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Abstract

Previously, neural methods in grammatical er-

ror correction (GEC) did not reach state-of-

the-art results compared to phrase-based sta-

tistical machine translation (SMT) baselines.

We demonstrate parallels between neural GEC

and low-resource neural MT and successfully

adapt several methods from low-resource MT

to neural GEC. We further establish guide-

lines for trustable results in neural GEC and

propose a set of model-independent methods

for neural GEC that can be easily applied in

most GEC settings. Proposed methods include

adding source-side noise, domain-adaptation

techniques, a GEC-specific training-objective,

transfer learning with monolingual data, and

ensembling of independently trained GEC

models and language models. The combined

effects of these methods result in better than

state-of-the-art neural GEC models that out-

perform previously best neural GEC systems

by more than 10% M2 on the CoNLL-2014

benchmark and 5.9% on the JFLEG test set.

Non-neural state-of-the-art systems are outper-

formed by more than 2% on the CoNLL-2014

benchmark and by 4% on JFLEG.

1 Introduction

Most successful approaches to automated grammat-

ical error correction (GEC) are based on methods

from statistical machine translation (SMT), espe-

cially the phrase-based variant. For the CoNLL

2014 benchmark on grammatical error correction

(Ng et al., 2014), Junczys-Dowmunt and Grund-

kiewicz (2016) established a set of methods for

GEC by SMT that remain state-of-the-art. Systems

(Chollampatt and Ng, 2017; Yannakoudakis et al.,

2017) that improve on results by Junczys-Dowmunt

and Grundkiewicz (2016) use their set-up as a back-

bone for more complex systems.

The view that GEC can be approached as a ma-

chine translation problem by translating from erro-

neous to correct text originates from Brockett et al.

(2006) and resulted in many systems (e.g. Felice

et al., 2014; Susanto et al., 2014) that represented

the current state-of-the-art at the time.

In the field of machine translation proper, the

emergence of neural sequence-to-sequence meth-

ods and their impressive results have lead to a

paradigm shift away from phrase-based SMT to-

wards neural machine translation (NMT). During

WMT 2017 (Bojar et al., 2017) authors of pure

phrase-based systems offered “unconditional sur-

render”1 to NMT-based methods.

Based on these developments, one would expect

to see a rise of state-of-the-art neural methods for

GEC, but as Junczys-Dowmunt and Grundkiewicz

(2016) already noted, this is not the case. Interest-

ingly, even today, the top systems on established

GEC benchmarks are still mostly phrase-based or

hybrid systems (Chollampatt and Ng, 2017; Yan-

nakoudakis et al., 2017; Napoles and Callison-

Burch, 2017). The best “pure” neural systems (Ji

et al., 2017; Sakaguchi et al., 2017; Schmaltz et al.,

2017) are several percent behind.2

If we look at recent MT work with this in mind,

we find one area where phrased-based SMT domi-

nates over NMT: low-resource machine translation.

Koehn and Knowles (2017) analyze the behavior

of NMT versus SMT for English-Spanish systems

trained on 0.4 million to 385.7 million words of par-

allel data, illustrated in Figure 1. Quality for NMT

1Ding et al. (2017) on their news translation shared task
poster http://www.cs.jhu.edu/˜huda/papers/

jhu-wmt-2017.pdf
2After submission of this work, Chollampatt and Ng (2018)

published impressive new results for neural GEC with some
overlap with our methods. However, our results stay ahead on
all benchmarks while using simpler models.

http://www.cs.jhu.edu/~huda/papers/jhu-wmt-2017.pdf
http://www.cs.jhu.edu/~huda/papers/jhu-wmt-2017.pdf


Figure 1: BLEU scores for English-Spanish systems

trained on 0.4M to 385.7M words of parallel data.

Source: Koehn and Knowles (2017)

Corpus Sent. Tokens Public

NUCLE* 57.1K 1.2M Yes

Lang-8 NAIST* 1.9M 25.0M Yes

CLC FCE 30.9K 0.5M Yes

CLC 1.9M 29.2M No

Table 1: Statistics for existing GEC training data

sets. Data sets marked with * are used in this work.

starts low for small corpora, outperforms SMT at

a corpus size of about 15 million words, and with

increasing size beats SMT with a large in-domain

language model.

Table 1 lists existing training resources for the

English as-a-second-language (ESL) grammatical

error correction task. Publicly available resources,

NUS Corpus of Learner English (NUCLE) by

Dahlmeier et al. (2013), Lang-8 NAIST (Mizumoto

et al., 2012) and CLC FCE (Yannakoudakis et al.,

2011) amount to about 27M tokens. Among these

the Lang-8 corpus is quite noisy and of low quality.

The Cambridge Learner Corpus (CLC) by Nicholls

(2003) — probably the best resource in this list —

is non-public and we would strongly discourage

reporting results that include it as training data as

this makes comparisons difficult.

Contrasting this with Fig. 1, we see that for

about 20M tokens NMT systems start outperform-

ing SMT models without additional large language

models. Current state-of-the-art GEC systems

based on SMT, however, all include large-scale in-

domain language models either following the steps

outlined in Junczys-Dowmunt and Grundkiewicz

(2016) or directly re-using their domain-adapted

Common-Crawl language model.

It seems that the current state of neural meth-

ods in GEC reflects the behavior for NMT sys-

tems trained on smaller data sets. Based on this,

we conclude that we can think of GEC as a low-

resource, or at most mid-resource, machine transla-

tion problem. This means that techniques proposed

for low-resource (neural) MT should be applicable

to improving neural GEC results.

In this work we show that adapting techniques

from low-resource (neural) MT and SMT-based

GEC methods allows neural GEC systems to catch

up to and outperform SMT-based systems. We

improve over the previously best-reported neural

GEC system (Ji et al., 2017) on the CoNLL 2014

test set by more than 10% M2, over a compara-

ble pure SMT system by Junczys-Dowmunt and

Grundkiewicz (2016) by 6%, and outperform the

state-of-the-art result of Chollampatt and Ng (2017)

by 2%. On the JFLEG data set, we report the cur-

rently best results, outperforming the previously

best pure neural system (Sakaguchi et al., 2017) by

5.9% GLEU and the best reported results (Chol-

lampatt and Ng, 2017) by 3% GLEU.

In Section 2, we describe our NMT-based base-

line for GEC, and follow recommendations from

the MT community for a trustable neural GEC sys-

tem. In Section 3, we adapt neural models to make

better use of sparse error-annotated data, trans-

ferring low-resource MT and GEC-specific SMT

methods to neural GEC. This includes a novel train-

ing objective for GEC. We investigate how to lever-

age monolingual data for neural GEC by transfer

learning in Section 4 and experiment with language

model ensembling in Section 5. Section 6 explores

deep NMT architectures. In Section 7, we provide

an overview of the experiments and how results re-

late to the JFLEG benchmark. We also recommend

a model-independent toolbox for neural GEC.

2 A trustable baseline for neural GEC

In this section, we combine insights from Junczys-

Dowmunt and Grundkiewicz (2016) for grammati-

cal error correction by phrase-based statistical ma-

chine translation and from Denkowski and Neubig

(2017) for trustable results in neural machine trans-

lation to propose a trustable baseline for neural

grammatical error correction.



Test/Dev set Sent. Annot. Metric

CoNLL-2013 test 1,381 1 M2

CoNLL-2014 test 1,312 2 M2

JFLEG dev 754 4 GLEU

JFLEG test 747 4 GLEU

Table 2: Statistics for test and development data.

2.1 Training and test data

To make our results comparable to state-of-the-art

results in the field of GEC, we limit our training

data strictly to public resources. In the case of

error-annotated data, as marked in Table 1, these

are the NUCLE (Dahlmeier et al., 2013) and Lang-

8 NAIST (Mizumoto et al., 2012) data sets. We

do not include the FCE corpus (Yannakoudakis

et al., 2011) to maintain comparability to Junczys-

Dowmunt and Grundkiewicz (2016) and Chollam-

patt and Ng (2017). We strongly urge the com-

munity to not use the non-public CLC corpus for

training, unless contrastive results without this cor-

pus are provided as well.

We choose the CoNLL-2014 shared task test set

(Ng et al., 2014) as our main benchmark and the

test set from the 2013 edition of the shared task

(Ng et al., 2013) as a development set. For these

benchmarks we report MaxMatch (M2) scores

(Dahlmeier and Ng, 2012). Where appropriate,

we will provide results on the JFLEG dev and test

sets (Napoles et al., 2017) using the GLEU metric

(Sakaguchi et al., 2016) to demonstrate the gener-

ality of our methods. Table 2 summarizes test/dev

set statistics for both tasks.

For most our experiments, we report M2 on

CoNLL-2013 test (Dev) and precision (Prec.), re-

call (Rec.), M2 (Test) on the CoNLL-2014 test set.

2.2 Preprocessing and sub-words

As both benchmarks, CoNLL and JFLEG, are

provided in NLTK-style tokenization (Bird et al.,

2009), we use the same tokenization scheme for our

training data. We truecase line beginnings and es-

cape special characters using scripts included with

Moses (Koehn et al., 2007). Following Sakaguchi

et al. (2017), we apply the Enchant3 spell-checker

to the JFLEG data before evaluation. No spell-

checking is used for the CoNLL test sets.

We follow the recommendation by Denkowski

and Neubig (2017) to use byte-pair encoding (BPE)

sub-word units (Sennrich et al., 2016b) to solve the

3https://github.com/AbiWord/enchant

large-vocabulary problem of NMT. This is a well

established procedure in neural machine translation

and has been demonstrated to be generally superior

to UNK-replacement methods. It has been largely

ignored in the field of grammatical error correction

even when word segmentation issues have been

explored (Ji et al., 2017; Schmaltz et al., 2017). To

our knowledge, this is the first work to use BPE

sub-words for GEC, however, an analysis on advan-

tages of word versus sub-word or character level

segmentation is beyond the scope of this paper. A

set of 50,000 monolingual BPE units is trained on

the error-annotated data and we segment training

and test/dev data accordingly. Segmentation is re-

versed before evaluation.

2.3 Model and training procedure

Implementations of all models explored in this

work4 are available in the Marian5 toolkit (Junczys-

Dowmunt et al., 2018). The attentional encoder-

decoder model in Marian is a re-implementation

of the NMT model in Nematus (Sennrich et al.,

2017b). The model differs from the model intro-

duced by Bahdanau et al. (2014) by several aspects,

the most important being the conditional GRU with

attention for which Sennrich et al. (2017b) provide

a concise description.

All embedding vectors consist of 512 units; the

RNN states of 1024 units. The number of BPE

segments determines the size of the vocabulary of

our models, i.e. 50,000 entries. Source and target

side use the same vocabulary. To avoid overfitting,

we use variational dropout (Gal and Ghahramani,

2016) over GRU steps and input embeddings with

probability 0.2. We optimize with Adam (Kingma

and Ba, 2014) with an average mini-batch size of

ca. 200. All models are trained until convergence

(early-stopping with a patience of 10 based on de-

velopment set cross-entropy cost), saving model

checkpoints every 10,000 mini-batches. The best

eight model checkpoints w.r.t. the development set

M2 score of each training run are averaged element-

wise (Junczys-Dowmunt et al., 2016) resulting in

a final single model. During decoding we use a

beam-size of 24 and normalize model scores by

length.6

4Models, system configurations and outputs are avail-
able from https://github.com/grammatical/

neural-naacl2018
5https://github.com/marian-nmt/marian
6We used a larger beam-size than usual due to experiments

with re-ranking of n-best lists not included in the paper. We
did not see any differences compared to smaller beams.

https://github.com/AbiWord/enchant
https://github.com/grammatical/neural-naacl2018
https://github.com/grammatical/neural-naacl2018
 https://github.com/marian-nmt/marian


CoNLL JFLEG

Run Dev Prec. Rec. Test Dev Test

1 20.2 68.6 11.8 34.9 47.6 52.3

2 21.3 64.6 10.3 31.5 47.1 51.8

3 21.7 64.8 10.6 32.0 47.1 52.4

4 22.0 67.1 10.9 33.0 47.1 52.0

Avg 21.3 – – 32.9 47.2 52.1

Ens 19.3 70.8 9.5 30.9 47.0 52.5

Table 3: Instable results for multiple baseline runs

versus average and ensemble — for the CoNLL

benchmark.

2.4 Optimizer instability

Junczys-Dowmunt and Grundkiewicz (2016) no-

ticed that discriminative parameter tuning for GEC

by phrase-based SMT leads to unstable M2 results

between tuning runs. This is a well-known effect

for SMT parameter tuning and Clark et al. (2011)

recommend reporting results for multiple tuning

runs. Junczys-Dowmunt and Grundkiewicz (2016)

perform four tuning runs and calculate parameter

centroids following Cettolo et al. (2011).

Neural sequence-to-sequence training is discrim-

inative optimization and as such prone to instabil-

ity. We already try to alleviate this by averaging

over eight best checkpoints, but as seen in Table 3,

results for M2 remain unstable for runs with differ-

ently initialized weights. An amplitude of 3 points

M2 on the CoNLL-2014 test set is larger than most

improvements reported in recent papers. None of

the recent works on neural GEC account for in-

stability, hence it is unclear if observed outcomes

are actual improvements or lucky picks among by-

products of instability. We therefore strongly sug-

gest to provide results for multiple independently

trained models. Otherwise improvements of less

than 2 or 3 points of M2 remain doubtful. Interest-

ingly, GLEU on the JFLEG data seems to be more

stable than M2 on CoNLL data.

2.5 Ensembling of independent models

Running multiple experiments to provide aver-

aged results seems prohibitively expensive, but

Denkowski and Neubig (2017) and others (e.g.

Sutskever et al., 2014; Sennrich et al., 2017a) show

that ensembling of independently trained models

leads to consistent rewards for MT. For our base-

line in Table 3 the opposite seems to be true for

M2. This is likely the reason why no other work on

neural GEC mentions results for ensembles.
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41.7
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47.8 48.0

51.0M2

Average of 4

Ensemble of 4

Model Dev Prec. Rec. Test

Baseline 19.3 70.8 9.5 30.9

+Dropout-Src. 27.5 72.4 15.5 41.7

+Domain-Adapt. 30.0 69.2 17.3 43.3

+Error-Adapt. 34.5 70.8 20.8 47.8

+Tied-Emb. 33.0 73.0 20.2 48.0

+Edit-MLE 37.6 65.3 27.1 51.0

Table 4: Results (M2) on the CoNLL benchmark

for GEC-specific adaptations.

On closer inspection, however, we see that the

drop in M2 for ensembles is due to a precision bias.

M2 being an F-score penalizes increasing distance

between precision and recall. The increase in pre-

cision for ensembles is to be expected and we see

it later consistently for all experiments. Ensem-

bles choose corrections for which all independent

models are fairly confident. This leads to fewer but

better corrections, hence an increase in precision

and a drop in recall. If the models are weak as our

baseline, this can result in a lower score. It would,

however, be unwise to dismiss ensembles, as we

can use their bias towards precision to our advan-

tage whenever they are combined with methods

that aim to increase recall. This is true for nearly

all remaining experiments.

3 Adaptations for GEC

The methods described in this section turn our base-

line into a more GEC-specific system. Most have

been inspired by techniques from low-resource MT

or closely related domain-adaptation techniques

for NMT. All modifications are applied incremen-

tally, later models include enhancements from the

previous ones.



3.1 Source-word dropout as corruption

GEC can be treated as a denoising task where

grammatical errors are corruptions that have to be

reduced. By introducing more corruption on the

source side during training we can teach the model

to reduce trust into the source input and to apply

corrections more freely. Dropout is one way to in-

troduce noise, but for now we only drop out single

units in the embedding or GRU layers, something

the model can easily recover from. To make the

task harder, we add dropout over source words, set-

ting the full embedding vector for a source word

to 1/psrc with a probability of psrc. During our

experiments, we found psrc = 0.2 to work best.

Table 4 show impressive gains for this simple

method (+Dropout-Src.). Results for the ensemble

match the previously best results on the CoNLL-

2014 test set for pure neural systems (without the

use of an additional monolingual language model)

by Ji et al. (2017) and Schmaltz et al. (2017).

3.2 Domain adaptation

The NUCLE corpus matches the domain of the

CoNLL benchmarks perfectly. It is however much

smaller than the Lang-8 corpus. A setting like

this seems to be a good fit for domain-adaptation

techniques. Sennrich et al. (2016a) oversample

in-domain news data in a larger non-news train-

ing corpus. We do the same by adding the NU-

CLE corpus ten times to the training corpus. This

can also be seen as similar to Junczys-Dowmunt

and Grundkiewicz (2016) who tune phrase-based

SMT parameters on the entire NUCLE corpus. Re-

spectable improvements on both CoNLL test sets

(+Domain-Adapt. in Table 4) are achieved.

3.3 Error adaptation

Junczys-Dowmunt and Grundkiewicz (2016) no-

ticed that when tuning on the entire NUCLE cor-

pus, even better results can be achieved if the error

rate of NUCLE is adapted to the error rate of the

original dev set. In NUCLE only 6% of tokens

contain errors, while the CoNLL-2013 test set has

an error-rate of about 15%. Following Junczys-

Dowmunt and Grundkiewicz (2016), we remove

correct sentences from the ten-fold oversampled

NUCLE data greedily until an error-rate of 15%

is achieved. This can be interpreted as a type of

GEC-specific domain adaptation. We mark this

method as +Domain-Adapt. in Table 4 and report

for the ensemble the so far strongest results for any

neural GEC system on the CoNLL benchmark.

CoNLL JFLEG

Λ Dev Prec. Rec. Test Dev Test

1 33.5 67.5 20.8 46.6 48.9 53.9

3 36.8 59.8 28.8 49.2 51.2 56.5

5 36.2 54.0 30.8 47.0 50.9 55.7

Table 5: Results for model type +Tied-Emb. trained

with edit-weighted MLE and chosen Λ.

3.4 Tied embeddings

Press and Wolf (2016) showed that parameter ty-

ing between input and output embeddings7 for lan-

guage models leads to improved perplexity. Simi-

larly, three-way weight-tying between source, tar-

get and output embeddings for neural machine

translation seems to improve translation quality in

terms of BLEU while also significantly decreasing

the number of parameters in the model. In mono-

lingual cases like GEC, where source and target

vocabularies are (mostly) equal, embedding-tying

seems to arise naturally. Output layer, decoder and

encoder embeddings all share information which

may further enhance the signal from corrective ed-

its. The M2 scores for +Tied-Emb. in Table 4 are

inconclusive, but we see improvements in conjunc-

tion with later modifications.

3.5 Edit-weighted MLE objective

Previously, we applied error-rate adaptation to

strengthen the signal from corrective edits in the

training data. In this section, we investigate the

effects of directly modifying the training loss to

incorporate weights for corrective edits.

Assuming that each target token yj has been

generated by a source token xi, we scale the loss

for each target token yj by a factor Λ if yj differs

from xi, i.e. if yj is part of an edit. Hence, log-

likelihood loss takes the following form:

L(x, y, a) = −

Ty
∑

t=1

λ(xat , yt) logP (yt|x, y<t),

λ(xat , yt) =

{

Λ if xat 6= yt
1 otherwise

,

where (x, y) is a training sentence pair and a is

a word alignment at ∈ {0, 1, . . . , Tx} such that

source token xat generates target token yt. Align-

ments are computed for each sentence pair with

fast-align (Dyer et al., 2013).

7Output embeddings are encoded in the last output layer
of a neural language or translation model.
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This is comparable to reinforcement learning

towards GLEU as introduced by Sakaguchi et al.

(2017) or training against diffs by Schmaltz et al.

(2017). In combination with previous modifica-

tions, edit-weighted Maximum Likelihood Estima-

tion (MLE) weighting seem to outperform both

methods. The parameter Λ introduces an additional

hyper-parameter that requires tuning for specific

tasks and affects the precision/recall trade-off. Ta-

ble 5 shows Λ = 3 seems to work best among the

tested values when chosen to maximize M2 on the

CoNLL-2013 dev set.

For this setting, we achieve our strongest results

of 50.95 M2 on the CoNLL benchmark (system

+Edit-MLE) yet. This outperforms the results of

a phrase-based SMT system with a large domain-

adapted language model from Junczys-Dowmunt

and Grundkiewicz (2016) by 1% M2 and is the first

neural system to beat this strong SMT baseline.

4 Transfer learning for GEC

Many ideas in low-resource neural MT are rooted

in transfer learning. In general, one first trains

a neural model on high-resource data and then

uses the resulting parameters to initialize param-

eters of a new model meant to be trained on low-

resource data only. Various settings are possible,

e.g. initializing from models trained on large out-

of-domain data and continuing on in-domain data

(Miceli Barone et al., 2017) or using related lan-

guage pairs (Zoph et al., 2016). Models can also

be partially initialized by pre-training monolingual

language models (Ramachandran et al., 2017) or

only word-embeddings (Gangi and Federico, 2017).

In GEC, Yannakoudakis et al. (2017) apply pre-

trained monolingual word-embeddings as initial-

izations for error-detection models to re-rank SMT

n-best lists. Approaches based on pre-training with

monolingual data appear to be particularly well-

suited to the GEC task. Junczys-Dowmunt and

Grundkiewicz (2016) published 300GB of com-

pressed monolingual data used in their work to

create a large domain-adapted Common-Crawl n-

gram language model.8 We use the first 100M lines.

Preprocessing follows section 2.2 including BPE

segmentation.

4.1 Pre-training embeddings

Similarly to Gangi and Federico (2017) or Yan-

nakoudakis et al. (2017), we use Word2vec

(Mikolov et al., 2013) with standard settings to

create word vectors. Since weights between source,

target and output embeddings are tied, these embed-

dings are inserted once into the model, but affect

computations three-fold, see the blue elements in

Figure 2. The remaining parameters of the model

8https://github.com/grammatical/

baselines-emnlp2016

https://github.com/grammatical/baselines-emnlp2016
https://github.com/grammatical/baselines-emnlp2016
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Model Dev Prec. Rec. Test

+Tied-Emb. 33.0 73.0 20.2 48.0

+Pretrain-Emb. 35.5 69.1 22.8 49.1

+Pretrain-Dec. 36.2 69.1 23.8 50.1

+Edit-MLE 37.6 65.3 27.1 51.0

+Pretrain-Emb. 38.2 64.4 28.4 51.4

+Pretrain-Dec. 40.3 65.2 32.2 54.1

Table 6: Results (M2) on the CoNLL benchmark

set for GEC-specific adaptations.

are initialized randomly. We refer to this adaptation

as +Pretrain-Emb.

4.2 Pre-training decoder parameters

Following Ramachandran et al. (2017), we first

train a GRU-based language model on the monolin-

gual data. The architecture of the language model

corresponds as much as possible to the structure

of the decoder of the sequence-to-sequence model.

All pieces that rely on the attention mechanism

or the encoder have been removed. After training

for two epochs, all red parameters (including em-

bedding layers) in Figure 2 are copied from the

language model to the decoder. Remaining param-

eters are initialized randomly. This configuration

is called +Pretrain-Dec. We pretrain each model

separately to make sure that all weights have been

initialized randomly.

4.3 Results for transfer learning

Table 6 summarizes the results for our transfer

learning experiments. We compare the effects of

pre-training with and without the edit-weighted

MLE objective and can see that pre-training has

significantly positive effects in both settings.

Model Dev Prec. Rec. Test

+Tied-Emb 33.0 73.0 20.2 48.0

+GRU-LM 40.2 59.8 36.2 52.9

+Edit-MLE 37.6 65.3 27.1 51.0

+GRU-LM 40.3 61.9 34.5 53.4

+Pretrain-Dec. 40.3 65.2 32.2 54.1

+GRU-LM 41.6 62.2 36.6 54.6

Table 7: Ensembling with a neural language model.

The last result of 53.3% M2 on the CoNLL-2014

benchmark matches the currently highest reported

numbers (53.14% M2) by Chollampatt and Ng

(2017) for a much more complex system and out-

performs the highest neural GEC system (Ji et al.,

2017) by 8% M2.

5 Ensembling with language models

Phrase-based SMT systems benefit naturally from

large monolingual language models, also in the

case of GEC as shown by Junczys-Dowmunt and

Grundkiewicz (2016). Previous work (Xie et al.,

2016; Ji et al., 2017) on neural GEC used n-gram

language models to incorporate monolingual data.

Xie et al. (2016) built a large 5-gram model and

integrated it directly into their beam search algo-

rithm, while Ji et al. (2017) re-use the language

model provided by Junczys-Dowmunt and Grund-

kiewicz (2016) for n-best list re-ranking.

We already combined monolingual data with our

GEC models via pre-training, but exploiting sepa-

rate language models is attractive as no additional

training is required. Here, we reuse the neural lan-

guage model created for pre-training.

Similarly to Xie et al. (2016), the score s(y|x)
for a correction y of sentence x is calculated as

s(y|x) =
1

|y|

[

4
∑

i=1

logPi(y|x) + α logPLM(y)

]

,

where Pi(y|x) is a translation probability for the

i-th model in an ensemble of 4. PLM(y) is the

language model probability for y weighted by α.

We normalize by sentence length |y|. Using the

dev set, we choose α that maximizes this score via

linear search in range [0, 2] with step 0.1.

Table 7 summarizes results for language model

ensembling with three of our intermediate config-

urations. All configurations benefit from the lan-

guage model in the ensemble, although gains for

the pre-trained model are rather small.



6 Deeper NMT models

So far we analyzed model-independent9 methods

— only training data, hyper-parameters, parame-

ter initialization, and the objective function were

modified. In this section we investigate if these

techniques can be generalized to deeper or differ-

ent architectures.

6.1 Architectures

We consider two state-of-the-art NMT architectures

implemented in Marian:

Deep RNN A deep RNN-based model (Miceli

Barone et al., 2017) proposed by Sennrich et al.

(2017a) for their WMT 2017 submissions. This

model is based on the shallow model we used until

now. It has single layer RNNs in the encoder and

decoder, but increases depth by stacking multiple

GRU-style blocks inside one RNN cell. A single

RNN step passes through all blocks before recur-

sion. The encoder RNN contains 4 stacked GRU

blocks, the decoder 8 (1 + 7 due to the conditional

GRU). Following Sennrich et al. (2017a), we en-

able layer-normalization in the RNN-layers. State

and embedding dimensions used throughout this

work and in Sennrich et al. (2017a) are the same.

Transformer The self-attention-based model by

Vaswani et al. (2017). We base our model on their

default architecture of 6 complex attention/self-

attention blocks in the encoder and decoder and

use the same model dimensions — embeddings

vector size is 512 (as before), filter size is 2048.

6.2 Training settings

As the deep models are less reliably trained with

asynchronous SGD, we change the training algo-

rithm to synchronous SGD and for both models

follow the recipe proposed in Vaswani et al. (2017),

with an effective base learning rate of 0.0003, learn-

ing rate warm-up during the first 16,000 iterations,

and an inverse square-root decay after the warm-

up. As before, we average the best 8 checkpoints.

We increase dropout probability over RNN layers

to 0.3 for Deep-RNN and similarly set dropout

between transformer layers to 0.3. Source-word

dropout as a noising technique remains unchanged.

9The pre-training procedure however needs to be adapted
to model architecture if we want to take advantage of every
shared parameter, otherwise matching parameter subsets could
probably be used successfully.

Model Dev Prec. Rec. Test

+Pretrain-Dec. 40.3 65.2 32.2 54.1

+GRU-LM 41.6 62.2 36.6 54.6

+Deep-RNN 41.1 64.3 35.2 55.2

+Deep-RNN-LM 41.9 61.3 40.2 55.5

+Transformer 41.5 63.0 38.9 56.1

+Transformer-LM 42.9 61.9 40.2 55.8

Table 8: Shallow (Pretrain-Dec.) versus deep en-

sembles, with and without corresponding language

models.

6.3 Pre-training deep models

We reuse all methods included up to +Pretrain-Dec.

The pre-training procedure as described in section

4.1 needs to be modified in order to maximize the

number of pre-trained parameters for the larger

model architectures. Again, we train decoder-only

models as typical language models by removing

all elements that depend on the encoder, including

attention-mechanisms over the source context. We

can keep the decoder self-attention layers in the

transformer model. We train for two epochs on our

monolingual data reusing the hyper-parameters for

the parallel case above.

6.4 Results

Table 8 summarizes the results for deeper models

on the CoNLL dev and test set. Both deep models

improve significantly over the shallow model with

the transformer model reaching our best result re-

ported on the CoNLL 2014 test set. For that test set

it seems that ensembling with language models that

were used for pre-training is ineffective when mea-

sured with M2; while on the JFLEG data measured

with GLEU we see strong improvements (Fig. 3b).

7 A standard tool set for neural GEC

We summarize the results for our experiments in

Figure 3 and provide results on the JFLEG test set.

Weights for the independent language model in the

full ensemble were chosen on the respective dev

sets for both tasks. Comparing results according to

both benchmarks and evaluation metrics (M2 for

CoNLL, GLEU for JFLEG), it seems we can isolate

the following set of reliable methods for state-of-

the-art neural grammatical error correction:

• Ensembling neural GEC models with mono-

lingual language models;

• Dropping out entire source embeddings;
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Figure 3: Comparison on the CoNLL-2014 test set and JFLEG test for all investigated methods.

• Weighting edits in the training objective dur-

ing optimization (+Edit-MLE);

• Pre-training on monolingual data;

• Ensembling of independently trained models;

• Domain and error adaptation (+Domain-

Adapt., Error-Adapt.) towards a specific

benchmark;

• Increasing model depth.

Combinations of these generally10 model-

independent methods helped raising the perfor-

mance of pure neural GEC systems by more than

10% M2 on the CoNLL 2014 benchmark, also out-

performing the previous state-of-the-art (Chollam-

patt and Ng, 2017), a hybrid phrase-based system

with a complex spell-checking system by 2%. We

also showed that a pure neural system can easily

10Increasing depth or changing the architecture to the Trans-
former model is clearly not model-independent.

outperform a strong pure phrase-based SMT sys-

tem (Junczys-Dowmunt and Grundkiewicz, 2016)

when similarly adapted to the GEC task.

On the JFLEG benchmark we outperform the

previously-best pure neural system (Sakaguchi

et al., 2017) by 5.9% GLEU (4.5% if no monolin-

gual data is used). Improvements over SMT-based

system like Napoles and Callison-Burch (2017)11

and Chollampatt and Ng (2017) are significant and

constitute the new state-of-the-art on the JFLEG

test set.
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