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Abstract. We investigate the asymptotic properties of the trajectories generated by a second-order dynami-
cal system of proximal-gradient type stated in connection with the minimization of the sum of a nonsmooth
convex and a (possibly nonconvex) smooth function. The convergence of the generated trajectory to a
critical point of the objective is ensured provided a regularization of the objective function satisfies the
Kurdyka–Łojasiewicz property. We also provide convergence rates for the trajectory formulated in terms
of the Łojasiewicz exponent.

1. Introduction

Let f : R
n → R ∪ {+∞} be a proper, convex, and lower semicontinuous function,

and let g : R
n → R be a (possibly nonconvex) Fréchet differentiable function with

β-Lipschitz continuous gradient, i.e., there exists β ≥ 0 such that ‖∇g(x)−∇g(y)‖ ≤
β‖x − y‖ for all x, y ∈ R

n . In this paper, we investigate the optimization problem

inf
x∈Rn

[ f (x) + g(x)] (1)

by associating to it the following second-order dynamical system of implicit-type
{

ẍ(t) + γ ẋ(t) + x(t) = proxλ f

(
x(t) − λ∇g(x(t))

)

x(0) = u0, ẋ(0) = v0,
(2)

where u0, v0 ∈ R
n , γ, λ ∈ (0,+∞) and

proxλ f : R
n → R

n, proxλ f (x) = argmin
y∈Rn

{
f (y) + 1

2λ
‖y − x‖2

}
, (3)

denotes the proximal point operator of λ f .
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Dynamical systems of proximal-gradient type associated with optimization prob-
lems have been intensively treated in the literature. In [16], Bolte studied the conver-
gence of the trajectories of the first-order dynamical system

{
ẋ(t) + x(t) = projC

(
x(t) − λ∇g(x(t))

)

x(0) = x0,
(4)

where g : R
n → R is a convex smooth function, C ⊆ R

n is a nonempty, closed,
and convex set, x0 ∈ R

n , and projC denotes the projection operator on the set C .
The trajectory of (4) has been proved to converge to a minimizer of the optimization
problem

inf
x∈C

g(x), (5)

provided the latter is solvable. We refer also to the work of Antipin [7] for further
results related to (4).

The following extension of the dynamical system (4)

{
ẋ(t) + x(t) = proxλ f

(
x(t) − λ∇g(x(t))

)

x(0) = x0,
(6)

where f : R
n → R ∪ {+∞} is a proper, convex and lower semicontinuous function,

g : R
n → R is a convex smooth function and x0 ∈ R

n , has been recently considered
by Abbas and Attouch [1] in relation to the optimization problem (1). In case (1)
is solvable, the trajectory generated by (6) has been proved to converge to a global
minimizer of it.

In connection with the optimization problem (5), the second-order projected-gra-
dient system

{
ẍ(t) + γ ẋ(t) + x(t) = projC (x(t) − λ∇g(x(t)))

x(0) = u0, ẋ(0) = v0,
(7)

with damping parameter γ > 0 and step size λ > 0, has been considered in [7,8]. The
system (7) becomes in case C = R

n the so-called heavy ball method with friction.
This nonlinear oscillator with damping is, in case n = 2, a simplified version of the
differential system describing the motion of a heavy ball that rolls over the graph of
g and keeps rolling under its own inertia until friction stops it at a critical point of g

(see [14]).
Implicit dynamical systems related to both optimization problems and monotone

inclusions have been considered in the literature also by Attouch and Svaiter in [15],
Attouch, Abbas and Svaiter in [2] and Attouch, Alvarez and Svaiter in [9]. These
investigations have been continued and extended in [21–24].

The aim of this manuscript is to study the asymptotic properties of the trajectory
generated by the second-order dynamical system (2) under convexity assumptions for
f and by allowing g to be nonconvex. In the same setting, a first-order dynamical
system of type (6) attached to (1) has been recently studied in [25]. An asymptotic
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analysis for a gradient-like second-order dynamical system (which corresponds to (7)
when C = R

n) has been made in [29] (see also the recent review [30]) in the analytic
setting.

The main results of the current work are Theorem 16, where we prove conver-
gence of the trajectories to a critical point of the objective function of (1), provided
a regularization of it satisfies the Kurdyka–Łojasiewicz property, and Theorem 20,
where convergences rates by means of the Łojasiewicz exponent are provided for both
the trajectory and the velocity. The convergence analysis relies on methods and tech-
niques of real algebraic geometry introduced by Łojasiewicz [32] and Kurdyka [31]
and extended to the nonsmooth setting by Attouch et al. [13] and Bolte et al. [17].

The explicit discretization of (2) with respect to the time variable t , with step size
hk > 0, damping variable γk > 0, and initial points x0 := u0 and x1 := v0 yields the
iterative scheme

xk+1 − 2xk + xk−1

h2
k

+ γk
xk+1 − xk

hk

+ xk = proxλ f

(
xk − λ∇g(xk)

)
∀k ≥ 1.

For hk = 1 this becomes

xk+1 =
(

1 − 1

1 + γk

)
xk + 1

1 + γk

proxλ f

(
xk − λ∇g(xk)

)

+ 1

1 + γk

(xk − xk−1) ∀k ≥ 1,

which is a relaxed proximal-gradient algorithm for minimizing f + g with inertial
effects. For inertial-type algorithms, we refer the reader to [3–5]. The dynamical system
investigated in this paper can be seen as a continuous counterpart of the inertial-type
algorithms presented in [26] and [34].

2. Preliminaries

In this section we introduce some basic notions and present preliminary results that
will be used in the sequel. The finite-dimensional spaces considered in the manuscript
are endowed with the Euclidean norm topology. The domain of the function f : R

n →
R ∪ {+∞} is defined by dom f = {x ∈ R

n : f (x) < +∞}. We say that f is proper,
if dom f �= ∅. For the following generalized subdifferential notions and their basic
properties, we refer to [33,35]. Let f : R

n → R ∪ {+∞} be a proper and lower
semicontinuous function. For x ∈ dom f , the Fréchet (viscosity) subdifferential of f

at x is defined as

∂̂ f (x) =
{
v ∈ R

n : lim inf
y→x

f (y) − f (x) − 〈v, y − x〉
‖y − x‖ ≥ 0

}
.

For x /∈ dom f , we set ∂̂ f (x) := ∅. The limiting (Mordukhovich) subdifferential is
defined at x ∈ dom f by

∂ f (x) = {v ∈ R
n : ∃xk → x, f (xk) → f (x) and ∃vk ∈ ∂̂ f (xk), vk → v as k → +∞},
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while for x /∈ dom f , we set ∂ f (x) := ∅. Notice the inclusion ∂̂ f (x) ⊆ ∂ f (x) for
each x ∈ R

n .
In case f is convex, these notions coincide with the convex subdifferential, which

means that ∂̂ f (x) = ∂ f (x) = {v ∈ R
n : f (y) ≥ f (x) + 〈v, y − x〉 ∀y ∈ R

n} for all
x ∈ dom f .

We will use the following closedness criterion concerning the graph of the limiting
subdifferential: if (xk)k≥0 and (vk)k≥0 are sequences in R

n such that vk ∈ ∂ f (xk) for
all k ≥ 0, (xk, vk) → (x, v) and f (xk) → f (x) as k → +∞, then v ∈ ∂ f (x).

The Fermat rule reads in this nonsmooth setting as: if x ∈ R
n is a local minimizer of

f , then 0 ∈ ∂ f (x). Notice that in case f is continuously differentiable around x ∈ R
n

we have ∂ f (x) = {∇ f (x)}. We denote by

crit( f ) = {x ∈ R
n : 0 ∈ ∂ f (x)}

the set of (limiting)-critical points of f . We also mention the following subdifferential
rule: if f : R

n → R ∪ {+∞} is proper and lower semicontinuous and h : R
n → R

is a continuously differentiable function, then ∂( f + h)(x) = ∂ f (x) + ∇h(x) for all
x ∈ R

n .

DEFINITION 1. (see, for instance, [2,15]) A function x : [0,+∞) → R
n is

said to be locally absolutely continuous, if is absolutely continuous on every interval
[0, T ], T > 0, that is, one of the following equivalent properties holds:

(i) There exists an integrable function y : [0, T ] → R
n such that

x(t) = x(0) +
∫ t

0
y(s)ds ∀t ∈ [0, T ];

(ii) x is continuous and its distributional derivative is Lebesgue integrable on [0, T ];
(iii) For every ε > 0, there exists η > 0 such that for any finite family of intervals

Ik = (ak, bk) ⊆ [0, T ] we have the implication

(
Ik ∩ I j = ∅ and

∑

k

|bk − ak | < η

)
�⇒

∑

k

‖x(bk) − x(ak)‖ < ε.

REMARK 1. (a) It follows from the definition that an absolutely continuous func-
tion is differentiable almost everywhere, its derivative coincides with its distributional
derivative almost everywhere and one can recover the function from its derivative
ẋ = y by the integration formula (i).

(b) If x : [0, T ] → R
n (where T > 0) is absolutely continuous and B : R

n → R
n

is L-Lipschitz continuous (where L ≥ 0), then the function z = B ◦ x is absolutely
continuous, too. This can be easily seen by using the characterization of absolute
continuity in Definition 1(iii). Moreover, z is almost everywhere differentiable and the
inequality ‖ż(·)‖ ≤ L‖ẋ(·)‖ holds almost everywhere.

Further, we recall the following result of Brézis [27].
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LEMMA 2. Let f : R
n −→ R ∪ {+∞} be a proper, convex and lower semicon-

tinuous function. Let x ∈ L2([0, T ], R
n), T > 0, be absolutely continuous such that

ẋ ∈ L2([0, T ], R
n) and x(t) ∈ dom f for almost every t ∈ [0, T ]. Assume that there

exists ξ ∈ L2([0, T ], R
n) such that ξ(t) ∈ ∂ f (x(t)) for almost every t ∈ [0, T ].

Then the function t −→ f (x(t)) is absolutely continuous and for every t such that

x(t) ∈ dom ∂ f we have

d

dt
f (x(t)) = 〈ẋ(t), h〉, ∀h ∈ ∂ f (x(t)).

The following central results will be used when proving the convergence of the
trajectories generated by the dynamical system (2); see, for example, [2, Lemma 5.1]
and [2, Lemma 5.2], respectively.

LEMMA 3. Suppose that F : [0,+∞) → R is locally absolutely continuous and

bounded below and that there exists G ∈ L1([0,+∞)) such that for almost every

t ∈ [0,+∞)

d

dt
F(t) ≤ G(t).

Then there exists limt→+∞ F(t) ∈ R.

LEMMA 4. If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0,+∞) → [0,+∞) is locally

absolutely continuous, F ∈ L p([0,+∞)), G : [0,+∞) → R, G ∈ Lr ([0,+∞))

and for almost every t ∈ [0,+∞)

d

dt
F(t) ≤ G(t),

then limt→+∞ F(t) = 0.

3. Existence and uniqueness of the trajectories

Existence and uniqueness of the trajectories of (2) are obtained in the framework
of the global version of the Cauchy–Lipschitz Theorem (see for instance [12, Theo-
rem 17.1.2(b)]), by rewriting (2) as a first-order dynamical system in a suitable product
space and by employing the Lipschitz continuity of the proximal operator and of the
gradient.

THEOREM 5. For every starting points u0, v0 ∈ R
n , the dynamical system (2) has

a unique global solution x ∈ C2([0,+∞), R
n).

Proof. By making use of the notation X (t) = (x(t), ẋ(t)), the system (2) can be
rewritten as {

Ẋ(t) = F(X (t))

X (0) = (u0, v0),
(8)

where F : R
n × R

n −→ R
n × R

n, F(u, v) =
(
v, proxλ f

(
u − λ∇g(u)

)
− γ v − u

)
.
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We prove the existence and uniqueness of a global solution of (8) by using the
Cauchy–Lipschitz Theorem. To this aim it is enough to show that F is globally Lips-
chitz continuous. Let be (u, v), (u, v) ∈ R

n × R
n . We have

‖F(u, v) − F(u, v)‖

=
∥∥∥
(
v − v, proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
+ γ (v − v) + (u − u)

)∥∥∥

=
√

‖v − v‖2 +‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
+γ (v − v) + (u − u)‖2.

We have

‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
+ γ (v − v) + (u − u)‖2

= ‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
‖2 + γ 2‖v − v‖2 + ‖u − u‖2

+ 2γ 〈proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
, v − v〉

+ 2〈proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
, u − u〉

+ 2γ 〈v − v, u − u〉.

By the nonexpansiveness of proxλ f and the β-Lipschitz property of ∇g, we have

‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
‖ ≤ ‖(u − u) − λ(∇g(u) − ∇g(u)‖

≤ (1 + λβ)‖u − u‖.

On the other hand,

2γ 〈proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
, v − v〉

≤ γ ‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
‖2 + γ ‖v − v‖2

≤ γ (1 + λβ)2‖u − u‖2 + γ ‖v − v‖2,

2〈proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
, u − u〉

≤ ‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
‖2 + ‖u − u‖2

≤ (1 + (1 + λβ)2)‖u − u‖2

and

2γ 〈v − v, u − u〉 ≤ γ ‖v − v‖2 + γ ‖u − u‖2.

Consequently,

‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
+ γ (v − v) + (u − u)‖2

≤ (γ + 2)((1 + λβ)2 + 1)‖u − u‖2 + (γ 2 + 2γ )‖v − v‖2,

which leads to

‖F(u, v) − F(u, v)‖ ≤
√

(γ + 1)2‖v − v‖2 + (γ + 2)((1 + λβ)2 + 1)‖u − u‖2

≤ L1‖(u, v) − (u, v)‖,
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where L1 :=
√

max
(
(γ + 1)2, (γ + 2)((1 + λβ)2 + 1)

)
.

Consequently, F is globally Lipschitz continuous, which implies that (8) has a global
solution X ∈ C1([0,+∞), R

n × R
n). This shows that x ∈ C2([0,+∞), R

n). �

REMARK 6. Another Lipschitz constant can be obtained by using the inequalities:

2γ 〈proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
, v − v〉

≤ 2γ ‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
‖‖v − v‖

≤ 2γ (1 + λβ)‖u − u‖‖v − v‖,
2〈proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
, u − u〉

≤ 2‖ proxλ f

(
u − λ∇g(u)

)
− proxλ f

(
u − λ∇g(u)

)
‖‖u − u‖

≤ 2(1 + λβ)‖u − u‖2,

2γ 〈v − v, u − u〉 ≤ 2γ ‖u − u‖‖v − v‖,

and

2‖u − u‖‖v − v‖ ≤ ‖u − u‖2 + ‖v − v‖2.

In this case, one obtains the Lipschitz constant

L2 :=
√

max((γ + 1)2 + γ λβ, (2 + λβ)2 + γ (2 + λβ)).

REMARK 7. Considering again the setting of the proof of Theorem 5, from Re-
mark 1(b), it follows that Ẍ exists almost everywhere on [0,+∞) and that for almost
every t ∈ [0,+∞) one has

‖Ẍ(t)‖ ≤ L1‖Ẋ(t)‖ =
√

max
(
(γ + 1)2, (γ + 2)((1 + λβ)2 + 1)

)
‖Ẋ(t)‖.

Hence,
√

‖ẍ(t)‖2 + ‖x (3)(t)‖2 ≤
√

max
(
(γ + 1)2, (γ + 2)((1 + λβ)2 + 1)

)
√

‖ẋ(t)‖2 + ‖ẍ(t)‖2, for almost every t ∈ [0,+∞), or, equivalently,

‖x (3)(t)‖2 ≤ max
(
(γ + 1)2, (γ + 2)((1 + λβ)2 + 1)

)
‖ẋ(t)‖2

+ (max
(
(γ + 1)2, (γ + 2)((1 + λβ)2 + 1)

)
− 1)‖ẍ(t)‖2. (9)

Similarly, by using L2, one obtains for almost every t ∈ [0,+∞)

‖x (3)(t)‖2 ≤ max((γ + 1)2 + γ λβ, (2 + λβ)2 + γ (2 + λβ))‖ẋ(t)‖2

+ (max((γ + 1)2 + γ λβ, (2 + λβ)2 + γ (2 + λβ)) − 1)‖ẍ(t)‖2.

(10)

REMARK 8. Obviously, L1 > 2 and L2 > 2. One can easily verify that L2 ≤ L1,
provided γ ≤

√
3. Moreover, if γ ≤

√
3, then

L2 =
√

(2 + λβ)2 + γ (2 + λβ).
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However, for γ >
√

3, one may have L2 > L1 and also L2 < L1. Indeed, for γ = 2
and λβ = 1

10 , it holds

L2 =
√

9, 2 > 3 = L1,

while for γ = 2 and λβ = 1 it holds

L2 =
√

15 <
√

20 = L1.

4. Asymptotic analysis

In this section, we will address the asymptotic behavior of the trajectory generated
by the second-order dynamical system (2). We begin the analysis with some technical
results.

LEMMA 9. Suppose that f + g is bounded from bellow and γ, λ > 0 satisfy the

following set of conditions:

(ρ)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A = −1

2

γ

λ
+ β

2
(L2 + 2γ 2 + 1) < 0

B = − 1

2L2

γ

λ
+ β

2
(L2 + γ 2 + 1) < 0

C = − (2L2 + 1)

(L2 + 1)2 γ 2 + 3βγλ − 1 < 0,

where L := min(L1, L2), and L1, L2 were defined as

L1 =
√

max
(
(γ + 1)2, (γ + 2)((1 + λβ)2 + 1)

)

and

L2 =
√

max((γ + 1)2 + γ λβ, (2 + λβ)2 + γ (2 + λβ)).

For u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Then

the following statements are true

(a) ẋ ∈ L2([0,+∞), R
n) and limt−→+∞ ẋ(t) = 0;

(b) ẍ ∈ L2([0,+∞), R
n) and limt−→+∞ ẍ(t) = 0;

(c) ∃ limt−→+∞( f + g)(ẍ(t) + γ ẋ(t) + x(t)) ∈ R.

Proof. Let T > 0. Since x ∈ C2([0, T ], R
n), we have x, ẋ, ẍ ∈ L2([0, T ], R

n).

Further, by the β-Lipschitz property of ∇g, we have ∇g ∈ L2([0, T ], R
n). Moreover,

(9) ensures that x (3) ∈ L2([0, T ], R
n).

According to (2), we have ẍ(t) + γ ẋ(t) + x(t) = proxλ f

(
x(t) − λ∇g(x(t))

)
for

all t ∈ [0,+∞), and hence

− 1

λ
ẍ(t) − γ

λ
ẋ(t) − ∇g(x(t)) ∈ ∂ f (ẍ(t) + γ ẋ(t) + x(t)). (11)



Vol. 18 (2018) Approaching nonsmooth nonconvex minimization 1299

On the other hand, ξ(t) = − 1
λ

ẍ(t) − γ
λ

ẋ(t) − ∇g(x(t)) ∈ L2([0, T ], R
n), and hence

by Lemma 2 we have that t −→ f (ẍ(t)+ γ ẋ(t)+ x(t)) is absolutely continuous and

d

dt
f (ẍ(t)+γ ẋ(t)+x(t)) =

〈
x (3)(t) + γ ẍ(t) + ẋ(t),−1

λ
ẍ(t) − γ

λ
ẋ(t) − ∇g(x(t))

〉

(12)
for almost every t ∈ [0, T ].

Obviously,

d

dt
g(ẍ(t) + γ ẋ(t) + x(t)) =

〈
x (3)(t) + γ ẍ(t) + ẋ(t),∇g(ẍ(t) + γ ẋ(t) + x(t))

〉

(13)
for almost every t ∈ [0, T ]. By summing up the last two equalities, we get

d

dt
( f + g)(ẍ(t) + γ ẋ(t) + x(t))

=
〈
x(3)(t) + γ ẍ(t) + ẋ(t),∇g(ẍ(t) + γ ẋ(t) + x(t)) − ∇g(x(t)) − 1

λ
ẍ(t) − γ

λ
ẋ(t)

〉

= − 1

2λ

d

dt
‖ẍ(t)‖2 − 1 + γ 2

2λ

d

dt
‖ẋ(t)‖2 − γ

λ
‖ẋ(t)‖2 − γ

λ
‖ẍ(t)‖2 − γ

λ
〈x(3)(t), ẋ(t)〉

+
〈
x(3)(t) + γ ẍ(t) + ẋ(t),∇g(ẍ(t) + γ ẋ(t) + x(t)) − ∇g(x(t))

〉

for almost every t ∈ [0, T ]. It is easy to check that 〈x (3)(t), ẋ(t)〉 = 1
2 · d2

dt2 ‖ẋ(t)‖2 −
‖ẍ(t)‖2 for almost every t ∈ [0,+∞). Let c ∈ (0, 1). We have

−γ

λ
〈x (3)(t), ẋ(t)〉 = −c

γ

λ
〈x (3)(t), ẋ(t)〉 − (1 − c)

γ

λ
〈x (3)(t), ẋ(t)〉

and

−(1 − c)
γ

λ
〈x (3)(t), ẋ(t)〉 ≤

(
a‖x (3)(t)‖2 + b‖ẋ(t)‖2

)
,

where ab = γ 2(1−c)2

4λ2 , hence by using (9) and (10) one obtains that for almost every
t ∈ [0,+∞)

−(1 − c)
γ

λ
〈x (3)(t), ẋ(t)〉 ≤ (aL2 + b)‖ẋ(t)‖2 + a(L2 − 1)‖ẍ(t)‖2.

Consequently, for almost every t ∈ [0,+∞) we have

− γ

λ
〈x (3)(t), ẋ(t)〉 ≤ −cγ

2λ
· d2

dt2 ‖ẋ(t)‖2 + (aL2 + b)‖ẋ(t)‖2

+
(

aL2 + cγ

λ
− a

)
‖ẍ(t)‖2. (14)
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Further, for almost every t ∈ [0,+∞) we have
〈
x (3)(t) + γ ẍ(t) + ẋ(t),∇g(ẍ(t) + γ ẋ(t) + x(t)) − ∇g(x(t))

〉

≤ β‖ẍ(t) + γ ẋ(t)‖‖x (3)(t) + γ ẍ(t) + ẋ(t)‖
≤ β(‖ẍ(t) + γ ẋ(t)‖‖x (3)(t)‖ + ‖ẍ(t) + γ ẋ(t)‖‖γ ẍ(t) + ẋ(t)‖)

≤ β

2
(2‖ẍ(t) + γ ẋ(t)‖2 + ‖x (3)(t)‖2 + ‖γ ẍ(t) + ẋ(t)‖2)

= β

2

(
(2 + γ 2)‖ẍ(t)‖2 + (2γ 2 + 1)‖ẋ(t)‖2 + ‖x (3)(t)‖2 + 6γ 〈ẍ(t), ẋ(t)〉

)

= β

2

(
(2 + γ 2)‖ẍ(t)‖2 + (2γ 2 + 1)‖ẋ(t)‖2 + ‖x (3)(t)‖2 + 3γ

d

dt
‖ẋ(t)‖2

)
.

By using (9) and (10), one obtains for almost every t ∈ [0, T ]

‖x (3)(t)‖2 ≤ L2‖ẋ(t)‖2 + (L2 − 1)‖ẍ(t)‖2,

and hence,
〈
x (3)(t) + γ ẍ(t) + ẋ(t),∇g(ẍ(t) + γ ẋ(t) + x(t)) − ∇g(x(t))

〉

≤ β

2
(L2 + γ 2 + 1)‖ẍ(t)‖2 + β

2
(L2 + 2γ 2 + 1)‖ẋ(t)‖2 + 3

β

2
γ

d

dt
‖ẋ(t)‖2.

Consequently, for almost every t ∈ [0, T ] we have

d

dt
( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

2λ

d

dt
‖ẍ(t)‖2

+ (1 + γ 2) − 3λβγ

2λ

d

dt
‖ẋ(t)‖2 + cγ

2λ
· d2

dt2 ‖ẋ(t)‖2

≤
(

(c − 1)
γ

λ
+ aL2 − a + β

2
(L2 + γ 2 + 1)

)
‖ẍ(t)‖2

+
(

−γ

λ
+ aL2 + b + β

2
(L2 + 2γ 2 + 1)

)
‖ẋ(t)‖2.

Recall that a, b and c have been arbitrarily chosen such that c ∈ (0, 1) and ab =
γ 2(1−c)2

4λ2 .

We chose

c := L2

L2 + 1
, a := γ

2(L2 + 1)L2λ
and b := L2γ

2(L2 + 1)λ
.

Then, for almost every t ∈ [0, T ] we have

d

dt

[
( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

2λ
‖ẍ(t)‖2 + c2γ 2 − C

2λ
‖ẋ(t)‖2 + 2cγ

2λ
〈ẍ(t), ẋ(t)〉

]

≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2. (15)
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By integration, we get

( f + g)(ẍ(T ) + γ ẋ(T ) + x(T )) + 1

2λ
‖ẍ(T )‖2

+ c2γ 2 − C

2λ
‖ẋ(T )‖2 + 2cγ

2λ
〈ẍ(T ), ẋ(T )〉

≤ ( f + g)(ẍ(0) + γ ẋ(0) + x(0)) + 1

2λ
‖ẍ(0)‖2

+ c2γ 2 − C

2λ
‖ẋ(0)‖2 + 2cγ

2λ
〈ẍ(0), ẋ(0)〉

+ A

∫ T

0
‖ẋ(t)‖2dt + B

∫ T

0
‖ẍ(t)‖2dt.

In other words,

( f + g)(ẍ(T ) + γ ẋ(T ) + x(T )) + 1

2λ
‖ẍ(T ) + cγ ẋ(T )‖2 − C

2λ
‖ẋ(T )‖2

≤ ( f + g)(ẍ(0) + γ ẋ(0) + x(0)) + 1

2λ
‖ẍ(0) + cγ ẋ(0)‖2 − C

2λ
‖ẋ(0)‖2

+ A

∫ T

0
‖ẋ(t)‖2dt + B

∫ T

0
‖ẍ(t)‖2dt. (16)

By using that A < 0, B < 0, C < 0 and f + g is bounded from below, and by
taking into account that T > 0 has been arbitrary chosen, we obtain that ẋ, ẍ ∈
L2([0,+∞), R

n). Moreover, from (9) we obtain that x (3) ∈ L2([0,+∞), R
n).

Now, by using Lemma 4 and the fact that for almost every t ∈ [0,+∞), we have

d

dt
‖ẋ(t)‖2 = 2〈ẋ(t), ẍ(t)〉 ≤ ‖ẋ(t)‖2 + ‖ẍ(t)‖2

and

d

dt
‖ẍ(t)‖2 = 2〈ẍ(t), x (3)(t)〉 ≤ ‖ẍ(t)‖2 + ‖x (3)(t)‖2,

we obtain that limt−→+∞ ẋ(t) = 0 and limt−→+∞ ẍ(t) = 0.

Since T > 0 has been arbitrary chosen, we get from (15) that for almost every
t ∈ [0,+∞)

d

dt

[
( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

2λ
‖ẍ(t)‖2 + c2γ 2 − C

2λ
‖ẋ(t)‖2 + cγ

λ
〈ẍ(t), ẋ(t)〉

]
≤ 0.

Now using Lemma 3, we obtain that the limit

lim
t−→+∞

[
( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

2λ
‖ẍ(t)‖2 + c2γ 2 − C

2λ
‖ẋ(t)‖2 + cγ

λ
〈ẍ(t), ẋ(t)〉

]

exists and is finite. Since

lim
t−→+∞

[
1

2λ
‖ẍ(t)‖2 + c2γ 2 − C

2λ
‖ẋ(t)‖2 + cγ

λ
〈ẍ(t), ẋ(t)〉

]
= 0,
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one obtains that

lim
t−→+∞

( f + g)(ẍ(t) + γ ẋ(t) + x(t)) ∈ R.

�

REMARK 10. The choice γ λβ ≤ 1
3 guarantees that C < 0. Moreover, in this case

B > A. Indeed,

B − A = γ

2λ

(
1 − 1

L2 − γ λβ

)
≥ γ

2λ

(
2

3
− 1

L2

)
> 0.

COROLLARY 11. Suppose that f + g is bounded from bellow and
√

3 ≥ γ >

0, λ > 0 satisfy the following condition

− 1

(2 + λβ)2 + γ (2 + λβ)

γ

λ
+ β((2 + λβ)2 + γ (2 + λβ) + γ 2 + 1) < 0.

For u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Then

the following statements are true

(a) ẋ ∈ L2([0,+∞), R
n) and limt−→+∞ ẋ(t) = 0;

(b) ẍ ∈ L2([0,+∞), R
n) and limt−→+∞ ẍ(t) = 0;

(c) ∃ limt−→+∞( f + g)(ẍ(t) + γ ẋ(t) + x(t)) ∈ R.

Proof. The condition γ ≤
√

3 ensures that L =
√

(2 + λβ)2 + γ (2 + λβ), and hence

2B = − 1

(2 + λβ)2 + γ (2 + λβ)

γ

λ
+ β((2 + λβ)2 + γ (2 + λβ) + γ 2 + 1) < 0.

Under these auspices, it can proved that γ λβ ≤ 1
3 , hence, according to the previous

remark, C < 0 and A < 0. The statement follows from Lemma 9. �

LEMMA 12. Assume that f + g is bounded from below and γ, λ satisfy the set

of conditions (ρ). For u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global

solution of (2). Then the set of limit points of x, which we denote by ω(x), is a subset

of the set of critical points of f + g. In other words,

ω(x) := {x ∈ R
n : ∃tk −→ ∞ such that x(tk) −→ x, k −→ +∞} ⊆ crit( f + g).

Proof. Let x ∈ ω(x) and tk −→ +∞ such that x(tk) −→ x, k −→ +∞. We have
to show that 0 ∈ ∂( f + g)(x). From (11) we have for every k ≥ 0

−1

λ
ẍ(tk) − γ

λ
ẋ(tk) − ∇g(x(tk)) ∈ ∂ f (ẍ(tk) + γ ẋ(tk) + x(tk))

hence,

vk = −1

λ
ẍ(tk) − γ

λ
ẋ(tk) − ∇g(x(tk)) + ∇g(ẍ(tk) + γ ẋ(tk) + x(tk))

∈ ∂ f (ẍ(tk) + γ ẋ(tk) + x(tk)) + ∇g(ẍ(tk) + γ ẋ(tk) + x(tk))

= ∂( f + g)(ẍ(tk) + γ ẋ(tk) + x(tk)) = ∂( f + g)(uk),
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where uk := ẍ(tk) + γ ẋ(tk) + x(tk).
According to Lemma 9, limk−→+∞ ẋ(tk) = 0 and limk−→+∞ ẍ(tk) = 0. Further,

∇g is continuous, hence limk−→+∞[−∇g(x(tk)) + ∇g(ẍ(tk) + γ ẋ(tk) + x(tk))] =
−∇g(x) + ∇g(x) = 0. Consequently,

lim
k−→+∞

(uk, vk) = (x, 0).

We show that limk−→+∞( f +g)(uk) = ( f +g)(x). Since f is lower semicontinuous,
one has

lim inf
k−→+∞

f (uk) ≥ f (x).

Further we have for every k ≥ 0

uk = ẍ(tk) + γ ẋ(tk) + x(tk) = proxλ f

(
x(tk) − λ∇g(x(tk))

)

= argmin
y∈Rn

[
f (y) + 1

2λ
‖y − (x(tk) − λ∇g(x(tk))‖2

]

= argmin
y∈Rn

[
f (y) + 1

2λ
‖y − x(tk)‖2 + 〈y − x(tk),∇g(x(tk))〉 + λ

2
‖∇g(x(tk))‖2

]

= argmin
y∈Rn

[
f (y) + 1

2λ
‖y − x(tk)‖2 + 〈y − x(tk),∇g(x(tk))〉

]
.

Hence, for every k ≥ 0 we have

f (uk) + 1

2λ
‖uk − x(tk)‖2 + 〈uk − x(tk),∇g(x(tk))〉

≤ f (x) + 1

2λ
‖x − x(tk)‖2 + 〈x − x(tk),∇g(x(tk))〉.

Taking the limit superior as k −→ +∞, we obtain

lim sup
k−→+∞

f (uk) ≤ f (x).

This shows that limk−→+∞ f (uk) = f (x) and, since g is continuous, we obtain

lim
k−→+∞

( f + g)(uk) = ( f + g)(x).

By the closedness criterion of the graph of the limiting subdifferential, it follows that

0 ∈ ∂( f + g)(x).

�

LEMMA 13. Assume that f + g is bounded from below and γ, λ satisfy the set of

conditions (ρ), and let the constants L , A, B and C be defined as in Lemma 9. For
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u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Consider

the function

H : R
n × R

n × R
n −→ R ∪ {+∞}, H(u, v, w) = ( f + g)(u) + 1

2λ
‖u − v‖2 − C

2λ
‖w‖2.

Then the following statements are true

(H1) for almost every t ∈ [0,+∞) it holds

d

dt
(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))) ≤ 0

and the limit

lim
t−→+∞

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))

exists and is finite, where c = L2

L2+1
;

(H2) for almost every t ∈ [0,+∞) and for every a ≥ 0 we have

w(t) =
(

−∇g(x(t)) + ∇g(ẍ(t) + γ ẋ(t) + x(t)) − 1

λ
aγ ẋ(t)),

− 1

λ
(ẍ(t) + (1 − a)γ ẋ(t)),−C

λ
ẋ(t)

)

∈ ∂ H(ẍ(t) + γ ẋ(t) + x(t), γ aẋ(t) + x(t), ẋ(t))

and

‖w(t)‖ ≤
(

β + 1

λ

)
‖ẍ(t)‖ + βλγ + (2a + 1)γ − C

λ
‖ẋ(t)‖;

(H3) for x ∈ ω(x) and tk −→ +∞ such that x(tk) −→ x as k −→ +∞, and for

every a ≥ 0 we have

H(ẍ(tk) + γ ẋ(tk) + x(tk), aγ ẋ(t) + x(tk), ẋ(tk)) −→ H(x, x, 0) as k −→ +∞.

Proof. (H1). From (15) we have that for almost every t ∈ [0,+∞)

d

dt

[
( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

2λ
‖ẍ(t) + cγ ẋ(t)‖2 − C

2λ
‖ẋ(t)‖2

]

≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2.

Taking into account that A < 0, B < 0, we obtain that for almost every t ∈ [0,+∞)

d

dt
(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)))

= d

dt

[
( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

2λ
‖ẍ(t) + cγ ẋ(t)‖2 − C

2λ
‖ẋ(t)‖2

]

≤ 0.
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By Lemma 3 it follows that the limit

lim
t−→+∞

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) ∈ R

exists.
(H2). From (11) we have that for every t ∈ [0,+∞) it holds

−1

λ
ẍ(t) − γ

λ
ẋ(t) − ∇g(x(t)) ∈ ∂ f (ẍ(t) + γ ẋ(t) + x(t)),

hence

− 1

λ
ẍ(t) − γ

λ
ẋ(t) − ∇g(x(t)) + ∇g(ẍ(t) + γ ẋ(t) + x(t)) ∈ ∂( f + g)(ẍ(t) + γ ẋ(t) + x(t)).

Since for every (u, v, w) ∈ R
n × R

n × R
n

∂ H(u, v, w) =
(

∂( f + g)(u) + 1

λ
(u − v)

)
×
{
−1

λ
(u − v)

}
×
{
−C

λ
w

}
,

we get

∂ H(ẍ(t) + γ ẋ(t) + x(t), γ aẋ(t) + x(t), ẋ(t))

=
(

∂( f + g)(ẍ(t) + γ ẋ(t) + x(t)) + 1

λ
(ẍ(t) + (1 − a)γ ẋ(t))

)

×
{
−1

λ
(ẍ(t) + (1 − a)γ ẋ(t))

}
×
{
−C

λ
ẋ(t)

}
,

consequently,

w(t) =
(

−∇g(x(t)) + ∇g(ẍ(t) + γ ẋ(t) + x(t)) − 1

λ
aγ ẋ(t)),

−1

λ
(ẍ(t) + (1 − a)γ ẋ(t)),−C

λ
ẋ(t)

)

∈ ∂ H(ẍ(t) + γ ẋ(t) + x(t), γ aẋ(t) + x(t), ẋ(t))

for every t ∈ [0,+∞).
From the β−Lipschitz continuity of ∇g, we get for every t ∈ [0,+∞)

‖w(t)‖ ≤
(

β + 1

λ

)
‖ẍ(t) + γ ẋ(t)‖ + 2

aγ

λ
‖ẋ(t)‖ − C

λ
‖ẋ(t)‖

≤
(

β + 1

λ

)
‖ẍ(t)‖ + βλγ + (2a + 1)γ − C

λ
‖ẋ(t)‖.

(H3). Let a ≥ 0, x ∈ ω(x) and tk −→ +∞ such that x(tk) −→ x as k −→ +∞.
According to the proof of Lemma 12, it holds ( f +g)(ẍ(tk)+γ ẋ(tk)+x(tk)) −→ ( f +
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g)(x) as k −→ +∞. Further, from Lemma 9 we have ẍ(tk) −→ 0 and ẋ(tk) −→ 0
as k −→ +∞. Hence,

H(ẍ(tk) + γ ẋ(tk) + x(tk), aγ ẋ(tk) + x(tk), ẋ(tk))

= ( f + g)(ẍ(tk) + γ ẋ(tk) + x(tk)) + 1

2λ
‖ẍ(tk) + (1 − a)γ ẋ(tk)‖2

− C

2λ
‖ẋ(tk)‖2 −→ ( f + g)(x) = H(x, x, 0) as k −→ +∞.

�

LEMMA 14. Assume that f + g is bounded from below and γ, λ satisfy the set of

conditions (ρ), and let the constants L , A, B and C be defined as in Lemma 9. For

u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Consider

the function

H : R
n × R

n × R
n −→ R ∪ {+∞}, H(u, v, w) = ( f + g)(u) + 1

2λ
‖u − v‖2 − C

2λ
‖w‖2.

Suppose that x is bounded and let a ≥ 0. Then the following statements are true

(a) ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ) ⊆ crit(H) = {(u, u, 0) ∈ R
n × R

n × R
n : u ∈

crit( f + g)};
(b) lim

t−→+∞
dist((ẍ(t) + γ ẋ(t) + x(t), aγ ẋ(t) + x(t), ẋ(t)), ω(ẍ + γ ẋ + x, aγ ẋ +

x, ẋ)) = 0;
(c) H is finite and constant on ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ);
(d) ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ) is nonempty, compact and connected.

Proof. (a) By definition,

ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ)

= {(x, y, z) ∈ (Rn)3 : ∃tk → +∞ s. t. (ẍ(tk) + γ ẋ(tk) + x(tk),

aγ ẋ(tk) + x(tk), ẋ(tk)) → (x, y, z), k → +∞}.

According to Lemma 9, ẍ(tk) −→ 0, ẋ(tk) −→ 0 as tk −→ +∞, and hence

ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ) = ω(x, x, 0)

= {(x, x, 0) ∈ R
n × R

n × R
n : ∃tk → +∞ such that x(tk) −→ x, k → +∞}

= {(x, x, 0) ∈ R
n × R

n × R
n : x ∈ ω(x)}.

According to Lemma 12,

{(x, x, 0) ∈ R
n × R

n × R
n : x ∈ ω(x)}

⊆ {(x, x, 0) ∈ R
n × R

n × R
n : x ∈ crit( f + g)} = crit(H).
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(b) Obviously

0 ≤ lim
t−→+∞

dist((ẍ(t) + γ ẋ(t) + x(t), aγ ẋ(t) + x(t), ẋ(t)),

ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ))

≤ lim
tk−→+∞

dist((ẍ(tk) + γ ẋ(tk) + x(tk), aγ ẋ(tk) + x(tk), ẋ(tk)),

ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ)) = 0.

(c) According to Lemma 9,

lim
t−→+∞

( f + g)(ẍ(t) + γ ẋ(t) + x(t)) = l ∈ R.

Let (x, x, 0) ∈ ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ). Then there exists tk −→ +∞ such that
(ẍ(tk) + γ ẋ(tk) + x(tk), aγ ẋ(tk) + x(tk), ẋ(tk)) −→ (x, x, 0) as k −→ +∞. From
Lemma 13(H3) one has

H(x, x, 0) = lim
tk−→+∞

H(ẍ(tk) + γ ẋ(tk) + x(tk), aγ ẋ(tk) + x(tk), ẋ(tk))

= lim
tk−→+∞

[
( f + g)(ẍ(tk) + γ ẋ(tk) + x(tk))

+ 1

2λ
‖ẍ(tk) + (1 − a)γ ẋ(tk)‖2 − C

2λ
‖ẋ(tk)‖2

]
= l.

Hence, H takes on ω(ẍ + γ ẋ + x, aγ ẋ + x, ẋ) the constant value l.
Finally, (d) is a classical result from [28]. We also refer the reader to the proof of

Theorem 4.1 in [6], where it is shown that the properties of ω(x) of being nonempty,
compact and connected are generic for bounded trajectories fulfilling limt→+∞ ẋ(t) =
0 (see also [17] for a discrete version of this result). �

The convergence of the trajectory generated by the dynamical system (2) will be
shown in the framework of functions satisfying the Kurdyka–Łojasiewicz property.
For η ∈ (0,+∞], we denote by �η the class of concave and continuous functions
ϕ : [0, η) → [0,+∞) such that ϕ(0) = 0, ϕ is continuously differentiable on (0, η),
continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η). In the following definition (see
[11,17]), we use the distance function to a set, defined for A ⊆ R

n as dist(x, A) =
inf y∈A ‖x − y‖ for all x ∈ R

n .

DEFINITION 2. (Kurdyka–Łojasiewicz property) Let f : R
n → R ∪ {+∞} be

a proper and lower semicontinuous function. We say that f satisfies the Kurdyka–

Łojasiewicz (KL) property at x ∈ dom ∂ f = {x ∈ R
n : ∂ f (x) �= ∅} if there exist

η ∈ (0,+∞], a neighborhood U of x and a function ϕ ∈ �η such that for all x in the
intersection

U ∩ {x ∈ R
n : f (x) < f (x) < f (x) + η}

the following inequality holds

ϕ′( f (x) − f (x)) dist(0, ∂ f (x)) ≥ 1.

If f satisfies the KL property at each point in dom ∂ f , then f is called a KL function.
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The origins of this notion go back to the pioneering work of Łojasiewicz [32],
where it is proved that for a real-analytic function f : R

n → R and a critical
point x ∈ R

n (that is ∇ f (x) = 0), there exists θ ∈ [1/2, 1) such that the func-
tion | f − f (x)|θ‖∇ f ‖−1 is bounded around x . This corresponds to the situation
when ϕ(s) = C(1 − θ)−1s1−θ . The result of Łojasiewicz allows the interpretation of
the KL property as a re-parametrization of the function values in order to avoid flat-
ness around the critical points. Kurdyka [31] extended this property to differentiable
functions definable in an o-minimal structure. Further extensions to the nonsmooth
setting can be found in [11,18–20].

One of the remarkable properties of the KL functions is their ubiquity in appli-
cations, according to [17]. To the class of KL functions belong semi-algebraic, real
sub-analytic, semiconvex, uniformly convex, and convex functions satisfying a growth
condition. We refer the reader to [10,11,13,17–20] and the references therein for more
details regarding all the classes mentioned above and illustrating examples.

An important role in our convergence analysis will be played by the following
uniformized KL property given in [17, Lemma 6].

LEMMA 15. Let � ⊆ R
n be a compact set and let f : R

n → R ∪ {+∞} be a

proper and lower semicontinuous function. Assume that f is constant on � and f

satisfies the KL property at each point of �. Then there exist ε, η > 0 and ϕ ∈ �η

such that for all x ∈ � and for all x in the intersection

{x ∈ R
n : dist(x,�) < ε} ∩ {x ∈ R

n : f (x) < f (x) < f (x) + η} (17)

the following inequality holds

ϕ′( f (x) − f (x)) dist(0, ∂ f (x)) ≥ 1. (18)

We state the first main result of the paper.

THEOREM 16. Assume that f + g is bounded from below and γ, λ satisfy the set

of conditions (ρ), and let the constants L , A, B and C be defined as in Lemma 9. For

u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Consider

the function

H : R
n × R

n × R
n −→ R ∪ {+∞}, H(u, v, w) = ( f + g)(u) + 1

2λ
‖u − v‖2 − C

2λ
‖w‖2.

Suppose that x is bounded and H is a KL function. Then the following statements are

true

(a) ẋ ∈ L1([0,+∞), R
n);

(b) ẍ ∈ L1([0,+∞), R
n);

(c) there exists x ∈ crit( f + g) such that limt−→+∞ x(t) = x .

Proof. Let be c := L2

L2+1
. Consider an arbitrary (x, x, 0) ∈ ω(ẍ +γ ẋ +x, (1−c)γ ẋ +

x, ẋ). Then one has

lim
t−→+∞

(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))) = H(x, x, 0).
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Case I. There exists t ≥ 0 such that

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) = H(x, x, 0).

We have for almost every t ∈ [0,+∞) that

d

dt

[
H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))

]
≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2

≤ 0.

Hence, for every t ≥ t it holds

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) ≤ H(x, x, 0).

On the other hand,

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))

≥ lim
t−→+∞

(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))) = H(x, x, 0),

hence

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) = H(x, x, 0)

for every t ≥ t .
Consequently,

d

dt

[
H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)

]
= 0

for every t ≥ t , which means that

0 ≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2 ≤ 0

for every t ≥ t .

But A < 0 and B < 0, hence ẋ(t) = 0 and ẍ(t) = 0 on [t,+∞). This leads to
ẋ, ẍ ∈ L1([0,+∞), R

n) and to the fact hat x(t) = x is constant on [t,+∞).

Case II. For every t ≥ 0

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) > H(x, x, 0).

Let � = ω(ẍ + γ ẋ + x, (1 − c)γ ẋ + x, ẋ). According to Lemma 14, H is constant
and finite on � and � is nonempty, compact and connected. Since H is a KL function,
by Lemma 15, there exist ε, η > 0 and a concave function ϕ ∈ �η such that for every
(x, x, 0) ∈ � and every

(x, y, z) ∈ {(u, v, w) ∈ R
n × R

n × R
n : dist((u, v, w),�) < ε}

∩ {(u, v, w) ∈ R
n × R

n × R
n : H(x, x, 0) < H(u, v, w) < H(x, x, 0) + η}

(19)
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the following inequality holds

ϕ′(H(x, y, z) − H(x, x, 0)) dist((0, 0, 0), ∂ H(x, y, z)) ≥ 1. (20)

Since

lim
t−→+∞

(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))) = H(x, x, 0)

and

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) > H(x, x, 0),

there exists t1 > 0 such that

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) < H(x, x, 0) + η ∀t ≥ t1.

Since limt−→+∞ dist((ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)),�) = 0,
there exists t2 ≥ 0 such that

dist((ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)),�) < ǫ, ∀t ≥ t2.

Hence, for every t ≥ T = max(t1, t2) we have

ϕ′(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))·
dist((0, 0, 0), ∂ H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))) ≥ 1.

On the other hand, for every t ∈ [T,+∞),

dist((0, 0, 0), ∂ H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))) ≤ ‖w(t)‖,

where

w(t) =
(

−∇g(x(t)) + ∇g(ẍ(t) + γ ẋ(t) + x(t)) − 1

λ
(1 − c)γ ẋ(t)),

− 1

λ
(ẍ(t) + cγ ẋ(t)),−C

λ
ẋ(t)

)

since, according to Lemma 13 (H2),

w(t) ∈ ∂ H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)).

Further,

‖w(t)‖ ≤
(

β + 1

λ

)
‖ẍ(t)‖ + βλγ + (3 − 2c)γ − C

λ
‖ẋ(t)‖

which leads to

ϕ′(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))

−H(x, x, 0)) (s‖ẍ(t)‖ + p‖ẋ(t)‖) ≥ 1 ∀t ∈ [T,+∞),
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where s := β + 1
λ

> 0 and p := βλγ+(3−2c)γ−C
λ

> 0.

We have

d

dt
ϕ(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))

= ϕ′(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))·
d

dt
H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t))

and since

d

dt
H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) ≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2 ≤ 0

and

ϕ′(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))

≥ 1

s‖ẍ(t)‖ + p‖ẋ(t)‖
we get for every t ∈ [T,+∞)

d

dt
ϕ(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))

≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2

s‖ẍ(t)‖ + p‖ẋ(t)‖ ≤ 0. (21)

Since ϕ is bounded from below, similarly as in the proof of Lemma 9, we obtain that

‖ẋ(·)‖2

s‖ẍ(·)‖ + p‖ẋ(·)‖ ,
‖ẍ(·)‖2

s‖ẍ(·)‖ + p‖ẋ(·)‖ ∈ L1([0,+∞), R).

By using the arithmetical–geometrical mean inequality, we have
√

‖ẋ(·)‖2

s‖ẍ(·)‖ + p‖ẋ(·)‖ · ‖ẍ(·)‖2

s‖ẍ(·)‖ + p‖ẋ(·)‖ = ‖ẋ(·)‖‖ẍ(·)‖
s‖ẍ(·)‖ + p‖ẋ(·)‖ ∈ L1([0,+∞), R).

Hence,

‖ẋ(·)‖ + ‖ẍ(·)‖ = p
‖ẋ(·)‖2

s‖ẍ(·)‖ + p‖ẋ(·)‖ + s
‖ẍ(·)‖2

s‖ẍ(·)‖ + p‖ẋ(·)‖

+ (s + p)
‖ẋ(·)‖‖ẍ(·)‖

s‖ẍ(·)‖ + p‖ẋ(·)‖ ∈ L1([0,+∞), R).

This shows that ẋ, ẍ ∈ L1([0,+∞), R
n), hence, according to Lemma 3, there exists

limt−→+∞ x(t) = x . �

REMARK 17. Similar regularizations of the objective function as the one consid-
ered in this section have been used in [25] for studying first-order dynamical systems,
but also in [26,34], in the investigation of non-relaxed forward-backward methods
involving inertial and memory effects in the nonconvex setting.



1312 R. I. Boţ et al. J. Evol. Equ.

REMARK 18. Since the class of semi-algebraic functions is closed under addition
(see for example [17]) and (u, v) �→ α‖u − v‖2 and w �→ α′‖w‖2 are semi-algebraic
for α, α′ > 0, the conclusion of the previous theorem holds if the condition H is a KL
function is replaced by the assumption that f + g is semi-algebraic.

REMARK 19. Assume that γ, λ > 0 fulfill the set of conditions (ρ) and that f + g

is coercive, that is

lim
‖u‖→+∞

( f + g)(u) = +∞.

For u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Then
x is bounded.

Indeed, notice that f + g is bounded from below, being a proper, lower semi-
continuous and coercive function (see for example [35]). From (16) it follows that
ẍ(T ) + γ ẋ(T ) + x(T ) is contained for every T ≥ 0 in a lower level set of f + g,
which is a bounded set due to the coercivity assumption. Combining this fact with
Lemma 9 one can easily derive that x is bounded.

5. Convergence rates

In the context of optimization problems involving KL functions, it is known (see
[10,18,32]) that convergence rates of the trajectory can be formulated in terms of the
so-called Łojasiewicz exponent.

DEFINITION 3. Let f : R
n −→ R∪{+∞} be a proper and lower semicontinuous

function. The function f is said to fulfill the Łojasiewicz property, if for every x ∈
crit f there exist K , ǫ > 0 and θ ∈ (0, 1) such that

| f (x) − f (x)|θ ≤ K‖x∗‖ for every x fulfilling ‖x − x‖ < ǫ and every x∗ ∈ ∂ f (x).

The number θ is called the Łojasiewicz exponent of f at the critical point x .

In the following theorem, we obtain convergence rates for both the trajectory gen-
erated (2) and its velocity (see, also, [10,18]).

THEOREM 20. Assume that f + g is bounded from below and γ, λ satisfy the set

of conditions (ρ), and let the constants L , A, B and C be defined as in Lemma 9. For

u0, v0 ∈ R
n , let x ∈ C2([0,+∞), R

n) be the unique global solution of (2). Consider

the function

H : R
n × R

n × R
n −→ R ∪ {+∞}, H(u, v, w) = ( f + g)(u) + 1

2λ
‖u − v‖2 − C

2λ
‖w‖2.

Suppose that x is bounded and let x ∈ crit( f + g) be such that limt−→+∞ x(t) = x

and H fulfills the Łojasiewicz property at (x, x, 0) ∈ crit H with Łojasiewicz exponent

θ .

Then, there exist a1, a2, a3, a4 > 0 and t0 > 0 such that for every t ∈ [t0,+∞) the

following statements are true
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(a) if θ ∈ (0, 1
2 ), then x converges in finite time;

(b) if θ = 1
2 , then ‖x(t) − x‖ ≤ a1e−a2t and ‖ẋ(t)‖ ≤ a1e−a2t ;

(c) if θ ∈ ( 1
2 , 1), then ‖x(t)− x‖ ≤ (a3t +a4)

− 1−θ
2θ−1 and ‖ẋ(t)‖ ≤ (a3t +a4)

− 1−θ
2θ−1 .

Proof. Let be s := β + 1
λ

> 0 and p := βλγ+(3−2c)γ−C
λ

> 0, as defined in

Lemma 13. The function g : [0,+∞) −→ R, g(r) = A+Br2

p+(s+p)r+sr2 attains at r0 =
(s A−pB)−

√
(s A−pB)2+(s+p)2 AB

(s+p)B
> 0 its maximum. Hence, for m := max

(
B
s
, g(r0)

)
<

0, it holds

A‖ẋ(t)‖2 + B‖ẍ(t)‖2 ≤ m(s‖ẍ(t)‖ + p‖ẋ(t)‖)(‖ẋ(t)‖ + ‖ẍ(t)‖)

for every t ∈ [0,+∞).

We define for every t ∈ [0,+∞)

σ (t) :=
∫ +∞

t

(‖ẋ(s)‖ + ‖ẍ(t)‖)ds.

Let t ∈ [0,+∞) be fixed. For T ≥ t we have

‖x(t) − x‖ =
∥∥∥∥x(T ) − x −

∫ T

t

ẋ(s)ds

∥∥∥∥ ≤ ‖x(T ) − x‖ +
∫ T

t

‖ẋ(s)‖ds.

By taking the limit as T −→ +∞, we obtain

‖x(t) − x‖ ≤
∫ +∞

t

‖ẋ(s)‖ds ≤ σ(t). (22)

Further, for T ≥ t we have

‖ẋ(t)‖ =
∥∥∥∥ẋ(T ) −

∫ T

t

ẍ(s)ds

∥∥∥∥ ≤ ‖ẋ(T )‖ +
∫ T

t

‖ẍ(s)‖ds.

By taking the limit as T −→ +∞, we obtain

‖ẋ(t)‖ ≤
∫ +∞

t

‖ẍ(s)‖ds ≤ σ(t). (23)

We have seen in the proof of Theorem 16 that, if there exists t ≥ 0 such that

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) = H(x, x, 0),

then x is constant on [t,+∞), and hence the conclusion follows automatically.
On the other hand, if for every t ≥ 0 one has

H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) > H(x, x, 0),
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then, according to the proof of Theorem 16 and (21), there exists t0 ≥ 0 such that for
every t ∈ [t0,+∞)

K
d

dt
(H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))1−θ

≤ A‖ẋ(t)‖2 + B‖ẍ(t)‖2

s‖ẍ(t)‖ + p‖ẋ(t)‖ ,

and

‖(ẍ(t) + γ ẋ(t) + x(t), (1 − c)γ ẋ(t) + x(t), ẋ(t)) − (x, x, 0)‖ < ǫ.

Hence, for every t ∈ [t0,+∞)

M(‖ẋ(t)‖ + ‖ẍ(t)‖)+ d

dt
(H(ẍ(t) + γ ẋ(t) + x(t), γ (1−c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))1−θ ≤ 0,

(24)
and

‖(ẍ(t) + γ ẋ(t) + x(t), (1 − c)γ ẋ(t) + x(t), ẋ(t)) − (x, x, 0)‖ < ǫ,

where M := − m
K

> 0. If we integrate (24) on the interval [t, T ], where T ≥ t ≥ t0,
we obtain

M

∫ T

t

(‖ẋ(s)‖ + ‖ẍ(s)‖)ds + (H(ẍ(T ) + γ ẋ(T ) + x(T ), γ (1 − c)ẋ(T ) + x(T ), ẋ(T ))

− H(x, x, 0))1−θ

≤ (H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))1−θ ,

hence

Mσ(t) ≤ (H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0))1−θ ∀t ≥ t0.

Since θ is the Łojasiewicz exponent of H at the point (x, x, 0) ∈ crit H, we have

|H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)) − H(x, x, 0)|θ ≤ K‖x∗‖,

for every t ∈ [t0,+∞) and every

x∗ ∈ ∂ H(ẍ(t) + γ ẋ(t) + x(t), γ (1 − c)ẋ(t) + x(t), ẋ(t)).

According to Lemma 13(H2), there exists some x̃∗ ∈ ∂ H(ẍ(t)+γ ẋ(t)+ x(t), γ (1−
c)ẋ(t) + x(t), ẋ(t)) such that for almost every t ∈ [t0,+∞)

‖x̃∗(t)‖ ≤ s‖ẍ(t)‖ + p‖ẋ(t)‖ ≤ N (‖ẍ(t)‖ + ‖ẋ(t)‖),

where N = max(s, p). Hence,

Mσ(t) ≤ (K N (‖ẍ(t)‖ + ‖ẋ(t)‖)) 1−θ
θ
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for almost every t ∈ [t0,+∞). But σ̇ (t) = −‖ẍ(t)‖−‖ẋ(t)‖, and consequently, there
exists α > 0 such that for almost every t ∈ [t0,+∞)

σ̇ (t) ≤ − α(σ(t))
θ

1−θ . (25)

If θ = 1
2 , then σ̇ (t) ≤ −α(σ(t)) for almost every t ∈ [t0,+∞). By multiplying

with eαt and integrating on [t0, t], we get that there exist a1, a2 > 0 such that

σ(t) ≤ a1e−a2t ∀t ∈ [t0,+∞),

hence, by (22) and (23), we get

‖x(t) − x‖ ≤ a1e−a2t and ‖ẋ(t)‖ ≤ a1e−a2t ∀t ∈ [t0,+∞),

which proves (b).
Assume now that 0 < θ < 1

2 . By using (25) we obtain

d

dt
(σ (t))

1−2θ
1−θ = 1 − 2θ

1 − θ
(σ (t))

−θ
1−θ σ̇ (t) ≤ − α

1 − 2θ

1 − θ
,

for almost every t ∈ [t0,+∞).
By integration we get

(σ (t))
1−2θ
1−θ ≤ −αt + β ∀t ∈ [t0,+∞),

where α > 0. Hence, there exists T ≥ 0 such that σ(T ) ≤ 0 ∀t ∈ [T,+∞), which
implies that x is constant on [T,+∞).

Assume now that 1
2 < θ < 1. By using (25) we obtain

d

dt
(σ (t))

1−2θ
1−θ = 1 − 2θ

1 − θ
(σ (t))

−θ
1−θ σ̇ (t) ≥ α

2θ − 1

1 − θ

for almost every t ∈ [t0,+∞).
By integration we get

σ(t) ≤ (a3t + a4)
− 1−θ

2θ−1 ∀t ∈ [t0,+∞),

where a3, a4 > 0.

From (22) and (23) we have

‖x(t) − x‖ ≤ (a3t + a4)
− 1−θ

2θ−1 and ‖ẋ(t)‖ ≤ (a3t + a4)
− 1−θ

2θ−1 ∀t ∈ [t0,+∞),

which proves (c). �
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[25] R.I. Boţ, E.R. Csetnek, A forward-backward dynamical approach to the minimization of the sum of

a nonsmooth convex with a smooth nonconvex function, to appear in ESAIM: Control, Optimisation
and Calculus of Variations, arXiv:1507.01416, 2015
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