the first

reference does not deal with the question of updating,

whUe the second is mainly concerned with modeling data,

rather than modeling the programs which operate on data.

We observed earlier that our functional formulation of

updating provides one approach similar to version-based

objects [19], but the need for explicit version numbers is

suppressed. It remains to be seen whether our

formulation can correspondingly be used to simplify the

programming of error recovery mechanism.

The conceptual exploitation of concurrency in balanced

trees was first discussed by Bayer and Schkolnick [1]. A

survey of subsequent work is given by Kwong and

Wood [16]. A functional formulation of B-tree insertion

and deletion was implemented by Paul Hudak and was

incorporated into a simple network (Le. Codasyl) database

in a master's thesis by Rima Doany-Bhakit [3]. Equational

code for th'e special case of 2-3 trees was developed by

Hoffman and O'Donnell [8]; Mamdouh Ibrahim has

transcribed that code to FEL [13]. A related work is that of

Myers [18] which discusses advantages of appllcative

updating in AVL trees. Kim [15] showed how a functional

language with set abstraction can be used as an effective

database query language.

6. Conclusion
We have examined the suitability of functional

programming concepts for the design and implementation

of distributed database applications. We conclude that

this approach has considerable merit, especially in its

facilitation of transparent concurrency detection and

potential exploitation of multiple PEs. Many data

representation schemes, such as tree schemes which

permit a high degree of sharing, can be expressed in a

purely functional way. These offer the possibility of

updating without gross modification to the database, as

would be suggested by the mathematical view of updating

in which the entire database is recopied on each update.

This view entails a stream of databases (versions), where

the first element is the initial database, and the i+ 1th

element is the result of applying the ith transaction to the

ith element. The individual transactions then proceed with

as much potential concurrency as their data

interdependencies permit. In particular, non-update

transactions don't lock out each other (once their initial

serialization order is determined).

While the timely servicing of mUltiple transaction streams

is fundamentally indeterminate, and hence requires a non­

applicative approach, we have shown how this

nonfunctionality can be contained in a relatively small

portion of the overall system. This is accomplished by a

pseudo-functional merge operation combining the various

transaction streams, thereby serializing the transaction

processing logically, but not temporally. Observations

were also offered on pragmatic extensions to the

functional approach for control of physical system

management issues, such as site selection and network

Interfacing.

7. Acknowledgment

We thank the referees for their comments which resulted

in improvement of the presentation.. We also thank Paul

Hudak, Rima Doany-Bakhit, and Mamdouh Ibrahim, Peter

Badovinatz, and Frank Un for coding help in related

experimental work.

8. References

[1] R. Bayer and M. Schkolnick. Concurrency of

operations on B-trees. Acta I nlormatica 9: 1-21, 1977.

[2] D.P. Buneman, R.E. Frankel, and R. Nikhll. An

Implementation technique for database query languages.

ACM TODS 7(2):164-186, June, 1982.

(3] R. Doany. Implementation of a network database

using a function graph language. Master's thesis,

University of Utah, Dept. of Computer Science, June, 1981

[4] D.P. Friedman and D.S. Wise. CONS should not

evaluate Its arguments. In S. Michaelson and R. Milner

(editor), Aulornafa, Languages, and Programming, pages

257-284. Edinburgh University Press, 1976.

[5] D.P. Friedman and D.S. Wise. The impact of

applicative programming on multiprocessing. I EEE Trans.

on COlnputers C-27(4):289-296, Apr, 1978.

[6] D.P. Friedman and D.S. Wise. Appl feative

multiprogramming. Technical Report 72, Computer

Science Dept., Indiana University, April, 1979.

[7] P. Henderson and J.H. Morris, Jr. A lazy evaluator.

In Proc. Third ACM Conference on Principles of

Programming Languages, pages 95-103. 1976.

[8] C.M. Hoffman and M.J. O'Donnell. Programming

with equations. TOPLAS 4(1):83-112, January, 1982.

[9] R.M. Keller. Denotational models for parallel

programs with indeterminate operators. In E.J. Neuhold

(editor), Formal description of programming concepts,

pages 337-366. North-Holland, 1978.

[10] R.M. Keller, G. Lindstrom, and S. Patil. A loosely­

coupled applicative multi-processing system. In AFIPS,

pages 613-622. AFIPS, June, 1979.

[11] R.M. Keller, G. Lindstrom, and S. Patil. Data-flow

concepts for hardware design. In IEEE Compcon '80,

pages 105-111. Feb., 1980.

200

[12] R.M. Keller and G. Lindstrom. Approaching

Distributed Database I mplementations through Functional

Programming Concepts. Technical Report UUCS-82-100,

University of Utah, Department of Computer Science, June,

1982.

[13] R.M. Keller. FEL (Function Equation Language)

Programmer's guide. 1982. AMPS Technical Memorandum

No.7, University of Utah, Department of Computer

Science.

[14] R.M. Keller and F.e.H. Lin. Simulated performance of

a reduction-based multiprocessor. Computer 17(7):70-82,

July, 1984.

[15] J. Kim. Set abstraction and databases in a Function

Equation Language. Master's thesis, University of Utah,

August, 1983.

(16] V.S. Kwong and D. Wood. Approaches to

concurrency in B-trees. In P. Dembinski (editor),

Mathematical foundations of computer science, pages

402-413. Springer Verlag, September, 1980. Lecture Notes

in Computer Science, No. 88.

[17] R.M. Metcalfe and D.R. Boggs. Ethernet: distributed

packet switching for local computer networks. Cornrnun.

ACM 19(7):395-404, Jut, 1976.

[18] E.W. Myers. EHicient applicative data types. In

Proc. Eleventh ACM Conference on Principles of

Programming Lanr;uages, pages 66-75. ACM, 1983.

[19] D.P. Reed. Naming and synchronization I n a

decentra/ ized computer system. PhD thesis, MIT,

September, 1978.

(20] D.W. Shipman. The functional data model and the

data language DAPLEX. ACM TODS 6(1): 140-173, March,

1981.

[21] I.L. Traiger, J.N. Gray, e.A. Galtieri, B.G. Lindsay.

Transactions and consistency in distributed database

systems. Transactions on database systerns 7(3):323-342,

1982.

[22] D.A. Turner. A new implementation technique for

applicative languages. Software - Practice and

Experience9:31-49, 1979.

(23] J.D. Ullman. Principles of database systerns, 2nd

edition. Computer Science Press, 1982.

	Claremont Colleges
	Scholarship @ Claremont
	5-1-1985

	Approaching Distributed Database Implementations Through Functional Programming Concepts
	Robert M. Keller
	Gary Lindstrom
	Recommended Citation

	tmp.1318372926.pdf.NM_kt

