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Abstract

We present an algorithm that on input a graph G with n vertices and m+ n− 1 edges and a value
k, produces an incremental sparsifier Ĝ with n − 1 +m/k edges, such that the condition number of G
with Ĝ is bounded above by Õ(k log2 n), with probability 1− p. The algorithm runs in time

Õ((m log n+ n log2 n) log(1/p)).1

As a result, we obtain an algorithm that on input an n × n symmetric diagonally dominant matrix A
with m+n− 1 non-zero entries and a vector b, computes a vector x̄ satisfying ||x̄−A+b||A < ε||A+b||A,
in time

Õ(m log2 n log(1/ε)).

The solver is based on a recursive application of the incremental sparsifier that produces a hierarchy of
graphs which is then used to construct a recursive preconditioned Chebyshev iteration.

1 Introduction

Fast algorithms for solving linear systems and the related problem of finding a few fundamental eigenvectors
is possibly one of the most important problems in algorithm design. It has motivated work on fast matrix
multiplication methods, graph separators, and more recently graph sparsifiers. For most applications the
matrix is sparse and thus one would like algorithms whose run time is efficient in terms of the number
of non-zero entries of the matrix. Little is known about how to efficiently solve general sparse systems,
Ax = b. But substantial progress has been made in the case of symmetric and diagonally dominant (SDD)
systems, where Aii ≥

∑

j !=i |Aij |. In a seminal work, Spielman and Teng showed that SDD systems can be
solved in nearly-linear time [ST04, EEST05, ST06].

Recent research, largely motivated by the Spielman and Teng solver (ST-solver), reveals the power
of SDD systems as an algorithmic primitive. The ST-solver is the key subroutine of the fastest known
algorithms for a multitude of problems that include: (i) The computation of the first few eigenvectors
of the graph Laplacian or normalized Laplacian; the relationship between the first non-trivial (Fiedler)
eigenvector and the sparsest cut problem is well known and has been widely used in theory and practice
[Fie73, ST96]. (ii) Fast spectral sparsifiers that also act as cut sparsifiers [SS08] (iii) The solution of linear
systems derived from elliptic finite elements discretizations of a wide class of partial differential equations
[BHV04]. (iv) Generalized lossy flow problems [SD08]. (v) The problem of generating a random spanning
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1We use the Õ() notation to hide a factor of at most (log logn)4

1

http://arxiv.org/abs/1003.2958v2


tree [KM09]. (vi) Several optimization problems in computer vision [KMT09, KMST09b] and graphics
[MP08, JMD+07].

The ST-solver is an iterative algorithm that produces a sequence of approximate solutions converging
to the actual solution of the input system Ax = b. The performance of iterative methods is commonly
measured in terms of the time required to reduce by a constant factor an appropriately defined approx-
imation error. Even including recent improvements on some of its components, the time complexity of
the ST-solver is at least O(m log15 n). The large exponent in the logarithm is indicative of the fact that
the algorithm is quite complicated and lacks practicality. The design of a faster and simpler solver is a
challenging open question.

In this paper we present a conceptually simple and possibly practical iterative solver that runs in
time Õ(m log2 n). Its main ingredient is a new incremental graph sparsification algorithm, which is of
independent interest. The paper is organized as follows. In Section 2 we review basic notions and we
introduce notation. A reader familiar with very basic notions from spectral graph theory and linear
algebra can skip this Section. In Section 3 we discuss the development of SDD solvers, the algorithmic
questions it motivated, and the progress on them, with an emphasis on the graph sparsification problem.
The presentation is self-contained and with a minimum level of technical details, but the reader can always
consult Section 2 for basic definitions. In Section 4 we present a high level description of our approach
and discuss implications of our solver for the graph sparsification problem. The incremental sparsifier is
presented and analyzed in Sections 5 and 6. In Section 7 we explain how it can be used to construct the
solver.

2 Preliminaries

In this Section, we briefly recall background facts about weighted graph Laplacians. For more details, we
refer the reader to [RG97] and [BH03]. Throughout the paper, we discuss connected graphs with positive
edge weights. We use n and m to denote |V | and |E|.

A matrix A is positive semi-definite if for any vector x, xTAx ≥ 0. For such semi-definite matrices A,
we can also define the A-norm as follows:

||x||2A = xTAx.

Fix an arbitrary numbering of the edges of a graph G. Let wi,j denote the weight of the edge (i, j)
The Laplacian LG of G is the matrix defined by: (i) LG(i, j) = −wi,j. (ii) LG(i, i) =

∑

i !=j wi,j. It can be
checked that for any vector x, we have

xTLGx =
∑

u,v∈E

(xu − xv)
2wuv.

It follows that LG is positive semi-definite and LG-norm is a valid norm.
We also define a partial order % on semi-definite matrices, where A % B if B − A is positive semi-

definite. This is equivalent to xTBx ≥ xTAx for all x. We will say that a graph H κ-approximates a graph
G if

LH % LG % κLH .

By the definition of % from above, this is equivalent to xTLHx ≤ xTLGx ≤ κxTLHx for all vectors x.
This implies that the condition number of the pair (LG, LH) is upper bounded by κ. The condition number
is an algebraically motivated notion; upper bounds on it are used to measure the of iterative numerical
algorithms.
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3 Prior work on SDD solvers and related graph theoretic problems

Symmetric diagonally dominant systems are linear-time reducible to linear systems whose matrix is the
Laplacian of a weighted graph via a construction known as double cover which only doubles the number of
non-zero entries in the system [GMZ95, Gre96]. The one-to-one correspondence between graphs and their
Laplacians allows us to focus on weighted graphs, and interchangeably use the words graph and Laplacian.

In a ground-breaking approach, Vaidya [Vai91] proposed the use of spectral graph-theoretic properties
for the design of provably good graph preconditioners, i.e. graphs that -in some sense- approximate the
input graph, but yet are somehow easier to solve. Many authors built upon the ideas of Vaidya, to
develop combinatorial preconditioning, an area on the border of numerical linear algebra and spectral
graph theory [BGH+05]. The work in the present paper as well as the Spielman and Teng solver is based
on this approach. It is worth noting that combinatorial preconditioning is only one of the rich connections
between combinatorics and linear algebra [Chu97, RG97].

Vaidya originally proposed the construction of a preconditioner for a given graph, based on a maximum
weight spanning tree of the graph and its subsequent augmentation with graph edges. This yielded the
first non-trivial results, an O((dn)1.75) time algorithm for maximum degree d graphs, and an O((dn)1.2)
algorithm for maximum degree d planar graphs [Jos97].

Later, Boman and Hendrickson [BH03] made the crucial observation that the notion of stretch (see
Section 6 for a definition) is crucial for the construction of a good spanning tree preconditioner; they
showed that if the non-tree edges have average stretch s over a spanning tree, the spanning tree is an O(sm)-
approximation of the graph. Armed with this observation and the low-stretch of Alon et al. [AKPW95],
Spielman and Teng [ST03] presented a solver running in time O(m1.31).

The utility of low-stretch trees in SDD solvers motivated further research on the topic. Elkin et al.
[EEST05] gave a O(m log2 n) time algorithm for the computation of spanning trees with total stretch
Õ(m log2 n). More recently, Abraham et. al. presented a nearly tight construction of low-stretch trees
[ABN08], giving an O(m log n+n log2 n) time algorithm that on input a graph G produces a spanning tree
of total stretch Õ(m log n). The algorithm of [EEST05] is a basic component of the ST-solver. While the
algorithm of [ABN08] didn’t improve the ST-solver, it is indispensable to our upper bound.

The major new notion introduced by Spielman and Teng [ST04] in their nearly-linear time algorithm
was that of a spectral sparsifier, i.e. a graph with a nearly-linear number of edges that α-approximates a
given graph for a constant α. Before the introduction of spectral sparsifiers, Benczúr and Karger [BK96]
had presented an O(m log3 n) algorithm for the construction of a cut-preserving sparsifier with O(n logn)
edges. A good spectral sparsifier is a also a good cut-preserving sparsifier, but the opposite is not necessarily
true.

The ST-solver [ST04] consists of a number of major algorithmic components. The base routine is a local
partitioning algorithm which is the main subroutine of a global nearly-linear time partitioning algorithm.
The partitioning algorithm is used as a subroutine in the construction of the spectral sparsifier. Finally, the
spectral sparsifier is combined with the O(m log2 n) total stretch spanning trees of [EEST05] to produce a
(k,O(k logc n)) ultrasparsifier, i.e. a graph Ĝ with n− 1+ (n/k) edges which O(k logc n)-approximates the
given graph, for some c > 25. The bottleneck in the complexity of the ST-solver lies in the running time
of the ultra-sparsification algorithm and the approximation quality of the ultrasparsifier.

In the special case of planar graphs the ST-solver runs in time Õ(n log2 n). An asymptotically optimal
linear work algorithm for planar graphs was given in [KM07]. The key observation in [KM07] was that
despite the fact that planar graphs don’t necessarily have spanning trees of average stretch less than
O(log n), they still have (k, ck log k) ultrasparsifiers for a large enough constant c; they can be obtained
by finding ultrasparsifiers for constant size subgraphs that contain most of theedges of the graph, and
conceding the rest of the edges in the global ultrasparsifier. In addition, a more practical approach to
the construction of constant-approximation preconditioners for the case of graphs of bounded average
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degree was given in [KM08]. To this day, the only known improvement for the general case was obtained
by Andersen et.al [ACL06] who presented a faster and more effective local partitioning routine that can
replace the core routine of Spielman and Teng, improving the complexity of the sparsifier and the solver.

Significant progress has been made on the spectral graph sparsification problem. Spielman and Srivas-
tava [SS08] showed how to construct a much stronger spectral sparsifier with O(n logn) edges, by sampling
edges with probabilities proportional to their effective resistance, if the graph is viewed as an electrical
network. While the algorithm is conceptually simple and attractive, its fastest known implementation
still relies on the ST-solver. Leaving the envelope of nearly-linear time algorithms Batson, Spielman and
Srivastava [BSS09] presented a polynomial time algorithm for the construction of a “twice-Ramanujan”
spectral sparsifier with a nearly optimal linear number of edges. Finally, Kolla et al. [KMST09a] gave a
polynomial time algorithm for the construction of a nearly-optimal (k, Õ(k log n)) ultrasparsifier.

4 Our contribution

In an effort to design a faster sparsification algorithm, we ask: when and why the much simpler faster
cut-preserving sparsifier of [BK96] fails to work as a spectral sparsifier? Perhaps the essential example is
that of the cycle and the line graph; while the two graphs have roughly the same cuts, their condition
number is O(n). The missing edge has a stretch of O(n) through the rest of the graph, and thus it has high
effective resistance; the effective resistance-based algorithm of Spielman and Srivastava would have kept
this edge. It is then natural to try to design a sparsification algorithm that avoids precisely to generate a
graph whose “missing” edges have a high stretch over the rest of the original graph.

This line of reasoning leads us to a conceptually simple sparsification algorithm: find a low-stretch
spanning tree with a total stretch of O(m log n). Scale it up by a factor of k so the total stretch is
O(m log n/k) and add the scaled up version to the sparsifier. Then over-sample the rest of the edges
with probability proportional to their stretch over the scaled up tree, taking Õ(m log2 n/k) samples. In
Sections 5 and 6 we analyze a slight variation of this idea and we show that while it doesn’t produce an
ultrasparsifier, it produces what we call an incremental sparsifier which is a graph with n− 1+m/k edges
that Õ(k log2 n)-approximates the given graph 2. Our proof relies on the machinery developed by Spielman
and Srivastava [SS08].

As we explain in Section 7 the incremental sparsifier is all we need to design a solver that runs in the
claimed time. Precisely, we prove the following.

Theorem 4.1 On input an n×n symmetric diagonally dominant matrix A with m non-zero entries and a
vector b, a vector x̄ satisfying ||x̄−A+b||A < ε||A+b||A, can be computed in expected time Õ(m log2 n log(1/ε)).

4.1 Implications for the graph sparsification problem

The only known nearly-linear time algorithm that produces a spectral sparsifier with O(n logn) edges is
due to Spielman and Srivastava [SS08], and it is based on O(log n) calls to a SDD linear system solver. Our
solver brings the running time of the Spielman and Srivastava algorithm to Õ(m log3 n). It is interesting
that this algebraic approach matches up to log logn factors the running bound of the purely combinatorial
algorithm of Benczúr and Karger [BK96] for the computation of the (much weaker) cut-preserving sparsifier.

Sparsifying once with the Spielman and Srivastava algorithm and then applying our incremental spar-
sifier gives a (k,O(k log3 n)) ultrasparsifier that runs in Õ(m log3 n) randomized time. Within the envelope
of nearly-linear time algorithms, this becomes the best known ultrasparsification algorithm in terms of
both its quality and its running time. Our guarantee on the quality of the ultrasparsifier is off by a factor
of O(log2 n) comparing to the ultrasparsifier presented in [KMST09a]. In the special case where the input
graph has O(n) edges, our incremental sparsifier is a (k,O(k log2 n)) ultrasparsifier.

2In the latest version of their paper [ST06], Spielman and Teng also construct and use an incremental sparsifier, but they
still use the term ultrasparsifier for it.
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5 Sparsification by Oversampling

In this section we revisit a sampling scheme proposed by Spielman and Srivastava for sparsifying a graph,
[SS08]. Consider the following general sampling scheme:

Sample
Input: Graph G = (V,E,w), p′ : E → R+, integer q.
Output: Graph G′ = (V,E′, w′).

• t :=
∑

e p
′
e

• pe := p′e/t
• G′ := (V,E′, w′) with E′ = ∅
• FOR q times
• Pick edge e in G with probability pe
• Add e to E′ with weight w′

e = we/pe
• ENDFOR

• For all e ∈ E′, let we′ := we/q
• RETURN G′

Figure 1: The sampling Algorithm

Spielman and Srivastava pick p′e = weRe where Re is the effective resistance of e in G. This choice
returns a spectral sparsifier. Calculating good approximations to the effective resistances seems to be
at least as hard as solving a system, but as we will see in Section 6, it is easier to compute numbers
p′e ≥ (weRe). The following Theorem considers a sampling scheme based on numbers with this property.

Theorem 5.1 (Sampling higher than effective resistance) Given G = (V,E,w), let p′e ≥ weRe for
each edge e ∈ E and ξ ∈ Ω(1/n). Let t =

∑

e p
′
e and q = Cst log t log(1/ξ), where Cs is a constant

independent from G. Then if G′ = Sample(G, p′, q), we have

G % 2G′ % 3G

with probability at least 1− ξ.

The proof follows closely that Spielman and Srivastava [SS08], with only a minor difference in one
calculation. Let us first review some necessary lemmas.

If we assign arbitrary orientations on the edges, then we can define the incidence matrix Γ ∈ *m×n as
follows:

Γe,u =







−1 if u is the head of e
1 if u is the tail of e
0 otherwise

Let W be the diagonal matrix containing edge weights, then W 1/2 is a real positive diagonal matrix as
well since all edge weights are positive. The Laplacian L can be written in terms of W and Γ as

L = ΓTWΓ = ΓTW 1/2W 1/2Γ.

Algorithm Sample forms a new graph by multiplying each edge e by a nonnegative number se. If S is
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the diagonal matrix with S(e, e) = se, the Laplacian of the new graph can be seen to be equal to

L̃ = ΓTWΓ = ΓTW 1/2SW 1/2Γ.

Let L+ denote the Moore-Penrose of L, i.e. the unique matrix sharing with L its null space, and acting
as the inverse of L in its range. The key to the proofs of [SS08] is the m×m matrix

Π = W 1/2ΓL+ΓTW 1/2,

for which the following lemmas are proved.

Lemma 5.2 (Lemma 3i in [SS08]) Π is a projection matrix, i.e. Π2 = Π.

Lemma 5.3 (Lemma 4 in [SS08])

(1− ||ΠΠ−ΠSΠ||2)L % L̃ % (1 + ||ΠΠ −ΠSΠ||2)L.

We also use Lemma 5.4 below, which is Theorem 3.1 from Rudelson & Vershynin [RV07]. The first
part of the Lemma was also used as Lemma 5 in [SS08] in a similar way.

Lemma 5.4 Let p be a probability distribution over Ω ⊆ Rd such that supy∈Ω ||y||2 ≤ M and ||Ep(yyT )||2 ≤
1. Let y1 . . . yq be independent samples drawn from p, and let

a := CM

√

log q

q
.

Then:

1.

E||1
q

q
∑

i=1

yiy
T
i − E(yyT )||2 ≤ a.

2.

Pr[||1
q

q
∑

i=1

yiy
T
i − E(yyT )||2 > x] ≤ 2

ecx2/a2
.

Here C and c are fixed constants.

Proof (of Theorem 5.1) The algorithm draws samples y1, . . . , yq from

y =
1

√
pe
Π(·, e) with probability pe.

In this way we ensure E(yyT ) = ΠΠ = Π. We also have ||Π||2 ≤ 1 as it is a projection matrix. So, the
conditions of Lemma 5.4 are satisfied. The fact that Π is a projection matrix also gives Π(:, e)TΠ(:, e) =
(ΠΠ)(e, e) = Π(e, e), which we use to bound M as follows.

M = sup
e

1
√
pe

||Π(:, e)||2 = sup
e

1
√
pe

√

Π(e, e) = sup
e

1
√
pe

√

weRe = sup
e

√

t

p′e

√

weRe ≤
√
t. (5.1)
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The last inequality follows from the assumption about the p′e. Recall now that we have log(1/ξ) ≤ logn
by assumption, t ≥

∑

eweRe by construction, and
∑

eweRe = n − 1 by Lemma 3 in [SS08]. Combining
these facts and setting q = cSt log t log(1/ξ) for a proper constant cS , part 1 of Lemma 5.4 gives

a ≤

√

4

c log(2/ξ)
.

Now substituting x = 1
2 into part 2 of Lemma 5.4, we get

Pr[||1
q

q
∑

i=1

yiy
T
i − E(yyT )||2 > 1/2] ≤ 2

e(c/4)/a2
≤ 2

e(c/4)/(4/c log 2/ξ)
≤ ξ.

It follows that with probability at least 1− ξ we have

||1
q

q
∑

i=1

yiy
T
i − E(yyT )||2 ≤ 1/2,

which implies ||ΠSΠ−Π||2 ≤ 1/2. The theorem then follows by Lemma 5.3. !

Note. The upper bound for M in inequality 5.1 is in fact the only place where our proof differs from
that of [SS08]. In their case the last inequality is replaced by an exact inequality, which is possible because
the exact values for weRe are used. In our case, by using inexact values we get a weaker upper bound
which reflects in the density (depending on m, not n) of the incremental sparsifier. It is however enough
for the solver.

6 Incremental Sparsifier

Consider a spanning tree T of G = (V,E,w). Up until now we have been thinking of the weights as
conductors. We now invert the weights and view them as resistors. Let w′(e) = 1/w(e). Let the unique
path connecting the endpoints of e consists of edges e1 . . . ek, the stretch of e by T is defined to be

∑k
i=1 w

′(ei)

w′(e)
= stretchT (e).

But
∑k

i=1 1/w(ei) = R(T )e the effective resistance of e in T . Thus stretchT (e) = weR(T )e. By Rayleigh’s
monotonicity law [DS00], we have R(T )e ≥ Re, so stretchT (e) ≥ weRe. Our algorithm will based on the
construction of a low-stretch tree, with the guarantees provided by the following result of Abraham, Bartal,
and Neiman [ABN08].

Theorem 6.1 Given a graph G = (V,E,w′), LowStretchTree(G) in time O(m log n+ n log2 n), out-
puts a spanning tree T of G satisfying

∑

e∈E = O(m log n · log log n · (log log log n)3).

Our key idea is to scale up the low stretch tree by a factor of κ, incurring a condition number of κ but
allowing us to sample the non-tree edges aggressively by the upper bounds on their effective resistances
given by the tree. The details are given in algorithm IncrementalSparsify given in Figure 2.

Theorem 6.2 Given a graph G with n vertices, m edges and any values κ < m, ξ ∈ Ω(1/n), Incremen-
talSparsify finds H with n−1+Õ((m/κ) log2 n log(1/ξ)) edges, such that G % H % 3κG with probability
at least 1− ξ, in O(n log2 n log(1/ξ) +m log n+m log3 n log(1/ξ)/κ) time.

Proof Since the weight of an edge is increased by at most a factor of κ, we have G % G′ % κG.
Furthermore, the effective resistance along the tree of each non-tree edge decreases by a factor of κ. So
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IncrementalSparsify
Input: Graph G, reals κ, ξ.
Output: Graph H

• T ← LowStretchTree(G)
• Let T ′ be T scaled by a factor of κ
• Let G′ be the graph obtained from G by replacing T with T ′

• FOR e ∈ E
• Calculate stretchT ′(e)
• ENDFOR

• H ← Sample(G′, stretchT ′ , 1/2ξ)
• RETURN 2H

Figure 2: Incremental Sparsifier

we set p′e = 1 if e ∈ T and stretchT (e)/κ otherwise, and invoke Sample to get a graph H such that with
probability at least 1− 1/ξ, we get

G % G′ % H % 3G′ % 3κG.

We first bound the number of non-tree edges. Let t′ =
∑

e/∈T stretchT ′(e), with t′ = Õ(m log n/κ).
Then for the number t used in Sample we have t = t′ + n − 1 and q = Cst log t log(1/ξ)/κ is the number
of edges sampled in the call of Sample. Let Xi be a random variable which is 1 if the ith edge picked by
Sample is a non-tree and 0 otherwise. The total number of non-tree edges sampled is the random variable
X =

∑q
i=1Xi, and its expected value can be calculated using the fact Pr(Xi = 1) = t′/t:

E[X] = q
t′

t
= t′

Cst log t log(1/ξ)

κt
= Õ((m/κ) log2 n log(1/ξ)).

A standard form of Chernoff’s inequality is:

Pr[X > (1 + δ)E[X]] <

(

eδ

(1 + δ)(1+δ)

)E[X]

.

Letting δ = 2, and using the assumption k < m, we get Pr(X > 3E[X]) < (e2/27)E[X] < 1/nc, for any
constant c. Hence, the probability that IncrementalSparsify succeeds, with respect to both the number
of non-tree edges and the condition number, is at least 1− ξ.

We now turn to the running time claim. The standard O(m log n) algorithm for computing least
common ancestor allows us to calculate the stretch of all m edges in O(m log n) time. To compute the
sample efficiently, we can assign each edge an interval on the unit interval [0, 1] with length corresponding
to its probability such that no two intervals overlap. At each sampling iteration, pick a random value in
[0, 1] and binary search to find the interval that contains it in O(logn) time. There are O(t log t log(1/ξ))
iterations of sampling, so the total time to compute the samples is Õ(n log2 n log(1/ξ)+m log3 n log(1/ξ)/κ).

!

7 Solver Using Incremental Sparsifier

The solver of Spielman and Teng [ST06] works by: (i) building a chain C of graphs that satisfies a list
of requirements, (ii) using C along with the b side of the system as input to a recursive preconditioned
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Chebyshev method that produces an approximate solution of the system. Our approach differs only in
the way we build the chain C. We state without proof or details a Lemma listing the requirements for the
chain. For details, we refer the reader to [ST06]. Before we proceed, we review GreedyElimination, a
key procedure for the construction of the chain.

GreedyElimination
Input: Weighted graph G = (V,E,w)

Output: Weighted graph Ĝ = (V̂ , Ê, ŵ)

• Ĝ := G.
• UNTIL there are nodes of degree 1 or 2 in Ĝ
• Greedily remove all degree 1 nodes
• If v is a degree node with adjacent edges e1 and e2,
. . . replace e1, e2 by an edge of weight (1/w(e1) + 1/w(e2))−1

We will make use of the following (adapted) Lemma from Spielman and Teng [ST06].

Lemma 7.1 (Chain requirements) Let A be a graph, and assume we are given a sequence of graphs
{A = A1, B1, A2, . . . , Ad} such that

• Ai has ni nodes and mi + ni − 1 edges.

• Ai % Bi % κ(ni)Ai, where κ is a fixed monotonic function.

• Ai+1 = GreedyElimination(Bi).

• mi/mi+1 ≥ c
√

κ(ni), for some constant c.

• md is some fixed constant c′.

Then a vector x̄ such that ||x̄− L+
Ab||A < ε||L+

Ab||A can be computed in O(m3
dm

√

κ(n) log(1/ε)) time.

Spielman and Teng take Bi to be an ultrasparsifier of Ai. We take Bi to be the incremental sparsifier
we constructed in Section 6. Let us now formally state the algorithm for building the chain of graphs.

BuildChain
Input: Graph A.
Output: Chain of graphs {A = A1, B1, A2, . . . , Ad}.

• Let A1 = A.
• While mi > (log log n)1/3 do:
• Let κ = k′Õ(log2 ni log(1/p)), where k′ = Õ(log2 ni)
• If mi > logn then ξ := logn else ξ := log log n
• Bi := IncrementalSparsify(Ai,κ, p/(2ξ))
• Ai+1 := GreedyElimination(Bi)
• if |Ai+1| > |Bi|/k′
• return FAILURE
• i := i+ 1.

We now show that the chain constructed by BuildChain satisfies the requirements of Lemma 7.1.

9



Lemma 7.2 Given a graph A, BuildChain(A) produces a chain that satisfies the requirements of Lemma
7.1, with probability at least 1− p. The algorithm runs in expected time Õ((m log n+ n log2 n) log(1/p)).

Proof The second requirement of Lemma 7.1 is satisfied by construction. The call to Incremen-
talSparsify is set to construct an incremental sparsifier Bi with at most ni − 1 + mi/k′ edges, that
Õ(k′ log2 ni) approximates Ai. This happens with probability at least 1 − p/2 log n if ni > log n and
1 − p/2 log logn) otherwise. Note that since Ai is not reducible by GreedyElimination we get that
mi > 2ni. Hence Ai has at least 2mi edges. A key property of GreedyElimination is that if G is a
graph with n− 1+ j edges, GreedyElimination(G) has at most 2j − 2 vertices and 3j − 3 edges [ST06].
Hence GreedyElimination(Bi) has at most 4mi/k′ edges. It follows that mi/mi+1 ≥ k′/2. Thus taking
k′ = Õ(log2 ni) satisfies the other two requirements when mi > (log log ni)1/3. The probability that the
requirements hold for all i is at least

(1− p/(2 log n))log n(1− p/(2 log log n))log logn > (1− p/2)2 > 1− p.

Finally note that each call to IncrementalSparsify takes Õ((mi log
2 n) log(1/p)) time. Since mi de-

creases geometrically with i, the claim about the running time follows. !

Combining Lemmas 7.1 and 7.2 proves our main Theorem.

Theorem 7.3 On input an n×n symmetric diagonally dominant matrix A with mu non-zero entries and a
vector b, a vector x̄ satisfying ||x̄−A+b||A < ε||A+b||A, can be computed in expected time Õ(m log2 n) log(1/ε)).

8 Comments / Extensions

Unraveling the analysis of our bound for the condition number of the incremental sparsifier, it can been
that one logn factor is due to the number of samples required by the Rudelson and Vershynin theorem.
The second log n factor is due to the average stretch of the low-stretch tree.

It is quite possible that the low-stretch construction and perhaps the associated lower bound can be
bypassed -at least for some graphs- by a simpler approach similar to that of [KM07]. Consider for example
the case of unweighted graphs. With a simple ball-growing procedure we can concede in our incremental
sparsifier a 1/ log n fraction of the edges, while keeping within clusters of diameters O(log2 n) the rest of
the edges. The design of low-stretch trees may be simplified within the small diameter clusters. This
diameter-restricted local sparsification is a natural idea to pursue, at least in an actual implementation of
the algorithm.
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