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Abstract 

This thesis aims to describe how students encounter proof in a community of 

mathematical practice at a mathematics department and how they are drawn 

to share mathematicians’ views and knowledge of proof. Considering the 

department as a community of practice where the joint enterprise is learning 

mathematics in a broad sense made it possible to perceive the newcomers as 

active participants in the practice. The combination of a socio-cultural per-

spective, Lave and Wenger’s and Wenger’s social practice theories and theo-

ries about proof offers a fresh framework in understanding and describing 

the diversity of the culture involving such a complex notion as proof. Proof 

is examined from historical, philosophical and didactical points of view and 

considered as reification and as an artefact from a socio-cultural perspective. 

The metaphor of transparency of artefacts that refers to the intricate di-

lemma about how much to focus on different aspects of proof at a meta-level 

and how much to work with proof without focusing on it, both from teacher 

and student perspectives, is a fundamental aspect in the data analysis. The 

data consists of transcripts of interviews with mathematicians and students 

as well as survey responses of university entrants, protocols of observations 

of lectures, textbooks and other instructional material. Both qualitative and 

quantitative methods were applied in the data analysis. A theoretical model 

with three different teaching styles with respect to proof could be con-

structed from the data. The study shows that the students related positively to 

proof when they entered the practice. Though the mathematicians had no 

explicit intention of dealing so much with proof in the basic course, students 

felt that they were confronted with proof from the very beginning of their 

studies. Proof was there as a mysterious artefact and a lot of aspects of proof 

remained invisible as experienced by students when they struggled to find 

out what proof is and to understand its role and meaning in the practice. The 

students who proceeded further experienced a mix of participation and non-

participation regarding proof depending on their capacity to follow lectures 

and on how much they invested themselves in the negotiation of meaning of 

proof. The first oral examination in proof seems to be significant in drawing 

students to the practice of proof.  

 

Keywords: proof, university mathematics, mathematical practice, commu-

nity of practice, participation, reification, transparency, artefact 
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Introduction 

The purpose of this thesis is to describe and characterise the culture of proof 
in a mathematical practice at a mathematics department and how students are 
engaged in proof and proving activities. The main issue is how students en-
counter proof and how they are drawn to share mathematicians’ views and 
knowledge of proof.  

“Proof is the soul of mathematics” as a mathematician in this study ex-
pressed it. Proof is a method of getting acceptance for and generating new 
mathematical knowledge. Proof is a multi-faceted notion, difficult to define 
and on which different persons have different views. According to mathema-
ticians in my study, proof actually permeates all mathematics. Nevertheless, 
proof is also a part of mathematics that has been considered as difficult to 
teach and learn (e.g. Bell, 1976b; Moore, 1994; Selden & Selden, 1995; We-
ber, 2001). For all these reasons it has been a great challenge for me to ap-
proach and examine proof and the teaching and learning of proof.  

I approach the issue of proof from different directions. Firstly, I study 
mathematicians’ views and pedagogical intentions concerning proof. Sec-
ondly, I examine students’ backgrounds, views and how they experience 
proof in their mathematical practice at the mathematics department. Finally, 
I contrast the results of these two parts. So, approaching proof in the title of 
the thesis refers not only to my own approaching to proof, but mathemati-
cians’ and students’ approaching to it.  

To understand these two sides and their interaction better, I have devel-
oped a theoretical perspective on proof by combining a socio-cultural per-
spective and the social practice theory of Lave and Wenger (1991) and 
Wenger (1998), with theories about proof obtained from didactical research. 
According to Wenger (1998), structuring resources for learning come from a 
variety of sources, not only the pedagogical activity. Pedagogical intentions 

create a context in which learning can take place. Teachers, lectures, lessons 
and instructional materials, like textbooks, become resources for learning in 
complex ways. Much of what students learn is not intended and much of 
what teachers want to convey is not captured by students. Also, there are not 
very clear aims set up for the learning of proof in mathematics either in the 
school curriculum or the curriculum for the university courses. In my study, 
I contrast the mathematicians’ views and intentions with the students learn-
ing experiences in order to shed light on how the structuring resources be-
come resources for learning. 
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Further, I use Wenger’s (1998) theory to give structure to the practice I 
am studying. As a unit/level of analysis I use a community of practice of 

mathematics at a mathematics department. In this community, I include all 
people exercising and learning mathematics at the department which is the 
focus of my study. There are mathematicians, doctoral students, teaching 
assistants and students. It is a dynamic practice and the joint enterprise for 
all participants is the learning of mathematics in a broad sense. Learning is 
conceived as increasing participation in the community of practice of 
mathematics which leads to changing identities (Wenger, 1998). There is a 
richness of competence, and learning in this community occurs on different 
levels. Many students learn mathematics on a basic level but there are also 
doctoral students who are learning to carry on research in mathematics. 
Mathematicians are researching and obtaining new mathematical knowledge, 
teaching, examining and supervising students, improving teaching etc. But 
not only mathematicians are teaching mathematics to students, also doctoral 
students and teaching assistants take part of this enterprise. There are also 
pedagogical and didactical seminars, discussions and activities that aim to 
develop the teaching of mathematics. There are lectures, lessons, seminars 
and other kinds of meetings for the participants where teaching and learning 
of mathematics takes place. All these activities are included in the exercising 
of mathematics and are important for maintaining and developing the com-
munity of mathematical practice at the academic department.  

There is a diversity of experience about mathematics among those who 
participate in this practice; there are old-timers and newcomers. However, it 
is not possible to exactly define when a newcomer becomes an old-timer as 
the character of these notions is relative. My thesis gives a contribution to 
knowledge in this area by describing how the enculturation of newcomers to 
the practice takes place with a special focus on their access to proof. An 
important theoretical aspect that I put forward in my work is that I consider 
proof as an artefact in mathematical practice, not only in the community of 

practice of mathematics at the mathematics department that is the object of 
my study but in mathematics as whole, and examine how different aspects of 
proof can be focused on in the teaching of proof. According to the theory of 
Lave and Wenger (1991) there is an intrinsic balance in the teaching of 
mathematics between the use of artefacts on the one hand, and how to focus 
on artefacts at a meta-level, on the other hand. My thesis sheds light on this 
dilemma in the teaching of proof.  

Besides putting forward these theoretical arguments in Chapter 2, I test 
them empirically against the data obtained from surveys with university en-
trants and interviews with mathematicians and students. There are also 
themes that emerge from the data, for example different styles in mathemati-
cians’ utterances concerning the teaching of proof and problems for new-
comers’ engagement with proof. These themes are included in the examina-
tion about how the structuring resources become resources for learning. 
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My research and the theory I have put forward in the thesis draws to-
gether the earlier results in the field and offers a fresh perspective on proof 
in mathematics education. It also contributes to the illumination of how dif-
ferent aspects of proof can be focused on in the teaching of proof. The theo-
retical perspective and the empirical findings of the thesis open up new pos-
sibilities for research in the field of proof in mathematics education. 

  
 
The general research questions are formulated in the following way: 

• How do students meet proof in the community of mathematical 
practice at a mathematics department? 

• How are students drawn to share mathematicians’ views and 
knowledge of proof? 

 

The structure of the thesis 

 
In Chapter 1, I first give an account of how the research questions have 

developed during the study. I then very briefly describe the changes in the 
community of practice of mathematics at the mathematics department that is 
the object of my study regarding the role of proof during the last three dec-
ades. In the third section, I illustrate the complexity of the notion of proof in 
mathematics by approaching proof from historical and philosophical points 
of view. I conclude the chapter with a short review on research about proof 
in mathematics education.  

In Chapter 2, I clarify the theoretical positions of my study. I justify and 
describe the choice of the theoretical frame for the thesis and elaborate the 
central theoretical notions applied in my work. I put forward the basic theo-
retical arguments concerning proof in mathematical practice and define and 
describe the unit of analysis for the object of my study. Besides the learning 
theories relating to ontological and epistemological assumptions and com-
mitments, I also looked at theories and research about proof in mathemati-
cians’ practice and in mathematics education, in order to link my study to 
previous studies. Thus, the last section of the chapter is a deepening of the 
issue of proof in mathematical practice. 

Chapter 3 is divided into three main parts. In the first section, I define 
the specific research questions through which I want to examine the issue as 
well as the methods used for shedding light on these specific research ques-
tions. The second section provides an epistemological account of the meth-
odology. In the last section, I give a detailed account of the research methods 
and the procedures used for data gathering and the data analysis.  
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Chapter 4 is about mathematicians’ practice. I report the results of the 
analysis of the interviews with the mathematicians. The first section is about 
the mathematicians’ views on proof. In the second section, I describe how 
the mathematicians talked about proof as a tool in their practice. In the third 
section, I give an account of how the mathematicians in my study spoke 
about the changes in the practice concerning proof. I conclude the chapter by 
describing a theoretical model with three pedagogical approaches to the 
teaching and learning of proof. 

Chapter 5 is about students’ practice. In the first section, I give an ac-
count of students’ stated upper secondary school experiences concerning 
proof. In the second section, I describe how the students related to proof at 
the beginning of their studies. In the following sections, I describe what kind 
of participation regarding proof there was available to students and how 
students talked about their experiences in their mathematical practice. I give 
examples of utterances expressing participation as well as non-participation 
concerning the meaning of proof.  

In Chapter 6, I draw together the different parts of the results. I contrast 
the results of mathematicians’ practice with the results regarding students’ 
practice and discuss both consistencies and inconsistencies in the data. I also 
describe how the three different teaching styles in the theoretical model can 
be experienced by students.   

In Chapter 7, I present the main conclusions of the study. I discuss how 
the thesis illuminated the main research questions and how the theoretical 
frame developed in the thesis helped to shed light on these questions. Fi-
nally, I suggest some implications to the educational practice and broach 
problems to focus on in further studies.  

Appendix:  

1. Course descriptions 

2. The questionnaire 

3. Tables of some survey results 

4. Questions for the oral examination in Mathematical Analysis 3 
5. The table of the three teaching styles 
6. An example of how I have worked with NVivo 
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1   Background 

Developing research questions perhaps requires the most complicated think-
ing of research (Stake, 1995). Most often, they have to be dug out and 
worked over and, according to Stake (1995), the best research questions 
evolve during the study (ibid., p. 33). I start the chapter by very briefly de-
scribing the development of the research questions and how my study has 
gradually been limited. In the next section, I describe the changes in practice 
concerning the treatment of proof. In the third section of the chapter, I ap-
proach proof from a historical and philosophical point of view in order to 
shed light on the complexity of the notion of proof. I conclude the chapter 
with a brief review of research about proof in mathematics education.  

1.1   The development of the research questions 

I started to study proof in mathematics education in 2002 and the aim of the 
thesis at the time was to examine how proof was treated both in upper sec-
ondary school and in undergraduate university courses in Sweden as well as 
what kind of prior knowledge students had regarding proof, when they en-
tered the mathematical practice at different universities in Sweden. I also 
wanted to explore if there was continuity between the school mathematics 
and the university mathematics concerning the issue of proof.   

The first data collection was a pilot survey among a hundred university 
entrants who started to study mathematics at the mathematics department 
that is the focus of my study in the thesis. The aim of the pilot study was to 
give an overall view on students’ stated upper secondary school experiences, 
how students related to proof at the beginning of their university studies 
including their views and feelings, as well as their proving abilities, an over-
view which would be supplemented by in-depth studies carried out within 
the global project (Nordström, 2003). I also studied upper secondary school 
textbooks in order to see to what extent in different mathematical domains 
proofs occurred in the textbooks and what special kinds of proofs were 
treated in them (Nordström & Löfwall, 2005). I created and distributed a 
questionnaire for upper secondary school teachers about how they related to 
proof and got about 40 responses. As there are no studies about the role of 
proof in mathematics curricula and classrooms in Sweden, I studied debate 
articles, old curricula and other official documents in order to obtain a pic-



 12

ture about the main changes in the treatment of proof during the last decades. 
I also interviewed persons who had followed the development for a long 
time. In autumn 2003, I conducted a survey among university entrants in 
different parts of Sweden and also started to interview mathematicians in 
five different departments about their views on proof and the teaching and 
learning of proof (Nordström, 2004).  

In parallel to the data gathering I studied the relevant pedagogical theories 
in order to find an appropriate frame for my study and to define the 
level/unit of analysis. I also created a conceptual frame from the literature to 
be able to link the data to previous studies about proof. All these activities 
influenced the development of my research questions. I found a socio-
cultural approach appropriate for my study and in Lave and Wenger’s (1991) 
and Wenger’s (1998) social practice theory I found a frame that at least par-
tially described the teaching and learning conditions at the mathematics de-
partment that I was studying, in a way coherent to my views. One of the 
main theoretical challenges in my study turned out to be the examination of 
how to apply the social practice theory of Lave and Wenger (1991) and 
Wenger (1998) to the practice of mathematics at a mathematics department 
with a special focus on students’ access to proof and how to combine the 
social practice theory and the theories about proof.   

I started to examine proof as an artefact in the mathematical practice and 
explore the strengths of the metaphor of transparency (see p. 40) in the case 
of proof. I tested the theoretical ideas and the conceptual frame in a pilot 
study about five mathematicians’ views on proof and the teaching and learn-
ing of proof and also in a textbook study (Nordström, 2004; Nordström & 
Löfwall, 2005). I went on investigating the ideas against the data obtained 
from some focus group interviews with students as well. During the first data 
analysis of the focus group interviews with students, the issue of students’ 
access to proof turned out to be central for my study.  

Hence, in order to deepen the issues, I decided to limit my study to con-
cern one university only. For the same reason, I also left aside the research 
on students’ proving abilities. I decided to concentrate on students’ back-
grounds, how they related to proof when they entered the practice and how 
they talked about their experiences in the practice rather than their proving 
abilities. This was also partly because there was so much evidence about 
students’ difficulties with proving tasks that was documented in the exami-
nations and didactical research, and partly because of the time limitation for 
my study. Hence, a lot of data (survey responses from university entrants in 
different parts of Sweden, interviews with mathematicians in four other de-
partments and survey responses from upper secondary school teachers) that I 
have gathered have been postponed for possible later analysis. 

The purpose of the thesis is now to describe and characterise the culture 
of proof in a mathematical practice at a mathematics department and how 
newcomers become engaged in proof and proving activities. The main issue 
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is how students meet proof in a community of mathematical practice and 
how they are drawn to share mathematicians’ knowledge and views of proof. 
I approach the issue from different directions (Figure 1, p. 13). 

 

 
Figure 1   Approaching the issue from different directions  

On the one hand, I am interested in mathematicians’ views on proof and 
their pedagogical perspectives concerning the teaching and learning of proof, 
for example how they view the changes in the practice and how they talk 
about students and their own intentions concerning the teaching of proof. On 
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the other hand, I explore newcomers’ backgrounds when they enter the prac-
tice: their declared upper secondary school experiences regarding proof and 
how they related to proof. I also want to examine what kind of occasions 
there are available in the community of mathematical practice for students to 
engage in proof and proving and how students in different phases of their 
studies talk about their experiences in the practice. Hence, students’ access 
to proof is one of the central issues in my thesis. The main question here is 
how students meet proof in undergraduate courses and what possibilities 
students are offered to enhance their learning and understanding of proof.  

1.2   Changes in practice  

Communities of practice develop in larger contexts – historical, social, cul-
tural and institutional with special resources and constraints (Wenger, 1998). 
In order to situate the study on proof into its socio-cultural and historical 
backgrounds I first provide the reader with a brief account, from an interna-
tional perspective, of the changes in the practice regarding the role of proof 
during the last three decades.  

Undergraduate mathematical curricula are always in some state of change. 
Some of the changes follow from the research of new mathematics but most 
of them are put forward because of factors outside the community of mathe-
matical practice, like changes in the school curriculum1, changes in the 
economical support system for the academic departments, changes in the 
demands of mathematical knowledge from other practices. Also the fact that 
university education has become more accessible to a larger part of the 
population has changed the practice and made it more heterogeneous. Today, 
there are a lot of students in mathematical practice who are registered in 
teacher education, social sciences or natural sciences. Hence, departments of 
mathematics have been “faced with the challenge of having to teach students 
whose background preparation, learning styles, study habits, and career am-
bitions are more and more at odds with the traditional lecture-style mathe-
matical training with its Bourbaki-like curriculum, particularly in pure 
mathematics.” (Hillel, 2001, p. 63)   

At the mathematics department that I have studied, there have been 
changes in the courses, in the organisation of the teaching, in the choice of 
the course literature as well as in the curriculum as a response to the changes 

                               
1 The status of proof in school mathematics has changed during the last decades and proof has 
had a diminished place in the secondary school mathematics curriculum in many countries 
(Hanna, 1995; Niss, 2001). There is no research about such changes in Sweden. However, in 
the national curriculum 1994 for upper secondary school, the word proof was not mentioned 
(Grevholm, 2003). There are signs that proof is coming back to the school curriculum in many 
countries, also in Sweden (Knuth, 2002; Skolverket, 2006; Waring, 2001).  
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outside the mathematical practice described above. In the 70s a course in 
Euclidean geometry was introduced as a part of the basic course of 20 study 
points as a consequence of the fact that geometry had got a diminished place 
in school curriculum (Strömbeck, 2006). At the time, there was a concern 
among university teachers about students’ lacking the capability to answer 
questions in examinations concerning proof and the theories of mathematics 
(Boman, 1979) and, gradually, such questions were moved to intermediate 
and more advanced courses (Appendix 1).  

At the beginning of the 90s the introductory courses in calculus were re-
formed. This reform was a response to the demands of other practices, like 
those of natural sciences. A part of the theory, for example, epsilon – delta 
proofs were moved to intermediate courses. Instead, more applications and 
multivariable calculus were included in the basic course in analysis 
(Strömbeck, 2006). In the middle of the 90s the number of applicants who 
wanted to study mathematics at the department was much bigger than the 
number of students who could be accepted. Hence, it was possible to choose 
the students with the highest marks in the subject. Now the number of appli-
cants has diminished and all of them are accepted (Johansson, 2006).  

Hillel (2001a) reports in the ICMI-study about the teaching and learning 
of mathematics at university level that the transition problem from secondary 
to tertiary level has led to the appearance of so called bridging courses aim-
ing to facilitate students’ entry into university mathematics. The lacks in 
students’ prior knowledge in mathematics at the beginning of the tertiary 
level are well documented in Sweden (e.g. Bylund & Boo, 2003; Hög-
skoleverket, 1999; Thunberg & Filipsson, 2005). As a consequence introduc-
tory courses were introduced to curricula in many universities in Sweden, 
also at the department that is the focus of my study (Appendix 1). There are 
differences in the character of bridging courses concerning the role of proof. 
For example, at KTH (The Royal Institute of Technology) proof is a central 
issue in a 4-point bridging course (Thunberg, 2005), whereas the introduc-
tory course at the mathematics department which I am studying, is largely a 
repetition of upper secondary school mathematics and an introduction of 
some new calculation techniques. There is also an online course available for 
university entrants the aim of which is to facilitate students’ transition from 
school mathematics to university mathematics. 

At the same time as the introductory course was offered for the first time 
at the department that is the object of my study, the course in Euclidean ge-
ometry was not included in the curriculum any more (Strömbeck, 2006). 
Some changes in the course literature also took place at the time. Vretblad’s 
(1999) textbook was no longer used in the basic course. In Vretblad’s book 
students were introduced to proof and elementary proof techniques in Swed-
ish. The book was also mentioned by some mathematicians and students in 
my interviews as a significant help for students’ understanding of proof. 
Instead of Vretblad’s book, a book with repetition of upper secondary school 
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mathematics (Wallin, Lithner, Jacobsson, & Wiklund, 1998) is now used in 
the introductory course together with literature for the following courses 
(Appendix 1).   

The number of teachers in relation to the number of students at the de-
partment has steadily diminished during the last decade. Because of this, in 
1997, lectures with about a hundred beginner students were introduced. The 
time for lectures diminished at the same time from three to two hours. In-
stead, a group of students were offered one hour with a teaching assis-
tant/lecturer to go through the exercises. Prior to 1997 a mathematician had a 
group of about 30 students for three hours and it was possible for the teacher 
to shift between theory and applications (Johansson, 2006; Strömbeck, 
2006). From 2002, lessons with about 10 students and a teaching assis-
tant/lecturer were introduced with the aim of giving students the opportunity 
to present mathematics both orally and in written form.  

Mathematicians in my study related to the changes in the practice con-
cerning the treatment of proof in the curriculum in various ways (see p. 96). 
I will come back to the issue in Section 4.2.    

1.3   What is mathematical proof? 

Proof constitutes the means for justifying knowledge in mathematics. The 
purpose of this section is to shed light on the complexity of the notion of 
proof by first giving a brief account of how the view on proof has changed 
during its history. I then discuss philosophical, ontological and epistemo-
logical aspects of mathematics and proof and how a working mathematician 
relates to these philosophical issues. My aim is not to make an exhaustive 
examination of the subject, but just to focus on some main changes and con-
troversies concerning the notion of proof.  

When Greek philosophers started to apply philosophical methods to 
mathematics, they analysed the results in mathematics and systematised the 
contemporary mathematical knowledge in a deductive manner (e.g. Eves 
1997; Katz, 1998). They developed the idea of dividing a theory into axioms 
and definitions followed by statements derived from these, using the chains 
of logical reasoning which is still characteristic of mathematics. For the 
Greeks, the elementary concepts of geometry, like points and lines, were 
regarded as idealisations of certain actual physical entities. Then the postu-
lates were accepted statements about these idealisations. These statements 
would be so carefully chosen that their truths were “evident”. This view is 
called material axiomatic (e.g. Eves, 1997). This has also been seen as a 
natural view for pupils when they work with parts of the Euclidian geometry 
in school (e.g. Jahnke, 2005).    

Before the introduction of algebraic symbols proofs were mostly generic 

examples or based on geometry. Even Euclid proved that the number of 



 17 

primes is infinite with a generic example using specific geometrical entities 
(Heath, 1956). In the sixteenth century, Viète (1540-1603) started to use 
letters as well as numbers and came part way towards modern symbolism. 
This enabled him to leave specific examples and verbal algorithms and, in-
stead, treat general examples. Descartes (1596-1650) similarly noted that it 
was not necessary to imagine line segments, but instead it was sufficient to 
assign each by a single letter. Descartes also started to use the terms a2 and 
a3 as line segments, rather than as geometric squares and cubes as demanded 
by Euclidean geometric algebra. This enabled him to mix higher powers 
without worrying about their lack of geometric meaning (e.g. Katz, 1998). 
This development, together with the systematisation of arithmetical laws in 
the 19th century enabled the progress of algebraic proofs. The first encounter 
with proofs for many students in Sweden is, besides geometric proofs, alge-
braic derivations of formulae. 

Calculus as it was developed in 17th and 18th centuries, was a powerful 
tool for applications and led to an expansive development of mathematics. 
During the period applications were more important than proofs and at the 
time, the idea of function itself was not understood/defined in the manner it 
is now and notions such as limit, continuity, differentiability, integrability, 
and convergence were unclear and lacked exact definitions (e.g. Eves, 1983).  
Gradually contradictions and paradoxes arose and in the early nineteenth 
century the first steps were taken towards replacing a method of infinitesi-
mals by a more precise method of limits within the so-called arithmetisation 
of analysis (e.g. Katz, 1998). In Sweden, students first meet calculus in a 
way more similar to the calculus used in the 18th century than to later formal-
isations. Most representations lean on pictures and intuition rather than on 
exact definitions. The first time students at the department which I am study-
ing meet the modern definitions, for example the one for the notion of limit, 
is in the intermediate course Mathematical Analysis 3 (Appendix 1), where 
students have to prove the theories they have applied earlier. 

The development of non-Euclidean geometry during the first half of the 
nineteenth century and the liberation of algebra (development of a non-
commutative algebra) led to a deeper study and refinement of the axiomatic 
procedure. Hence, from the material axiomatic of the ancient Greeks 
evolved the formal axiomatic of the twentieth century (e.g. Eves, 1998). In 
modern mathematical theories, axioms are not seen as basic universal truths 
any more but as contingent assumptions that are used as the starting point of 
a theory.  

Recently, there have been some new trends in mathematical proofs due to 
the growing use of computers in mathematical practice. A computer has 
been used to validate enormously long proofs, for example the four-colour 
theorem but also to “prove” statements with experimental methods. There 
have been controversies among mathematicians concerning the computer 
“proofs”  because they are at odds with the traditional view of mathematical 
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proof, where every single statement should be open to verification (e.g. Jaffe 
& Quinn, 1993; Thurston, 1994).  

I have, so far, very briefly described some aspects in the history of 
mathematics that have relevance for the modern view on proof. I will next 
present the three schools that studied the foundations of mathematics during 
the so called classical period (1879-1931), logicism, intuitionism, and for-

malism (e.g. Benacerraf & Putnam, 1998; Eves, 1997). These three schools 
have different views on the nature of mathematics and proof but all of them 
have influenced mathematical practice.  

The logicist thesis is that mathematics is a branch of logic. All mathe-
matical concepts are to be formulated in terms of logical concepts, and all 
theorems of mathematics are to be developed as theorems of logic. Logicism 
reduced all of classical mathematics to a single formal system and thus, cer-
tainly influenced the way mathematical statements and proofs are formalised 
(e.g. Eves, 1997).  

The intuitionist thesis is that mathematics is to be built solely by finite 
constructive methods on the intuitively given sequence of natural numbers. 
One of the main principles of the intuitionist school is that an entity whose 
existence is to be proved must be shown to be constructible in a finite num-
ber of steps; it is not sufficient to show that the assumption of the entity’s 
non-existence leads to contradiction. More generally, the intuitionists deny 
the universal acceptance of the law of the “excluded middle”. Intuitionism 
produces its own type of logic, and mathematical logic, as a consequence is a 
branch of mathematics (Benacerraf & Putnam, 1998).  

Intuitionism is also called constructivism but in the philosophy of mathe-
matics means something different from constructivism in pedagogical re-
search (see p. 25). However, there are those who advocate constructivism in 
mathematics as an inspiring source for mathematics educators because it 
considers mathematics as a mental activity that produces explicit construc-
tions (e.g. Fosgerau, 1992). The intuitionist view of mathematics has also 
been significant within the field of computer science. There are also ideas 
coming from persons working with programming (Back, Peltomäki, Sala-
koski, & von Wright, 2004) how to help students’ understanding of mathe-
matical reasoning and proof by so called structural derivations.  

The logicist achievement of reducing all of classical mathematics to a 
single formal system was much admired by formalists (Eves, 1997). The 
formalists pushed the axiomatic method to its extreme. Mathematics is 
viewed as a formal system consisting of axioms, definitions, statements and 
proofs. Mathematics is a collection of such abstract developments, in which 
the terms are mere symbols and the statements are formulas involving these 
symbols. The ultimate base of mathematics does not lie in logic but only in a 
collection of prelogical marks and symbols and in a set of operations with 
these marks. The consistencies of various branches of mathematics are an 
important and necessary part of the formalist program. Freedom from con-



 19 

tradictions is only guaranteed by consistency proofs. However, Gödel 
showed in 1931 by methods acceptable to the followers of any of the three 

principal schools of the philosophy of mathematics, that the consistency of 
the formal systems known to be adequate for the derivation of mathematics 
cannot be demonstrated by finitary methods formalised within the system, 
whereas any system known to be safe in this sense is totally inadequate to 
describe a significant part of mathematics (e.g. Benacerraf and Putman, 
1998).   

Thus, the three schools presented above hold different epistemological 
views on proof but, at the same time, proof is very central in all of them. 
They also hold different ontological perspectives on mathematics. An onto-
logical question is whether we for example, consider mathematics to be the 
discovery of truths about structures that exist independently of the activity or 
thought of mathematicians (a platonistic view). Then the truth of mathemati-
cal propositions is not determined by the rules we adopt, but rather by the 
correspondence between the propositions and the mathematical structures to 
which the terms in those propositions refer (e.g. Benacerraf and Putman, 
1998). This is a common working perspective for mathematicians (Davis & 
Hersh, 1981) and often connected to the formalist school. Opposite to this 
view, mathematics can be seen as an activity in which the mathematicians 
play a more creative role. Then propositions are true if they follow from the 
assumptions and definitions we have made. The assumptions, definitions and 
methods of proof constitute the rules determining the truth or falsity of the 
propositions formulated in their terms. This is called a conventionalist view 
on mathematics (Fosgerau, 1992).  

The three philosophical schools described above, deal with the question 
of what an acceptable mathematics should be like: what methods, practices, 
proofs, and so on, are legitimate and therefore justifiably used. Characteristic 
of the creators of the three schools is that they are mathematicians rather 
than philosophers, and they criticise the foundations of their subject 
(Benacerraf & Putnam, 1998). In contrast, there are those who do not want 
to propagate certain mathematical methods as the only ones acceptable, but 
who want to describe the accepted and used ones (Benacerraf & Putnam, 
1998). Hersh (1998) and Ernest (1991; 1998b) have defended, by building 
on Lakatos’ ideas, a fallibilist approach to the philosophy of mathematics. 
Both Hersh and Ernest have influenced the discussions and research on proof 
in the field of mathematics education2. Hersh (1998) considers the criteria 
for a philosophy of mathematics and claims that a socio-historical approach 
gives better answers to the main philosophical questions concerning mathe-
matics than the philosophy of the three schools presented above. He criti-
cises the creators of “foundationist” philosophy of mathematics for turning 

                               
2 Paul Ernest has even developed a social constructivist philosophy of mathematics education 
where he draws on the ideas about his philosophy of mathematics (Ernest, 1991).  
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philosophical problems into mathematical problems. Hersh wants to think of 
philosophy of mathematics, not as a branch of mathematics, but as a phi-
losophical enterprise based on mathematical experience. 

Whatever one thinks about this, the classical period was a dynamic period 
and the three schools influenced and criticised each other’s work. What is 
important to my work is that all these schools have also influenced mathe-
matical practice and proof as they are today. Using a socio-cultural perspec-
tive to my object of study does not entail an agreement with Ernest (1998b) 
who questions the grounds for, not only mathematical but even logical as-
sumptions made in proofs. Moreover, the question about the fallibility of 
mathematical knowledge is irrelevant for my study. In my study it is impor-
tant to describe how ordinary working mathematicians relate to their practice 
and proof and what the character of the mathematics and proofs is that stu-
dents are expected to learn and participate in, in the practice. Further, every-
day mathematicians seem to not bother about the philosophical discussions 
about the foundations of mathematics but agree on the certainty of a great 
part of mathematical knowledge. They think that the criteria for accepting 
new theorems are internationally similar and thus more objective than crite-
ria for other sciences. 

“Mathematics as we practice it is much more formally complete and precise 
than other sciences, but it is much less formally complete and precise for its 
content than computer programs… Mathematicians can and do fill gaps, cor-
rect errors, and supply more detail and more careful scholarship when they 
are called on or motivated to do so. Our system is quite good at producing 
reliable theorems that can be solidly backed up. It’s just that the reliability 
does not primarily come from mathematicians formally checking formal ar-
gument; it comes from mathematicians thinking carefully and critically about 
mathematical ideas.” (Thurston3, 1994, p. 170)  

This is also important for the newcomers in the community of mathematical 
practice. They have to learn the commonly accepted rules of reasoning and 
the body of mathematical knowledge that is exercised in the community of 
practice of mathematics at the department they enter. In my work, I look at 
proof very broadly and include derivations of formulas in the notion of 
proof. This is in line with the view held by many mathematicians and stu-
dents in my study.    

To sum up this section, I first described some aspects in the history of 
mathematics relevant for the contemporary view of proof. I then presented 
the three philosophical schools, logicism, constructivism and formalism and 
their epistemological views on mathematics and proof. Finally, I declared 

                               
3 William Thurston is one of the most famous contemporary mathematicians and winner of 
the Fields Medal. 
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my stances concerning how I view proof in mathematical practice in my 
study.  

In the next section, I will introduce the reader, very briefly, to the field of 
mathematics education research on proof. 

1.4   Proof in mathematics education research 

Proof is a vital issue in mathematics education research today. There has 
been an explosion of articles and research papers published on this topic 
during the last two decades. The rich variety of meanings and uses of 
mathematical proof in mathematical practice corresponds to a complexity in 
the educational field. But, as Mariotti (2004) points out, while for mathema-
ticians the mathematical complexity is the foremost problem regarding 
proof, for the students proof is above all a problem of meaning, and educa-
tors have to devise teaching contexts which make proof meaningful to them.  

Many mathematics education researchers have discussed different func-
tions of proof and considered their significance for mathematics education. 
Bell (1976) was one of the first in mathematics education research to deal 
with the nature and the role of proof in mathematics in relation to mathemat-
ics education. De Villiers (1990) presented the following model for the func-
tions of proof which is an expansion of Bell’s (1976) original distinction 
between the functions of verification, illumination and systematisation.  

• Verification (concerned with the truth of a statement) 
• Explanation (providing insight into why it is true) 
• Discovery (the discovery or invention of new results) 
• Systematisation (the organisation of various results into a deduc-

tive system of axioms, major concepts and theorems) 
• Communication (the negotiation of meaning and transmission of 

mathematical knowledge) (de Villiers, 1990, p. 18) 

De Villiers’ categories above have found a shared consensus among re-
searchers in the mathematics education community and have been applied in 
many research projects and articles (e.g. Almeida, 2000; de Villiers, 1991; 
Hanna, 2000; Knuth, 2002; Weber, 2002). Hanna (2000) added to the model 
of de Villiers the following three functions: 

• Construction of an empirical theory 
• Exploration of the meaning of a definition or the consequences of 

an assumption 
• Incorporation of a well-known fact into a new framework and thus 

viewing it from a fresh perspective (Hanna, 2000, p. 8) 

Further, Weber (2002) considers the functions of proof in teaching of 
mathematics and states that besides proofs that convince or/and explain there 
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are proofs that justify the use of definition or an axiomatic structure and 
proofs that illustrate technique. The functions of conviction/explanation in 
connection to proof, in particular, have been discussed in mathematics edu-
cation research  (e.g. de Villiers, 1990; Hanna, 2000; Hersh, 1993) and these 
considerations have led to a lot of empirical studies. I will come back to 
these considerations later in Chapter 2. 

The epistemological distinctions between different functions of proof de-
scribed above have also been important for my study, since I apply a socio-
cultural approach in my work and, consider proof as an artefact (see p. 38) 
in mathematical practice. Thus, proof is considered as a tool, not only for 
generation of new mathematical knowledge but for all the functions pre-
sented above.  

So far, studies on a variety of topics relating to proof have been con-
ducted in the mathematics education community. These topics include the 
following aspects: students’ difficulties when constructing proofs (e.g. Bell, 
1976; Moore, 1994; Selden & Selden, 1995; Weber, 2001), different levels 
of proving identified in students’ efforts (Balacheff, 1988; Bell, 1976; 
Godino & Recio, 2001; Miyazaki, 2000), how to renew the treatment of 
proof using new approaches with students’ investigations (Alibert, 1988; 
Haddas & Hershkowitz, 1998, 1999; Schalkwijk, Bergen, & Rooij, 2001), 
the use of technology in teaching of proof (Jones, 2000; Laborde, 2000; 
Mariotti, 2000) and how to help students in transition to more formal proof 
(Chin & Tall, 2000; Moore, 1994). There are also studies about students’ and 
teachers’ beliefs and conceptions about proof (Almeida, 2000; Chazan, 
1993; Dreyfus, 2000; Knuth, 2002) and the role of logic and/or structure in 
understanding and constructing proofs (Leron, 1983; Selden & Selden, 
1995). There have also been micro level studies about students’ argumenta-
tion (e.g. Garuti, Boero, & Lemut, 1998; Pedemonte, 2001; Reid, 2003; 
Simon, 1996), for example the relation between inductive, abductive and 
deductive thinking and students’ understanding of conditionality. Proof and 
applications have been focused on by Hanna and Jahnke (1993). Besides all 
these topics there are research studies where the focus is on special kinds of 
proofs, for instance proof by contradiction, proof by mathematical induction, 
proof in calculus, geometrical proofs, informal proofs, visual proofs and so 
forth.    

Most of the studies mentioned above were conducted within a cognitive 
paradigm. Many researchers in the field have been influenced by Piaget’s 
stage theory and constructivism4 when they have set up different stages in 
the pupils’ reasoning abilities (e.g. Balacheff, 1988; Harel & Sowder, 1998; 
Miyazaki, 2000). Furthermore, van Hiele’s levels about the developmental 
stages in a child’s geometrical learning are based on a view of an individual 

                               
4 Constructivism here refers to a learning theory and means something else than constructiv-
ism in mathematics (see p. 18). 
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who goes through different phases in a certain order and thus, are related 
with Piaget’s theory and constructivism. Van Hiele levels have led to a lot of 
cognitive, empirical studies (e.g. Silfverberg, 1999) and also influenced the 
mathematics teacher education in Sweden.  

Studies on proof have recently been carried out employing socio-cultural 
approaches (e.g. Herbst, 2002a; Herbst, 2002b). Hoyles (1997) questions the 
existence of a universal hierarchy of students’ ability of proving and points 
out that there are big differences between different countries concerning the 
treatment of proof. She also shows how curriculum changes influence stu-
dents’ views on proof. Knipping (2001a) compares French and German 
classrooms and analyses the differences in form and function of proof in 
these environments. She examines the impact of culturally-embedded class-
room practices on the teaching and learning of proof. Proof in textbooks has 
also been in focus of some studies.  Hanna and de Bruyn (1999) investigate 
the opportunity to learn proof in Ontario grade twelve mathematics texts. 
Cabassut (2005) compares argumentation and proof in French and German 
curricula and upper secondary school textbooks. I have studied how proof is 
dealt with in Swedish upper secondary school textbooks (Nordström & Löf-
wall, 2005).  

There are not many studies on proof in mathematics education conducted 
in Sweden. However, there has obviously been concern about development 
in the upper secondary school curriculum where geometry got a diminished 
place after the “new math” period (Råde, 1986). Råde conducted a survey 
among university students at Chalmers University of Technology  about how 
students described their upper secondary school experiences regarding proof. 
I found some similarities between his survey and my pilot survey 
(Nordström, 2003) 20 years after his survey. For example, there was a retro-
spective question about how often students had met proof in upper secondary 
school. The answers were quite similar to those in my study. There was a 
group of students in Råde’s study, who stated that they never dealt with 
proof in upper secondary school. This was also the case in my pilot study. 
Another question concerned how students related to proof and if they wanted 
to have more proof in upper secondary school than they themselves had had. 
A majority of them answered yes to this question. In my questionnaire, an 
even bigger percentage of students related positively to the statement “I 
would like to have learned more about proof in upper secondary school”. 
However, it is difficult to compare the results more deeply because of the 
differences in the design of the questionnaires.  

Two decades after Råde’s survey, some qualitative studies concerning 
students’ ability to examine, make conjectures and justify their conjectures 
were conducted by Bergqvist (2001) who applied Balacheff’s (1988) classi-
fication of different levels of students’ “proofs”. His study is about how up-
per secondary school students explore mathematics and verify their solu-
tions. How students explore and verify using mathematical induction in a co-
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operative setting has been studied by Wistedt and Brattström (2005) and 
Pettersson (2004). Pettersson focused on the interplay between the formal 
and the intuitive when students struggled to find a solution to a proving task.  

My thesis is not about how individual students learn or work with specific 
proofs but the focus is more at meta-mathematical level and on the socio-
cultural context of knowledge growth. However, in order to shed light on 
different aspects of proof that students might meet in the community of 
mathematical practice at a mathematics department, I use the results and the 
theories obtained from didactical studies conducted in the field and combine 
them with a socio-cultural perspective and Lave and Wenger’s (1991) and 
Wenger’s (1998) social practice theory. I will come back to some of the 
studies mentioned above in Section 2.3, when describing different aspects of 
proof in mathematics and in the teaching and learning of mathematics.  

1.5   A summary 

In this chapter, I provided some background for the thesis. In the first sec-
tion, I gave an account of the development of my research. I went on de-
scribing very briefly the changes regarding the role of proof in the curricu-
lum, during the last three decades, at the department that is the focus of my 
study. I then provided a short description about proof from a historical and 
philosophical point of view in order to shed light on the complexity of the 
notion of proof. Finally, the fourth section was a brief introduction to the 
field of proof in mathematics education research. In the following chapter, I 
will clarify the theoretical positions of my study.  
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2   Theoretical framework 

My thesis is about proof in mathematical practice at a mathematics depart-
ment. I examine the role of proof in this practice, mathematicians’ pedagogi-
cal views and intentions, students’ experiences and how students are drawn 
to share the views and the knowledge of proof of mathematicians. Hence, the 
key elements in my study are proof, mathematical practice, mathematicians’ 
pedagogical views and students’ learning experiences. In order to create a 
theoretical frame that addresses these elements I first looked at learning 
theories. In the first section of the chapter, I justify and describe the choice 
of the theoretical frame for the thesis. In the second section I elaborate the 
central theoretical notions applied in my work and define and describe the 
unit of analysis for the object of my study that is a community of practice of 
mathematics at a mathematics department. 

Besides the learning theories relating to ontological and epistemological 
assumptions and commitments, I also looked at theories and research about 
proof in mathematical practice and in mathematics education, so that I could 
place my concerns in historical and cultural contexts and locate sources of 
similar ideas in the past. Thus, in the last section of the chapter, I create a 
conceptual frame about aspects of proof and relate these aspects to the cen-
tral theoretical notions presented in Section 2.2. 

2.1   The overall theoretical frame in which the 

research questions are embedded 

A lot of research on proof in mathematics education is conducted within a 
constructivist paradigm (see p. 22). Constructivism deals with the cognitive 
aspects of the individual learner. Piaget whose model of human mental op-
erations was essential for the constructivist theories, focused on the adaptive 
and constructive activity of the individual across development stages and not 
so much on influences of the environment (Bruner, 1996; Renshaw, 2002). 
Wood (1988) describes the shift from behaviourism in the learning theories 
to adoption of Piaget’s theory in the following way: Piaget’s theory places 
action and self-directed problem-solving at the heart of learning and devel-
opment.  
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“As psychologists studying learning began to entertain ideas about intrinsic 
motivation and the importance of activity and mastery for its ‘own sake’, 
Piaget’s theory provided a compatible and already well-developed approach 
to the study of learning development.” (Wood, 1988, p. 5)  

During the 1980s Ernst von Glasersfeld, strongly influenced by Piaget pre-
sented a view of “coming to know” in mathematics, which he referred as 
Radical Constructivism (Jaworski, 1999). He laid out its two basic princi-
ples: 

• Knowledge is not passively received but built up by a cognising 
subject;  

• The function of cognition is adaptive and serves the organisation of 
the  experiential world, not the  discovery of ontological reality 
(Glasersfeld, 1995). 

Radical constructivism of von Glasersfeld has influenced mathematics edu-
cation research in particular, during the last three decades (e.g. Hanna & 
Jahnke, 1996; Nickson, 2000).  

In my research, I am not exploring the cognitive aspects of the individual 
learner concerning her ability to construct proof in isolation from her learn-
ing histories and the socio-cultural context, but the analytical focus is more 
on the roles of socio-cultural contexts in knowledge growth. However, the 
knowledge about Piaget’s theory and its influence on the radical constructiv-
ism of von Glasersfeld and the social constructivist theories is important for 
me when analysing the research articles on the teaching and learning of 
proof. Many of the studies framed by constructivist theories on the teaching 
and learning of proof offer valuable aspects of proof for the conceptual 
frame for analysing the mathematicians’ and the students’ utterances and 
linking them to the previous results in the field of proof. I will come back to 
these studies later in the last section of the chapter. 

Vygotsky places far more emphasis than Piaget does on the role played 
by culture and its systems of symbols, for example language (Wood, 1988). 
Most of the approaches that are called socio-cultural are associated with the 
Vygotskian school of thought and they all promote a vision of human think-
ing as essentially social in its origins and dependent on historical, cultural 
and situational factors (Kieran, Forman, & Sfard, 2002). Vygotsky stresses 
that the individual learns by being socialised into a culture.  

“It is necessary that everything internal in higher forms was external, that is, 
for others it was what it now is for oneself. Any higher mental function nec-
essarily goes through an external stage in its development because it is ini-
tially a social function…Any higher mental function was external because it 
was social at some point before becoming an internal, truly mental function.” 
(Vygotsky, 1981, p. 162). 
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According to the socio-cultural perspective, learning is an aspect of interre-
lated historical, cultural, institutional and communicative process (Renshaw, 
2002). In my study, I want to situate the issue of proof in mathematics edu-
cation in its historical and cultural context, so I consider a socio-cultural 
approach as more appropriate for my area of study and the units of analysis, 
than the purely cognitive approaches.  

However, different theories have been developed from Vygotsky’s ideas 
and there is not only one socio-cultural theory. For me it is important to view 
a person as an active part of the world but at the same time, to a certain ex-
tent, formed and influenced by the environment. The perspective of Lave 
and Wenger (1991) provides a bridge between cognitivist perspectives and 
sociological perspectives because their theory of social practice “emphasizes 
the relational interdependency of agent and world, activity, meaning, cogni-
tion, learning, and knowing.” (ibid., p. 50) Lave and Wenger’s theory of 
legitimate peripheral participation (LPP) emphasises “connecting issues of 
socio-cultural transformation with the changing relations between newcom-
ers and old-timers in the context of a changing shared practice.” (ibid., p. 49) 
Their theory aims to shift the discussion about learning beyond the issues of 
cognition to those of participation and identity. Lave and Wenger consider 
learning as increasing participation in communities of practice, which con-
cerns the whole person acting in the world. This is something I found rele-
vant for both the mathematicians and the students in my study, when learn-
ing, teaching, practicing/exercising and experiencing mathematics. Further, 
the primary unit of analysis in Lave and Wenger’s (1991) and Wenger’s 
(1998) theory is neither the individual nor social institutions but communi-
ties of practice.  

 “… a community of practice is a living context that can give newcomers ac-
cess to competence and also can invite a personal experience of engagement 
by which to incorporate that competence into an identity of participation.” 
(Wenger, 1998, p. 214)  

Wenger (1998) points out that participation in any cultural practice in which 
any knowledge exists is an epistemological principle of learning. For exam-
ple, mathematicians do not stop learning mathematics when they have taken 
all the obligatory courses, since they stay in the community of mathematical 
practice. In my research, I also include researching and obtaining new 
mathematical knowledge in learning (see p. 34).  

In my study, I explore mathematicians’ views and intentions, textbooks 
and lectures and the organisation of teaching of proof and students’ partici-
pation in and their experiences with proof in their mathematical practice. 
According to Wenger, structuring resources for learning come from a range 
of different sources, not only the intentional teaching. Hence, much learning 
takes place without teaching, and much teaching takes place without learn-
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ing. Pedagogical intentions create a context in which (the intended) learning 
can take place. Teachers, lectures, lessons and instructional materials, like 
textbooks, become resources for learning in complex ways and, as Wenger 
points out, an important question is how the planned and the emergent inter-

act.  

“Pedagogical debates traditionally focus on such choices as authority versus 
freedom, instruction versus discovery, individual versus collaborative learn-
ing, or lecturing versus hands-on experience. But the real issue underlying all 
these debates is the interaction of the planned and the emergent.” (Wenger, 
1998, p. 267) 

I do not mean that the organisation of learning environments mentioned in 
the quotation above would not be important to discuss and research on in the 
mathematics education community. However, in my work none of them are 
especially in focus. All of them combined in various ways, together with 
instructional materials and together with mathematicians’ intentions, create 
the structuring resources (the planned) for learning. I contrast the mathema-
ticians’ views and intentions with students learning experiences to examine 
the interaction between the planned and the emergent (Chapter 6). This in-
teraction, which is an ongoing process, may be exemplified as follows. A 
teacher, who is just one but a very important actor, is planning a lecture and 
makes a lot of choices of what to focus on in the presentation. Students who 
are following the lecture may focus on those aspects but also on aspects that 
were not at all intended by the teacher. I will come back to this when de-
scribing the condition of transparency of proof (see p. 60).  

Hence, I use a socio-cultural perspective and the social practice theory of 
Lave and Wenger (1991) and Wenger (1998), to examine and give structure 
to the object of my study. The practice I am studying is the practice of peo-

ple exercising/sharing university mathematics at a mathematics department. 
I want to define mathematicians’ participation as well as students’ participa-
tion in this practice with a special focus on students’ access to proof. The 
notion of community of practice provides me with an appropriate level of 
analysis.  

There are studies in mathematics education that apply Lave and Wenger’s  
and Wenger’s theories, for example to describe and explain student and 
teacher learning in the field of mathematics (e.g. Adler, 2000; Boaler, 1999; 
Graven, 2004; Santos & Matos, 1998). Wenger’s theory about communities 
of practice has also been employed by Burton (2004) in her study on how 
mathematicians talk about their practice. Santos & Matos (1998) apply the 
theory on how students use the Pythagorean theorem in problem solving. 
However, I have not found examples of research on proof embracing a social 
practice approach. 
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It happens that learning theories are connected with different teaching 
methods. This is natural because learning theories offer views on how a per-
son comes to know and what knowledge is. For me a socio-cultural approach 
means that a social construction of knowledge has always taken place eve-
rywhere where people have had something to do with each other and what-
ever approaches researchers have used in their research. Even reading a book 
or quietly struggling with a mathematics problem or trying to follow what a 
lecturer is talking about can be seen as a social action or negotiation of 

meaning (see p. 35). Therefore, I want to distinguish a learning theory from 
teaching methods and I do not want to advocate certain methods solely be-
cause I embrace a certain approach to examine the issue of proof. For me, 
the socio-cultural perspective and the theories of Lave and Wenger and 
Wenger is an analytical viewpoint on learning and I hope it helps me to shed 
a new light on the key aspects of students’ learning experiences and the 
problems they talk about regarding the learning and the understanding of 
proof. The theory for me is not a recipe but “it can act as a guide about what 
to pay attention to, what difficulties to expect and how to approach prob-
lems”. (Wenger, 1998, p. 9) 

In this section, I have introduced the theoretical stances in my study con-
cerning the learning theories and the ontological and epistemological as-
sumptions and commitments. In the next section I elaborate the central no-
tions of the socio-cultural perspective and Lave and Wenger’s and Wenger’s 
theories as applied in my study.  

2.2   Key assumptions and central notions 

I start the examination of the central notions of the socio-cultural perspective 
and Lave and Wenger’s (1991) and Wenger’s (1998) theories very broadly 
by focusing on the notion of culture; follow it by zooming in on a commu-
nity of practice and the issue of learning and how it is defined in the social 
practice theory of Lave and Wenger and Wenger. I go on to examine funda-
mental notions like negotiation of meaning. I exemplify the central notions 
with my area of study. I conclude the section by defining and describing 
proof as an artefact in mathematical practice. 

 2.2.1   Culture and communities of practice  

According to Vygotsky, all human development is learning from others in 
some sense, from the culture that precedes us. As we grow up we become 
socialised in a culture. How does the notion of culture relate to communities 

of practice that are the units of analysis in Lave and Wenger’s and Wenger’s 
theories? 
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The notion of practice is defined as “doing in a historical and social con-
text that gives structure and meaning to what we do.” (Wenger, 1998, p. 47) 
Hence, mathematical practice is doing in a historical and social context and 
includes, for example, its special language, symbols, tools, documents, 
specified criteria and well-defined roles, that give structure and meaning to 
what people in that practice do. Lave and Wenger (1991) talk about culture 
as something that influences the lives of the communities of practice. For 
example, in my study, the community of mathematical practice at the 
mathematics department has its own culture, which is influenced by the cul-
ture in which it is embedded and by the cultures that the individuals partici-
pating in the practice come from. In my study, some of the mathematicians 
and the students, for instance, come from countries other than Sweden, and 
they may have different traditions concerning proof in mathematics educa-
tion than the Swedish mathematicians and students have. All the members 
influence the culture, each in an individual way. At the same time they are 
all influenced by the culture of the mathematical practice. 

 
 

 
Figure 2   Cultures and communities of practice 
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2.2.2   The community of practice of mathematics at a 

mathematics department  

According to Wenger (1998), a practice defines a community through three 
dimensions: mutual engagement, a joint enterprise and a shared repertoire. 
Next, I relate the practice of mathematics at the mathematics department to 
these three dimensions. I want to study mathematicians’ participation as well 
as students’ participation in this practice with a special focus on students’ 
access to proof. Hence, I include the newcomers in the practice. 

The mathematical practice resides in a community of people and the rela-
tions of mutual engagement by which they are engaged in studying, teach-
ing/explaining, learning and communicating mathematics. Mutual relations 
of engagement give rise for both differentiation and for homogenisation. The 
members in the community of mathematics at the mathematics department 
distinguish themselves as well as they develop shared ways of doing things. 
A mathematician and a student as members of the community have very 
different status with respect to daily work and authority. But also each 
mathematician as well as each student has a unique place and gains a unique 
identity in the community. There can, for example be a variety of views on 
proof and its role in mathematics and the teaching and learning of mathemat-
ics in the mathematical practice.  

Communities of practice develop in larger contexts – historical, social, 
cultural, institutional – with specific resources and constraints. The mathe-
matical practice at a mathematics department is institutionally a part of the 
academic world with all its traditions. It is also located in a special historical 
stage of the development of mathematics (see the introduction) and its rela-
tions to other disciplines. Further, it is a part of the Swedish culture conform-
ing to the demands of democracy and justice and all that this entails. Some 
of the conditions and requirements of these larger contexts are explicitly 
articulated, some are implicit relations and tacit conventions. In organising 
the learning environments for the newcomers, there are a lot of traditions, 
both articulated and not articulated which both guide the enterprise but also 
constrain it. Mathematicians and the students when sharing with mathemat-
ics share it in the frame of the historical conditions of the practice including 
the lectures, textbooks, lessons, individual home-works, preparations of the 
lectures, research, seminars, examinations and other forms of participation. 
Practice is defined by the participants in the very process of pursuing it.  

What is shared by both mathematicians and students as a joint enterprise 
in the practice? I argue that the learning in the sense Wenger (1998) defines 
it (see Section 2.2.3) and the enhancing of learning and hence, developing 
and maintaining the practice can be seen as a joint enterprise. All the mem-
bers are engaged in the learning of mathematics and all of them use partly 
the same tools even if they are on different levels of learning. Newcomers 
are learning on a basic level and being enculturated (as active agents) in the 
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practice. Many students are also teaching mathematics for other students. 
Mathematicians are teaching, supervising, researching and, at the same time 
learning and enhancing the learning of mathematics. I argue that, in accor-
dance with Wenger’s theory of learning, researching mathematics can be 
also seen as learning (see p. 34). 

The shared repertoire in a mathematical practice reflects its history of 
mutual engagement (see Section 1.3). It includes routines like organising 
certain courses, seminars and examinations, but also words and symbols 
specific for the mathematical language, particular computer software, speci-
fied criteria for justifying knowledge in mathematics (proof), regulations and 
contracts, for example about how to proceed in the practice, and all the con-
cepts the community has produced and adopted in the course of its existence 
and which have become part of its practice. The repertoire combines both 
reificative and participative (see Section 2.2.4) aspects. It is by its very prac-
tice – not by other criteria – that a community establishes what it is to be 
competent participant, an outsider, or somewhere in between. 

Participation in the community of practice influences the identities of all 
the participants in relation to other practices and communities. Their position 
in the community also influences their identities in relation to the own prac-
tice. Learning events and participation depend on the engagement they af-
ford and their location on the trajectories.  

There can be various types of trajectories when proceeding in the com-
munities of practice and the concepts of centrality and peripherality have a 
relative character. For old-timers there are insider trajectories because the 
formation of identities does not end with full membership. The evolution of 
practices continues; new demands, new technology, new generations all 
create occasions for negotiating one’s identity. There are newcomers who 
aim to become full participants in the practice even though their present par-
ticipation may be peripheral. By choice or by necessity, most trajectories in 
the community of mathematical practice at the mathematics department 
never lead to full participation, but they may well provide a kind of access to 
a community and its practice that becomes significant enough to contribute 
to one’s identity. Lerman (2002) points out that when a person enters a prac-
tice, there is a sense in which he or she has already changed. A person who 
starts to study mathematics has an orientation towards the practice from the 
beginning, or has goals that have led the person to the mathematical practice, 
even if he or she leaves the practice after a short time. This is something I 
see very clearly in the university entrants’ responses to the questionnaire 
about how they relate to proof and proving (see Section 5.2.1).  

Finally, there are also trajectories for so called brokers. They do not aim 
for full participation but a multimembership in two or more communities of 
practice.  Brokering requires the ability to link practices by introducing into 
one practice elements of the other. Most of the members in the community 
of mathematical practice at the mathematics department stay on the periph-
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ery for a while and some of them might, after that, become brokers between 
the mathematical practice and some other practices, for example other aca-
demic institutions, practices of physics, biology, economy or schools.  

Of course, we all participate in many different communities and constella-
tions. Hence, our membership in a community of practice is only a part of 
our identity and identity is more than a single trajectory. So we can be 
viewed as a “nexus of a multimembership.” (Wenger, 1998, p. 158)  

Burton (2004) discusses the community of practice of mathematics from 
the perspective of researching mathematicians. Also Wenger (1998) uses 
academic communities as an example of how the doctoral students get ac-
cess to these communities (ibid., p. 101). The practice in my study is some-
what different from those of Burton’s study and Wenger’s example even if it 
is overlapping with them. I include in the practice also the newcomers who 
will never become mathematicians but will stay in the community of 
mathematics for a short time.  

My interest is the role of proof in this practice and how mathematicians 
and newcomers approach it. I examine what intentions and pedagogical per-
spective mathematicians have regarding the teaching of proof, on the one 
hand, and how students in different locations in the practice talk about their 
experiences and their engagement on the other hand. As proof is a central 
part of mathematical practice at a mathematics department and the university 
entrants consider proof as an important part of mathematics (see p. 150), 
students’ relation to proof can be significant for how they relate themselves 
to the practice. 

2.2.3   Knowing and learning 

Because participation in social practice suggests a very specific focus on the 
person, not as an isolated unit of analysis but as a person-in-the-world and as 
a member of a socio-cultural community, knowing is seen to be an activity 
by specific people in specific circumstances, in my study persons doing, 
teaching, learning and communicating mathematics. The primary focus in 
this theory is on learning as social participation in practices of social com-
munities and constructing identities in relation to these communities and 
experiencing the world and our engagement in it meaningful (Wenger, 
1998).  

Wenger defines four components necessary to characterise social partici-
pation as a process of learning and knowing. They are learning as doing 
(practice), learning as belonging (community), learning as experience 
(meaning) and learning as becoming (identity). These four components are 
seen to be mutually defining and interconnected. For example participation 
in the mathematical practice is doing and learning mathematics and in that 
way belonging to the community of people who learn and practice mathe-
matics. The practicing of mathematics and belonging to the community are 
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experienced in various ways by newcomers and old-timers, and these experi-
ences influence their identities in different manners.  

A defining characteristic of participation is the possibility of developing 
an identity of participation. Building an identity consists of negotiating 
meanings of our experience in social communities (Wenger, 1998, p. 145). 
One’s identity is always changing; it is a constant becoming. When we come 
into contact with new practices we do not know how to interact, we cannot 
make use of the repertoire of the practice and so on. Our non-membership 
shapes our identities through our confrontation with the unfamiliar. Periph-

eral participation involves a mix of participation and non-participation 
where the participation-aspect is dominating whereas marginality involves a 
restricted form of participation where non-participation is dominating and 
disabling participation (Wenger, 1998). For example, for students the possi-
bility to participate in different kinds of activities around proof can develop 
their identity of participation in the mathematical practice if they can follow 
and experience meaning in them. Conversely, not being able to follow and 
find a meaning in the activities can lead to the development of an identity of 
non-participation in mathematical practice, because the students already at 
the beginning of their studies view proof as a central part of mathematics 
(see p. 150).  

Lave and Wenger (1991) state that newcomers’ legitimate peripherality 
involves participation as a way of learning, which is both absorbing and 
being absorbed in the culture of practice. For example, the students in the 
mathematical practice have a possibility to make the culture of practice 
theirs when they gradually assemble a general idea of what constitutes the 
practice of the community. They increase their understanding of how and 
what mathematicians (old-timers) do, what they respect and admire. Partici-
pation offers examples about how the masters or teaching assistants (more 
advanced apprentices) work, how the finished products, like proofs, look etc. 
All these examples are, according to Lave and Wenger, grounds and motiva-
tion for learning activity. 

I argue that Wenger’s (1998) definition of learning entails that also 
mathematicians, by participating in the practice are learning. Learning in the 
community of practice occurs on different levels. Newcomers are learning 
on a basic level but, when they, for example struggle with a proving task, 
they are engaged in an enterprise, closely related to that of researching 
mathematicians. The distinction is that students are struggling with mathe-
matics that is known by the community, whereas mathematicians are work-
ing with creating new mathematics. In my study, in accordance with 
Wenger’s definition of learning, the creating of new mathematics is also 
seen as learning, since for example finding new theorems and proofs leads to 
more intense participation in practice and leads to changing identities in 
relation to other participants as well as to people outside the practice. Re-
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searching mathematicians are also learning from other mathematicians and 
new fields when they participate in conferences and read articles. 

This is an epistemological question about the character of teaching and 
learning and their mutual relation. Within the transmission paradigm (behav-
iourism) researching and finding of new knowledge is not seen as learning, 
because teaching and learning is viewed as transmission of the known (quite 
stable) body of knowledge from experts to those who do not “own this 
knowledge”. Within a constructivist paradigm researching and constructing 
of new knowledge is seen as learning by its very definition of learning. Ac-
cording to social practice theory, learning is enhancing participation in prac-
tice that leads to changing identities. As described above, researching new 
mathematics can be seen as learning within this “paradigm”. Further, all the 
four components of learning defined by Wenger (1998), presented at the 
beginning of this subsection (doing, belonging, experience and becoming), 
are involved in researching mathematics.  

Does the view on researching as learning entail a platonistic view (see p. 
19) on mathematics? Not necessarily. Given the mathematical body of 
knowledge and the rules of reasoning, there are possibilities to create certain 
relations and combinations. This does not necessarily imply a platonistic 
view of an ideal world, where mathematical truths can be discovered.   

2.2.4   Negotiation of meaning 

A central notion for social practices is the process of negotiation of meaning. 
It is seen to be a fundamental process on different levels and in different 
manners in all social practices. The negotiation of meaning involves the in-
teraction of two constituent processes, participation and reification. These 
processes are fundamental to the human experience of meaning (Wenger, 
1998, p. 52). Meaning here is not to be interpreted as meaning of life in a 
philosophical sense but as an experience of something in everyday life. Ne-
gotiation does not necessarily refer to something going on between people 
but can as well be conceived as processes going on silently in one’s head. 
Negotiation constantly changes the situations to which it gives meaning and 
affects the participants. It entails both interpretation and action. This process 
always creates new circumstances for further negotiation and further mean-
ings (ibid., p. 54).  

In my study the core issue is the negotiation of meaning concerning proof 
and the role and the meaning of proof in mathematics. Next, I attempt to 
clarify how I conceive the notions of participation and reification, the two 
parts that are involved in the negotiation of meaning. 

Participation refers to a process of taking part of the practice in different 
ways. It also refers to the relations with others that reflect this project of 
participation. For example, when students grapple with their lecture notes 
and try to make sense of proofs and mathematical arguments, or when they 
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discuss a new concept with some other students or listen to the lecturer they 
participate in the practice. Participation is both personal and social. It is a 
complex process that combines doing, talking, thinking, feeling, and belong-
ing. It involves our whole person, including our bodies, minds, emotions, 
and social relations. For example, students when talking about their experi-
ences concerning proof, besides their views and thoughts, often express also 
different kinds of feelings. But as well, feelings are present in mathemati-
cians’ utterances (see p. 90).  

 
Figure 3   Negotiation of meaning 

With reification Wenger refers to projection of our meanings into the world 
and then perceiving them as existing in the world and having a reality of 
their own. Wenger uses the concept of reification very generally to refer to 
the process of giving form to our experience by producing objects that “con-
geal” this experience into “thingness” that does not only refer to matters or 
material objects but also thoughts and ideas. In doing so we create points of 

focus around which the negotiation of meaning becomes organised. So, for 
example, students can reify proof in certain ways (see p. 149) and mathema-
ticians can reify the changes in the practice in various ways (see p. 96). 

Any community of practice produces abstractions, tools, symbols, stories, 
terms, and concepts that reify something of that practice in a “congealed” 
form (Wenger, 1998). In the practice of mathematics, for example mathe-
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matical symbols, definitions, theories and proofs can be seen as different 
kinds of reifications. Proof as reification can refer both to a process of prov-
ing and its product, proof. This is important for my study because I want to 
view proof also as a dynamic notion and I approach it from different direc-
tions (Figure 4, p. 42).  

 “Articulating an emotion or building a tool is not merely giving expression 
to the existing meanings, but in fact creating the conditions for new mean-
ings. As a consequence, such processes as making something explicit, for-
malizing, or sharing are not merely translations; they are indeed transforma-
tions – a production of a new context of both participation and reification, in 
which the relations between the tacit and the explicit, the formal and the in-
formal, the individual and the collective, are to be renegotiated.” (ibid., p. 68) 

In a similar way, a proof is not only formalising mathematics and organising 
it in a deductive manner but also creating conditions for new theorems and 
proofs and also a means of communication and thus production of a new 
context of both participation and reification. The newcomers in the mathe-
matical practice have not designed the mathematical theories and proofs, yet 
they must absorb a part of them into their practice. According to Wenger 
(1998) the reifications coming from outside, have to be reappropriated into a 
local process in order to become meaningful (ibid., p. 60).  

The concept of reification has been used in a variety of ways in social 
theory. There is an affinity between Wenger’s use of the concept and Sfard’s 
(1991) use of it. With reification Sfard refers to the structural description of 
mathematics. Wenger’s use of the word is more general; with reification he 
refers to both the process and the product whereas Sfard defines reification 
as “an ontological shift – a sudden ability to see something familiar in a to-
tally new light.” (Sfard, 1991, p. 19) Actually, the entire duality of opera-
tional/ structural conceptions (of the same mathematical notion) that Sfard 
discusses can be classified as reification in Wenger’s sense. Being comple-
mentary they are a process and an object at the same time and then serve as 
an example of reification in mathematics. Further, Sfard (1991) argues that 
“the ability of seeing a function or a number both as a process and as an ob-
ject is indispensable for a deep understanding of mathematics, whatever the 
definition of understanding is.” (ibid., p. 5) I will come back to Sfard’s dual-
ism and her thesis about a “vicious circle” in the next chapter about the as-
pects of proof when discussing the notion of transparency of artefacts.  

According to Wenger’s theory, participation and reification cannot be 
considered in isolation: they come as an interacting pair. Reification always 
rests on participation: for example proof always assumes a history of partici-
pation as a context for its interpretation. In turn, participation always organ-
ises itself around reification because it always involves artefacts, words, and 
concepts that allow the negotiation of meaning to proceed.  
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Wenger stresses that in general, viewed as reification, a more abstract 
formulation will require more intense and specific participation to remain 
meaningful, not less. It could mean that, for example, to experience proof as 
meaningful students would have to participate in different kinds of activities, 
involving the negotiation of meaning of proof. However, I do not fully agree 
with Wenger that a higher level abstraction in reifications in general needs to 
require more participation than struggling with a concrete problem with a lot 
of details. Abstraction in mathematics can often help us to see connections 
and structures and in that way we can use them in many occasions without 
participating in the negotiation of meaning at all levels. These kinds of ab-
stractions also offer us a means to understand problems in new contexts. On 
the other hand, one can say that behind every abstract mathematical formula 
and proof, there is a lot of participation during the history of mathematics. 
So, new generations do not need to start from a scratch. Some students in the 
focus groups that expressed participation identity regarding proof stated that 
studying of proof (a very abstract reification) made everything in mathemat-
ics simpler (see p. 187). An important question for mathematics education is 
how to obtain a level of being able to take advantage of the general results 
and understand the power of them. This issue is connected to the question 
whether and when it is better to start from concrete/abstract, and what advan-
tages there might be in starting by examples/theories (see also the about in-
ductive/deductive approaches (see, p. 47) in the last section of this chapter 
and Lerman (2000)).  

2.2.5   Proof as an artefact 

Artefact is a central concept within all socio-cultural theories although there 
are slightly different interpretations of the notion in different research pro-
jects. Artefacts are the concrete and abstract tools that mediate between the 
social and the individual (Säljö, 2005a). Vygotsky developed the concept of 
mediation in human-environment interaction to the use of signs as well as 
tools. Tool systems and sign systems like language, writing and number 
systems are created by societies during human history (Cole & Scribner, 
1978). We come to know the world and the culture by mediation through 
artefacts: for example meanings are known through language, which is also 
seen to be an artefact, and in mathematical practice meanings are mediated 
through symbols and language, for example by a teacher, another student, or 
a textbook that can be the mediator. Hence, mediation between the individ-
ual and the social occurs through artefacts. I argue in my thesis that proof 
can be seen as an important artefact in the mathematical practice and subse-
quently relate it to Säljö’s classification of artefacts.   

Säljö divides artefacts into two groups, intellectual tools like discourses 
and systems of ideas and physical tools like texts, maps and computers. He 
also talks about primary tools (for example a hammer) and symbolic tools 
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(used for communicating ideas). He states that artefacts are carriers of in-
formation. As proof is a system of ideas and used for communicating ideas it 
can be seen as an intellectual and symbolic tool (Figure 3, p. 36).  

Further, Säljö states that artefacts serve as tools for mediating in social 
practice, stabilise human practice, facilitate continuities across generations, 
co-ordinate and discipline human reasoning by suggesting how to do things.  

Proofs have mediating character about mathematical knowledge, regard-
ing how the knowledge is connected. Proof also stabilises the practice of 
mathematics, because it offers mathematicians common criteria for accept-
ing and generating new mathematical knowledge (see p. 20). The 
systematisation of mathematical results into a deductive system of axioms, 
definitions and theorems, unifies and simplifies mathematical theories by 
integrating unrelated statements, theorems and concepts with one another, 
thus leading to an economical presentation of results (de Villiers, 1990, p. 
20). Hence, proof facilitates continuities across generations because the 
axiomatic deductive way of organising mathematics makes it easier for new 
generations to reappropriate (Wenger, 1998) the mathematical knowledge 
obtained by the previous generations (see p. 37). For the same reason, proof 
also allows new generations to further new problems in mathematical 
practice. Hence, the idea of mathematical proof has made it possible to 
create a body of knowledge, a core of mathematics that is relatively stable 
from generation to generation. Finally, proof also co-ordinates and 
disciplines mathematical reasoning because of the severe demands it has on 
precision in reasoning and justifying results. Proof helps with identification 
of inconsistencies, circular arguments and hidden and not explicitly stated 
assumptions (de Villiers, 1990).  

Proof as an artefact in mathematical practice has specific functions in that 
practice. Several researchers in mathematics education have examined these 
functions and their significance for the teaching of mathematics (see p. 21). 
Also mathematicians in my study talked about proof as a tool in their 
mathematical practice in various ways (see Section 4.2).     

According to the theory of Lave and Wenger (1991) the key to legitimate 
peripheral participation in a practice is access by newcomers to its ongoing 
activity, to old-timers, and other members of the community as well as to 
information, resources, and opportunities for different kinds of participation 
(ibid., p. 101). Access to artefacts both through their use and through under-
standing their significance is crucial in order to facilitate students’ access to 
the practice of mathematics.  

Lave and Wenger introduce the concept of transparency of the artefacts. 
They use it in connection to technology but I will examine its strengths for 
describing conditions of intellectual and symbolic artefacts as well, in my 
case, in particular, proof.  
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“The significance of artifacts in the full complexity of their relations with 
practice can be more or less transparent to the learners. Transparency in its 
simplest form may just imply that the inner workings of an artefact are avail-
able for the learners.” (ibid., p. 102).  

The term transparency refers to the way in which using artefacts and under-
standing their significance interact to become one learning process. It de-
scribes the intricate relation between using and understanding artefacts 
(ibid., p. 103). There is a duality inherent in the concept of transparency; it 
combines the two characteristics invisibility and visibility. Invisibility is the 
form of “unproblematic” interpretation and integration to the activity. Visi-
bility is the form of extended access to information. This is not a simple 
dichotomous distinction but these two characteristics are in a complex inter-
play and their relation is one of both conflict and synergy (ibid., p. 103). 
Lave and Wenger (1991) illustrate this interplay by analogy to a window.  

“A window’s invisibility is what makes it a window, that is, an object 
through which the world outside becomes visible. The very fact, however, 
that so many things can be seen through it makes the window itself highly 
visible, that is, very salient in a room, when compared to, say, a solid wall.” 
(ibid., p. 103) 

Invisibility of mediating artefacts is necessary for allowing focus on, and 
thus supporting visibility of, the subject matter. Conversely, visibility of the 
significance of the artefacts is necessary for allowing its unproblematic use. 
This interplay of conflict and synergy is central to all aspects of learning in 
practice and “makes the design of supportive artifacts a matter of providing a 
good balance between these two interacting requirements.” (ibid., p.103)  

The condition of transparency is a metaphor that I find relevant in de-
scribing the dilemma of how to introduce students to proof. It is impossible 
to focus on proof without some experience of “unproblematic” use of it. 
Conversely, it can be difficult for students to understand the meaning of 
proof or learn to produce own proofs in the mathematical practice without 
any explicit focus on it. I will come back to the notion of transparency in the 
next section of this chapter, where I describe the conceptual frame about 
different aspects of proof in mathematical practice (see p. 54). 

In this section, I have described how I conceive the central notions in socio-
cultural perspective and Lave and Wenger’s (1991) and Wenger’s (1998) 
theories which I apply in my study. At the beginning of the section I de-
scribed the unit of analysis for my study: the community of practice of 
mathematics at a mathematics department. I examine newcomers’ participa-
tion in this practice with a special focus on proof. The issue of proof is em-
bedded in the theoretical frame described in Section 2.1 and in this section. 
In order to look more deeply in the special properties/approaches and func-
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tions of this artefact, I need to examine the research on and the theories 
about proof, especially in the teaching of mathematics. This is the subject of 
the next section. 

2.3   Proof in mathematical practice – the conceptual 

frame  

In the first chapter, I provided the reader with a section about the complexity 
of the notion of proof from a historical and philosophical point of view (see 
Section 1.3). In the previous section of this chapter, I first considered proof 
as reification (see p. 37). The view on proof as reification allows a focus on 
both the process of proving and the final products, proofs.  

In Section 1.4, p. 21, I presented the different roles and functions of proof 
that have gained a wide consensus in the field of mathematics education 
research. The epistemological distinctions on functions of proof are also 
important for my study because I consider proof as an artefact in mathemati-
cal practice (see p. 38). Thus, proof is considered to be a tool, not only for 
acceptance/generation of new mathematical knowledge but for all the other 
functions as well, such as systematisation and communication. The meaning 
of proof in mathematical practice is involved in all the functions of proof, 
and therefore, according to the theory of Wenger (1998), they are important 
for how newcomers experience the practice. The functions of conviction and 
explanation have particularly been in focus in mathematics education re-
search because of their relevance to mathematics teaching. But there are 
other aspects of proof that have been in focus as well. They are not functions 
of proof but rather properties of proof and how to approach proof. They il-
luminate the dynamic character of proof as reification, as both a process and 
a product (Figure 6, p. 62). 

Because the aim of the thesis is to describe what opportunities there are 
for the newcomers to learn proof, I want to, in this section, present and ex-
amine different ways of approaching proof. The aim of this examination is to 
create a conceptual frame which I can use to link my study and the data to 
the previous studies and to the main themes and controversies within the 
research on proof and the teaching and learning of proof. I have summed up 
the main themes and issues in mathematics education research on proof 
along the following aspects. All of them had an important role in the data 
analysis:   

• Conviction/Explanation 
• Induction/Deduction 
• Intuition/Formality 
• Invisibility/Visibility 
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These aspects involve two different interacting components. In Figure 4 (p. 
42), I illustrate these pairs with hints and examples of what I mean with 
them. For the illumination of these aspects, I provide examples both from 
literature concerning mathematical practice, from mathematics education 
research and from some empirical studies illuminating the concerns in the 
pedagogical debates. In doing so, I go on describing features in the commu-
nities of mathematical practice with special focus on proof as well as possi-
ble problems that newcomers may encounter when entering this practice and 
approaching proof. 

 
Figure 4   The interacting aspects of proof 

Conviction/Explanation has a different color from the other aspects in the 
figure, since, as mentioned above, this pair is different from the other aspects 
in this model in a sense that the others deal with properties of proof and how 
to approach proof whereas Conviction/Explanation refers to the functions of 
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proof. There are other functions of proof, which I will include in the concep-
tual frame. I present them in the end of this section. All the aspects in the 
frame are partly overlapping and intertwined.  

2.3.1   Conviction/Explanation 

I start the presentation of the frame by considering the notions of conviction 
and explanation. Conviction is to believe that something is true in mathemat-
ics. Explanation is about why something is true in mathematics. Convic-
tion/Explanation can be obtained by different means (communication) where 
all the other aspects are involved to various extents. For example, one can be 
convinced by examples or deductive proofs. One can get an explanation by a 
heuristic argument or a formal presentation. All this can be more or less 
visible.  

The interplay between explanation and conviction has significance to the 
component of experiencing meaning in learning. Explanation should en-
hance the personal understanding of mathematics. However, as Wenger 
(1998) points out, words like “understanding” require some caution because 
there is not a universal standard of the knowable but there is an intricate 
relation between the abstract notion of knowledge and what is understood in 
practice. If proof is to be an explanation for a person, it also depends on the 
person’s earlier experiences. Conviction offers confidence to the people 
working in the practice of mathematics because they can trust the earlier 
results and go on building new theories. In the field of mathematics educa-
tion research, discussions and research have often been concerned about 
whether inductive/deductive ways of reasoning can offer explanation and/or 
conviction. Next, I present and discuss these concerns.  

Proof as explanation 

Many mathematicians have emphasised and discussed the explanatory as-
pects of proof (e.g. Hersh, 1993; Rota, 1997). Mathematics educators (e.g. 
de Villiers, 1990; Hanna, 1995) have been concerned about whether the role 
of conviction or the role of explanation is prior in mathematics teaching and 
learning. They agree that rather than conviction, explanation is the main 
function of proof in education. De Villiers (1991), for example, states that 
students are easily convinced by textbooks, teachers or a couple of examples. 
It is certainly true that the function of proof as explanation is important in 
mathematics teaching. However, I argue that the function of conviction and 
explanation are both intertwined in a critical process of accepting mathe-
matical knowledge in mathematical practice and that is something that could 
also be focused on in the teaching of mathematics, especially at the higher 
levels.   
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Next, I discuss the view on proof as entirely an explanation and the view 
that examples cannot serve as explanations. Alibert and Thomas5 (1991) 
point out that proving and explaining seem to be two different kinds of 
mathematical activities and give an example of a remark made by Deligne6 
who wrote after having produced a very formal proof about derived functors 
and categories: 

“I would be grateful if anyone who understood this demonstration would ex-
plain it to me.” (Deligne, 1977, cited in Alibert and Thomas (1991)) 

Hence, there are proofs in mathematical practice that are correct and ac-
cepted but do not serve as explanations even for mathematicians. Further, 
even if a proof can often serve as an explanation for a mathematician there is 
no guarantee that the same proof is an explanation for a student. It depends 
on the level of proof and the experiences of the students. As Mancosu7 
(2001) points out, the concept of explanation in the classroom is not always 
the same as explanation in mathematical research. Some proofs might be 
perfect explanations for the professional mathematician but not for the stu-
dent. 

Rowland8 (1998) argues the case for wider acceptance of the appropriate-
ness and validity of generic arguments for the purpose of enlightening and 
explanation, and for more attention to the deliberate deployment of generic 
examples as didactical tools. I agree with him that generic examples often 
give an explanation, and maybe it is sometimes easier for the students to 
understand that kind of explanations than a complete proof (see p. 157).  

Hence, proof can serve as an explanation depending on the proof and on 
the prior knowledge of those who study the proof. Generic examples can 
serve as explanations too; in fact, the newcomers often prefer them as expla-
nations. Even if a proof does not always serve as an explanation, it can in-
volve other aspects that can be experienced as meaningful for the reader or 
the listener or those constructing a proof, for example aesthetics and useful 
methods for other contexts in mathematics. 

Proof as conviction 

De Villiers (1990) argues that traditionally proof has been seen almost ex-
clusively in terms of verification9 of correctness of mathematical statements, 
also among mathematics education researchers. He argues that proof is not 
necessarily a prerequisite for conviction for mathematicians but conviction is 

                               
5 Daniel Alibert and MichaelTomas are researchers in mathematics education. 
6 Pierre Deligne is one of the most famous contemporary mathematicians and winner of the 
Fields Medal.   
7 Paolo Mancosu is a researcher in the philosophy of mathematics. 
8 Tim Rowland is a researcher in mathematics education. 
9 De Villiers (1990) uses the word verification as synonym for conviction and justification. 
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probably far more frequently a prerequisite of proof. Both de Villiers and 
Hersh10 (1993) describe the confidence mathematicians feel when they have 
verified the theorem in particular cases and gathered strong inductive evi-
dence for it. When they have satisfied themselves that the theorem is true 
they start to prove it. Their point is that in such situations the function of 
such proof cannot only be verification/conviction. The mathematicians want 
to have an explanation as, according to de Villiers, quasi-empirical verifica-
tion does not provide an explanation as to why results are true. However, de 
Villiers (1990) recognises that proof can be an extremely useful means of 
verification, “especially in the case of surprising non-intuitive or doubtful 
results” (ibid., p. 19).  

Some mathematicians I talked with in my study claimed that proof was to 
convince them about the truth of the statements. They could not be con-
vinced and go on if they did not have a proof (see p. 91). I argue that convic-
tion by proof can also be important for the students depending on what we 
mean by proof and what we mean by conviction. If we think that proof exists 
in all mathematical activity where we justify every step, then the conviction 
by proof is essential. In Sweden, for example, it is usual that mathematics 
educators complain that students pursue the right answer without convincing 
themselves about the correctness of their reasoning. We are able to distin-
guish between three types of achieving conviction: conviction that comes 
from authority, conviction achieved by getting an explanation and conviction 
that comes from seeing how the facts are derived from other mathematical 
results. So, conviction as a result of critical thinking and questioning can be 
seen as desirable qualities for persons working in mathematical practice. It 
can also be something we can focus on in the teaching of mathematics, 
learning to question the “evident”.    

Proof creates critical debate 

An important value of proof is that it creates a forum for critical debate (e.g. 
Davis & Hersh, 1981). Proof is a unique way of communicating mathemati-
cal results between professional mathematicians. Selden and Selden11 (2002) 
describe how this communication takes place through proofs by examining 
the way in which mathematicians read others’ proofs. They call this reading 
for validation of proof. They claim that when mathematicians read proofs 
they act as if the theorem were in question. Further, they emphasise that 
validation appears to be instrumental in mathematicians’ learning of new 
mathematics. The validation is, according to Selden and Selden, a form of 
reflection that can be as short as a few minutes or stretch into days or more, 
but in general, it is much more complex and detailed than the corresponding 

                               
10 Ruben Hersh is a mathematician who is interested in education and philosophy of mathe-
matics.  
11 Annie Selden and John Selden are mathematicians interested in mathematics education. 
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written proof. Scrutinising proofs creates critical debate that is significant for 
the mathematical practice. There is a clear connection from the act of valida-
tion to the aspect of conviction. Critical thinking, and questioning the evi-
dent seems to be a part of the mathematical practice. Critical thinking can be 
also connected to the function of proof of systematisation (de Villiers, 1991) 
with the identification of inconsistencies, circular arguments as well as hid-
den and not explicitly stated assumptions. 

But also in exercising mathematics in mathematics classrooms proofs can 
foster critical thinking. I agree with Hanna (1995) who argues against 
mathematics educators who have accused proof being authoritarian. She 
emphasises the character of proof as a transparent argument, in which all the 
information used and all the rules of reasoning are clearly displayed and 
open to criticism. Proof conveys to students the message that they can reason 
for themselves and that they do not need to “bow down to authority.” (ibid., 
p. 46)  

Examples of empirical studies concerning the aspect of 

Conviction/Explanation 

The reason for the concerns among mathematics educators about the aspect 
of conviction/explanation seems to be that they have noticed that students do 
not feel the need for proof because they are easily convinced of the truth of 
the statement by the authority of a teacher or a textbook or by a couple of 
examples. Considerations of the relation between the aspects of conviction 
and explanation have led to various empirical studies, for example, activities 
designed at putting students into situations (often by working with a geome-
try software ) where they would feel the need for proof as an explanation for 
their findings, and cognitive research on students’ actions in such activities 
(e.g. de Villiers, 1991; Haddas & Hershkowitz, 1998, 1999). Within these 
studies students explore mathematical connections inductively, so these stud-
ies also involve the next aspect, the aspect of Inductive/Deductive ap-
proaches.  

2.3.2   Induction/Deduction  

Traditionally proof and deductive reasoning were taught in the domain of 
Euclidean geometry. The rationale for including formal geometry in the 
school curriculum was twofold: it was seen as a vehicle for teaching and 
learning of deductive thinking and as a first encounter with a formal axio-
matic system (de Villiers, 1986). As a result of the school reforms in the 60s 
Euclidean geometry as it was taught before almost vanished from the school 
curriculum in Sweden (Håstad, 2003). The axiomatic deductive approach 
that is still usual in mathematics teaching and textbooks, especially at a 
higher level, has been criticised since the 70s by Freudenthal, Hersh, Human, 
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Kline, Fischbein, Lakatos, Van Hiele and others (de Villiers, 1986). Lakatos 
(1976) called this style deductivist. “…, deductivist style tears the proof-
generated definitions of their “proof-ancestors”, presents them out of the 
blue, in an artificial and authoritarian way. It hides the global counterexam-
ples which led to their discovery.” (ibid., p. 144) Lakatos in turn advocates a 
heuristic style that, on the contrary, highlights and emphasises the problem-
situation, the logic which gave birth to the new concept (ibid., p. 144). De 
Villiers (1986) suggests a variability of approaches. “The axiomatic deduc-
tive approach may, in terms of time-saving, perhaps become more and more 
essential as students progress into higher mathematics, provided they had 
already acquired a sound understanding of axiomatic structures by their own 
participation in its construction (or as re-enacted by the teacher).” (ibid., p. 
23) This can be compared to Wenger’s (1998) description about reifications 
coming from outside, for example proofs, that students have to “reappropri-
ate” into a local process in order make them meaningful (see p. 37).  

However, it is important to point out that discussions about the relations 
between these different teaching styles are in no way a recent phenomenon 
but have been more or less common during several hundred years. The em-
phasis in mathematics education during the centuries has moved back and 
forth, lying sometimes more on the practical and heuristic approaches, some-
times on the theoretical and deductive approaches (e.g. Nykänen, 1945). For 
example, recently Lerman (2000) described an approach, which runs con-
trary to the tendency of working inductively, like from everyday examples to 
general principles. Vygotsky called this approach the ascent from the ab-

stract to the concrete (Lerman, 2000, p. 65). Lerman also gives an account 
of the results of studies about the teaching of general principles before the 
applications that support the argument for a “theoretical learning approach”. 
This questions Wenger’s assumption that the more abstract reification in 
general would always require more participation (see p. 38). Starting from 
the abstract and general may sometimes require less participation than start-
ing from the concrete.  

Attempts to find out new methods for the teaching of proof led to various 
studies on students’ own investigations, conjectures and proofs (e.g. Alibert, 
1988; Almeida, 2003; Bell, 1976; de Villiers, 1991; Haddas & Hershkowitz, 
1998, 1999; Schalkwijk et al., 2001). Bell (1976) suggests that the best way 
to achieve pupils’ appreciation of proof is likely to be cooperative, research-

type activity by the class, where investigations would lead to different con-

jectures by different pupils, and the resolution of conflicts would be made by 

arguments and evidence. This Lakatos-inspired view started a trend in 
mathematics education and in mathematics education research in the 80s and 
a lot of studies have been conducted in this spirit. These ideas have also been 
in harmony with the constructivist paradigm according to which teaching 
and learning is not the same as transmission of knowledge but knowledge 
has to be actively constructed by the learner (see p. 25). Very often the re-
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searchers also refer to the authentic ways in which mathematicians work and 
advocate such working manners for students in an early stage of their 
mathematical studies. The idea is that students should not just meet ready-
made proofs and formulae but should be able to participate in constructing 
them.  

It has to be emphasised that theorems in mathematics are not always first 
discovered by means of intuition and/or quasi-empirical methods before they 
are verified by the production of proofs. Even within the context of formal 
deductive processes as a priori axiomatisation and defining, proof can fre-
quently lead to new results. So, for the mathematicians proving can also be a 
means of exploration, analysis, discovery and invention (e.g. de Villiers, 
1990). Further, the role of empirical examples for a research mathematician 
is (besides to find out conjectures) to find the possible counterexamples be-
fore starting the attempts to find a proof for the conjecture. 

Examples of some empirical studies 

Alibert (1988) conducted a research project for undergraduate students in 
Lakatos’ spirit but not all the students were satisfied with the investigative 
working manner; they felt that it was inaccessible, not sufficiently ordered. 
They stated that they were not interested in conjectures if they did not know 
where the investigation would lead. The students who stated that they were 
satisfied with investigations also wanted to have traditional lectures. Many 
of them stated that debate was interesting when new concepts or new proper-
ties were first encountered. However, they wanted a teacher to give a clear 
summary of the lecture in order to “institutionalise the knowledge worked on 
in the debates”. This can be compared to results in two Swedish case studies 
where students first investigated some problems and then tried to prove 
them. After working together they wanted to see the “correct proof” formu-
lated by the teacher (Pettersson, 2004; Wistedt & Brattsström, 2005). The 
interplay between inductive and deductive approaches in mathematics can be 
related to the interplay defined by Wenger (1998) between participation and 
reification (see p. 37). As a pair, participation and reification refer to a dual-
ity that is fundamental to the negotiation of meaning. With inductive ways of 
working, and by conjecturing and trying to justify the conjectures, students 
participate in constructions of proofs and do not just meet the complete reifi-
cations. Of course they cannot create all the mathematics themselves but 
they do have to participate in appropriating the reifications presented to them 
as complete deductive proofs. To study a deductive proof and make sense of 
it is also a form of negotiation of meaning that involves both participation 
and reification (compare with Selden and Selden’s description of validation 
in the previous section). 

How students experience the difference between empirical evidence and 
mathematical truth has been studied by many mathematics education re-
searchers (e.g. Balacheff, 1988; Chazan, 1993; Schoenfeld, 1985). Chazan 
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(1993) identifies from the literature two sets of problematic student beliefs 
about argumentation in mathematics. The first view is that students contend 
that measuring is enough to conclude that a statement is true for sets that 
have infinite number of members (Evidence is Proof). The second view is 
that students view deductive proofs in geometry valid only for a single case 
(that is pictured in the associated diagram). This means that deductive proof 
is simply evidence for them. In Chazan’s study these aspects were explicitly 
focused in teaching on proof in order to enhance students’ understanding of 
the meaning of proof.  

The studies inspired by the new ways of approaching proof have also led 
to examinations of students’ levels of “proofs” (e.g. Balacheff, 1988; Godino 
& Recio, 2001; Harel & Sowder, 1998; Miyazaki, 2000; Nordström, 2003). 
These studies attempt to characterise students’ reasoning and set up levels or 
hierarchies about the qualities in the reasoning. The results of these studies 
also involve the aspect of Intuition/Formality, because the criteria for the 
different levels in some of the studies address the students’ ability to produce 
deductive proofs with general symbols as well. Further, some researchers 
have conducted micro level analyses about students’ reasoning concerning 
the relations (for example, if there is continuity) between inductive, abduc-
tive and deductive reasoning (e.g. Pedemonte, 2001).  

At the beginning of my thesis work I also conducted a pilot study with 
100 university entrants inspired by the study of Hoyles (1997), Almeida  
(2000) and Recio & Godino (2001) about students experiences, views and 
proving abilities. It showed that the students did not consider examples as 
proof but had great difficulties with producing deductive proofs (Nordström, 
2003). 

2.3.3   Intuition/Formality  

The aspect of Intuition/Formality is overlapping with the aspect of Induc-
tion/Deduction in a sense that working in an investigative, inductive level is 
often associated with intuitive and informal ways of reasoning. Intui-
tive/formal representations also have connections to Conviction/Explanation, 
communication and aesthetic. The interplay between the intuitive and the 
formal in mathematics also has relevance for the condition of transparency, 
which is discussed in the next subsection. 

Formality and rigour in the practice of mathematics 

Formality and rigour in mathematics are relative and context dependent con-
cepts. Hersh (1993) describes some variations in proof standards in applied 
mathematics and pure mathematics and finds great differences in the rigour 
between them, but even in pure mathematics itself. He shows with some 
examples such as computer proofs and probabilistic algorithms (see p. 20) 
how standards of rigour in the mathematical practice have changed. Further, 
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he argues that the passage from an informal, intuitive theory to a formalised 
theory (in the sense of predicate calculus) entails some loss of meaning. He 
takes an opposite standpoint of those who claim that logic can verify 
mathematical discoveries. “What mathematicians in large sanction and ac-
cept is correct. Their work is the touchstone of logic, not vice versa” (ibid., 
p. 392). He concludes that what is done in day-to-day mathematics has little 
to do with formal logic. 

Thurston (1994) discusses proof and progress in mathematics and states 
that when people are doing mathematics, the flow of ideas and the social 
standard of validity is much more reliable than formal documents. He claims 
that mathematicians are not usually very good in checking formal correct-
ness of proof, but that they are quite good at detecting potential weaknesses 
or errors in proofs. However, he stresses that attempts to make mathematical 
arguments more explicit and formal are important for mathematics (ibid., p. 
169). 

Language and symbols 

The aspect of Intuitive/Formal is closely connected to the use of language 
and symbols. The mathematical language and symbols are an important part 
of communicating mathematics and understanding the deductive ways of 
presenting mathematics. Engagement in practice requires access to reifica-
tions like symbols and language. Thurston (1994) criticises the habits of 
communication in the mathematical practice. He points out that much of the 
difficulty has to do with language and culture of mathematics, which is di-
vided into subfields.  

“Organizers of the colloquium talks everywhere exhort speakers to explain 
things in elementary terms. Nonetheless, most of the audience at an average 
colloquium talk gets little value from it. Perhaps they are lost within the first 
5 minutes, yet sit silently through the remaining 55 minutes. Or perhaps they 
quickly lose interest because the speaker plunges into technical details with-
out presenting any reason to investigate them. At the end of the talk, the few 
mathematicians who are close to the field of the speaker ask a question or 
two to avoid embarrassment.” (ibid., pp.165-166) 

He also states that the pattern is often similar to situations in classrooms, 
where mathematicians go through what they think the students ought to 
learn, while the students are trying to grapple with the more fundamental 
issues of learning, of language and guessing at mathematicians’ mental mod-
els. This is something I could see very clearly in many students’ experiences 
concerning the lectures (ibid., p. 177). 

Alibert and Thomas (1991) stress the importance of, not only letting the 
students actively engage in discovering and constructing their own mathe-
matical knowledge but finding better ways of communicating the products of 
such mathematical activities to others and improving the formalism itself. 
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This is also an aspect students in my study talked about, difficulties in find-
ing out the formal demands of the community. As mentioned in Section 1.2, 
in the practice I am studying, there are lessons for students at the basic level, 
where they have a possibility to exercise writing and communicating 
mathematics in a small group whilst receiving guidance from a more experi-
enced person, teaching assistant or a mathematician.    

Intuition in the practice of mathematics 

Many mathematicians have written about intuition (e.g. Hersh, 1998; 
Thurston 1994). Intuition is difficult to define and there are different inter-
pretations of it. Instead of trying to define intuition, I describe how mathe-
maticians talk about it.  

Hersh (1998) calls intuition an essential part of mathematics and relates it 
to visual, plausible, convincing in absence of proof, incomplete, based on 
physical model or on some special examples (close to heuristic). Further, 
intuitive is the opposite of rigorous, intuition is holistic or integrative as op-
posed to detailed or analytic (ibid., pp. 61-62). He also points out that in all 
these usages intuition is vague and changes from one usage to another. 
Thurston (1994) describes intuition in the following way: 

“Intuition, association, metaphor. People have amazing facilities for sensing 
something without knowing where it comes from (intuition); for sensing that 
some phenomenon or situation or object is like something else (association); 
and for building, and testing connections and comparisons, holding two 
things in mind at the same time (metaphor). These facilities are quite impor-
tant for mathematics. Personally, I put a lot effort into “listening” to my intui-
tions and associations, and building them into metaphors and connections. 
This involves a kind of simultaneous quieting and focusing in my mind. 
Words, logic, and detailed pictures rattling around can inhibit intuitions and 
associations.” (ibid., p. 165) 

In terms of negotiation of meaning, intuition seems to play an important role 
in the participation around reifications. An important epistemological ques-
tion is where intuition comes from. In Burton’s (2004) study mathematicians 
often related intuition to aesthetic. But instead of intuition many mathemati-
cians preferred to talk about insights. For almost all of the seventy mathema-
ticians in Burton’s study intuition was something important when working 
with mathematics. For most, the combination of knowledge and experience 
was exactly what did explain their intuitions (ibid., p. 80). 

Transition from intuitive to formal 

In mathematics, it is important to strive to come from intuitive to explicit 
presentation. The relation between the formal and the intuitive has appealed 
to many researchers in the field of mathematics education in different ways.  
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Fischbein (1987) argues that the educational problem is not the elimina-
tion of intuition, which, according to Fischbein, is impossible, but to “de-
velop new, adequate intuitive interpretations as far as possible, together with 
developing the formal structures of logical reasoning.” (ibid., p. 211) He also 
stresses that the students have to clearly understand that not everything in 
mathematics lends itself to an intuitive interpretation. Mathematics is, by its 
very nature, a formal, deductive system of knowledge. He criticises the two 
opposite didactical strategies, the one which emphasises the intuitive, picto-
rial components on one hand, and the one in which the body of knowledge is 
presented axiomatically on the other hand. He argues that both strategies 
were mistaken “because each of them considered only a half of the complex 
structure of mathematical concepts which, psychologically, are both intui-
tively and formally based.”  (ibid., p. 214)  

We can compare Fischbein’s concerns to those of Wenger (1998). 
Wenger suggests that his perspective regarding participation/reification has 
pedagogical implications for teaching of complex knowledge: an excessive 
emphasis on formalism without corresponding levels of participation, or 
conversely a neglect of explanations and formal structure, can easily result in 
an experience of meaninglessness. Further, Wenger connects the ability to 
bring the two together with creativity: on the one hand, the ability to in-
tensely involve with the reificative formalisms of a discipline; and on the 
other, to obtain a deep participative intuition of what those formalisms are 
about (ibid., p. 67). Further, he states that explicit knowledge is not freed 
from the tacit, as formal processes are not freed from informal. Hence, 
Wenger connects the intuitive more to participation and the formal to reifica-
tion.  

Applications of Lakatos’ ideas described in the previous subsection has, 
according to Hanna (1995), led many mathematics educators to downplay 
the role of formal mathematics and in particular formal proof. She agrees 
with those who stress the importance of informal methods in curriculum. 
However, she points out that the total exclusion of formal methods leads to a 
curriculum unreflective of the richness of current mathematical practice and 
a denial to both teachers and students of “accepted methods of justification 
which in certain situations may also be the most appropriate and effective 
teaching tool.” (ibid., p. 46) Hanna argues that rigour is a question of degree 
and the level of rigour is often quite a pragmatic choice. She points out that 
the teacher must judge the proper level and a more rigorous argument may 
sometimes be more enlightening. “It might be a calculation, a visual demon-
stration, a guided discussion observing proper rules of argumentation, a pre-
formal proof, an informal proof, or even a proof that conforms to strict 
norms of rigour, all depending on the grade and level and the context of in-
struction.” (ibid., p. 47) I agree with Hanna when she stresses that a proof 
would not succeed with students who never learned to follow an argument. 
“It fits the cultural context because it is aimed at an audience that has the 
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required level of experience, understands the language and has been taught 
to follow a mathematical argument” (ibid., p. 48.) These considerations also 
are relevant to the condition of transparency of proof discussed in Section 
2.3.4, in this chapter.  

Some examples of empirical studies addressing the aspect of 

Intuition/Formalism 

The considerations above have inspired mathematics education researchers 
to conduct various empirical studies (e.g. Chin & Tall, 2000; Moore, 1994; 
Pettersson, 2004). Chin and Tall (2000) studied the mathematical concept 
development of novice university students introduced to formal definitions 
and formal proof. They argue that the introduction to formal proof in 
mathematics involves a significant shift from the computation and symbol 
manipulation of elementary arithmetic and algebra to the use of formal defi-
nitions and deduction. They talk about the change in the language, from eve-
ryday informal register to formal mathematical register and from informal 
loosely speaking to formal strictly speaking mathematics. Further they de-
scribe the successive development from “definition-based” proofs to “theo-
rem-based” proofs. Even on this level informal mental images may be used 
side by side with formal concepts. Pettersson (2004) studied the interplay 
between the intuitive ideas and formal requirements with a group of under-
graduate students when working on a task in calculus. The students created a 
proof by induction putting heavy demands upon the formalisation of their 
ideas. These demands sometimes hampered the problem solving process but 
also encouraged the students to expand their search for a solution for the 
problem.   

Nardi (1996) looked at the same tension from another point of view when 
studying students’ encounter with mathematical abstraction. Students’ inter-
action with the new (formal) concept definitions was obstructed by their 
unstable previous knowledge. Students’ “concept image” construction was 
characterised by a tension between Informal/Intuitive/Verbal and the For-
mal/Abstract/Symbolic. Nardi showed that students had difficulties with the 
mechanics of formal mathematical reasoning and with applying these me-
chanics. The difficulties were linked to the fragility of students’ knowledge 
with regard to the nature of rigour in formal mathematics.  

Moore (1994) followed students during a so-called transition course 
where the students met more formal mathematical language and learned to 
construct definition based proofs. He noticed that the main difficulty for the 
students was getting started. He points out that at many colleges and univer-
sities students are expected to write proofs in real analysis, abstract algebra, 
and other abstract courses with no explicit instruction in how to write proofs. 
These considerations also have significance for the visibility of proof in the 
following section. 
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2.3.4   Invisibility/Visibility 

I originally obtained the idea of considering proof as an artefact from Adler 
(1999). She studied a bilingual mathematics classroom where she considered 
talk as a resource for mathematical learning. She argued that Lave and 
Wenger’s concept transparency (see p. 40) captured the dual function (visi-
bility and invisibility) of talk as a learning resource in the practice of school 
mathematics. Further, Adler argued that the dual functions, visibility and 
invisibility, of talk in mathematics classrooms created dilemmas for teachers. 
The first data analysis in my study, showed that the condition of transpar-
ency could be a useful tool in analysing the data in order to shed light on the 
dilemma of how to treat proof in mathematics teaching and how to enhance 
students’ access to proof and thus to mathematics. In this subsection I de-
scribe the condition of transparency regarding the treatment of proof and 
also relate it to notions closely related to it. 

The condition of transparency in relation to the teaching of proof 

Proof considered as an artefact can be seen as a resource for mathematical 
learning. According to this theory then, it needs to be both seen (be visible) 
and to be used and seen through (be invisible) in order to provide access to 
mathematical learning (Lave and Wenger, 1991). Next, I will examine how 
the concept of transparency can be related to different aspects of proof and 
proving activities and discuss the possibilities/hindrances of seeing both 
conditions (visibility and invisibility) and the interplay between them. Both 
characteristics are needed and, according to the theory, they support each 
other. To be able to focus on proof you have to have some experience of an 
“unproblematic” use of proof. Conversely, when we have gained insights 
into, say logical structures of proofs, it is easier for us to use them without 
thinking of the structure. Parallels can be drawn to language and Adler’s 
study because proof in mathematics is used as a means of communication 
and explanation. 

By the first condition, visibility, I refer to the different ways of focusing 
on the significance of proof. What is the logical structure of proof? What is 
the historical role and function of proof in mathematics? How were proofs 
created for the first time? How is it possible to differentiate and define vari-
ous proofs? What is the meaning of proof in mathematics? How does one 
construct a proof, what are the main components in specific proofs?   

With the second condition, invisibility is more difficult to capture. I refer 
to the opposite, not focusing on different aspects of proof, not discussing the 
logical structure of proofs and so on, but sharing with proof as derivations of 
formulas or explanations, not focusing on the process of proving but the 
products like formulae and theorems and the justifying of the solutions of 
problems without thinking it as proving. A lot of proving activities can be 
made and learned implicitly without focusing on the process of proving. 
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There are many examples in the mathematics textbooks in Sweden where the 
argumentation is hidden in the text, the proof has not an explicit beginning 
or end and its logical structure is not emphasised (Nordström & Löfwall, 
2005). In older textbooks it was usual to give proofs with clear structure. 
Now the tendency seems to be the opposite, proofs are hidden in the text. 
They can be seen as kinds of explanations but they are not been focused on 
as proofs.  

The structure of proofs 

Authors of textbooks for upper secondary school and basic university 
courses seem to attempt to use informal language when presenting mathe-
matics and particularly proofs to the readers. Selden and Selden (2002) point 
out that students often have difficulties interpreting the logical structure of 
informally written statements. However, visibility is not necessarily a matter 
of rigour and formality even if a rigorous treatment of proof activities can 
sometimes help one to see the logical structure of the reasoning and proof. 
But as well a rigorous, very detailed presentation of proof can obscure the 
structure of proof. Some mathematicians (eg. Leron, 1983), have discussed 
how to make the structures and key ideas of proof visible and, in that way, 
facilitate the communication between mathematicians as well as between 
mathematicians and students.  

Alibert and Thomas (1991) point out that students lack appreciation of 
proof as a functional tool. They advocate Leron’s structural method of proof 
exposition which helps the prefacing of a long, complex proof with a short, 
intuitive overview. It also makes visible the ideas behind the proof and its 
connections with other mathematical results.  

“The linear formalism of traditional proof may be described as the minimal 
code necessary for the transmitting of the mathematical knowledge. It ap-
pears, however, that in several important respects, it is a sub-minimal code, 
resulting in an irretrievable loss of information vital for understanding.” 
(ibid., p. 220) 

Further, Alibert and Thomas discuss the benefits of helping students to un-
derstand the structure of proof instead of letting them by themselves discover 
it, which according to them is beyond the capacity of most undergraduates.  

“They are simply unable to decode the proof and are reduced to meaningless 
manipulation of the formal code itself, with no awareness of the ideas and 
concepts it represents…The major difference between the approach outlined 
above and the traditional linear proof style is that the students are given a 
means of understanding the choices that, generally, the teacher presents with-
out any indication that there had actually been a choice involved.” (ibid., 
p.224) 



 56

Even if it is difficult to give a definition of what a proof is there are several 
ways of focusing on different aspects of proof in the teaching of proof. The 
following example from a Finnish upper secondary school textbook shows 
how, for example, the logical structure in geometrical proofs can be made 
more visible (Figure 5, p. 56). There is first a discussion about how to find 
out from the formulation of the theorem (“The base angles in an isosceles 
triangle are equal.”) what the assumption is and what the statement is, which 
is not necessarily easy for the students to decide. The proof then begins with 
the assumption (Antagande): “The triangle ABC is isosceles.” It follows by 
the statement (Påstående): “The base angles DAC and DBC are equal.” After 
the proof the logical structure of the proof is illustrated with a figure. The 
figures illuminate the process of proving by showing its logical structure and 
how the necessary arguments needed for the conclusion are obtained from 
the assumptions, definitions, constructions, axioms or theorems. 

 
Figure 5   The structure in geometrical proofs 

This kind of treatment makes the role of definitions, axioms and construction 
in the logical reasoning visible and, thus, may help the student to see the 
fundamental logical structures of geometrical proofs.  

Also a focus on proving techniques, like working backwards (Polya, 
1981) makes the procedures behind the finished proofs visible. Polya pre-
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sented a method to solve a geometrical problem from Euclid’s Elements 
(Proposition 4 in the Eleventh Book) and illustrated how to work backwards 
to diminish the gap between the hypothesis and the conclusion. 

Proof is learned implicitly?  

Among some mathematics education researchers, knowledge about proof 
and proving is sometimes seen to be learned implicitly by a kind of tacit 
enculturation into the mathematical practice. Ernest’s (1998a) model (Table 
1, p. 58) is about what in mathematical knowledge is mainly explicit, mainly 
tacit. Accepted propositions and statements, accepted reasoning and proofs 
are categorised as mainly explicit whereas meta- mathematical views, in-
cluding views of proof and definition and the structure of mathematics as 
whole are categorised as mainly tacit knowledge. What Ernest means by 
tacit is that mathematicians get a sense of them and build them up inciden-
tally through experience and he states that they are not and can probably not 

be fully taught explicitly (ibid., p. 15). Further, Ernest states that these ele-
ments are usually acquired from experience and are tacit.  Language and 
symbolism are important aspects in construction of proof but they are also 
seen by Ernest largely as tacit knowledge. Further, Ernest claims that 
mathematical knowledge shown in Table 1 is a broadening and an extension 
of the traditional view of knowledge as primarily explicit. 

Also other mathematics education researchers have assumed that the 
learning of proof occurs mainly by enculturation, not by deliberately focus-
ing on it. Nardi, Jaworski and Hegedus (2005) in their study on undergradu-
ate mathematics tutors’ conceptualisations of students’ difficulties, classify 
proof into the abilities in mathematics that are mostly learned by encultur-
ation. This kind of view of proof as something “you just get used to” was 
also expressed by some mathematicians I interviewed (see p. 113). 
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Table 1   
Mathematics Knowledge Compo-

nent 

Explicit or Tacit 

Accepted propositions and state-
ments 

Mainly explicit                                      

Accepted reasoning and proofs Mainly explicit 

Problems and questions Mainly explicit 

Language and symbolism Mainly tacit 

Meta-mathematical views: proof & 
definition standards, scope and struc-
ture of mathematics 

Mainly tacit   

Methods, procedures, techniques, 
strategies 

Mainly tacit 

Aesthetics and values Mainly tacit 

   
Selden and Selden (2002) state that skill at validation, a kind of critical 

examination of proofs (see p. 45), is an implicit part of mathematics curricu-
lum, and is rarely explicitly taught. They claim that when beginning under-
graduate mathematics, students may well be unaware of its existence and 
importance. Several kinds of logic-related topics are not emphasised, per-
haps because these are seen as unimportant or apparent. Selden and Selden 
discuss substitution, interpreting the logical structure of informally written 
statements, applying theorems and definitions to situations in proofs, under-
standing the language of proofs, and recognising logical structures in the 
context of mathematics. They advocate explicit introduction of all these, 
because they are difficult for students just beginning their work with proofs 
and “unfortunately these have been considered part of ‘mathematical matur-
ity’ in the past”. (ibid., p. 7) By “explicit instruction” they mean a variety of 
instructional techniques including explorational activities and group work, as 
well as the more traditional lecturing and homework exercises.  

But visibility is not only a matter of logic and structure. Chazan (1993) 
studied the possibilities of focusing on and making visible for students the 
difference between empirical evidence and deductive proofs in an upper 
secondary school geometry course. Hanna (2000) stressed the importance of 
discussing with students the functions of proof in mathematics. Furinghetti 
& Paola (2002) focus on the problem of defining and stress the importance 
of awareness in students’ approach to theoretical thinking. They use it in a 
sense that students should be active participants in the process of construct-
ing a theory and understand the meaning of what they are doing. 
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Induction/Deduction 

There is an instructive example in Vretblad’s (1999) textbook, that was ear-
lier used in the basic course, about formulating a conjecture, the process of 
finding a proof for the conjecture and, finally, formulating a theorem and the 
proof (ibid., p. 25). Vretblad uses as an example the relation between the 
arithmetic and geometric means. He starts by defining these mean values and 
encourages the reader to test some examples to find a pattern. Vretblad car-
ries on a conversation with the reader about how to proceed and uses word 
like “Aha!” in order to show the most important points of the solution. He 
first explains why this experiment is not enough and shows how to pose a 
hypothesis. He calls the hypothesis a conjecture. 
The conjecture:     

If 
2

,0,0
ba

Aba
+

=>>  and abG = , then GA ≥ . 

Then Vretblad asks how we can convince ourselves and humankind about 
the truth of this statement. He puts forward the solution by reformulating the 
problem to show that 0≥− GA  and by asking the reader what this would 
be good for. After this informal and instructive account of the whole process, 
Vretblad states that now we have achieved the goal and can give the result 
the force of a theorem. Then he formulates the theorem and gives a proof for 
the theorem. He concludes the presentation by the following sentence: “The 
way in which we have reasoned here is an example of an inductive method 
or induction (in a broad sense): one starts by an observation, one formulates 
a conjecture, and one proves a theorem.” (ibid., p. 26) In the end of the chap-
ter, Vretblad offers students exercises with similar procedures.    

Focusing on different aspects of proof 
The condition of transparency is the intricate dilemma about how and how 
much to focus on the different aspects of proof in relation to how and how 
much to let students participate in different proving activities without focus-
ing on the process in order to enhance students’ access to proof (see pp. 40 
and 54). All the aspects of proof can be focused on explicitly in discussions 
and activities, just as well as they can be an implicit part of the practice. For 
example, it is possible to discuss the notion of aesthetics, but the feeling of 
beauty could just as well grow from participation without explicit focus on 
it. Further, it is possible to work both inductively and deductively conjectur-
ing and validating the conjectures with or without explicitly focusing on the 
aspect of inductive/deductive approaches or discussing the nature of deduc-
tive reasoning and proof. On the other hand, it is difficult to focus on them if 
you do not have any experience about the practice. Parallels to Sfard’s 
(1991) “vicious circle” thesis can be drawn. It implies that “a person must be 
quite skilful at performing algorithms in order to attain a good idea of the 
“objects” involved in these algorithms; on the other hand, to gain full techni-
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cal mastery, one must already have these objects, since without them the 
process would seem meaningless and thus difficult to perform and to re-
member.” (ibid., p. 32) 

This is a pedagogical paradox that makes the teaching of proof difficult. It 
is not easy to talk about proof without some experience about it. But it can 
be difficult for students to understand the meaning of proof or learn to pro-
duce their own proofs without an explicit focus on them. 

The condition of transparency has also to be considered both from the 
teaching and the learning perspective (see p. 27). According to Wenger 
(1998) pedagogical intentions and other structuring resources become re-
sources for learning in a complex way and learning is but “a response of the 

pedagogical intentions of the setting.” (ibid., p. 266). As I have shown in my 
thesis in Chapter 6, what is intended to be in focus in teaching is not neces-
sarily the focus of students.     

 
So far, I have dealt with some main themes in research on proof in 

mathematics and in mathematics education along with four aspects that in-
volve two interacting components: Conviction/Explanation, Induc-
tion/Deduction, Intuition/Formality and Invisibility/Visibility. I conclude the 
section by describing some functions of proof that I include in the concep-
tual frame. 

2.3.5   Some further functions of proof included in the frame 

Next, I very briefly, present some functions of proof that emerged from the 
data mainly during the pilot study (Nordström, 2004). They are Communica-

tion, Aesthetic, Systematisation, Intellectual Challenge and Transfer. All but 
Transfer have been dealt with in the earlier models about the functions of 
proof (de Villiers, 1990, 1996). There are other functions that have been 
discussed in the mathematics education community (see p. 21), which I do 
not include in the conceptual frame. This is because they were not touched in 
the interviews. It can depend on the fact that the focus on the interviews with 
mathematicians were in the teaching of proof, not on their own research.  

Proof is a means for communicating mathematical ideas. The function of 
Communication is related to the other aspects in the frame presented earlier, 
in the following way: Explanation and conviction can be obtained by com-
munication; communication can also occur via a deductive proof or induc-
tive ideas. Important for communication is also the language and how ex-
plicit everything is expressed so it is also interlinked to the aspect of formal-
ity, level of rigour and the language/intuition.  

Aesthetic is a very personal experience. De Villiers (1990) mentioned also 
an aesthetic function of proof in his examination of the functions of proof 
although it was left outside the model presented in Chapter 1. Burton (2004) 
interviewed seventy mathematicians about their views on mathematics. 
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Forty-three of them introduced aesthetics, beauty or elegance into the discus-
sions. (ibid., p. 65) and for the majority, the aesthetics was connected to 
proof.  

Systematisation is a way of organising mathematics in a deductive man-
ner. The function of systematisation is also interlinked to the other aspects of 
proof in the conceptual frame. Systematisation demands a certain level of 
rigour and critical thinking. The function of systematisation can also enhance 
understanding and conviction.  

Intellectual challenge refers to self-realisation and fulfilment derived 
from constructing a proof (de Villiers, 1996). 

Transfer is a function of proof that especially the mathematicians in my 
study touched with when talking about the meaning of the learning of proof. 
Transfer is not discussed in the earlier models of functions of proof. It is 
close to and partly overlapping the aspect Weber (2002) describes but not 
exactly the same. I will come back to transfer in Section 7.3. The function of 
transfer refers to two basically different things.  
• Transfer can refer to a possibility of drawing advantages of working and 

understanding with mathematical proofs to problems in different situa-
tions outside mathematics. The question if it is possible to learn logical 
reasoning that is useful in other contexts than mathematics, when working 
with mathematical proofs, is worth a discussion and research in the 
mathematics education community. There have been periods in the his-
tory when an educated person was to learn geometry, since according to a 
general view it was a way to learn to reason logically also outside mathe-
matics.   

• Transfer can refer to the benefits of learning proof for other mathematical 
contexts, since proofs can sometimes offer new techniques to attack other 
problems or offer understanding for something different from the original 
context. For example, Galois’ result that the fifth degree equation cannot 
be solved by radicals has had much less importance to mathematics than 
his proof for the theorem, which opened a possibility to develop a new 
theory. But also in teaching contexts at an elementary level, for example, 
the method of completing the square in deriving the formula for the solu-
tion of the second degree equation may be also used in problem solving in 
other mathematical contexts.  

In this section, I have described the conceptual frame about the aspects of 
proof. This frame was continuously used in the data analysis and I will refer 
to these aspects when reporting the results. The aspects in the conceptual 
frame consist of both functions and properties/approaches of proof.  
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Functions:  
• Conviction/Explanation  
• Communication  
• Aesthetic  
• Systematisation 
• Intellectual challenge 

• Transfer 
 

Properties/Approaches: 

• Induction/Deduction 
• Intuition/Formality 
• Invisibility/Visibility 

 
 
 
  

In the figure below, I illustrate how these aspects of proof relate to the no-
tions of artefact and reification described in Section 2.2.4 and 2.2.5 The fig-
ure also illuminates how I have combined a socio-cultural perspective, Lave 
and Wenger’s social practice theories and didactical research on proof.  

 
Figure 6    Proof as dynamic notion 
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2.4   A summary 

In this chapter, I first described my choice of the theoretical frame. After that 
I elaborated with central notions of the socio-cultural perspective and the 
theories of Lave and Wenger (1991) and Wenger (1998) describing how I 
apply these notions in my work. I started by describing the community of 
mathematical practice at the mathematics department that is the focus of my 
study. I went on examining notions like learning, knowing and negotiation of 
meaning. I examined proof as reification and as an artefact in mathematical 
practice and concluded the chapter by describing a conceptual frame created 
from literature about the aspects of proof. This frame was helpful in the data 
analyses when structuring the results and in linking them to previous re-
search.   

In the next chapter, I go on describing the methodology of my study.  
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3   Methodology 

Wellington (2000) defines methodology as the activity of choosing, reflect-
ing upon, evaluating and justifying the methods one uses. I have divided my 
methodology chapter into three main parts. In the first part, I present the 
specific research questions and the design of the study. In the second section, 
I discuss different research paradigms in relation to my study and how vari-
ous theories and paradigms relate to my choice of research methods and 
ways of analysing and interpreting the data. In the third part of the chapter I 
give a detailed account of the different methods as well as the different pro-
cedures for the data analyses applied in the study. I include ethical consid-
erations in the description of the methods and explain how they have influ-
enced the way in which I report the results.  

3.1   The design of the study 

Bassey (1999) compares a research question to the engine which drives the 
train of inquiry.  

“It should be formulated in such a way that it sets the immediate agenda for 
research, enables data to be collected and permits analysis to get started. – If 
this ‘engine’ is found to be under-powered, or breaks down or is pulling the 
train to wrong direction, it should be replaced.” (ibid., p. 67)  

The purpose of my study is to describe and characterise the culture of proof 
in a community of mathematical practice and how students are engaged in 
proof. I approach the issue from different directions (Figure 1, p. 13). I ex-
amine mathematicians’ views and pedagogical perspectives on proof. I also 
study students’ backgrounds and experiences in their mathematical practice.  

I presented the general research questions in the introduction. They are: 
 

• How do students meet proof in the community of mathematical 
practice at a mathematics department? 

• How are students drawn to share mathematicians’ views and 
knowledge of proof? 
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The specific research questions, through which I aimed to gain insights to 
the general research questions, evolved to be the following: 

 
1) How do mathematicians talk about proof and its role in mathematical 

practice? 
2) What pedagogical approaches towards the teaching of proof can be iden-

tified in mathematicians’ utterances? 
3) What kind of experiences regarding proof do students have from their 

upper secondary school mathematics? 
4) How do students relate to proof and the learning of proof? 
5) What kind of participation in proof and proving is there available for 

students in the practice? 
6) How do students talk about their experiences regarding proof in their 

mathematical practice? 

Educational practice is a complex phenomenon and different sorts of ques-
tions require different sorts of research. Pring (2000) claims that researchers 
must be eclectic in their search for truth. Some research questions might 
demand several methods, others only one. As I approached the issue of proof 
from different directions, I used various approaches and associated methods. 
I tried to be creative in choosing the methods and combined both quantita-
tive and qualitative methods. In Table 2, I present the methods and describe 
the specific issues I hope they will help me to shed light on. The table gives 
an overall picture about the design and the methods of my study.  

The data for shedding light on how mathematicians talked about proof 
and their pedagogical intentions in mathematical practice were transcripts of 
interviews with mathematicians. The main data for illuminating students’ 
background, their experiences, their views, and how they related to proof 
and the learning of proof were survey responses and transcripts of focus 
group interviews. Surveys offered me some rough background data whereas 
focus group interviews with students in different phases of their studies 
complemented it and provided me with more personal and richer information 
than mere figures.  

Finally, I contrasted the results concerning the mathematicians’ practice 
and the results concerning the students’ practice in order to shed light on 
how the structuring resources and mathematicians’ intentions became re-
sources for learning. 

As complementary data, I used interviews with experts and field notes 
from observations of lectures as well as documents like annual department 
reports, examinations, textbooks and curricula.  

In this section, I have presented the specific research questions and pro-
vided the reader with an overall picture about the design of my study. In the 
next section, I give an epistemological account of the research methods.  
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Table 2  Design of the methods 

 MAIN DATA COMPLEMENTARY 
DATA 

     Methods 

 

 

 

Research 

questions   

Inter-

views 

with 

mathe-

mati-

cians 

Surveys 

with uni-

versity 

entrants 

Focus 

group 

inter-

views 

with 

students 

Observa-

tions of 

lectures 

Document 

analysis and 

interviews 

with experts 

Mathemati-

cians’ 

views and 

pedagogical 

perspectives 

X   X textbooks 
curriculum 
examinations 
other material 

Students’ 

upper secon-

dary school 

background 

 X X  upper secon-
dary school 
textbooks 

How students 

relate to 

proof 

 X X X  

What kind of 

participation 

in proof is 

there avail-

able in the 

practice?  

X X X X curriculum 
textbooks 
other material 
examinations 
interviews 
with experts 

How students 

talk about 

their experi-

ences 

  X   

How do stu-

dents meet 

proof? How 

are they 

drawn to 

share 

mathemati-

cians’ views 

and knowl-

edge of 

proof? 

Results 
of the 
analysis 
of inter-
views 
with 
mathe-
maticians 

Results of 
the survey 
analysis 

Results 
of the 
analysis 
of the 
focus 
group 
inter-
views 
with 
students 

X X 
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3.2   An epistemological account of my area of study 

I start the epistemological considerations by relating different research para-
digms in relation to my study. I go on by discussing how various theories 
and paradigms relate to my choice of research methods and ways of analys-
ing and interpreting the data. I examine the benefits and disadvantages of 
quantitative/qualitative methods in terms of what kind of knowledge they 
provide and how such notions as validity, reliability, trustworthiness and 
generality relate to these methods which have quite different character. Fi-
nally, I discuss how quantitative and qualitative methods have been con-
nected to different epistemologies and how to combine them.  

3.2.1   The thesis in relation to different research paradigms  

My thesis can be defined as a picture-drawing case study (Bassey, 1999). It 
is primarily a descriptive account where I draw together the results of explo-
rations and analyses of the phenomenon that is proof and the teaching and 
learning of proof in all its diversity in the context of university mathematics 
at a university in Sweden. Case studies can be placed both in the interpretive 
paradigm and in the positivist paradigm.  

According to positivism there is a reality in the world that exists irrespec-
tive of the observer. This reality can be discovered by people observing with 
their senses (Bassey, 1999). To the positivist the entire world is rational and 
the researcher can explain the reality s/he has discovered to others with fac-
tual statements. Language is seen as an agreed symbolic system for describ-
ing reality in an unproblematic manner. Positivist researchers do not con-
sider themselves as significant variables in their research and they expect 
other researchers to come to the same conclusion that they find. Positivist 
knowledge is deemed to be objective, value-free, generalisable and replic-
able (Wellington, 2000). The methodology of the positivists is often de-
scribed as quantitative.  

The interpretive researcher, on the contrary, does not accept the idea of a 
reality which exists irrespective of people, but that concepts of reality vary 
from one person to another (Bassey, 1999). The observers are part of the 
world which they are observing. They can also, by observing, influence what 
they are trying to observe. They see themselves as potential variables in the 
enquiry and so, in writing reports, may use personal pronouns. The language 
is seen as a more or less agreed symbolic system, but different people may 
have some differences in their meanings and the rationality of one observer 
may not be the same as the rationality of another observer. In consequence 
the sharing of accounts of what has been observed is always to some extent 
problematic. The data collected by interpretive researchers are usually ver-
bal. Even if interpretive data can be analysed numerically the quantitative 
statistical analysis used by positivists is not usual (ibid., p. 43).   
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In my study, I cannot follow the traditional rules of scientific inquiry, be-
cause the case is too complicated. It is also impossible for me to put myself 
totally outside the mathematical practice. I participate, both as a teacher and 
as a student, in the community of practice of mathematics at the department 
that I am studying. Furthermore, I have to interpret the qualitative data. So, I 
recognise myself as an instrument in the inquiry, an instrument that is influ-
enced by the very practice that I am studying. My purpose is to advance 
knowledge of the teaching and learning of proof in undergraduate university 
courses at a university in Sweden by analysing and interpreting different 
sorts of data. Some of the results in the quantitative part in my study were 
obtained by statistical analyses and can, to some extent, be generalised, and 
the results of the data analyses can be obtained by other researchers. How-
ever, the study as a whole may offer possibilities and insights, not certain-
ties. I agree with Pring (2000) who argues that it is possible to reject “naïve 
realism” (for example that there is an unproblematic correspondence be-
tween the language and the reality) without abandoning the realism of the 
physical and social sciences and without therefore concluding that reality is 
but a social construction or that correspondence between language and real-
ity is to be thrown overboard completely.  

According to the social practice theory of Lave and Wenger (1991) and 
Wenger (1998) that I apply in my study, the world is seen to consist of ob-
jective forms and systems of activity, on the one hand, and agents’ subjec-
tive and intersubjective understanding of them, on the other hand. These 
mutually constitute both the world and its experienced forms. Further, cogni-
tion and communication in, and with, the social world are situated in the 
historical development of ongoing activity (Lave and Wenger, 1991, p. 51). 
There is, for example, a certain kind of social and historical structure that 
constrains the old-timers (see Section 1.2 and 1.3) and the students in a way 
that limits the range of actions open to them. The mathematical practice at 
the department that I study is the participants’ response to the conditions in 
their enterprise. Mathematicians and students act in the frame of historical 
conditions of the practice including the lectures, textbooks, individual 
homework, seminars, examinations and other forms of participation and the 
long history of practice of mathematics (see Section 1.3).   

Further, knowledge about proof and the teaching and learning of proof is 
not simply in individual teachers’ minds: it is tied to their identities and 
evolves in and through co-participation in the practices of the community. 
Hence, I consider the mathematicians and the students as participants in the 
community of mathematical practice and interpret their utterances, not en-
tirely as their own opinions but to some extent as reproduction of views be-
longing to the community, utterances that are influenced by the social, cul-
tural and historical context of the same mathematics environment but also 
from other possible environments they are members of.  
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3.2.2   Theories and the data analysis 

An important question for data analysis is how and when the theory comes 
into the process. Glaser and Strauss (1967) developed a method of system-
atically discovering theories from data called grounded theory. Instead of 
starting with a body of theoretical propositions about social relations, the 
idea was first to observe those relations, collect data on them, and then pro-
ceed to generate our theoretical propositions. There are problems with this 
procedure. It is difficult to enter the data without any a priori assumptions. 
May (2001) points out that the method of grounded theory ignores the idea 
of theory altogether and entails that our presuppositions about social life 
remain hidden, but still influence decisions and interpretations (ibid., p.31).  

In my study, it was impossible for me to enter the data without any a pri-

ori thoughts and expectations. There is a lot of research on proof in mathe-
matics education and my aim was to relate the data to these previous studies 
and to historical and philosophical issues as well. One of the criticisms of 
educational research is that it is non-cumulative (Bassey, 1999; Wellington, 
2000; Bryman, 2001). Wellington (2000) questions whether the researchers 
have to recreate theory every time they collect and analyse data. For me the 
role of theory was to help to understand events in my area of study and see 
them in a new or a different way. It helped me to focus on different aspects 
of proof in the community of practice of mathematics. From the literature I 
created a conceptual frame for understanding and making sense of aspects 
regarding proof and the teaching and learning of proof emerging from the 
data (see Section 2.3, p. 61). Yet, besides relating the data to the research 
questions and the theoretical frame, I used an open approach and explored 
new themes emerging from the data. The first data analyses also influenced 
the improvement of the theoretical frame.  

3.2.3   Quantitative/qualitative methods 

I employed both quantitative and qualitative methods in my study. I started 
from a quantitative basis and then selected a smaller group for a more de-
tailed study when zooming from surveys with the newcomers to focus group 
interviews. For the focus group interviews, I chose students with different 
kinds of relation and experiences (according to their responses to the ques-
tionnaire). With the help of quantitative inquiries, I could, for example by 
calculating percentages and correlations, get rough information about the 
aspects I was exploring. From focus group interviews I obtained data that 
were richer and shed more light on the uniqueness of individuals beyond the 
figures in the surveys.  

The employment of quantitative and qualitative methods has been con-
nected to different epistemological approaches. Quantitative methods are 
often associated with the positivist paradigm whereas qualitative methods 
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are associated with the interpretive paradigm (e.g. Stake, 1995). The sharp 
contrast between quantitative and qualitative methods has been recently criti-
cised by some researchers (e.g. Bryman, 2001; Gorard, 2001; Pring, 2000). 
They point out that qualitative research has quantitative features, just as 
quantitative research has qualitative features, and that the research methods 
are much more free-floating in terms of epistemology and ontology than is 
often supposed. 

In my study, choosing to pose certain questions in the questionnaire for 
the quantitative survey was already a personal act and a lot of decisions had 
to be made before the questionnaire was drawn up. Also decisions concern-
ing what kinds of data analysis were conducted were personal and depended 
on my theoretical perspectives and how I had posed the research questions. 
In the quantitative part of the study, I used descriptive statistics with per-
centages and correlations. The proceeding of the statistical analyses with 
SPSS software could be regarded quite impersonally and the numerical re-
sults of the analyses did not depend on the researcher. The way of interpret-
ing the numerical results, however, are again personal. For example, I do not 
consider the relation between the statements and the questions that the stu-
dents responded to on the one hand, and the reality on the other hand as un-
problematic. 

Next, I examine notions of validity, reliability, trustworthiness and gener-
ality in relation to my study and to the quantitative and qualitative methods 
that I have employed. 

3.2.4   Reliability, validity, objectivity, and generality  

Stability is the extent to which a research fact can be repeated, given the 
same circumstances. The surveys among the university entrants could be 
repeated and were also repeated three times in my study and gave the same 
kind of results each time. Surveys were conducted among a similar popula-
tion with roughly defined similar backgrounds, because there have not been 
any changes lately, in the school curriculum regarding proof, changes that 
would have influenced the experiences of the samples. Further, the state-
ments were focused on certain issues and led the students to certain reflec-
tions. If the surveys were conducted in another country or after ten years, 
they could give different results. In the context of the issues I was exploring 
with the surveys I also calculated the so called internal reliability between 
the items within the issues. Stability and internal reliability are two factors 
connected to reliability (Bryman, 2001). I will come back to it when describ-
ing the methods in more detail.   

Concerning the interviews, it is impossible to create exactly the same cir-
cumstances several times even if you gather the same persons to talk about 
the same issues again. Premises of qualitative studies include the uniqueness 
and idiosyncrasy of the situations, such that the study cannot be replicated 
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and as Cohen et al (2000) point out – that is their strength rather than their 
weakness.  

Validity is the extent to which a research fact or finding is what it is 
claimed to be. In the questionnaire, there were some different questions ad-
dressing the same aspects so I could check the correlation between the re-
sponses to these pairs. In the focus group interviews I also had a possibility 
to check that the students had understood the survey questions in the way I 
had intended them to, when I posed the question.  

The problem of how qualitative research findings can be validated is 
much discussed in the literature (Ernest, 1998). Instead of reliability and 
validity it is usual within the context of qualitative research to talk about 
trustworthiness (Bassey, 1999). Burton (2002) argues that utilising so-called 
objective methods does not make a research study objective as little as the 
subjective information makes the study subjective. According to her, objec-
tivity is gained through the internal consistency and coherence with which 
the story is told. The researcher must be able to convince the reader of their 
trustworthiness and of the authencity of what they have done as well as of 
the conclusion that they have reached and the resultant implications they 
have drawn (ibid., p. 9). Next, I discuss aspects of my study and relate them 
to the issues that Bassey (1999) defines as criteria for trustworthiness. He 
draws his criteria on Lincoln and Guba’s (1985) account.  

During the inquiry, I had prolonged engagement in the field and continu-
ously observed emerging issues influencing my study and the results of it. I 
also kept a diary of how my research developed. Bassey (1999) states, that it 
is important to check the interview reports with the data sources to give the 
interviewees a possibility to put the record straight if they think something 
they have said has not been understood correctly (ibid., p. 76). I did it when I 
interviewed experts for the background facts but not when I interviewed the 
mathematicians and the students about their views and experiences. It would 
have changed the character of my study. As I described earlier in this chapter 
(see p. 68), I considered the mathematicians and the students as participants 
in the community of mathematical practice and interpreted their utterances, 
not entirely as their own opinions but to some extent as reproductions of 
views belonging to the community. According to the theory, the views and 
stances are not static but I was not studying the changes in them. What was 
interesting for my study was the way in which the mathematicians, when 
talking about proof defined the role of proof in their practice at the moment 
of the interviews and what pedagogical considerations could be discerned in 
the utterances. Focus group interviews with students offered my study, for 
instance, examples of identities of participation and non-participation. Ac-
cording to the social practice theory (Wenger, 1998) identities are not static 
but temporal and always becoming. So, if I would have gone back and asked 
the same questions again, I would have received different results and my 
study would have been different.  
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Parts of the data analyses were done in cooperation with one of my super-
visors so different possible interpretations could be considered. From the 
different data analyses I formulated analytical statements and checked them 
once again against the data. Then the story and the results reported were 
systematically tested against the analytical statements and the data. I have 
repeatedly asked other researchers to critically read my reports and I attempt 
to give an account of my research that is sufficiently detailed to give the 
reader confidence in the findings. I made the qualitative data analyses in 
Swedish because it was the language of the interviews. At the beginning, I 
considered providing the Swedish original examples in the reports of the 
results but after my decision to neutralise the language of mathematicians 
(see p. 83) it was not important any more. Anyway, utterances had lost the 
original form. However, I decided to offer the reader some expressions also 
in Swedish when it was difficult to translate the utterance or a part of the 
utterance to English. All the translations of the quotations given as evidence 
in the results have been checked by a bilingual person, Tristan Tempest, who 
also could consider them in their original contexts.  

The data has been related to the theoretical framework, which I described 
thoroughly in Chapter 2. This helped me to make the data analyses and the 
conclusions transparent, and hence, more objective. My approach to the re-
search questions also involved triangulating the data. There were the stu-
dents and the mathematicians, the textbooks/syllabuses and other documents, 
as well as the observations of the lectures. I limited the study to one univer-
sity only, in order to be able to triangulate a great part of the data and deepen 
some issues. However, it was not always possible to observe the lectures of 
every mathematician whom I interviewed. Besides, the students in the focus 
groups had experiences about teachers whom I had not interviewed and so 
on. Some parts of the data were triangulated in the following way. I observed 
the lectures, interviewed the students taking part of the course and the 
mathematician who held the lecture. I contrasted the results obtained from 
different data sources (interviews with mathematicians, students and sur-
veys) with each other. Further, I supported some of the conclusions with the 
complementary data, for example, the analysis of the field notes from the 
observations of lectures.  

Is it possible to generalise the results that I have obtained from my study? 
The samples in the surveys were convenience samples (Cohen, Manion, & 
Morrison, 2000), but about half of the university entrants responded to ques-
tionnaires, so the data can be seen as representative for the whole population 
that was students who started to study ordinary courses in mathematics. 
From the qualitative data, I have formulated some analytical statements and 
obtained results which can later be challenged or refined and developed by 
me or some other researcher and in that way made more general. Bassey 
(1999) calls these kinds of generalisations fuzzy generalizations. He defines 
fuzzy generalisation as a kind of prediction, arising from empirical enquiry, 



 73 

that says something may happen, but without any measure of its probability. 
It is a qualified generalisation, carrying the idea of possibility, not certainty. 
He advocates a wider use of these kinds of analytical statements in peda-
gogical research. It is then easier for another researcher to start where the 
first has ended and try to refine and develop the results and maybe make 
them even more general.   

In this section, I discussed different research paradigms in relation to my 
study and to my choice of research methods and ways of analysing the data. 
I discussed quantitative and qualitative methods and what kind of knowledge 
they provide and ended up with the notions of validity, reliability, trustwor-
thiness and generality. I then discussed how these notions relate to these 
methods, which have quite different characters. In the next section, I de-
scribe and evaluate each method employed in the study and relate them to 
the theoretical issues described in this section.   

3.3   A description about the specific methods and the 

associated data analyses 

I conducted surveys with university entrants at the mathematics department 
that I am studying at the beginning of the term in August 2003 and in Janu-
ary 2004. In the first subsection, I describe these surveys and the procedures 
of the quantitative data analysis connected to the surveys. In the following 
subsections, I give an account on the qualitative methods: interviews with 
mathematicians and focus group interviews with students. Finally, in the last 
subsection, I describe the methods for collection of the complementary data: 
observations of lectures, document analyses and interviews with experts 
about changes in the curriculum, in the organisation of teaching, in the con-
tents of the courses and in the course literature.  

3.3.1   The surveys 

I start the subsection by explaining the background for the surveys in 2003 
and 2004. Hence, I first very briefly describe the pilot survey in 2002 and the 
development of the final questionnaire. I go on with a detailed description 
about the questionnaire for the surveys in 2003 and 2004, the data-collection 
and the procedures of the data-analysis. I conclude the subsection with criti-
cal considerations of the method and with some ethical remarks.  
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Pilot survey and the development of the final questionnaire for the 

surveys in 2003 and in 2004 

I started my data collection with a pilot survey among university entrants at a 
Swedish university in autumn 2002 (Nordström, 2003). I considered this 
survey as an appropriate method of gathering some initial information about 
students’ backgrounds, attitudes and proving abilities because the population 
I wanted to study was big. The population consisted of 170 university en-
trants who started to study ordinary courses in mathematics and the sample I 
gathered and analysed was 100 students. I handed out the questionnaire to all 
the students at the registration in the very beginning of the term, and gath-
ered the questionnaires at the same occasion. The aim of the pilot study was 
to get some overall information about how students related to proof when 
they entered the practice and what they stated about their school experiences 
concerning proof and how they managed to prove some elementary state-
ments. At the time of the pilot study, I had just started to study proof and had 
a broad approach to the issue, so I wanted to get a lot of information about 
different issues concerning proof. I created a questionnaire guided by Cohen, 
Manion and Morrison’s (2000)  book Research Methods in Education and 
Oppenheim’s (1998) book Questionnaire Design, Interviewing and Attitude 

Measurement. The majority of questions and statements in the pilot study 
came from previous studies (Almeida, 2000; Godino & Recio, 2001; Hoyles, 
1997). The dichotomous statements, with which students could agree or dis-
agree, addressed students’ views on proof, how they related to proof and the 
learning of proof, and what they stated about their experiences about proof.  

There are some elementary problems in using questionnaires. The heart of 
the problem is that different respondents interpret the same words differ-
ently. The wording of questionnaires is of paramount importance and pre-
testing is crucial to its success (Bryman, 2001). A pilot has several functions, 
principally to increase the reliability, validity and practicability of the ques-
tionnaire. That is why the questionnaire for the pilot study was tested with 
several groups.  
• I started with a small group of young people in my neighborhood, who 

had just finished their natural science program in upper secondary school. 
I got several important comments from them.  

• I let some experienced researchers check the questionnaire and got good 
advice.  

• At last I tested the questionnaire with a group of university students in 
connection with a summer examination before the final pilot survey with 
all the university entrants in 2002.  

I personally distributed the questionnaire to the students at the beginning of 
their first term at the university. I do not give a detailed description about the 
pilot questionnaire here because I do not include the pilot survey in the the-
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sis. This is because the research questions evolved during the time I worked 
with the thesis and some parts of the results of the pilot study were not rele-
vant for the thesis. The results presented in this thesis are based on the analy-
ses of the surveys in 2003 and 2004.   

After the analysis of the pilot study (Nordström, 2003), which I made 
manually, I improved the questionnaire by adding some multiple choice 
questions about students’ experiences (11-15) in order to get a more varied 
picture about them. I also added some more statements in order to double 
check the students’ statements and in that way be able to check the validity 
of the questionnaire. I changed the dichotomous part of the questionnaire to 
one with five possible responses: fully disagree, partially disagree, no opin-
ion, partially agree, and fully agree in order to obtain more precise responses 
to the statements.  

As I described in Section 1.1, I limited the study at the beginning in order 
to be able to study some issues more deeply and hence, decided to focus on 
students’ stated upper secondary school experiences and their relation to 
proof rather than their proving abilities. That is why I omitted the proving 
tasks in the main surveys. I also changed the order of the questions and 
moved the personal questions to the end of the questionnaire because, al-
though important, they could appear intrusive (Gorard, 2001). Having them 
at the end would encourage people to start the questionnaire, and once 
started be more likely to complete the task (ibid., p. 99). Thus, the final ques-
tionnaire contained open questions, multiple choice questions and statements 
on a five-point scale running from totally agree to totally disagree.  

It is possible to get access to a wider range of aspects of the issue by ask-
ing a number of questions and in that way get a lot of indirect indicators of 
the issue (Bryman, 2001). I was interested in the students’ background. 
Hence, I stated various questions about their upper secondary school experi-
ences regarding proof. I also wanted to know how they related to proof in-
cluding their feelings and views on proof. So I posed many different kinds of 
questions trying to cover a wide range of indicators. Next, I will describe the 
contents of the final questionnaire in more detail (Appendix 2). 

The final questionnaire  

1. The first question was a background question about students’ motives 
for studying mathematics. I categorised the answers into three catego-
ries, pragmatic (for example if the student wrote he needed mathematics 
for some other purposes than mathematics itself), subject oriented (for 
example if the student stated that mathematics was fun) and mixed/ does 

not know if the student did/could not answer or mentioned both the 
pragmatic and subject oriented reasons for the mathematical studies. 

2. The second question addressed students’ feelings. Students’ responses 
were classified into three categories, negative, positive and mixed. The 
negative responses consisted of alternatives b) nervous, d) dull, e) inse-
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cure and some of their own descriptions, like “anxious”. The positive re-
sponses consisted of the alternatives a) curious, c) eager and some of 
their own descriptions, like “This will be easy”. The mixed group con-
sisted of those who had chosen both kinds of alternatives. 

3. The third question was about the students’ views on proof. It was an 
open question and gave numerous different aspects of proof mentioned 
by students. I listed the various aspects that the students mentioned as 
different variables. It gave me information about how students perceived 
proof. 

4. The fourth question was a modification of a question from Celia Hoyles’ 
(1997) study about students’ views on proof. The choices of the fourth 
question were categorised into five categories: 1) Lina or no answer, 2) 
Tove, 3) Mattias, 4) A mixture of Lisa/Peter and some other, 5) 
Lisa/Peter. The aim of this question was to help students to enter the 
context of proof. Many of them might have had a break in their mathe-
matical studies. The responses also gave me information about what stu-
dents considered as a valid proof.  

5. – 9. The multiple-choice-questions (5-9) were about students’ upper sec-
ondary school experiences. They gave me various kinds of information 
about students’ stated upper secondary school experiences concerning 
proof. The statements were assigned five different values when coded in 
SPSS software.  

  
10. This part of the questionnaire consisted of 30 statements with a five-

point scale from fully disagree to fully agree. Some of the statements (1, 
2, 5, 10, 11, 12 and 28) were adapted from Almeida’s (2000) study on 
students' perception of proof. The statements 3, 8, 16, 21 and 29 ad-
dressed students’ stated upper secondary school experiences. The state-
ments 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 26, 27, 
28, 30 addressed how students related to proof, including their views and 
feelings. The rest of the statements, 14, 15 and 17 were background 
questions. I coded the statements with a five-point scale as ordinal vari-
ables with five categories. In the correlation calculation I reversed the 
values for the statements 3, 5, 11, 12, 20, 22, 24 and 26.   

The last part of the questionnaire consisted of personal questions about gen-
der, age, the year when the student finished his/her upper secondary school, 
the programme in upper secondary school, the marks in mathematics 
courses, foreign upper secondary school background and studies after upper 
secondary school. Finally, I asked the students if they wanted to volunteer 
and be interviewed. If they agreed, they left their contact information.  

One disadvantage of using closed questions is a loss of spontaneity in re-
spondents’ answers. In the last version of the questionnaire, which I used in 
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January 2004, I added some lines after the multiple choice questions and 
after the statements on a five-point scale and suggested to the respondents 
that they write any further comments on those lines. These lines were in-
tended for those respondents who were not able to find a category that they 
felt applied to them or who wanted to add something they found important 
concerning an issue. However, there were not many comments in the stu-
dents’ responses. Someone pointed out that it was difficult to remember the 
upper secondary school experiences because they had had a long break in 
their mathematical studies.  

Reliability and validity 

Stability and internal reliability are factors involved when considering 
whether a measurement is reliable.  

Stability is the extent to which a research fact can be repeated, given the 
same circumstances. I had a possibility to check the results of the surveys 
against the results of the pilot study that had been conducted one year earlier 
than the surveys. They were quite similar.  

In my questionnaire, there were two topics that were measured by several 
indicators: Students’ stated upper secondary school experiences about proof 
and how positively students’ related to proof. When designing question-
naires with multiple-indicator measures, there is a risk that the indicators do 
not relate to the same thing and thus, lack coherence (Bryman, 2001). So we 
need to be sure that all our indicators are related to each other (internal reli-

ability). For this purpose, I conducted Cronbach’s alpha test for the two 
issues I was studying. The results for both issues were over 0.80, which im-
plies an acceptable level of internal reliability.  

Validity is the extent to which a research fact of finding is what it is 
claimed to be. For the validity of the questionnaire, I sometimes had pairs of 
indicators measuring almost the same aspects in order to be able to calculate 
the correlation between them and in that way investigate if students had un-
derstood the questions. These pairs were the following:  5-10:16; 6-10:21; 9-
10:8; 10:10-10:27; 19-10:22; 10:20-10:6 (Appendix 2). The correlations 
(with Spearman’s rho, on 0.01 significance level) between these pairs were 
between 0.47 and 0.73 depending on how similar the questions were. Also 
the focus group interviews offered me a possibility to check that the students 
had interpreted the questions in a way coherent to my aims, because three of 
the focus groups had responded to my questionnaire.  

Distribution and the sample 

I personally distributed the questionnaires to the students during their first 
lecture of their first term in August 2003 and in January 2004. I handed them 
out at the end of the lectures and collected them on the same occasion. Thus, 
the sample was a convenience sample (Cohen et al., 2000). At the beginning 
of the term most of the students, especially those who seriously want to in-
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vest themselves in mathematical studies, usually participate in the lectures. 
However, it is difficult to speculate how the choice of the sample influenced 
the results. The population in the surveys in 2003 and 2004 was about 340 
university entrants who would study the ordinary university courses in 
mathematics and the sample who responded to the questionnaires was 168 
students. Twelve of them had a foreign upper secondary school background.  

Data analysis 

I analysed the results of the last two surveys together with SPSS- software 
using descriptive statistics. I calculated percentages and tested the correla-
tions using a two-tailed Spearman’s rho test.  

Besides between the similar pairs of questions for the validity, I also 
tested the correlation between other statements and questions to discover 
relations between different items concerning students’ backgrounds and how 
they related to proof, including their feelings and views. There were also 
some background questions in the questionnaire and I wanted to check if 
they correlated to students’ statements about the two issues I was studying.  

Students’ declared upper secondary school experiences about proof 

The multiple choice questions (5-9) and the statements 3, 8, 16, 21 and 29 
addressed students’ stated upper secondary school experiences. When ana-
lysing this part of the study I separated the students with foreign upper sec-
ondary school backgrounds from students with a Swedish upper secondary 
school background. Of course it is impossible to draw certain conclusions 
concerning upper secondary school teaching from students’ responses to the 
statements. But together with textbook studies and the focus group inter-
views they gave a more varied picture about how students had experienced 
proof in their mathematical studies. Concerning students’ stated upper sec-
ondary school experiences there is a natural scale between very little experi-
ence and a lot of experience of different kinds of activities regarding proof. 
The internal reliability between the indicators of students’ stated upper sec-
ondary school experiences was 0.89 (Cronbach’s alpha).  

How students related to proof 

The questions 2, 3 and 4 and the statements 10: 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 
13, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30 (Appendix 2) addressed 
how students related to proof, including their views on proof. It is difficult to 
draw a strict distinction between views and how one relates to something. 
The students’ views on proof involved a wide range of different aspects, for 
example whether they viewed proof as an explanation or conviction. These 
kinds of views are not measurable in a way the other issues in the question-
naire were (how much experience the students had about proof and how 
positively they related to proof). The parts in the questionnaire addressing 
these kinds of views were the open question (3) “What do you think is char-
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acteristic of a correct proof?”, the multiple choice question (4) about what 
kind of proof students would choose for a certain statement and, finally, the 
statements 1, 4, 24, 28 and 30. Hence, these items were left outside the cal-
culation for internal reliability. Internal reliability for the rest of the state-
ments measuring how positively students’ related to proof was 0.88 (Cron-

bach’s alpha).  
Most of the aspects concerning students’ views on proof included only 

one indicator. I compensated these aspects with information about students’ 
views obtained from qualitative data from focus group interviews with stu-
dents.  

Critical considerations of the method 

The goal of the surveys was to get some background information about stu-
dents’ declared experiences and how they related to proof at the beginning of 
their university studies. Using a questionnaire makes it possible to gather 
quite crude data which often need to be complemented with other kinds of 
research. Most of the questions that I used in the questionnaire were closed 
and easy to analyse but there was a risk that they left out some important 
aspects. There are other problems, too. We have no way of making sure, 
whether the respondents were telling the truth. I hope that a face-to-face 
delivery and a brief personal presentation of my study have encouraged the 
students to respond honestly to the questions. However, with retrospective 
questions, a wide range of life variables and events may have been difficult 
for the respondents to recall (Gorard, 2001) and that is something I had to 
take into account when interpreting the data. I combined the results of the 
surveys with focus group interviews with university students.12 I had the 
possibility of meeting three groups that had responded to the questionnaire. I 
chose these groups according to how they had responded to the questionnaire 
in order to get a varied picture of the students’ experiences, views and feel-
ings.  

Ethical aspects 

In surveys, anonymity helps to protect a person’s privacy. I personally dis-
tributed the questionnaires to the students and tried to clearly present myself 
and the aims of my study both orally and at the beginning of the question-
naire. No one was forced to respond in any way. In such a face-to-face de-
livery, the students had the possibility of asking me questions about the 
questionnaire and about my study.  

                               
12 I also conducted a textbook study about how proof was dealt with in upper secondary 
school textbooks (Nordström & Löfwall, 2005) as well as a pilot survey among upper secon-
dary school teachers about their views and intentions regarding proof, in order to get a varied 
picture about students backgrounds. I have not included these studies in the thesis. 
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3.3.2   Interviews with mathematicians  

The individual interviews with mathematicians, which took place in 2003-
2004, were semi-structured and lasted from 30 minutes to two hours. The 
sample was 13 mathematicians at a department with about 40 mathemati-
cians. I tried to choose both mathematicians who were engaged in the basic 
course as well as mathematicians engaged in intermediate and advanced 
courses at the time of the interviews. This was because I aimed to gather 
focus groups of students from all levels and observe lectures on different 
levels. The first two interviews were not tape-recorded but I carefully took 
notes. The rest of the interviews were tape-recorded. I invited the mathema-
ticians to reflect on the items presented below but they could talk quite freely 
about other issues as well during our discussions. The items I focused on 
were the following: 

• The teaching experience, the current course 
• Changes in the contents of undergraduate courses concerning proof 
• Changes in students’ prior knowledge concerning proof 
• How do students meet proof in their lectures and lessons 
• Why should students learn proof 
• How do we/students/pupils learn proof 
• How students relate to proof 
• Discussions about proof or proof techniques 
• Students’ own investigations 
• Further issues 

The focus in the interviews was not on the role of proof in mathematicians’ 
own research but in the teaching and exercising of mathematics. It is also 
important to point out that my aim was not to categorise mathematicians but 
their utterances. I considered mathematicians’ utterances as representative of 
various views in the community, views that were influenced by the social, 
cultural and historical context of the practice. I considered semi-structured 
interviews as the best method to gain insights in mathematicians’ views and 
intentions. Kvale (1996) points out that there is always definite asymmetry 
of power in a research interview. The interviewer defines the situation, in-
troduces the topics and steers the course of the interview. However, mathe-
maticians were more familiar with proof and the teaching of proof than I was 
as a doctoral student, so I thought they would feel quite free to express their 
thoughts and ideas about proof and the teaching and learning of proof.  

Data analysis 

At the beginning of the data analysis, I considered the following three as-
pects of proof obtained from literature about mathematics education re-
search: conviction/explanation, inductive/deductive approaches and formal-

ity, level of rigour and language. During the time of the interviews and the 
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pilot study with mathematicians, I started to analyse the first interviews with 
students. I found the metaphor of transparency in relation to the teaching of 
proof and to students’ access to proof appealing to examine and I added it to 
the conceptual frame about the aspects of proof (see Section 2.3). I tested the 
frame in a pilot study about five mathematicians’ views on proof and the 
teaching and learning of proof (Nordström, 2004). I included these five in-
terviews in the global study. 

I used NVivo software for the qualitative analysis in the following way. 
The interviews were transcribed and imported to NVivo. The last interview 
was not completely transcribed but I listened to it and identified the topics 
that added something new to my research. In some of the interview tran-
scripts I first identified the topics that were significant for my subject of 
study and left aside the items where mathematicians talked about subjects 
which were irrelevant for my study, before importing the transcripts to 
NVivo. 

I first created free nodes (i.e., labels like “Conviction/Explanation”) rep-
resenting the different aspects of proof in the conceptual frame and some 
free nodes for topics regarding mathematicians’ pedagogical perspectives 
(like “mathematicians’ intentions”). After the first coding, I studied the tran-
scripts once again to find other themes emerging from the data and created 
new free nodes. For example the functions of Aesthetic, Systematisation, 

Intellectual challenge and Transfer were dealt with by mathematicians and I 
included them in the conceptual frame (see p. 62). During the data analysis, I 
continuously examined the relations between the different nodes and organ-
ised them into trees (Appendix 6). The pilot study with five mathematicians 
helped me to see these relations and hierarchies and thus, influenced the 
theoretical frame of my study. The a priori categories which I had created for 
the conceptual frame at the time of the pilot study proved to be relevant for 
the analysis of the interviews and I complemented the frame by the functions 
of proof mentioned above. 

In parallel to the pilot study I continued the work with the theoretical 
frame. I analysed the data obtained from all the interviews with the mathe-
maticians and related it to the conceptual frame (see Section 2.3) and to new 
aspects that had emerged in the pilot study. In parallel to the data analysis of 
the interviews with the mathematicians, I also studied curricula and statistics 
about the changes in the courses and the organisation of the teaching in the 
mathematical practice and interviewed Peter Strömbeck (director of studies) 
and Jan Johansson (head administrator) about these changes (see Section 
3.3.4). I then related the ways in which mathematicians talked about the 
changes to the data I had obtained from these complementary sources and 
found different styles in how mathematicians related to these changes. These 
styles were also connected to the three main pedagogical styles (described 
below) that were constructed from the data. I also formulated analytical 
statements concerning the mathematicians’ views on proof and how they 
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related to the changes in the practice and how they talked about their peda-
gogical intentions and checked them against the data. 

The development of a theoretical model 

Three main pedagogical approaches could be constructed from the data. As 
early as in the pilot study (Nordström, 2004), I had noticed a difference be-
tween the mathematicians who stated that they had an intention of teaching 
proof and the mathematicians who stated that they avoided proof for a vari-
ety of reasons. I divided the reasons for not having the intention of dealing 
with proof into internal and external reasons. Internal reasons refer to 
mathematicians’ own pedagogical choices to avoid proof, for example if 
they state that students do not need to learn proof yet. External reasons refer 
to circumstances like the lack of time or the lack of students’ prior knowl-
edge, as reasons for not intending to deal with proof in the teaching. I started 
to look at the data from that point of view and noticed that those who stated 
that they wanted to avoid proof often had the same kinds of views about 
students and often related to the aspects in the conceptual frame (see Section 
2.3) in a similar way. This was also the case for those who stated that they 
had intention of dealing with proof. This was the starting point for the con-
structing of three different positions. 

After analysing all the interviews with the mathematicians, I set up a table 
about the three different styles of how to approach proof in the teaching (Ap-
pendix 5). I decided to call the first style progressive or I don’t want to foist 

the proofs on them, the second style deductive or It is high time for students 

to see real mathematics and the third style classical or I can’t help giving 

some nice proofs. It is difficult to choose proper labels. Next, I very briefly 
explain, why these labels were chosen. The label “progressive” was chosen 
because, in the utterances categorised into the first style, there could be 
discerned a tendency towards/willingness to reform the educational practice 
in various ways. It is an approach normally contrasted to the “traditional” 
one (Edwards & Mercer, 1987). There are also features of constructivism 
(learning theory) visible in the utterances categorised into the progressive 
style (see p. 209). The label “deductive” was chosen because in the utter-
ances categorised into the second style, the deductive character of 
mathematics was often visible. The label “classical” refers to a view on 
mathematics as a “fine art”, to a style of a professional mathematician who 
enjoys the beauty of mathematics and proofs.   

Hence, I had got three positions. I checked the positions which I had de-
fined so far against the data. There were mathematicians who often ex-
pressed views belonging to one of these positions and there were mathemati-
cians whose utterances and views could be characterised as a mixture of 
them. Hence, it was impossible to map each mathematician into one of these 
positions and as I mentioned above, that was never my aim. Teaching styles 
and intentions of one person can also vary from day to day and from one 
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moment to another. However, the categories were helpful in organising and 
giving structure to the results. So, I did not try to categorise every mathema-
tician’s way of talking exactly into one position but instead considered and 
developed the styles as ideal types, as a theoretical model. I then analysed 
the utterances using this model. Sometimes also utterances contain features 
from various styles. There is not a spectrum between these categories and in 
certain aspects they are overlapping. However, depending on different crite-
ria, for example Intuition/Formality, expressions of greater or lesser intensity 
could be discerned. In Section 4.4, I present this idealised theoretical model 
and exemplify the three styles with utterances from the data.   

Hence, the main criteria for the different categories were the pedagogical 
intentions, the views on students and the relation to the aspects in the con-
ceptual frame (see Section 2.3, p. 61).  

Ethical aspects 

There were some ethical aspects I had to consider when proceeding with the 
interviews and when reporting the results. Firstly, I tried to clearly present 
the aims of my study to the mathematicians who I interviewed and tell them 
how their contribution was going to be dealt with. 
Secondly, it was important when reporting the results, to do it in a way that 
would protect the anonymity of the persons in the study. On occasion I had 
to omit facts that might have been enlightening for the case. After the deci-
sion to limit the study to just one university, the issue of anonymity became 
even more important. To protect the mathematicians’ anonymity, I took the 
following decisions: 
 
• I neutralised the mathematicians’ language. I do not give the authentic 

examples of mathematicians’ utterances. Some of the mathematicians 
came from other countries than Sweden and it could be possible to recog-
nise the persons from their ways of expressing themselves. The same 
could be said for some of the Swedish mathematicians, some of whom 
had certain characteristic ways of expressing themselves. Therefore, I 
omitted such traits from their remarks. 

• I do not reveal the mathematicians’ gender. This is because there are few 
female mathematicians, and in case I had interviewed some of them it 
would have been easy to identify them. 

• I do not reveal from which country each mathematician comes from. 
• When describing the ideal types, I combined quotations from different 

persons. I only labelled the quotations with M (mathematician) when 
needed, to distinguish them from students’. This was because I did not 
want the individuals to become visible in the presentation. The most im-
portant thing for the results was what and how the mathematicians as rep-
resentatives of the mathematical practice, not as individuals talked about 
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their practice and what kind of approaches there could be discerned 
among the utterances.    

Critical considerations of the method 

There were differences on how much and how deeply mathematicians talked 
about pedagogical issues. It would have been preferable to organise focus 
group interviews also with mathematicians after the individual interviews in 
order to stimulate reflections between different mathematicians. Some of the 
interviews offered very little data about mathematicians’ pedagogical con-
cerns.               

3.3.3   The focus group interviews 

I organised focus group interviews during 2004 among students who studied 
the ordinary courses in mathematics in different phases of their studies. The 
interviews were semi-structured according to the items I had piloted with 
one student. I invited the students to have lunch together before their lectures 
and tried to create an informal atmosphere and be in the background during 
the discussions as much as possible. Of course, I had to intervene now and 
then in order to focus on the items described below. The interviews lasted 
from one to two hours and were tape recorded.  

The aim of the focus group interviews with students was, partly, to com-
plement the results from the surveys about the students’ stated experiences, 
views and feelings with qualitative data that would help me to give a richer 
description about the students’ background, and how they related to proof. 
But the focus group interviews would also give information about students’ 
experiences about proof during the university courses in different phases of 
their studies. I started with a pilot study with one student studying the con-
tinuous courses in order to test the relevance of the items I planned to intro-
duce to the groups and the theoretical frame. The items I focused on in the 
interviews were: 

• Students’ upper secondary school experiences concerning proof 
• Students’ responses to the questionnaire (if they had responded to 

it) 
• Students’ university experiences concerning proof 
• Items from observed lectures 
• Further thoughts 

Because of a possible power asymmetry in the interview situation there is a 
danger that the students answer the questions in a way they feel they are 
expected to do, especially when the interviewer is a doctoral student (Kvale, 
1996). That is why I chose to use focus group interviews instead of individ-
ual interviews with the students. Furthermore, focus group discussions offer 
data about how students talk about their experiences with each other and 
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there is another kind of spontaneity in the utterances than in the ordinary 
interviews. 

The sample 

Six focus group interviews were conducted during 2004 among students who 
studied the ordinary courses in mathematics. In each group, there were three 
to five participants. Students with both Swedish and foreign upper secondary 
school backgrounds were represented in the focus groups.  
• Two of the groups had recently started to study mathematics and were 

taking their first courses. They had also responded to the survey question-
naire and I had chosen them according to their responses. I tried to get 
into touch with students with different kinds of experiences and relation-
ship to proof. I contacted the students whom I wanted to interview and 
who had left their contact information in the questionnaire, by e-mail or 
via telephone. 

• Two of the focus groups were studying intermediate courses. One of these 
groups had responded to the survey one year earlier. I contacted that 
group via e-mail and succeeded in gathering three students to discuss the 
items above and reflect on their responses to the questionnaire they had 
responded to one year earlier, at the very beginning of their studies. The 
other focus group studying intermediate courses was brought together af-
ter observations of lectures where I presented my study to students and 
asked them to volunteer by participating in a focus group discussion.  

• Two focus groups studying advanced courses were gathered together after 
observations of lectures in a similar way as the previous one. 

• After the data analysis I gathered together a group of doctoral students in 
June 2005, to reflect on their experiences in relation to the results of the 
data analysis of the focus group interviews with the other students.   

Data analysis 

The interviews of the six focus groups in 2004 were transcribed and im-
ported to NVivo- software. I analysed the interviews in Swedish and first 
used the free nodes that were created during the analysis of the pilot inter-
view. I included the pilot study in the whole sample. I then tried to read the 
data afresh and created new free nodes. Afterwards, I organised the free 
nodes into trees according to how the items were connected to each other 
and the earlier items. I formulated analytical statements and, finally, in June 
2005, gathered a group of doctoral students and confronted them with the 
results of the qualitative data analysis. Their experiences in their mathemati-
cal practice confirmed the main parts of the results.  

In parallel to the data analysis, I went on developing the theoretical frame 
for the thesis. The first data analysis of the interviews with students influ-
enced the focus on the research questions as well as the development of the 
theoretical frame. For example, the metaphor of transparency and students’ 
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access to proof turned out to be one of the central issues for my thesis. How-
ever, the deepening of the theory also provided new insights for the data 
analysis. Hence, at last, I analysed the data against Wenger’s (1998) theory 
of changing identities and the location in the practice. I identified and ana-
lysed the utterances expressing participation and non-participation concern-
ing proof in the mathematical practice. These utterances often concerned 
how the meaning of proof was experienced in the practice.  

Ethical aspects 

The ethical aspects I had to consider when proceeding with the student inter-
views and the ways in which the results were recorded were quite similar to 
those used when dealing with the mathematicians (see p. 83). I tried to 
clearly present the aims of my study to the students I interviewed and tell 
them how their contribution was going to be dealt with. Also, to protect the 
anonymity of the students who volunteered in the focus groups, when report-
ing the results, I took the following decisions: 
• I only gave information about the level on which the student studied at the 

time of the interview.  
• In the dialogues, I used letters to distinguish different persons.  
• I did not reveal either the gender or what country the student came from.  

Critical considerations of the method 

I wanted to get a rich picture about students’ views and experiences. There is 
a risk that students who did not participate in the focus groups had views that 
were not expressed by those who participated in the interviews. Also, the 
fact that the students could freely discuss the subject made the data analysis 
time consuming. 

3.3.4   Gathering of the complementary data 

As described before, I gathered some complementary data in order to trian-
gulate the data and give a varied picture of the issue. I conducted observa-

tions of lectures (about two lectures of almost all the mathematicians I in-
terviewed) during the same period I organised the focus group interviews 
with the students, in 2004. In that way I could relate the students’ utterances 
to the lectures I had observed.  

Bryman (2001) defines structured observation or systematic observations 

as a technique in which the researcher employs explicitly formulated rules 
for the observation and recording of behaviour. It is a method that works 
best when accompanied with other methods because it can rarely provide 
reasons for observed patterns of behaviour. In my observations of lectures, I 
paid attention to the different ways mathematics was presented. I also 
checked how the proofs were presented and how the students were stimu-
lated. However, I did not use a standardised observation instrument so I can-
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not call my observations purely structured or systematic observations. Yet, 
there were features of systematic observations because I focused on a special 
issue, proof. They were simple observations because I had no influence over 
the situation being observed. An interesting issue is if the observations 
would be called participant or non-participant observations?  I was not a 
student but in a way I was in the same situation as they were because I was 
listening to the lectures and at the same time making the notes. So I could 
draw certain conclusions of how the students might experience the mathema-
ticians’ behaviour and the lectures. At the same time, I also observed the 
students’ behaviour, which gave me insights in how mathematicians experi-
enced the students in the lectures. Hence, I got some complementary data 
about the issues the students in the focus groups and the mathematicians in 
the interviews talked about. Here, this kind of triangulation helped me to 
give a richer picture of the treatment of proof and the students’ access to it. 
The field notes from the observations of the lectures serve as complementary 
data and helped me triangulate a part of the data. They also offered items to 
the focus group discussions. 

The second source of complementary data was the interviews with ex-
perts, Matts Håstad (secretary of a Nordic Committee for the Modernising of 
School Mathematics in the 60’s) and Barbro Grevholm (professor in didac-
tics of mathematics) about changes in the school curriculum and Peter 
Strömbeck (director of studies) and Jan Johansson (head administrator) 
about the changes in the curriculum, organisation of teaching and statistics at 
the department that I am studying. I wanted to gain insights into the histori-
cal background of the current situation and used the interviewees’ utterances 
as oral references in my study. So the interviewees were not anonymous. 
According to Bryman (2001) the term focused interview refers to an inter-
view using predominantly open questions to ask interviewees questions 
about a specific situation or event that is relevant to them and of interest to 
the researcher.  

The third source of complementary data was documents like textbooks, 
curricula and statistics. I explored the issues in the university textbooks, 
extra material and examinations that mathematicians or students talked 
about. I also studied the official documents and statistics about the changes 
in the organisation of the teaching and changes in the course literature. 

Some ethical remarks: I asked the mathematicians in advance if I could 
observe their lectures. I made clear that I was observing proof and how proof 
was dealt with in the lectures and I emphasised that I was not there to judge 
their teaching competence. I also tried to clearly present the aims of my 
study to those whose lectures I observed as well as to those who I inter-
viewed and told them how their contribution was going to be dealt with. 
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Critical considerations 

In the observations of the lectures, it is possible that my presence in the 
classroom somehow influenced the lecturer. One problem with focused in-
terviews is the memory of the interviewees because my questions concerned 
events during the last four decades. Thus, I combined the interviews with 
document analyses. Here my aim was to gain insights into the historical 
events which were significant for the current situation in the mathematical 
practice concerning the treatment of proof.     

3.4   A summary 

To sum up this chapter, I first presented the general and the specific research 
questions and provided the reader with a design of my study. In the second 
section, I discussed different research paradigms in relation to my study and 
how they related to my choice of research methods and ways of analysing 
and interpreting the data. In the third section, I gave a detailed account of the 
different methods, as well as the different procedures for the data analyses 
applied in the study. I included ethical considerations in the description of 
the methods and explained how they had influenced the way in which I re-
ported the results. 
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4   Mathematicians’ practice 

I begin the report of the results with the mathematicians – the old-timers in 
the practice. The structure of the chapter is as follows: 

In the first two sections, I describe how the mathematicians in my study 
talked about proof and its significance to their practice and how they dealt 
with various functions of proof. In the third section, I deal with the changes 
that the mathematical practice has undergone during the last decades regard-
ing the treatment of proof in the basic course and how the mathematicians 
related to these changes. In the last section, I describe the three different 
styles I created from the interview data, concerning mathematicians’ peda-
gogical perspectives and intentions. 

The results reported in this chapter are based mostly on the data analysis 
of the interviews with mathematicians. The focus in the interviews was not 
on the role of proof in mathematicians’ own research but in the teaching and 
exercising of mathematics. Not all of the mathematicians talked about all the 
aspects that I have dealt with in the theoretical frame; different aspects domi-
nated their talk in various ways. 

4.1   The soul of mathematics 

Very clearly, the mathematicians in my study considered proof as an essen-
tial part of mathematics. All of them showed an appreciation of proof in 
different ways. However, they talked about proof in slightly different man-
ners and stressed different aspects of it. The mathematicians in my study had 
various backgrounds which might have influenced their ways of viewing 
proof. Some of them, for example, came from other countries than Sweden 
and had their school backgrounds in these countries.  

The centrality of proof in mathematical practice was obvious in all of the 
interviews. The following quotations can be given as characteristic and rep-
resentative of this view.  

“I suppose that proof is a fundamental idea of mathematics…”; “But that is 
the soul of mathematics.” 

Proof is something that most of the mathematicians consider as real mathe-

matics in contrast to upper secondary school mathematics that is often asso-
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ciated with the learning of rules without understanding. This is something 
that infiltrates the mathematicians’ talk in various ways and can be recog-
nised in a lot of the utterances:  

“…There is always someone who is truly interested in mathematics and then 
the proofs become important.” 

There is also often a feeling of appreciation and admiration in the mathema-
ticians’ way of speaking about proof.  

“…you have to learn to understand and appreciate what you might call the 
triumph of logical thinking of human beings and the ability to draw conclu-
sions.” 

One of the mathematicians very clearly declared his view of mathematics as 
different from many other sciences because it is built up from axioms in a 
unique way. 

“… you cannot go through a mathematical education without experiencing 
this feeling at least once, otherwise you might as well study theology, phi-
losophy, nothing against them, or politics if you want, there are so many sub-
jects where everyone can have an opinion and argue, and in a way, everyone 
is right as long as they put their feet down, and present arguments that others 
accept. But in mathematics there is no law saying that the strongest wins but 
the one who never makes any mistakes is right, after having been confronted 
with all possible counter arguments following the axiomatic  method, and 
still…. To live so you don’t rely upon a vague statement but have a solid 
ground.” 

Some of the mathematicians also expressed the idea that proof actually exists 
in all mathematics.  

“…as I myself learned already at an early stage of my education in […], 
proof is a natural part of mathematical studies, it was impossible to distin-
guish the solving of problems and proving, but they quite simply come to-
gether.” 

What the mathematician states here, is that the idea of solving problems and 
proof comes together. This is an important aspect for mathematics education 
and has to do with the aspect of Conviction/Explanation. In the presentation 
of the conceptual frame, I pointed out that conviction could also be viewed 
as an important aim of all mathematical activities even in school mathemat-
ics, if we hold the view that proof permeates the whole of mathematics, as a 
tool for justifying every step in our solutions (see p. 45).  
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4.2   Proof as an artefact  

In Section 2.2.5, I argued that proof can be seen as an artefact in mathemati-
cal practice. Mathematicians talked about communication and systematisa-
tion (see p. 93) and about other important functions of proof in their practice. 
They also talked about proof as a tool for deriving formulas and checking the 
correctness of statements (see p. 92). Hence, the data also supports the idea 
of considering proof as an artefact in mathematical practice.  

Next, I will describe the way in which the mathematicians talked about 
various functions (see p. 62) of this artefact in their practice. I provide the 
reader with some quotations to illustrate their ways of talking about each 
function. 

Conviction 

In connection with the deductive character of mathematics, some mathema-
ticians spoke about conviction. No one questioned the value of proof as a 
means for validating mathematical knowledge (function of verification p. 
21) and some of the mathematicians stated it explicitly: 

” I suppose proof is a fundamental idea in mathematics… that we can arrive 
at various results, to build on definitions, which sometimes come from appli-
cations and then they are not completely meaningless. Then we start from 
them and derive new results and there we need proof. In mathematics you 
can’t be convinced and continue without a proof. It is the very proof that 
leads to conviction.” 

One of the mathematicians expressed the view that proof was not needed in 
teaching in order to convince students since students were already con-
vinced.  

“Not for conviction, they are already convinced.” 

This view is similar to that of de Villiers (1990) and Bell (1976) who argue 
that students’ conviction in mathematics is often obtained by quite other 
means than that of following a logical proof.  

Proof for mathematicians seemed to be connected to a kind of critical 
thinking, questioning and checking the “evident”.  

”When one absorbs the critical way of thinking and reasoning in an early 
phase one will never be fooled to accept things or statements without check-
ing them.”   

Hence, in real mathematics we have to be critical and proceed in a deductive 
manner so we can become convinced about the results. Proof gives us confi-
dence because we can be convinced that our reasoning is correct and that we 
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have arrived at true results. This can be compared to Selden and Selden’s 
(1995) description about validation, a kind of critical checking of proofs by 
mathematicians (see p. 45). 

One of the mathematicians talked explicitly about proof as a tool for de-
riving new results in mathematics.   

“… this ability to make conclusions is as a tool, so if we meet something that 
we do not really know if it is true, if we have worked and thought in this way, 
then we have this toolbox, this fundamental, these rules, or the theorems we 
have got by thinking in this way, then we can take them and look if we can 
derive also this statement, this is that we have got a tool.” 

The quotation above is also an example of considering proof as a tool for 
checking the correctness of statements. 

Explanation 

Conviction was also connected to the explanation proofs could give. This 
supports the idea described in the conceptual frame (see p. 43) that convic-
tion and explanation in mathematical practice are intertwined. 

“It’s the same thing here; it would be strange to believe all your life in some-
thing if you don't get an explanation why it’s true.” 

The aspect of explanation that proof would provide was present in mathema-
ticians’ utterances in different ways. Proof would help to clarify:  

• mathematical constructions 
• mathematical structures 
• relations between different concepts in terms of connections or 

hierarchies 

“Learning of proof enhances conceptual understanding…to see how mathe-
matics is constructed, how things are connected with each other.”; “Gives 
insight how mathematics works…gives understanding for the hierarchies be-
tween different concepts like continuity and differentiability.”  

Some of the mathematicians, however, pointed out that not all the proofs 
enhanced understanding. This was also exemplified in the conceptual frame 
(see p. 44). 

“…there are actually proofs that give understanding why it is like this, and 
can give structure for the minor parts, that this really is something universal 
that is valid for all cases, I think that can offer something but far from all 
proofs do that. There are even proofs that leave mathematicians in a kind of 
dissatisfaction: yes, yes, yes, I understand this but why is it like this?” 
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Understanding is a personal experience and depends on a person’s earlier 
experiences. Hence, proof is not always an explanation that enhances under-
standing of mathematics, not even for mathematicians. 

Communication, aesthetic and intellectual challenge 

One mathematician talked about proof as a means of communication. But 
communication was restricted to that between mathematicians. 

“It’s important to learn proof because it’s the language all mathematicians 
can communicate with.”   

When mathematicians presented mathematics to students, it was sometimes 
possible to view the presentation as communication through proof. Mathe-
matics was often presented in a manner, where all the steps were made visi-
ble and justified.   

Some mathematicians talked also about aesthetics in connection to proof.  

”Proofs can be beautiful.”; “Calculus contents very classical material and 
the proofs are beautiful.” 

One of the mathematicians talked about proof as an intellectual challenge in 
contrast to calculating with specific numbers and doing sums/arithmetic.  

“And if they (students) only calculate with numbers it’s not a big intellectual 
feat...” 

Systematising mathematical knowledge 

According to the mathematicians, proof also rationalises mathematics be-
cause we do not need to prove every single case any more if something gen-
eral has been proved.  

 “…if one proves once for all that every polynomial and every trigonometric 
function is differentiable, one understands the point of proof, because if one 
constructs such a proof there is no need to prove the concrete examples any 
more and the life becomes easier…” 

Proof was also seen to be a tool for systematising mathematical knowledge 
so we do not need to memorise everything. 

”It’s hardly possible to learn everything by memorising it, it’s easy to get it 
all muddled up whereas if one tries to get a system of it all, things come to-
gether…” 

Hence, proof is seen to be something opposite to the learning of rules or 
memorising formulas.  



 94

“To come away from cookery book thinking.” 

The notions like “cookery book thinking” (kokbokstänkande) and “recipes” 
were usual when the mathematicians talked about the opposite to proof.  

Transfer 

Transfer is a function of proof that mathematicians in my study touched on 
when talking about the meaning of the learning of proof. Transfer refers to 
two basically different things (see p. 61).  

Firstly, proof teaches us the logical thinking that is needed in other con-
texts outside mathematics.  

“It’s simply an exercise in formal reasoning that is more or less useful re-
gardless of what we do when it comes to more theoretical issues. I mean even 
if you study other things I believe it’s useful with formal training to construct 
things logically, to express yourself logically.” 

Hence, mathematicians talked about the benefits of learning proof because it 
was exercise in formal reasoning and, therefore, also useful for all of us also 
in other than mathematical contexts where logical reasoning was needed. It 
was seen to be especially important for programming but desirable also in 
other branches. 

”Mathematical logic and algorithms and programming, mathematical proof 
is connected to algorithmising.” 

The second meaning to which I refer with transfer is the usefulness of proof 
techniques themselves in other mathematical contexts. This was also stressed 
as a reason for learning proof by one mathematician. Proofs could also offer 
useful techniques and structures that could be applied in other mathematical 
situations and could help to obtain new mathematical knowledge. In connec-
tion to the basic course, the derivation of the formula for second degree 
equations was mentioned as an example about such proofs.  

“To take something that still occurs at the lower level, solving of second de-
gree equations and say that this is the reason for why pq-formula or things 
like that work. And you have to learn the technique because there are situa-
tions where you need to do it in this way, where it does not work to apply the 
formulas you have learned in upper secondary school…” 

The mathematician quoted above points out that learning of the derivation of 
the formula for the solving of a second degree equation gives techniques that 
can be used in other mathematical situations. Indeed, there are many prob-
lems where it is useful to be able to complete the square. 

I will come back to this function in Section 7.3.  
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When talking about the reasons for why the students should learn proof 
the mathematicians also expressed their own views on proof as an essential 
part of mathematics.  

A means to come to grips with the essence of mathematics 

In a more abstract manner, mathematicians talked about proof as a means to 
come to grips with the essence (väsen) of mathematics.  

”…to understand the essence of mathematics.”; “Gives insight into the es-
sence of mathematics.”  

This is interesting because mathematicians, by these utterances, convey the 
view that the understanding of proof enhances the understanding of mathe-
matics itself. They view proof as a tool by which to get insights about what 
mathematics is about. The learning of proof enhances access to mathematics. 
The meaning of proof in education would be then, to help give the students 
an insight into the essence of mathematics. At the same time, proof is re-
garded as a fundamental idea of mathematics itself, the soul of mathematics 
(see p. 89). 

Hence, to sum up the mathematicians’ views, proof is seen to be essential 
in mathematical practice. The view of proof as an artefact found support in 
the data in a sense that mathematicians considered proof as a tool for various 
functions. The following functions of proof were identified in mathemati-
cians’ utterances:   

• Proof also gives conviction about the truth of mathematical state-
ments and allows the mathematicians to proceed and investigate 
new theories. 

• Proof explains and clarifies mathematical connections, hierarchies 
and relations between different notions. 

• Proof is a means of communication and gives intellectual challenge 
and aesthetic experience.  

• Proof is a tool for deriving results in mathematics so one does not 
need to memorise everything. 

• Proofs give the general results that can be applied in other contexts 
in mathematics. 

• Proofs can give techniques that can be used in other mathematical 
contexts (transfer). 

• Proof also teaches us logical thinking that is needed in other con-
texts than mathematical practice (transfer). 

In Section 1.2, I described the changes in the curriculum regarding the role 
of proof in the community of mathematical practice that is the focus of my 
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study. In the next section, I describe how the mathematicians in my study 
related to these changes.   

4.3   Changes in the curriculum/changes in the 

newcomers?  

Changes take place in communities of practice all the time and people relate 
themselves differently to them. In this section, I describe how mathemati-
cians talked about some of the main changes in the basic course during the 
last decades regarding the treatment of proof. I base the section on analysis 
of the interview transcripts, a textbook review and documents and interviews 
with experts about curriculum changes. 

Some of the changes in the curriculum are reified in forms of official 
documents (see Section 1.2). New courses have been introduced and others 
have vanished. The character of the examinations has changed, for example 
earlier in the 80’s there was a problem solving part and a theory part in the 
examination for the basic calculus courses. Textbooks also reveal differences 
in teaching and learning styles in the practice. Computers have impacted on 
the methods and the possibilities to obtain new results and so on. But, obvi-
ously, there are also changes the character of which can be hard to reveal 
because “constant change is so much a day-to-day engagement in practice 
that it largely goes unnoticed.” (Wenger, 1998, p. 94) Even if the mathema-
ticians’ views on  and response to the changes vary, from one person to the 
next and, to some extent, from one day to the next their responses to the 
changing conditions are interconnected because they are engaged together in 
the joint enterprise of enhancing mathematical learning. I start the section by 
describing how the mathematicians who I interviewed talked about the 
changes and the reasons for the changes in the curriculum concerning the 
treatment of proof. 

4.3.1   How did the mathematicians talk about the changes in 

the curriculum? 

All the mathematicians who I interviewed had been in practice several years 
but had, of course, different kinds of experiences depending on what courses 
they had taught during those years. Some of them were more familiar with 
the basic course than the others. However, all of them agreed that some 
changes had been made in the contents regarding the status of proof in the 
courses for the first 20 study points during the time they had been working at 
the department, even if those who had worked there for a shorter time, were 
not so sure about these changes. To my question about possible changes in 
the treatment of proof one of them answered in the following way: 
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“Devalued constantly even if we still try to maintain a certain level but it has 
been postponed. Earlier we had a theory part in the examinations of Analysis 
1 and 2 that were the same course then… We try to motivate some simpler 
theoretical things such as theorems about continuous functions and some 
other theorems where we only tell the students that a proof exists but we do 
not go through them.” 

However, some of the mathematicians pointed out that the changes regarding 
the treatment of proof concerned only the lower level courses.   

“If you go up to the courses we call D-level or doctoral courses, I do not 
think there is a crucial difference.” 

That is something that can also be seen when examining the examinations. 
The basic course seems to have changed more than intermediate and ad-
vanced courses.  

Reasons for the changes 

The mathematicians had different views as to why the changes at the lower 
level regarding the treatment of proof had taken place. They mentioned stu-
dents’ lacking of prior knowledge regarding proof, students’ bad calculation 
skills, students’ lacking of interest, new course literature and economical 
aspects as well as changes in the examinations as reasons for the changes in 
the status of proof in teaching of mathematics to the undergraduates. 

1. Students’ prior knowledge about proof 

The most usual explanation was that the students who started to study at the 
university had little experience about proof from upper secondary school and 
thus, it was impossible to deal so much with proof in the basic course.  

“Elements of proof in upper secondary school and in basic courses at the 
university have diminished, it’s perfectly obvious. We have to adjust to the 
fact that the students usually have almost no experience when they come 
here.”  

In many of the utterances the dissatisfaction with school mathematics was 
obvious. It was seen as rule learning (superficial) contrary to real mathemat-
ics (proof). I will come back to this standpoint in the next section when de-
scribing the mathematicians’ pedagogical perspectives. 

“It’s natural because school mathematics has become more and more super-
ficial. The students who come to us have usually no experience about proof.” 

Some of the mathematicians also referred to the fact that more students now 
come to university than earlier and that was one of the reasons for lower 
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standards (see p. 15). Some of the mathematicians also talked about stu-
dents’ lack of maturity as a reason for the changes.  

“This successive postponing of proof to higher courses has been a conse-
quence of the fact that we noticed that it did not function, the students 
couldn’t learn the proofs. They were not mature enough for it so early.” 

There were some mathematicians who were more careful in their judgement 
about changes in students’ prior knowledge about proof and were aware of 
the fact that they might have been influenced by the common opinion in the 
community. To my question about possible changes in students’ prior 
knowledge about proof, one of the mathematicians answered in the follow-
ing way: 

”Regarding that question I think all agree and that is why it is difficult to say 
if it is true because you from the beginning are filled with preconcep-
tions…But naturally my impression is also that the standard is going down. 
The standard in upper secondary school has obviously declined.” 

Finally, some mathematicians stated that proof had always been difficult for 
students, so that could not be the reason for the changes in the contents.  

”Same kind of variation as in climate, there are better and worse years.” 

However, there was a clear dissatisfaction visible in the mathematicians’ 
utterances concerning students’ school experiences. For example the lack of 
geometry studies was mentioned by many. 

2. Lack of time 

The introductory course was introduced in 2000 because students had diffi-
culties for example with elementary algebra and the manipulations of frac-
tions. At the same time contents in the basic course changed, for example a 
course in Euclidean geometry in Algebra and geometry 2 disappeared (see p. 
15). That is something some of the mathematicians reflected on and pointed 
out as a reason for why there was no space for discussion about proof or 
proof techniques any more. 

“We used to have more discussions about proof and proof techniques earlier. 
I think it was among other things something we had in the course Algebra 
and geometry 2 where we had Euclidean geometry as well. There was a dis-
cussion about proof as a method. We can say that the latest reform we made 
aimed to improve students’ calculation skills and elementary problem solving 
skills, and all the other things, like why mathematics is needed and how it 
really works was pushed sort of into the background…” 
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Hence, according to some mathematicians, the changes in students’ prior 
knowledge in mathematics in general had led to a reduction in the time al-
lowed for the teaching of proof. Priority was given instead to calculation 
skills and the time that was previously spent on proving activities, now had 
to be used for helping students to gain a solid base in their basic calculation 
skills. Also the organisation of teaching, with less time for the lecturer was 
mentioned as a reason for not dealing with proof (see p. 16).  

3. Students’ lack of interest 

Several mathematicians stated that students were not interested in proof and 
in the question “Why?”.  

“Students have worked too much with collections of formulas; they are not 
interested in the question “Why?”. They do not understand what mathemat-
ics actually is, that proof somehow exists in all mathematics.”  

That was one of the reasons why they did not deal with proof. 

”I present a lot of theorems without proof because of the lack of time and the 
lack of students’ interest.” 

According to these mathematicians students wanted to get their study points 
and were also used to get a set of formulas in upper secondary school instead 
of deriving them themselves. 

4. New course literature 

The courses are often designed in line with the contents in the textbooks 
even if some other materials are offered besides the textbooks. According to 
three of the mathematicians the changes of textbooks have also influenced 
the role of proof in the basic course. However, one could argue that maybe 
the textbooks were changed because mathematicians did not want to deal 
with proof in the way it was dealt with earlier. 

“We used to have another textbook in analysis and I think there were more 
proofs in it, so my feeling is that the courses are simplified and proofs occur 
more and more seldom, I believe.” 

Vretblad’s (1999) textbook was no longer included in the course literature 
for the basic course after the latest reform in 2000 (see p. 15). Two mathe-
maticians mentioned the disappearance of Vretblad’s book as a partial rea-
son for changes, for example they pointed out that there were some meta-
level discussions about proof and proof techniques in the book.  

“There is another question you did not ask, if teaching now contains less 
proof than earlier and I think it does compared to how it was five six years 
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ago. And it’s partly because we have changed the course literature and 
partly because we have adapted to what is seen to be a lower level from up-
per secondary school.” 

In Vretblad’s textbook, there are some discussions and exercises on proof 
and proof techniques in Swedish (see p. 59). It was earlier used, not only in 
the ordinary courses but also in courses for prospective teachers. The litera-
ture used in the introductory course is partly the same as in the ordinary cal-
culus courses. Besides, a book with repetition of upper secondary school 
mathematics (Wallin et al., 1998) is used as course literature (Appendix 1).  

5. Economical reasons 

Even economical reasons were identified in these discussions as one of the 
reason for why less time was spent on proof and proving activities:  

“…the lower the demands on students the more economical support to the in-
stitution…”  

The department gets support according to the number of students who have 
passed the examinations. 

6. Examinations 

The lack of proving tasks in the examinations that mathematicians set to the 
students can be traced to the lack of treatment of proof in the lectures and the 
lessons. 

“We now may have some tasks connected to theories but proving tasks are 
lacking. We cannot give such tasks because we do not deal with them in the 
lessons.”   

But some mathematicians also put this the other way around: because there 
are not many proving tasks in the examinations, students and mathematicians 
are not interested in dealing with them in the lectures and lessons.  

“The exams also rule the contents.” 

There are not many proving tasks in the examinations for the basic course as 
a whole (see Section 6.2.3). Earlier, there was a theory part in the examina-
tions for the basic course in calculus (see p. 15). Now the theories and proofs 
for calculus are demanded for the first time in an oral examination during the 
intermediate course Mathematical Analysis 3 (Appendix 1 and 4).      

These are the reasons identified in mathematicians’ utterances for why 
less proof was dealt with in the basic course. Mathematicians related to the 
changes in the role of proof in the basic courses in different ways. Next, I 
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describe some of the differences between the ways in which they related to 
the changes.    

4.3.2   How did the mathematicians relate to the changes? 

There were differences between mathematicians as to whether or not they 
were satisfied with the development they talked about. Some of the mathe-
maticians hardly saw any problems with the changes in curriculum and 
stated that not all students needed to learn proof, it was for those who were 
going to become mathematicians, whereas others would have liked to have 
more “real mathematics” from the very beginning and regretted the “lower 
standard” and were concerned about students’ possibilities of becoming fa-
miliar with proof. These mathematicians often talked about the usefulness of 
proof and logical reasoning in all contexts, also outside of the mathematical 
practice. There were different standpoints concerning the benefits of Euclid-
ean geometry in the mathematicians’ utterances. The course in Euclidian 
geometry was introduced in the curriculum in the 70s and excluded from the 
curriculum when the introductory course was implemented in 2000 (see p. 
15).  

Euclidean geometry 

Many of the mathematicians told stories about nice school memories of 
working with geometry tasks, and learning deductive thinking through them. 
They advocated geometry rather than algebra as the first contact with proof.  

”Geometry is good, it’s so easy to get acceptance, geometrical proofs give 
something, aha, that’s why I get this, whereas at the similar level in elemen-
tary algebra or in number theory proof is either unconceivable or evident.”  

Proofs in elementary algebra were, according to the quotation above, either 
unconceivable or evident and for that reason not good as the first contact 
with proof. Yet, many of those who related positively to Euclidean geometry 
stated that geometry came too late when they dealt with it at the university 
and complained that it was not dealt with in school mathematics where it 
would be better suited. 

“I think it (Euclidean geometry) came too late. It would be nice if they could 
do something nice with Pythagorean Theorem in school. Then they would 
have some positive experiences when they start to study at university. But the 
reality is not like that now.” 

Some mathematicians stated that students had difficulties with proofs of 
“evident statements”. I find it interesting that students’ proving of evident 
statements is regarded as a problem by both those who criticise geometry as 
well as those criticising algebra as the first contact with proof.  
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The following is an example of the reason given by a mathematician for 
why geometry was not appropriate as the first contact with proof.  

“Euclidean geometry is not appropriate as the first contact with proof and 
it’s because you prove many statements that seem to be evident and that’s a 
difficulty for many students” 

Further, another reason given by the critics was that in geometry, it is diffi-
cult to formalise everything profoundly. Students’ capability of judging what 
must be proved and what could be taken for granted in the domain of geome-
try was also pointed out as a difficulty. 

“… to be honest because, anyway, it is completely unthinkable to formalise 
everything profoundly. You have to a certain point, to a certain level accept 
intuition but where we put the boundaries is arbitrary, so it’s a difficulty for 
the students to understand why they should prove some evident things while 
other evident things can be accepted without a proof.” 

One has to accept intuition to a degree, and what to take for granted was a 
convention that mathematicians knew but not the students.  

“We who have taken part of these courses have some kind of tradition that 
it’s natural to draw the boundary precisely somewhere there, it’s actually not 
evident and it’s not strange that the students become confused and wonder: 
“why shall I show this?”, “why can’t I take it for granted?”.”  

Therefore algebra was to be preferred as a first contact with proof for the 
students. There was also a view of geometry as something old-fashioned in 
mathematics.  

“One turns a little into an old Greek when one works with it (Euclidian ge-
ometry).” 

Hence, those mathematicians who advocated algebra as the first contact with 
proof criticised the arbitrariness of what to take for granted in geometry as 
well as the proving of evident statements, whereas others saw a lot of bene-
fits in the learning of proof in geometry and instead pointed out that in ele-
mentary algebra statements that are proved are often evident. There were 
also those who advocated the use of both geometry and algebra in the teach-
ing of proof. Yet, as it is now, many students never seriously meet geometri-
cal proofs in Sweden because there is only a short course in geometry in 
upper secondary school mathematics today and the basic university course in 
geometry was excluded from the curriculum in 2000.   
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Pedagogical trends 

Some of the mathematicians were critical of the way proof was taught earlier 
even if they stated that the situation today was not satisfactory either. Here 
we can recognise the ideas of students’ lack of feeling meaning of proof and 
the need for proof (see p. 46). For one of these mathematicians, the recipe 
was to wait with proofs until the students felt that they needed proof instead 
of foisting on them arguments that they did not value. 

”Well, it’s been a clear tendency that one should wait with rigorous mathe-
matics. In the 70s all these epsilon-delta tasks were obligatory in all the ex-
aminations. To know analysis, one had to be able to use definitions of the 
limits, that’s nothing we demand now. The basic course, in general, demands 
very little proof. And I think, on the whole, that it’s good because I think 
there was earlier a tendency to prove things before one had understood the 
point of proof, and before one had this experience and maturity.” 

There was also criticism of the way in which proof was dealt with earlier 
that, according to a mathematician, led to the learning of proof by heart 
without understanding. The proving of evident statements was also criti-
cised.  

“… I had a feeling that very many students in the 70s used to learn proof by 
heart without understanding. I think it is the worst possible method of study-
ing. The proofs were not of the type, that was suited to enhance understand-
ing…one proves many statements that seem evident for students…” 

 
In Chapter 2, I described the new trends in the teaching of proof (see p. 

47). Inspired by for example Lakatos (1976), mathematics educators have 
advocated explorative activities for students. These activities would be 
closer to the way in which mathematicians work. Students’ investigations 
would lead to different conjectures by different students and the resolution of 
conflicts would be made by arguments and evidence. The idea is that stu-
dents should not just meet “readymade proofs” and formulae but would be 
able to participate in constructing them from the very beginning, by explor-
ing, finding patterns, finding counter examples or constructing proofs.  

Some mathematicians stated that such tasks and working manners were 
used in Project programme. This programme is not given any more at the 
department. All the mathematicians in my study, related positively to this 
kind of working manner, stating for example, that it was the way in which 
mathematicians worked. At the same time, they saw a lot of hindrances and 
disadvantages in applying the way of working with mathematics, for exam-
ple the lack of time and lack of students’ competence. Some of the mathema-
ticians were afraid that only some students would succeed whereas others 
never would. Calculus in particular, was pointed out as problematic for this 
kind of working manner. 
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”…in the introductory course in analysis, for example, one has no time to say 
to students: You can play here for a while until you encounter the supremun 
axiom.” 

Mathematicians pointed out that such problems could be a good complement 
for ordinary contents but emphasised that the problems had to be carefully 
selected in order to engage all students, and offer many students a chance to 
succeed.  

”It’s certainly lots of fun for those who manage to find out something, but I 
think that if it (the working manner) is to be successful one has to think 
through profoundly and take things where it’s not too difficult to state that 
something is true. I mean that if something is too hidden, it can take too long 
a time and then it’s not meaningful. It’s fun to succeed but not fun to fail.”    

One mathematician suggested that these kinds of tasks could be well suited 
for lessons, if they were not too time-consuming. However, according to the 
quotation below, there was too little time for the planning of the teaching 
together with other teachers. 

”In the lessons, we could have problems where the solutions are not visible 
at once but problems that would demand a little more studying of the theory 
and investigations to arrive at the right formulations. Our problems are more 
of the type: Prove a formula or solve an equation. They might not inspire 
students in the same way as problems where students feel that they them-
selves have arrived at something essential, […] Small problems, conjectures 
and proof do not need to take so much time and could probably be used in the 
basic course. But we have too little time for the planning of the teaching and 
not so much time to talk with each other.” 

Lessons (introduced in 2002) with about 10 students and a teaching assis-
tant/lecturer aim to give students the opportunity to present mathematics 
both orally and in written form. Some mathematicians were sceptical of ap-
plying investigative working manner in mathematics if students lacked ele-
mentary tools with which to explore and find patterns, or if they lacked the 
knowledge needed prove their conjectures.  

Dissatisfaction with the basic course 

There was also criticism of the basic course for containing too much mate-
rial. There was no time for deeper discussions about “real mathematics”. The 
following extract is an example of a view according to which students 
wanted to learn and understand but there was too little time and the courses 
had become some kind of brief orientation courses. 

”…it means that one actually has more stuff to learn and less time to digest 
the stuff. And then it becomes very difficult to, at the same time, give them the 
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explanation. I mean that they really wonder and listen and think, yes, are we 
going to know now why. We take them in a little.”  

There was also an example about a vision to offer the students a kind of ori-
entation course, but not for the repetition of what the school has done but for 
meeting the content in a qualitatively different way, to question and to get 
the idea of deductive thinking and relations between different mathematical 
contents. The aim of the course would also be to reveal the difference be-
tween the two attitudes towards mathematics, one as calculating or applying 
the formulas, the other as understanding and being able to prove and derive 
the results.  

”So what I actually would like to see, even if I can see counter arguments 
against that, is a completely different planning for a course where we would 
deal with quite a little stuff but demand a full understanding of that stuff. I 
mean really slowly take up these things and really differently and make the 
leap, make the difference in attitude visible and obvious […] And it is not a 
good milieu when we both try to get them to think differently and deal with a 
huge amount of new stuff. And I think, this is my view, I do not know if this 
has been practiced somewhere. I think that such a ground could enhance the 
tempo later after they (students) would have got some time to absorb this 
shock and the way of seeing things in comparison to this mish-mash 
method.”  

The feeling of giving up 

Many mathematicians, including some of those, who were critical of the way 
proof was taught earlier, stated that it was a pity not to be able to deal with 
proof to the extent they would like to do. They blamed the lack of time, stu-
dents’ low level and the lack of experiences in upper secondary school, the 
lack of students’ interest and economical reasons, new course literature and 
the lack of proving tasks in the examinations, for not dealing so much with 
proof in the basic course. As described in the previous section about mathe-
maticians’ views on proof, most of the mathematicians exhibited an appre-
ciation of proof and often regarded their own positive experiences as some-
thing they wished the students could be able to experience. Here, a kind of a 
feeling of giving up can be interpreted in many utterances: 

“The role of proof in our teaching has clearly diminished, now you hardly 
prove anything. Teaching has become more like giving cooking advice and 
formulas. We adapt our teaching to the students' low level and there’s no 
room for proof, we’ve also got fewer lessons than earlier.” 

Because students had great difficulties in their basic algebraic and computa-
tional skills there had not been any choice, according to one of the mathema-
ticians, but to offer an introductory course, not for learning of mathematical 
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reasoning, language and proof but for repetition of the upper secondary 
school mathematics and consequently, another course had to be sacrificed.  

“And there are both advantages and disadvantages with that. In some sense 
we did not have any choice, we had to give this introductory course because 
they had too poor a prior knowledge…” 

 

To sum up this section, the mathematicians who I interviewed talked about 
the changes in the curriculum concerning the treatment of proof and the rea-
sons for these changes in various manners. They agreed about some changes 
in the curriculum that had led to a diminished place for proof in the basic 
course but had slightly different interpretations about why these changes had 
taken place. They also related to the changes in various ways. Some of them 
thought it was a pity whereas the others did not see any problems. How they 
related to the changes had to do with their pedagogical perspectives, this I 
will deal with in the next section. 

4.4   Mathematicians’ pedagogical perspectives 

I have set up a table about three different styles of how to approach proof in 
the teaching based on the data (Appendix 5). I call them: 

 
• Progressive style or “I don’t want to foist the proofs on them” 
• Deductive style or “It’s high time for them to see real mathematics” 
• Classical style or “I can’t help giving some nice proofs” 

The styles are idealised, no individual could perfectly fit into one of them. 
They constitute a theoretical model to give structure to the results. As main 
criteria for different categories, I used pedagogical intentions, the views on 
students and the aspects in the conceptual frame (see Section 2.3, p. 61). I 
did not use the model for categorising mathematicians, just their utterances 
(see Section 3.3.2, p. 82). That is why the quotations are not labelled. In the 
same way as individuals cannot fit into one style, utterances sometimes have 
features of several styles. 

In this section, I first describe the main characteristics of each style and 
then exemplify the characteristics of the style with quotations from the data.  
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4.4.1   The progressive style (“I don’t want to foist the proofs on 

them”)  

The progressive style is characterised by pedagogical reflections with a kind 
of sensitivity towards students. Proof and especially the word proof should 
be avoided in order not to frighten students. Typical for this style is an at-
tempt to be flexible and adapt the teaching to students’ level and try to give 
students what they think students need.  

An inductive approach is preferred in the presentation of mathematics to 
newcomers. Natural language is preferred before formal symbols and it is 
unnecessary to confront students with formal mathematics. That is why long, 
technical and formal proofs should be avoided. Proof is used invisibly in 
calculations and in the derivations of formulas. This style emphasises the 
explanatory aspects of proof. The enhancing of understanding is the most 
important in teaching. Conviction is also seen as an important function in the 
following sense: proofs should offer conviction to students so they can deem 
them worthwhile. That is why proofs for evident statements should be 
avoided.  

According to the view held within the progressive style, only few students 
can value and understand proof. Most of the students do not even need to 
learn it. They need to learn to calculate. Proof is difficult for students, they 
are afraid of proving tasks, they are not interested in proof and they do not 
understand the meaning of proof. Further, discussions about proof, the for-
mal demands of the practice or proof techniques are not the aim of the teach-
ing, because it is impossible to “transmit” knowledge to students who are not 
interested in it. The small minority, who are capable and interested in proof, 
are able to find out for themselves what is accepted as proof in the practice.  

The label “progressive” was chosen because, in this style, there is a ten-
dency towards/willingness to reform the educational practice (see Section 
3.3.2, p. 82). There are also influences of constructivism as a learning theory 
within this style. I will discuss it in Section 6.3.1 (p. 209). 

Next, I will exemplify some of the features characterising the progressive 
style with utterances from the data. 

The meaning of proof 

Utterances expressing this style do not contain the same kind of expression 
of emotions and enthusiasm about proof as utterances characterising the two 
other styles but there is more concern about the pedagogical problems for the 
need for proof. The utterances categorised into the progressive style often 
express a criticism of the earlier ways of dealing with proof and theories (see 
the previous subsection, p. 103). There is also reflection on the meaning of 
teaching students proof. Mathematicians should not give “unnecessary” or 
long and technical proofs but proofs that enlighten something essential and 
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give some aha-experience to students. It is important that students feel that 
the proofs are worthwhile. Proof for its own sake is not the focus of the 
teaching. The following is an example of an answer to my question: Why 
should one learn proof?   

“And my answer to that, if there is to be any reason to teach it at all, it must 
be deemed worthwhile, which is easier said than done. Anyway, you do what 
you can in order to reach it. I do not torment them with proofs that I conceive 
as really unnecessary, anyway not on that level. If they are interested they 
will return to this eventually.” 

The quotation above exemplifies the view within which one questions if it is 
any meaning at all to teach proof “…if there is to be any reason to teach it 

…”. One should not “torment” students with unnecessary proofs. What con-
stitutes intellectual need among students has been discussed, for example, by 
Harel (1998).   

When is proof needed? The idea of proof within this style is for example, 
to enhance understanding (aha-experience) (see p. 43).  

 “And you can also concentrate on proofs that have some kind of core that 
they can understand as a kind of aha-experience.” 

The utterances characteristic to this style, often deal with giving proof as 
enhancing understanding. One should not give proofs that no one under-
stands, not long proofs either. 

“I definitely don’t give any long proofs if I don’t believe that there is under-
standing.“ 

Proofs for important theorems that students can apply as a method of prob-
lem solving can be given to students because students accept such proofs 
better. The next quote is an example of this. The factor theorem is seen to be 
worthwhile for students and as the theorem itself is important and useful for 
students, the proof for it can be given.  

”…something I thought was good as the first proof was the factor theorem. 
Partly because it is a natural question that they accept, that one should solve 
equations and then they see that one can solve equations of the second de-
gree and then we ask what to do with equations of higher degrees. And I 
think that is something that goes down (studenterna sväljer) quite well, that 
one needs to solve equations and that the factor theorem can be of assis-
tance.” 

As exemplified in the quotes above, within this style, there is sensitivity to 
what is thought students need or are interested in or “accept” and thus ex-
perience as worthwhile. 
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A small minority of students need to learn proof 

The following quotation is an example of the view that only a small minority 
of students needs to learn proof. They are the students who will become 
mathematicians and maybe even the students studying computer science.  

”The small minority, that really is going to become mathematicians has to 
get used to proof, but this they do in general for their own interest […] Peo-
ple who are going to become computer scientists, they really need to learn to 
think in this way because so does a computer…” 

For the others, for example, chemists and physicists, proof can be given if it 
serves as an explanation or can easily be used in problem solving. 

“There is an essential difference between those who are going to use mathe-
matics for modelling, chemists or physicists and so on, for those I think proof 
is not so important, one can give proofs if that enhances understanding but 
no more.”  

According to the progressive style, learning proof is not important for most 
of the students, although there is a small minority who need to learn proof.  

Conviction 

According to the progressive style, conviction is an important function be-
cause it helps students feel that proof is needed. The perspective is that of 
students, so there is a desire to awaken a need for proof for students by con-
fronting them with something that is hard for them to believe. The following 
quotation exemplifies this view. 

”As a matter of fact, the only justification for proof is in situations when it’s 
not as one has believed it would be. You discover or possibly get help to dis-
cover that in some cases the things you believed in are true, in other cases 
not at all. So you really have a need to sort out, when the things that seem to 
be reasonable a priori, hold and when they do not hold.” 

According to the progressive style, proofs are needed when they offer con-
viction. In order to provide students with the experiences of conviction and 
the feeling of a need for proof, evident statements should be avoided.  

“But if one can meet mathematics in this way instead, and actually under-
stand that there are such relations that are not evident. If one can be con-
vinced that there is a relation I think one gets another attitude towards proof 
than if one starts with epsilon and delta.” 

The need for proof can be enhanced by confronting students with relations in 
mathematics that are not evident. The considerations in the examples above 
are similar to those presented in the conceptual frame (see p. 46) when I 
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described the concerns among researchers and mathematics educators about 
the aspect of conviction/explanation regarding students’ feeling of the need 
for proof because, according to these researchers, students were easily con-
vinced of the truth of the statement by the authority of a teacher or a text-
book or by a couple of examples.  

Inductive approaches 

Typical for the progressive style is to prefer an inductive approach in the 
teaching. Teachers should start with calculations and teach logical reasoning 
via them. The following quotation is an example of this view. The mathema-
tician in the quote states that calculations are a natural way of arriving at 
proof instead of “fobbing it off on students”. 

”I think it’s good to first learn to calculate and in that way arrive at natural 
questions and in that way, if you are lucky, discover that proofs are actually 
needed. Instead of foisting the proofs on them (students) when they do not see 
any point with them.” 

Working with examples rather than general results is also a means to hide 
proof in the calculations and not to frighten students. I will come back to this 
when dealing with visibility/invisibility.  

Intuition/Formality 

According to the progressive style, besides avoiding evident and abstract 
theorems, teachers should try to avoid formal mathematics and formal proofs 
because students can not see any meaning in them. The following quotation 
exemplifies this view. According to this utterance, proving the triangle ine-
quality is totally meaningless and “pure, abstract nonsense” for students. It is 
also an example of a criticism against the way in which proof was earlier 
taught.  

”There are many proofs that in some sense are easier, but tend to become 
very formal. Some years ago we had this idea that they (students) would have 
questions about theories in the examinations in the first term. Often, they 
were to show, for example, the triangle inequality, which I conceive as totally 
meaningless. Because for them it is pure abstract nonsense and, in the end, 
they do not understand what they have done.” 

It is also typical for the progressive style to be more careful with the use of 
symbols than in the two other styles. Everyday language is preferred and, 
especially at the beginning, it is important to avoid dealing with formal theo-
rems and formal symbols.  

“Concerning mathematical language and signs and logical symbols, some 
mathematicians want to, from the very beginning, write everything with 
mathematical symbols. I have kind of the opposite attitude; I start by writing 
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as much as I can with words. And then eventually, I say that it is time-
consuming to write everything so maybe we could use these symbols… My 
aim is that they won’t sense them like a burden when they meet them, but as 
an easier way to write, how nice, now we don’t have to write so much.” 

This way of proceeding, by eventually introducing symbols also shows cer-
tain sensitivity towards students as they were expected to be. In the same 
manner as naturally arriving at the feeling that proof is needed, the use of 
symbols should be justified so the students would feel that the symbols are 
needed for making their life easier. 

Invisibility/Visibility 

How does the progressive style relate to the condition of transparency? Dis-
cussions about proof and formal symbols are avoided and natural language 
preferred according to the views belonging to this style. Even the word 
“proof” is avoided. It seems that proof exists quite invisibly in the lectures 
and lessons. However, there are some aspects that are made visible. For ex-
ample, the way of focusing on the significance of symbols in mathematical 
language that was described in the extract above is an attempt to make their 
role in mathematics visible. Also trying to arrive at proof through “natural 
questions” can enlighten the meaning of proof in mathematics in a different 
way than for example, just telling the students why we need proof.  

The next example illustrates how proof can be dealt with quite invisibly 
without focusing on it as proof. In this utterance, it is stressed that calculat-
ing in a way in which one understands where the different components come 
from is crucial for students’ learning of mathematics. It is stated that this 
kind of understanding is easier to reach than understanding by working with 
“proofs”.   

 “…instead of hanging the question of understanding on  proof, I want to 
connect it to the difference between on the one hand, being able to calculate 
and, on the other hand doing that and understanding where the different 
components come from, understanding that this is an effort with a goal, and 
this kind of understanding is more often easier to gain, and is often even 
more crucial…” 

This is also an example of the way of thinking that proof actually exists in all 
mathematics if one justifies the steps one takes.    

”This is a step towards proof; it’s proof, exactly, even if we don’t have the 
headline “proof”. So this is not an alternative to proof but an alternative way 
of working towards the same goal or we produce a proof because this is an 
argumentation that is correct.” 
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Proof as quite invisible in the derivations of formulas or in calculations with 
numbers, is obviously seen to be a tool for bringing understanding and con-
viction about the correctness of the calculations.   

”We shall become convinced about the truth, that we can see it ourselves, but 
also for the reason that the mass of knowledge we learn becomes clearer and 
we learn what is more fundamental. And then we learn to derive the one from 
the other,…” 

Within all the three styles, proof is seen to be an essential part of mathemat-
ics and a tool for deriving formulas and critically checking the correctness of 
calculations.  

However, proof is not the focus of the teaching, and there are no inten-
tions of discussing the formal demands of the correctness of proof with stu-
dents within the progressive style.  

”I have not felt a need for some more profound discussion about the formal 
demands of proof, but rather that one often gets questions as all of us do from 
the students: “Does this do as a proof?” and then they are waiting for a for-
mal answer, but I want instead that they will have an answer from inside of 
themselves where the proof fits if they understand. So I do not want to go too 
far regarding these formal discussions.” 

This style does not reveal important aspects of proof that could make the 
idea of proof and proof techniques more available for students.  

Views of newcomers 

According to the progressive style, students are afraid of proof, so they have 
to be led to proof invisibly via calculations (see the previous paragraphs). In 
general, students cannot appreciate proof. There is, however, a small minor-
ity who are interested in proof and able to learn it, which the beginning of 
the following quote exemplifies. 

”There are, however, every year students that think that proving is something 
evident. And they, naturally, need a totally different kind of challenge.  But 
for the overwhelming majority that is, of course, not the case. One must first 
learn to at least understand that proof can have some value in itself. That it 
does not work any more only using recipes.” 

But, as the end of the quotation above exemplifies, the majority of students 
do not value proof; they just want to have recipes. According to the progres-
sive style, students can “swallow/accept” certain proofs, if the theorems that 
are presented to them are not evident and if the proofs are not long or techni-
cal but explain useful aspects of mathematics or can be used in problem 
solving. More formal proofs are to the majority of students only “pure ab-
stract nonsense” and, in the end, they do not understand what they have 
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done. Those, who are capable and interested in proof, will return to proofs 
for their own interest “If they are interested they will return to this eventu-

ally.” (see p. 108) 

4.4.2   The deductive style (“It’s high time for students to see 

real mathematics”) 

A common view within the deductive style is that it is natural to use a deduc-
tive approach in the teaching of proof. There is no intention of avoiding the 
word proof or of avoiding mathematical symbols, often the opposite. Right 
from the outset, students should get used to symbols and formal language. 
There is no fear of confronting the students with something unknown; stu-
dents first maybe memorise and just follow the arguments but at the same 
time they learn the rules of the game. Proof is something that students should 
know and it is high time for them to become familiar with “real mathemat-
ics” and to get the answer for why something is true in mathematics, how 
everything is connected in mathematics. Nothing is evident in mathematics; 
one should not accept or trust anything without first proving it. Hence, proof 
is connected to critical thinking. We also have to trust in students’ ability to 
follow and learn. Students are interested but have no experience of proof. 
Discussions about proof and proof techniques are considered as worthwhile 
(even if they are often impossible because of external circumstances).  

There is a desire to convey positive experiences and feelings regarding 
proving activities and proof and advantages connected to the axiomatic-
deductive method without hiding proof e.g. in calculations. The general 
should be shown to the students immediately and there is a conviction that 
abstract thinking is not more difficult than concrete thinking, sometimes 
easier. There is no desire to avoid proving evident statements either. The 
learning of proof is compared to the learning of language, and learning by 
heart is not rejected but it is seen to be one part of the learning process, to 
imitate. Within this style, it is important to make the formal demands of the 
practice visible to students. For example, it is important to present the logical 
structure of a course to students at the beginning. Rigour and careful presen-
tation is emphasised because students at the beginning of their studies need 
to clearly see every step. 

Next, I will exemplify this style by giving some quotes illustrating vari-
ous characteristics of the style.    

Nothing concealed? 

The following example is enlightening because the approach in this utter-
ance is very different from those expressing the progressive style, nothing is 
concealed: axioms, definitions, logical steps, the abstract and the general. 
The pedagogical idea here seems to be that students will get used to nota-
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tions and mathematical language, when students confront them from the very 
beginning even if they may not understand everything first. There are no 
intentions of avoiding proof or the word “proof”, rather the opposite. 
Mathematics should be presented in a deductive manner from the very be-
ginning.  

”We base everything on certain axioms, certain definitions, assumptions, and 
from them we derive new things, in derivations one takes logical steps, a pro-
found justification and how one refers in every place, to what one uses and 
checks if it is correct or not. And this is something they see by and large from 
the first lecture and this is sound, I think, to do so, because even if they do not 
really understand from the beginning they get home already from the first 
day, this is how it is going to be, they get used to, they have to do that, be-
cause they have not created the rules of the game but they have to accept 
them and we have to show them to them.” 

The quotation above is also an example about the view according to which 
students have to accept the rules of mathematics in the practice, because they 
have not created the rules.  

Conviction/Explanation 

In the deductive style proof is connected to critical thinking but is not only 
viewed as a tool for conviction, but also explanation as an answer to the 
question why. In contrast to the progressive style, within which the students’ 
requirements to learn proof is questioned, within the deductive style there 
are clear answers to the question about why students should learn proof. The 
main reason for the learning of proof is to learn to question the truth of the 
statements and to become convinced when one gets the answer to the ques-
tion why something is true, to get a system and to see how everything is 
connected.  

”It would be the same as, if in my natural life someone would claim some-
thing, and then they would just say, believe in that for all eternity. One would 
not be really satisfied with that and… it is the same here, that they would be-
lieve but never understand why something is true.” 

Aspects of conviction and explanation are intertwined in the utterances be-
longing to this style. One should learn to question until one gets the answer 
to the question why. 

Critical thinking and intellectual challenge 

It is important for students to learn to think critically and question the truth 
of the statements (see p. 45). Proofs transform assumptions into theorems 
and theorems are also seen as a tool for simplifying life in mathematical 
practice.  
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“If you don't prove that a theorem is true -  no muddled things are allowed in 
mathematics - you cannot go on, you cannot take anything for granted if a 
statement is not proved and this step of assuring yourself that a certain 
statement is true, transforming an assumption into a theorem just simplifies 
the life.”  

Further, if this kind of critical examination, questioning, and convincing 
oneself with rigorous steps is lacking in the activities, they are not real 
mathematics. 

“If they don't learn to think critically and question things and convince them-
selves with rigorous logical steps that the statements they encounter are true 
so it is incomplete, it does not fit in mathematics, you have to think critically, 
rigorously and not with muddled statements...” 

The quote above exemplifies the view that accepting statements without 
checking them with rigorous logical steps does not fit in mathematics.  

Derivations of formulas 

Similar to the progressive style, proof is also seen to be a tool for deriving 
results from earlier results and seeing how everything is related. Students 
should also learn to use this tool themselves so they do not need to memorise 
everything. 

“For the students it can be a question of conviction concerning the correct-
ness of formulas. It is impossible to learn by heart all the formulas and all the 
theorems, that’s where we need proof. We have to remember some of them 
and then derive the others from these basic…” 

According to the deductive style, it is possible to show students the benefits 
of thinking in this manner and to show them that it is not difficult to decide 
what is true and why. 

“So I try to talk a little about it, there is so much to memorise so it is impos-
sible to learn everything by heart…I tried to tell by giving power laws as an 
example that if one understands from the very beginning what the laws mean, 
it is actually quite easy to decide what is true and why.” 

There is a view within the deductive style that there is a qualitative differ-
ence between school mathematics and university mathematics. A teacher 
should challenge the view students have when they come to the practice 
(‘calculating with recipes’) and there is a view that students are interested 
and capable of learning “real mathematics” and of finally deducing an an-
swer to the question “why?”. 
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”What I have said to the students in the introductory course is that we are in-
terested in why things are true, we are not interested in seeing it as a collec-
tion of recipes even if they are going to learn a lot of them too, but how 
things are connected to each other. When they leave,  we hope that they 
themselves have enough knowledge to be able to, to some extent, not just take 
a readymade recipe but in a situation where you cannot apply the formulas 
they might have in the collection or to see what could be true here and to 
have enough tools to be able to derive from one form to another. 

In the quotation above, there is also a view of proof as an artefact and a de-
sire that students would learn to use proof themselves as a tool for deriving 
formulas (see p. 95). It is an example of the view that students should learn 
to derive formulas and understand how everything is connected. This view is 
also held within the progressive style (see p. 112).    

Language and rigour    

Concerning the language, abstractions expressed by symbols are not avoided 
like in the progressive style, rather the opposite. Students should get used to 
them as early as possible. The following quotation is an example of the view 
that students have seen too many simplifications and special cases. It is time 
for them to see the power of the abstract and general in mathematics. 

”…Here we shall prove, in what sense, yes, concrete examples, for example 
in linear algebra, assume that some linearly independent vectors can be com-
pleted with vectors until we get a basis for a vector space, that is a statement, 
it is not an axiom, we have to prove it. And what is meant by that, yes, we 
prove the theorem in a way – it is a general statement – without simplifying, 
they have seen all too many simplifications, for example that everything 
works only in R3 or a function defined on a certain interval, two to five, 
without accustoming them to see the things in an abstract way, interval a, b 
or as in the fundamental of analysis, metric space, in linear algebra, not only 
in R2 or in R3 but in infinite dimensional vector space, that are general and a 
bit more difficult to handle and create a clear picture about them and the 
earlier they see them, from the first day, the better and simpler later.”  

The quote above also exemplifies the view, according to which students 
should meet the general from the very beginning as it makes life easier later. 
Rigour is preferred in the presentation of mathematics because students at 
the beginning of their studies need to clearly see every step. 

“When you are a beginner you have to get very clear presentations because 
in that phase it is difficult to fill the details by yourself.” 

The difference between intuitively true statements and rigorously proved 
statements should be made visible for students. The following quotation is 
an example of the view according to which a teacher should tell students 
when a proof is needed.  
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“…there is a little danger to confuse say in the simple theorem about a func-
tion that has the same value in two points, then there is a point in between 
those points where the derivative equals zero. Then they (the students) say, 
OK, we draw the line and see that it is clear. This is something one has to 
stress that here we have this intuitive idea of where the ideas for the theorem 
come from but then one must formulate a logical chain of statements.” 

Instead of waiting until students experience the need for proof mathemati-
cians should tell them when it is needed. The difference between intuitive 
presentations and formal proofs has interested researchers in mathematics 
education and is much discussed in the literature (see Section 2.3.3). It is 
also connected to the question of proving “evident” statements that some 
mathematicians pointed out as a difficulty for students.    

The problem with giving the “big picture” at the beginning 

Important for this style, is to try present the logical structure of the course to 
students at the beginning of the course.  

“When you describe first what the course is about and what  the goals of the 
course are and what is expected of the students to do to reach the goals, so 
there proof comes as a natural part of certain things.” 

At the same time, when the goal is to introduce students to the course con-
tents, according to the deductive style, it is impossible to give the students 
the “big picture” from the very beginning, they just have to believe in certain 
things and accept the rules of the game. The intellectual satisfaction will 
come afterwards when everything will fall into place. This is something a 
teacher should tell students at the beginning of the course. 

”…one has to first believe in certain things, give a certain credit to the sub-
ject and it is first after a while it is possible to get a revelation about how 
everything are connected in a certain way. It is impossible to give the big pic-
ture at the beginning, but as soon as they realise it…it is important to point 
out already at the beginning that they have to have patience and accept the 
rules of the game in order to later get the intellectual satisfaction. To see the 
big picture about how everything is connected in a structure and not fall be-
cause one step is missing. They have been very satisfied with such a planning 
in my courses.”  

This quotation also expresses something about the dilemma of transparency 
in the teaching of proof; how to talk about the contents, proofs and theorems 
which can help students’ access to the practice before students have any 
experience about them.    
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How students learn proof 

How do students learn proof? According to the deductive style, the learning 
of proof can first occur by memorising the proofs, but there are many steps 
in the learning of proof. The importance of the knowledge of terminology is 
stressed as is the ability to follow and understand when others present 
proofs. The following quotation is an example of the steps that have to be 
taken. 

“There are of course a lot of steps to learn proof; first, you have to learn 
terminology in order to understand what it is all about. The second step is to 
be able to follow when someone else proves something and think that it seems 
to be right. The third phase might be that you have understood the proof so 
well you can give it yourself without learning by heart but more understand-
ing how the things hang on each other. How you learn these different steps 
can vary between the students.” 

The learning of proof demands a lot of time and exercise, so it is important 
to start early to learn deductive reasoning, to use definitions and axioms and 
to justify every step.   

“The earlier the better. For example, with help of geometry, to learn deduc-
tive reasoning, to use definitions, other theorems and axioms and justify 
every step. In that manner you drill this way of reasoning into your head. For 
example, if the three angles in two triangles are equal, they are similar. With-
out justifying one gets no points. Then it is easier for the students to solve 
problems with circles etc.” 

According to the last sentence of this quotation, the learning of proof also 
helps students in problem solving.  

Further, there is also a desire to enhance the students’ learning of con-
structing own proofs.  

“We have to exercise students’ ability to construct proofs step by step. In the 
course Foundations of analysis, there is a theorem about compact sets and… 
in the first glance one does not know enough, so one imitates the others. Most 
often one can learn, I think about my own learning, how one starts and then 
go on. After a while when you have trained it you feel it’s simple and con-
vincing. It’s a little like learning a language, maybe partly by memorising 
first. Demands much exercise. Memorising is the first step in the learning.” 

Even if the explanatory aspects of proof are stressed, drill, imitation and 
learning by heart, are also seen to be worthwhile methods for the learning of 
proof. The learning of proof is also compared to the learning of language. It 
demands a lot of exercise.  
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Concern for school mathematics 

The importance of the language and the logical symbols are seen as crucial 
for the learning of proof within this style. There is concern about students’ 
difficulties understanding mathematical texts and formulating their own 
statements. On the whole, there is a worry about students’ ability to be exact 
with their presentations of mathematics.   

“Much depends on the language: I think that students in school get too little 
training with the mathematical language. They cannot formulate and they 
have difficulties understanding the texts. For example, they want to omit the 
sign of equivalence and write an arrow instead. It also often happens that 
students write the value of the limit without the sign of “limes” and put the 
sign of equivalence freely. I have seen with my own children that they do not 
learn what a sign of equivalence means; they say it means “follows”.”  

Similar to all the styles, there is dissatisfaction with school teaching within 
the deductive style as well. However, according to the progressive style, the 
school should deal with proof in a way that would enhance students’ under-
standing of the need for proof in mathematics, whereas according to the de-
ductive style the school should teach mathematical language and go properly 
through some elementary notations, like the use of equivalence symbol and 
the symbol of equality. 

“…So I wonder how teachers in upper secondary school teach this part of 
mathematics.  There are many problems we have inherited from the upper 
secondary school. We have to somehow influence the teaching in the school 
so everything are dealt properly from the beginning so we do not need to go 
through, I am continually asking students for the sign of equality “Is there an 
equality here?” Sometimes they succeed to put it right but for example in 
connection of equations one can never write that they are equal, there you 
should use the sign of equivalence. Such notions are important for proof.” 

The quotation above also expresses a willingness to interfere and teach stu-
dents the right notations and the correct use of symbols and hence, a belief in 
the students’ ability to learn as long as they get enough feedback.  

Discussion about proof 

Concerning the discussion about proof there is a desire to discuss proof and 
proof-techniques although it seldom happens in the practice for various rea-
sons. 

“We seldom study structures of proofs or discuss them on meta-level; we 
should raise these things more in the basic course.”  

The lack of time and the disappearance of Vretblad’s (1999) textbook are the 
reasons for not discussing proof or proof techniques. 



 120

“It is partly because we do not have time and the textbooks are different. 
Vretblad’s textbook that we used earlier, discusses proving, logic terminol-
ogy and such things. Now we do not have that... there are not as many occa-
sions at the beginning of the courses as we used to have.”  

According to the deductive style, it is preferable to discuss proof at the very 
beginning of the course, when the contents are outlined. 

”It is often rather good to give a kind of introductory lecture at the beginning 
of a course, and outline what is coming…and on that occasion it is not so bad 
to talk a little about proof and what role it has.” 

Within this style there is a desire to make many aspects of proof visible for 
students (language, logical steps, critical thinking). However, in practice, 
there is no time for discussions even if there is an intention. Proof techniques 
are not in focus either because of the changes in the course literature or the 
lack of time. 

Invisibility/Visibility 

How does the deductive approach relate to the condition of transparency? 
There is no intention of avoiding proof or anything to do with proof. There is 
a desire to make various aspects of proof visible and to both discuss proof 
and to teach all the students proof. The expectations of the practice should 
also be made visible for the students according to this style. Abstract think-
ing does not need to be more difficult than concrete thinking. 

“I very often experience a gap between what expectations students have of 
mathematics, on the one hand and what we want them to learn on the other 
hand. Students do not have an understanding of proof we would like them to 
have and they do not always profit by it either. I mean that…one of the prob-
lems is that we do not tell the students what we want. I mean my personal be-
lief is that abstract thinking does not need to be more complicated but in 
many ways simpler than more concrete thinking or if we call it the related 
thinking versus free thinking.  

There is also a desire to focus on different aspects of proof, like language, 
deductive reasoning and definitions. The following extract is about the im-
portance of clarifying for the students the difference between a mathematical 
definition and an everyday description. 

“And I think a little that we have the problem that people sit and search 
something else, we give a definition and a lot of students sit there and see the 
definition and think that we have given a description and a lot of features 
about what we are talking about and they are waiting for the continuation. 
And we think impatiently that “Here is the definition, I have told what this is 
and everything is clear”. If one does not even make the difference between a 
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definition and a description clear for the student, which I think is often the 
case; we have “let them down”.” 

The difference between intuitively true statements and rigorously proved 
statements should also be made clear to students according to this style. 
However, at the same time as this style does not attempt to hide anything, 
one can question if everything is going to be revealed for the students. This 
is something I am going to discuss in Section 6.3.2.  

The view of newcomers 

According to the deductive style students are capable of understanding proof 
and learning abstract thinking if they get the right presentation. There is a 
belief in students’ desire to understand and learn proof.  

“I do not think that it is about a genetically hereditary ability to think ab-
stractly. I think it is partly because they have not got to know what we want 
them to do.” 

Within this style, abstract thinking is not seen as something that only few 
can learn but it is more about making clear for students what is expected of 
them. 

4.4.3   The classical style (“I can’t help giving some nice 

proofs”) 

One characteristic of the classical style is that there is a great admiration of 
proof. Proof is considered to be an essential part of mathematics in the 
mathematical practice, the “soul of mathematics”. Proofs can be beautiful 
and offer intellectual challenge. According to the classical style, there are a 
lot of benefits in the learning of proof for everyone, not only for mathemati-
cians and computer scientists, since proofs teach us logical reasoning13. Simi-
lar to the two other styles, within the classical style, proof is seen as an op-
posite to recipes, as real mathematics and as an explanation for why some-
thing is true and how everything is connected. 

However, there is not so much intention of teaching students proof, par-
ticularly in the basic course, because of external reasons, for example stu-
dents’ lack of prior knowledge and the lack of time. Most of the students are 
not seen to be capable or interested and it is a pity for those few who are 
capable. Nevertheless, sometimes some “nice proofs” are given to students 
when there is time for it, proofs which mathematicians themselves appreciate 
even if only a small minority of students would understand the proofs. Thus, 

                               
13 Logical reasoning here does not refer to formal logic. 
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there is not the same kind of sensitivity towards students as within the pro-
gressive style. Symbols are used when they are needed. The learning of 
proof is considered to happen quite implicitly without a focus on proof. The 
presentation is not rigorous14, sometimes intuitive, but mostly of a deductive 
character; it is like presenting a proof to another mathematician. There is no 
intention of proving elementary details and evident statements. On the con-
trary, there is a desire to convey the great ideas in order to inspire students. 
Within the classical style, there is not much reflection on the problems of 
teaching or pedagogy. Pedagogical considerations concern mostly the ques-
tion whether or not to give a proof.  

Next, I give some examples of utterances characterising this style. 

The meaning of learning proof 

Similar to the deductive style, within the classical style the benefits of learn-
ing proof are not questioned. It is important for students to learn to appreci-
ate proof for a variety of reasons. 

”I do not consider it important to learn proofs for some theorems by heart 
but one must learn to understand and value something you can call a Tri-
umph for human logical thinking and the ability to draw conclusions.” 

The quotation above is an expression of the appreciation of proof as an 
important tool for logical reasoning and for drawing conclusions held within 
this style. According to the classical style, proof also offers an intellectual 

challenge. 

“And if they only calculate with numbers it is not a big intellectual feat.”  

Within this view, calculating only with numbers without the general results, 
does not offer students the same kind of intellectual challenge as proof.   

Transfer 

According to the classical style, proof is also useful in contexts other than 
mathematics. Contrary to the progressive style, according to which proof is 
needed only by those who will become mathematicians or computer scien-
tists, within the classical style the learning of proof is seen to be important 
for many different kinds of professions and everyone can benefit and learn 
logical reasoning by working with proofs.  

”Through proofs students learn systematic thinking, to argue for their opin-
ion.”  

                               
14 Rigorous refers here to a careful step-by-step presentation. 
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Within the progressive style, there is a view that proof is not so important for 
chemists or physicists and so on (see p. 109), whereas the view in the fol-
lowing quotation is the opposite.  

“A simple question, the meaning of mathematics, there are not so many who 
use integral calculus and such things later in their lives. On the contrary, 
logic and the habit of thinking logically is training for the brain and the logi-
cal thinking is absolutely very important, and not just calculation skills, and 
there proof is an important part of it. For those who are not going to become 
pure mathematicians or pure physicists there is yet a great value to practice 
proof because one gets used to thinking in a special way. It’s very important I 
think…even concerning finances or all the natural science subjects. There is 
a lot of logical structure to learn even for those becoming chemists or those 
writing articles. That there is a kind of theory, not just experiments.” 

Again, the quotation above is an example of the respect and admiration to-
wards proof and what it can teach us, which is typical for this style. 

Aesthetic 

As described and exemplified above, there is an admiration towards proof in 
many ways; also the aesthetic aspect of proof is appreciated.  

“Analysis contains very classical material and handsome proofs, elegant 
ones and one can at least give some of the theorems completely with proofs 
even if students are not going to continue their mathematical studies on 
higher level.” 

“Proofs can be beautiful.”  

Even if the mathematicians expressing the classical style do not really intend 
on dealing with proof because of the lack of students’ interest, prior knowl-
edge and time, they sometimes give some proofs they themselves appreciate. 

”The aim of the course Analysis 1 is to enhance intuitive understanding and 
calculation and problem solving skills, so I have given very few proofs in the 
lectures. But I can’t help giving some handsome and short proofs, often in a 
simpler manner than in the textbook.” 

There is not the same kind of sensitivity against students within the classical 
style as in the progressive style. Proofs are given if they are considered as 
elegant and nice and if there is time for that, no matter if students understand 
the elegance of the proofs.   

Intuition/Formality 

In contrast to the deductive style, rigour in the presentation of mathematics is 
not seen as important. It is enough to present the important points and steps 
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of the proofs to students and let them fill in details by themselves. Other-
wise, maybe the magic and beauty of mathematics fades away.    

“No rigorous proofs, too formalised proofs are unbearable. A piece of po-
etry, (proof) can be as attractive as the entire theorem.”  

”Complete proofs are unbearable, to learn important points and to be able to 
fill in the details.” 

Rather than the rigorous treatment of theories one can enhance students’ 
intuitive understanding.  

”I prefer pictures and this geometrical intuition, in contrast to the formal 
calculations, at least for the beginners it is important…” 

The teaching and learning of proof 

A characteristic of the classical style is not to reflect very deeply on peda-
gogical issues involved in the teaching and learning of proof.   

K: How do students learn proof? 

M: As anything else elementary. 

The learning of proof is seen to happen quite implicitly and there are no aims 
to teach students systematically precise formulations or mathematical lan-
guage. Proofs are beautiful and it is a pity that students can not experience 
the intellectual challenge that proof can offer. But why is there no intention 
of teaching proof for newcomers?  

The reasons for why proof is not dealt with, especially in the basic course, 
are external: students’ lack of interest, the lack of time and the lack of stu-
dents’ earlier experiences. Also because there is a lack of proofs in examina-
tions, there is no use dealing with them so much in the lectures.  

“I introduce several theorems without proofs because of the lack of time and 
the lack of students’ interest. Also examinations rule contents.”  

Also within the classical style there is scepticism against the school mathe-
matics. Because of the low level of school mathematics it is not possible to 
deal with proof at a higher level. 

”What is basically wrong, is the idea that teaching should be adapted to the 
level of the weakest students so we deal more and more with upper secondary 
school mathematics and in upper secondary school they deal with lower sec-
ondary school mathematics. Everything changes; the stuff you could deal 
with in the sixth grade is dealt with later and later.” 
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The criticism against school mathematics is a common feature for all the 
styles although the concerns vary between the styles. 

Invisibility/Visibility 

How does the classical style relate to the condition of transparency? In this 
style, there are no aims to discuss proof with students. To my question con-
cerning the discussions about proof, the answer could be as follows: 

”Not as far as I know, the natural place for such discussions for understand-
ing of proof would be in courses in logic but we do not have such courses on 
that level.” 

Thus, the learning of proof would occur, if it occurs at all, implicitly without 
discussions about proof. It is possible that aspects of proof that were admired 
by the old-timers, for example aesthetic, are visible in the teaching.  

The view of newcomers 

How are students seen as learners of proof within the classical style? Most of 
the students are not interested, as they are not capable to follow but this is 
mostly because of their poor school background.  

However, according to this style there are some “good students” in every 
group, for the others proof is actually a waste of time. 

”…and I feel anyway that a tenth part of a class are capable and they can 
absorb this but I think that for the most of them this is lost time.” 

The view exemplified above is somewhat similar to that within the progres-
sive style. Finally, there is also dissatisfaction because there is no program 
for pure mathematics at the department and it is a shame for the “good stu-
dents” because the level of teaching at the department is so basic.  

”…there is not a programme for pure mathematics, so in every class there 
are one or two who are capable and I feel pity for them because they have the 
requirements…I try to stimulate them. Then there are quite many who are 
capable to calculating but are totally uninterested in the question why.” 

 

In this section, I described the theoretical model with three different teach-
ing styles that was constructed from the interview data, the progressive, the 
deductive and the classical style. The styles are exemplified with quotations 
from interviews with all mathematicians. The theoretical model was created 
in order to structure the results of mathematicians’ pedagogical views. The 
styles are ideal in a sense that no mathematician can perfectly fit into one 
style. Teaching styles and intentions can vary from day to day and from one 
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moment to another. The intentions are not stable either. The main difference 
between the progressive and the classical style, on the one hand, and the 
deductive style on the other hand, is that in the two first-mentioned styles 
there is no intention of teaching proof to newcomers, although some proofs 
are offered nevertheless.                  

4.5   A summary 

In this chapter, I first described how the mathematicians in my study talked 
about proof and its significance to their practice and how they dealt with 
various functions of proof. The data supported the view of proof as an arte-
fact in mathematical practice. In the second section, I described how mathe-
maticians talked about the changes that the mathematical practice has under-
gone during the last decades regarding the treatment of proof and how they 
related to these changes. In the last section, I presented the theoretical model 
of three different teaching styles and exemplified them with quotations. 

In the next chapter, I will describe students’ practice of proof. 
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5   Students’ practice 

In this chapter, I report the results concerning the students’ entering into and 
participating in the community of mathematical practice. I start by describ-
ing students’ backgrounds and report what they stated about their upper sec-
ondary school experiences regarding proof when they entered the practice. 
The second section is about how newcomers related to proof at the begin-
ning of their studies including their views and feelings. The results in sec-
tions 5.1 and 5.2 are based on the quantitative analysis of the surveys among 
168 university entrants and the qualitative analysis of the focus group inter-
views with 6 groups in different phases of their studies. When reporting the 
results in these sections, I first provide the reader with some quantitative 
results from the survey analyses and then exemplify them, whenever possi-
ble, with qualitative results from the qualitative analysis of the focus group 
interviews.  

The following four sections are about students’ participation in the prac-
tice. In section 5.3, I describe the lectures and newcomers’ participation in 
them. Section 5.4 is about how students were to learn to construct proofs. In 
section 5.5, I go on giving examples of how students’ feeling of meaning 
was connected to their experiences of participation or non-participation. I 
conclude the chapter by describing the examinations and how students’ rela-
tion to proof changed after the first examination on proof. The results in 
sections 5.3 – 5.6 are based on the qualitative analysis of all the focus group 
interviews with students and on the field notes.  

All the quotes from the focus group discussions in this chapter are marked 
with S – B (a student studying basic courses), S – I (a student studying in-
termediate courses), or S – A (a student studying advanced courses) depend-
ing on what courses the students were studying at the time of the interviews. 
Students are labelled only in dialogues (see p. 86). When reporting the re-
sults about students’ practice, I continuously contrast them with the results 
about mathematicians’ practice that were reported in the previous chapter 
but I will return to these issues in Chapter 6 when bringing together the re-
sults from different parts of the study.  

I commence the chapter by describing the newcomers’ backgrounds and 
their school experiences concerning proof.  
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5.1   Students’ background 

The contemporary Swedish curriculum for upper secondary school does not 
clearly state the aims of introducing the students to proofs and proving ac-
tivities. Only the main goals are stated. 

“The school in its teaching of mathematics should aim to ensure that pupils 
develop their ability to follow and reason mathematically, as well as present 
their thought orally and in writing.” (Skolverket, 2002)  

Local schools and teachers have the possibility to apply these goals in their 
own way. However, one of the criteria for Pass (lowest mark of a three-level 
grading scale: Pass, Pass with distinction, Pass with special distinction) for 
any of the five courses A-E, into which upper secondary school mathematics 
is divided, is that “pupils differentiate between guesses and assumptions 
from given facts, as well as deductions and proof”. Furthermore, one of the 
criteria for Pass with special distinction is that “pupils participate in mathe-
matical discussions and provide mathematical proof, both orally and in writ-
ing.” (Skolverket, 2002) 

The mathematicians, who I interviewed, assumed that students had very 
little experience about proof when they started to study mathematics at the 
university. According to the analysis of the surveys and focus group inter-
views this is true for a lot of students. However, the pilot survey (Nordström, 
2003) had already indicated that there was a variety of experiences among 
students concerning proof15 when they started to study mathematics. The 
results of the survey analyses in 2003 and 2004 confirmed the result of the 
pilot study. Next, I will give an account of the variety of experiences that the 
newcomers reported. It seems that students are in very different situations 
regarding their experiences and knowledge about proof when they enter the 
practice.  

According to the students with Swedish upper secondary school back-
grounds there are still a lot of upper secondary school teachers who prove 
statements to the pupils. About one half of the students who responded to the 
surveys stated that their upper secondary school teachers proved statements 
once a week or every lesson (Figure 7). 

 

                               
15 There were questions about students’ views on proof and I also met three focus groups with 
students who had responded to the questionnaire so I could check that we talked about the 
same thing when we talked about proof (see also section 5.2.2. about students’ views on 
proof).  
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Figure 7   How often did your upper secondary school teacher prove statements to 
your class? 

Further, about 36 percent of the students agreed or fully agreed with the 
statement: My upper secondary school teacher often used to prove state-

ments to us. (Figure 8) 
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Figure 8   My upper secondary school teacher often used to prove statements to us.  

About 40 percent agreed, either partially or fully, with the statement I 

have had the possibility to familiarise myself with different kinds of proofs in 

school. (Figure 9) 
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Figure 9   I have had the possibility to familiarise myself with different kinds of 
proofs in school.  

About one third of the newcomers who responded to the questionnaires 
stated that their upper secondary school teachers rarely proved statements: 
once or twice a term or more seldom. In the focus groups, students with a 
Swedish upper secondary school backgrounds had various experiences about 
proof. Some of them did not have any recollection of proving anything.  

S: When I think about upper secondary school I do not remember any proofs. 
Most of it was just doing sums.  

K: But the teacher did not prove? 

S: No, they definitely did not, not in my school. 
(S – A, 2004) 

Some of them remembered the formula for the solving of second degree 
equations. It was done by particular numbers.   
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”But otherwise, I don’t remember that they proved anything. Admittedly, 
when they presented how to solve second degree equations, then, I suppose, 
they did a little proof with numbers on the board, I think.” 

(S – I, 2004) 

But there were also those whose teachers regularly proved statements to the 
class. 

”I think my maths teacher gave a presentation once a week and went through 
the proofs, showed us on the board and derived formulas.” 

(S – I, 2004)  

Similar to some of the mathematicians who I interviewed, there were stu-
dents both in the surveys and in the focus groups who had their school back-
grounds in countries other than Sweden. They came from countries with 
different cultures and, thus, different traditions regarding the treatment of 
proof in the lessons (Examples: China, Arabic countries, Finland, …). There 
was a noticeable difference between the students with Swedish upper secon-
dary school backgrounds and the students with a foreign upper secondary 
school backgrounds concerning their declared experiences about proof. 
Those with foreign backgrounds seemed to have more experience about 
proof. For instance, all the students with foreign backgrounds stated that 
their teachers proved statements once a week or every lesson. However, 
there were only twelve students with foreign school backgrounds in the sam-
ple of 168 students so it is not possible to generalise the results. 

Even if many of the students with Swedish upper secondary school back-
grounds stated that they had seen teachers’ proofs including derivations of 
formulas, very few of them had participated in the practice of constructing 
proofs, according to the responses to the questionnaire and the focus group 
discussions. Responses to the question “How often did you practice proving 

statements by yourself in upper secondary school?” show that over half of 
the Swedish students have had very little own practice, once or twice a term 
(19 percent) or even more seldom (40 percent) (Figure 10). 
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Figure 10   How often did you practice proving statements by yourself in upper 
secondary school?  

Further, about 60 percent of the students disagreed or strongly disagreed (28 
percent) with the statement I have had the possibility to practice proving by 

writing in school. (Figure 11) 
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Figure 11   I have had the possibility to practice proving by writing in school. 

In contrast, ten of the twelve students with foreign backgrounds agreed or 
strongly agreed with the statement: I have had the possibility to practice 

proving by writing in school and none of them strongly disagreed with it. 
Ten of the twelve also stated that they had exercised proving statements at 
least once a month, and five of them every lesson.  

Yet, there was a small minority with Swedish school backgrounds who 
stated that they had practiced proof very often. Seven percent of the Swedish 
students stated that they had practiced proving every lesson and also strongly 
agreed with the statement I have had the possibility to practice proving by 

writing in school. Two students with Swedish backgrounds in the focus 
groups told that they had got a lot of exercise in proving in school. 

“We had to be able to know them (derivations of formulas) anyway. But then 
it’s also that there are always such pupils who are not interested and, but I 
liked proof very much and learned a lot so I have been doing proofs from the 
end of lower secondary school more or less so that I can’t say that I really 
agree with you (that there was very little proof in upper secondary school).” 

(S – B, 2004) 
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Some of the students with Swedish upper secondary school backgrounds in 
the focus groups reported that those who wanted to get the best marks in 
mathematics sometimes worked with proving tasks. This is in accordance 
with the curriculum criteria for different marks in upper secondary school 
mathematics courses (see p. 128). According to the students the proofs were 
often of the type where one would show a formula by algebraic manipulation 
showing that the left side was equal to the right side. Students called them 
“simple proofs”.  

A: But then we didn’t have these theoretical results. It was more those kinds 
of rules we worked with.  

B: Yes, they were simple proofs. 

A: Yes, like show that this formula…or something. And that is something you 
can do by calculating a little and then you get it. 

(S – A, 2004) 

Some of the students pointed out that these tasks were actually easier than 
ordinary problems because one already knew the answer.  

L: I had top marks, so I did them as exercises. 

K: How did you find working with the tasks? 

L: They were so easy, just to calculate some things and go on. 

J: I don’t remember it as hard either. I think I even thought it was fun. They 
were easier than other tasks because you already knew the answer. I am 
good at careless mistakes and then I know that I have got the right answer 
and if not I just have to check where my careless mistakes are. 

(S – I, 2004) 

These findings were supported by the upper secondary school textbook 
analysis (Nordström & Löfwall, 2005). It is not surprising that most of the 
students with Swedish upper secondary school backgrounds did not have so 
many memories about proving activities from their school period. We found 
that proof was often presented invisibly in the textbooks. Further, the space 
given to proving tasks was minimal compared to practical applications and 
routine exercises (about 2 percentages). However, there were some special 
mathematical domains where proving tasks were more common: in geome-
try, in the context of verifications of solutions of differential equations and 
verification of formulas of trigonometric functions.  

Example (Björk & Brolin, 2000): Show that x2  is a solution for the 
differential equation .0'2 =−yxy   
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Students who had some memories about proving tasks talked about tasks 
where they would show that the left side equaled the right side. There were 
quite a few tasks of the following type in the textbooks. 

Example (Björk & Brolin, 2000): 
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Two students in the focus groups with foreign upper secondary school 

backgrounds talked about their teachers who continuously gave proving 
tasks to the students and after that some of the students were expected to 
account for their solutions and prove statements on the board. They had very 
positive experiences about proof. The following quotation illuminates a mas-
ter-apprentice relationship between a newcomer and an old-timer in a 
mathematical practice in an upper secondary school mathematics classroom.  

“My teacher was so enthusiastic, came to the lessons and showed  interesting 
theorems and proofs she had found in some book, she really engaged me 
when she proved theorems on the board, she asked all the time, how do you 
think, how would you start and very soon I had to do it myself on the board. 
On one side of the board I would prove and justify what I did and on the 
other side of the board she then showed how she would have done it and I 
could see what mistakes I had made. Sometimes I succeeded, sometimes not 
at all. But you sort of see how you think yourself and how the teacher wants 
you to think in order to arrive at an answer. I felt it was very good.” 

(S – B, 2004) 
 
Students’ own investigations (alone or in groups) that would lead to hy-

potheses or sometimes to proofs seem to be unusual in the Swedish upper 
secondary school according to the students. Over 80 percent stated that they 
had had such activities only once or twice a term or more seldom (70 per-
cent). However, there was a small minority (3 percent) who stated that they 
had worked in an investigative manner during every mathematics lesson 
(Figure 12). 
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Figure 12   How often did you work on your own investigations (alone or in a 
group) that led to conjectures and sometimes to proofs? 

There was one student with memories about working in an investigative 
manner in school who participated in a focus group discussion. He had 
worked in this manner during an optional course (F-course). 

”We had a lot of group discussions during the F-course. We discussed the 
proving tasks and a lot of other things. We were maybe 15 students. The F-
course is not so long, we didn’t have so much time but a part of the course 
was used to investigate some problem.” 

(S – B, 2004) 

Others did not remember working in this way. One of the students answered 
my question in the following way: 

“In the pedagogy that I have been exposed to, you don’t make any discover-
ies.” 

(S – B, 2004) 

These findings were also supported by the textbook analysis that showed that 
tasks encouraging students to engage with investigations and conjectures 
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were largely lacking in the upper secondary school textbooks (Nordström & 
Löfwall, 2005).  

The upper secondary curriculum states that one of the criteria for the best 
mark “pass with special distinction” is to be able to prove statements both 
orally and in writing. However, according to the students it was not usual to 
practice proving statements orally. Almost 80 percent disagreed or strongly 
disagreed with the statement I have had the possibility to practice proving 

orally in school. (Figure 13) Again, there was a small minority who stated 
that they had worked in that manner. The results are very similar to the re-
sponses to the question How often could you orally prove mathematical 

statements in upper secondary school? Over 70 percent of the students stated 
that they had done it more seldom (Figure 14). This is an example of two 
questions meant to measure the same thing and can be used to check the 
validity of the questionnaire. There was a (modest) positive correlation (with 
Spearman’s rho 0.57 on the 0.01 significance level) between the responses to 
the statement (Figure 13) and the question (Figure 14). 
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Figure 13   I have had the possibility to practice proving orally in school. 
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Figure 14   How often could you orally prove mathematical statements in upper 
secondary school? 

Obviously, there were significant differences between the students’ school 
backgrounds, as they remember it, concerning the possibilities of developing 
their proving abilities and their understanding of proof. There is a positive 
correlation (0.3-0.6 with Spearman’s rho on the 0.01 significance level) pair-
wise among the questions (5, 6, 7, 9) and the statements (10:8, 21, 29), re-
garding the various kinds of proving activities posed in the questionnaire 
(Appendix 2). This shows that the students who stated that they had got ex-
ercise in proof also often stated that they had got it in different ways, 
whereas the students who stated that they were only a little familiar with 
proof also often stated that they had got experience only by teachers’ proofs 
and derivations of formulas or not at all. Hence, there seems to be a small 
minority of newcomers who had got a lot of exercise in proof in different 
ways and a minority who had very little experience about proof. However, 
the results of the data analysis show that students are in various positions 
when they start to study mathematics at the tertiary level. An unexpected 
result for me was that there are still many upper secondary school teachers 
that, according to the students, prove statements to them. 
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5.2   How did the newcomers relate to proof when they 

entered the practice? 

In this section, I report how the newcomers related to proof when they en-
tered the practice including their views of proof. The results of the data 
analyses indicate that most of the students related very positively to proof 
when they started to study mathematics.  

I base the results reported in this section on the analyses of both the sur-
veys in 2003 and 2004 and the focus group interviews in 2004. I exemplify 
the results of the analyses of the surveys with newcomers’ utterances from 
the analysis of the focus group interviews. I also report some correlations 
between the students’ stated experiences about proof and how they related to 
proof when they entered the practice. 

5.2.1   Newcomers enter the practice 

Many of the mathematicians’ utterances conveyed a view of students as not 
being interested in proof. Nevertheless, already the analysis of the pilot study 
in 2002 showed that most of the newcomers related positively to proof 
(Nordström, 2003). The students wanted to learn more about proof and 
stated that they would have liked to have learned more about proof in upper 
secondary school. The surveys in 2003 and in 2004 confirm the results of the 
pilot study.  

Want to learn more about proof 

Over 80 percent partially agreed or totally agreed with the statement I would 

like to learn more about mathematical proof. (Figure 15)  
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Figure 15   I would like to learn more about mathematical proof 

Further, over 80 percent of the Swedish students partially agreed or totally 
agreed with the statement I would like to have learned more about proof in 

school whereas only 5 percent partially disagreed with it. No one totally 
disagreed with the statement (Figure 16). 
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Figure 16   I would like to have learned more about proof in school 

It is natural that many students related positively to the learning of proof 
when they started to study mathematics. A person who starts to study 
mathematics, has an orientation towards the mathematical practice right 
from the beginning, or has goals that have led the person to the practice. 
Students considered proof as an essential part of mathematics (see p. 150) 
and, hence, they were oriented towards learning more about it. 

Want to understand 

According to some mathematicians’ utterances, most of the students just 
wanted to get their study points and get recipes but were not interested in the 
question “why?” (see p. 99) Yet, the survey analysis showed that most of the 
students when they entered the practice wanted to understand what they did 
in mathematics. Over 90 percent partially agreed or totally agreed with the 
statement: I always want to understand what I do in mathematics. (Figure 

17) 
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Figure 17   I always want to understand what I do in mathematics. 

There were some mathematicians in my study who also stated that students 
were not willing to understand that it was better to derive formulas instead of 
memorising them (see p. 200). The survey analysis shows that the newcom-
ers preferred the knowledge about how to derive formulas rather than recipes 
or memorising the formulas. Over 90 percent partially agreed or totally 
agreed with the statement: It is good to be able to derive formulas (Figure 

18) whereas less than seven percent partially or totally agreed with the state-
ment: It is enough to be able to use formulas. It is not so important to 

understand everything. (Figure 19) 
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Figure 18   It is good to be able to derive formulas 
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Figure 1916   It is enough to be able to use formulas. It is not so important to under-
stand everything. 

Hence, students seemed to have a positive orientation towards understanding 
mathematics and the learning of proof, when they entered the practice.  

Intellectual challenge 

Many of the mathematicians who I interviewed stated that students were 
afraid of proving tasks. Students’ responses to the multiple-choice question 
(2) (Appendix 2) about how they felt when they got a proving task show that 
there were slightly more university entrants who showed positive feelings 
than those who showed negative feelings when confronting a proving task 
(Figure 20). Many of the newcomers expressed a feeling of getting an intel-
lectual challenge when trying to solve proving tasks. This is something that, 
according to the deductive style, was one of the aims of the proving activi-

                               

16 In the statistical analysis I reversed the values for some statements because of the 
correlation calculations. That is the reason for why the scale in the horizontal axis is 
reversed in Figures 19, 22, 23, 24, 29. 
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ties (see p. 115). Intellectual challenge is also one of the functions de Villiers 
(1996) sets up in his later model about the functions of proof.  

 

positivemixednegative

P
e

rc
e

n
t

50

40

30

20

10

0

 
Figure 20   When I get a task that starts with “Show that…”, I most often feel…(see 
Appendix  2) 

Furthermore, one half of the newcomers who responded to the surveys stated 
that they liked to try to show/demonstrate mathematical statements (Figure 

21). 
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Figure 21   I like to try to show/demonstrate mathematical statements. 

In focus groups students reflected on this question and many of them stated 
that it was interesting. They talked about an intellectual challenge in trying 
to find an elegant solution to a proving task. 

“…to arrive at an elegant answer so that one gets it as pure as possible, that 
is something I find interesting.” 

(S – B, 2004)  

About one half of the university entrants also partially agreed or totally 
agreed with the statement: It is fun to construct mathematical proofs. Yet, 36 
percent of the beginner students stated that it was more tedious to prove 
statements than solve computational problems. 

The mathematicians whom I interviewed stated that it was more difficult 
for the students to prove statements than solve problems (see p. 203). This is 
in accordance with the responses of the newcomers. A majority (85 percent) 
of the university entrants stated that it was more difficult to prove mathe-
matical statements than solve computational problems (Figure 22). 
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Figure 22   It is more difficult to prove statements than solve computational prob-
lems 

Students in focus groups in different phases of their studies talked a lot about 
their difficulties with proving tasks. Here is an example of one who has just 
started to study mathematics and had experiences about proving tasks in 
upper secondary school mathematics. She had stated that she felt nervous 
when confronted with a proving task (Appendix 2, question 2). She also 
strived to reach an elegant solution. 

“For me it’s difficult to organise all my thoughts in my head, what is going to 
be first, what step do I take first in order to make it elegant. Often, when I get 
a task like that, I have to solve it twice, and make a fair copy of it so one can 
present it maybe in writing for someone else who is to understand how I have 
proved it. If the task is more difficult… therefore the anxiety.” 

(S – B, 2004) 

But as described earlier, some students talked about the proving tasks in 
upper secondary school as simple and easy, especially after they had been in 
the practice for some time and met the proofs that they experienced as more 
difficult. 
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5.2.2   Newcomers’ views of proof 

In the previous chapter, I described how mathematicians reified proof (see p. 
96). Students’ views of proof were in many aspects similar to those of 
mathematicians already at the beginning of their studies. For example, a 
major part of the students considered proof to be an essential part of mathe-
matics. They also stated that they appreciated the knowledge about how to 
derive formulas instead of just memorising them. There were not many new-
comers who considered examples as correct proofs. However, they often 
convinced themselves of the correctness of formulas or statements by using 
particular numbers.  

Learning proof is meaningful 

The university entrants showed a participation identity concerning the prov-
ing of statements in many ways. Only three percent partially or totally 
agreed with the following statement: I see no meaning with proof; Famous 

mathematicians have already proved all the results. Almost 90 percent par-
tially disagreed or totally disagreed with the statement (Figure 23). 
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Figure 23   I see no meaning with proof. All the statements have already been 
proved by famous mathematicians   
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Further, about 85 percent of the newcomers partially or totally disagreed 
with the following statement: If a statement seems to be intuitively true there 

is no need to prove it. (Figure 24)  
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Figure 24   If a statement seems to be intuitively true there is no need to prove it 

Most of the students, like the mathematicians in my study, already consid-
ered proof to be an essential part of mathematics when they began their stud-
ies. About 90 percent of the students in the surveys partially or totally agreed 
with the statement that proof was an essential part of mathematics. (Figure 

25) 
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Figure 25   Proof is an essential part of mathematics. 

The aspect of transfer (see p. 93) in terms of logical thinking got support 
from the university entrants. Over 80 percent of the students partially agreed 
or totally agreed with the statement Proving statements teaches me logical 

thinking. (Figure 26)  
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Figure 26   Proving statements teaches me logical thinking. 

The aspect that I call transfer was an aspect many mathematicians also 
talked about as a reason for why one should learn proof (see p. 93). Another 
aspect that mathematicians talked about was that proofs helped one to under-
stand how everything in mathematics was related. Most of the students 
shared this view. Over 80 percent of the university entrants partially or to-
tally agreed that proofs helped them to understand mathematical connections 
(Figure 27).   
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Figure 27   Proofs help me to understand mathematical connections. 

Many mathematicians stressed the explanation aspect of proof, and the stu-
dents in the focus groups also viewed proof as a kind of explanation.  

Real mathematics and critical thinking 

Further, in the students’ focus group discussions, proof was strongly associ-
ated with “real mathematics” and understanding in contrast to school 
mathematics, which was claimed to be rule learning and applications of for-
mulas without understanding. Already some of the newcomers who had just 
started to study mathematics conveyed this view.  

“I think it’s another thing here. In upper secondary school we had a lot of 
rules, you learn a lot of rules and then you just go ahead. There is nothing to 
understand. But here it is more like…he stresses it all the time, to count is not 
mathematics but mathematics is the understanding of it and that is exactly the 
point.” 

(S – B, 2004) 

The previous quote exemplifies how students soon adapted the same way of 
talking about proof as mathematicians (compare in the previous quote: “…he 
(the teacher) stresses it all the time…”). Students achieved an increased un-
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derstanding of how and what old-timers did and talked about in the mathe-
matical practice, what they respected and admired and in that way got a pos-
sibility to make the culture of practice theirs. In particular, after the first 
examination on proof in Mathematical Analysis 3 students talked about 
school mathematics as doing sums and applying formulas, and university 
mathematics as proof, derivation of formulas and the understanding of 
mathematics .  

Some beginner students also spoke about proof as questioning the evi-
dent.  

E: I agree with you that one should begin early. 

L: The very idea to question the evident. 
(S – B, 2004) 

That is something that mathematicians also connected to proof (see p. 114). 
In the conceptual frame (see p. 45), I also discussed the value of proof for 
students as a way of learning critical thinking and questioning the evident. 

Are mathematical proofs different from proofs in other sciences? 

About half of the university entrants regarded mathematical proofs as differ-
ent from other kinds of proofs (Figure 28).  
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Figure 28   Mathematical proofs are different from other kinds of proofs 

Proof was seen by many of the students participating in the focus group in-
terviews at the beginning of their studies as exact and infallible and, there-
fore different from proofs in other sciences. This is similar to the view con-
veyed by some mathematicians as well (see p. 90).  

“ …mathematics is by and large an exact science, it is by and large freed 
from these worldly variables…as many other proofs are based on observa-
tions, logical, I mean somehow logical conclusions, and so, and sure they are 
similar but they are different in a quite fundamental way.” 

(S – B, 2004) 

“If something seems to be reasonable in mathematics, then it is valid without 
any doubt.” 

(S – B, 2004) 

“It’s nice (skönt) because everything is clear and all the definitions are defi-
nition that gives meaning, so to say. You can sit in an empty room with totally 
white walls and just calculate and calculate and arrive at the most wonderful 
things (världens grejer). You don’t have to enter the outside world at all, and 
that is what is so cool with maths.” 

(S – B, 2004) 
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“In physics I became irritated when we came to Einstein’s theories and all 
Newton’s laws collapsed in certain circumstances so there are no exact laws 
either.” 

(S – B, 2004) 

But there was also a student, who had been in the practice for a while, who 
considered the social dimension of the acceptance of a valid proof. He said 
he had understood that proofs had to be accepted by somebody.  

“When I started to study mathematics I was really convinced that mathemat-
ics was the only place where you really could prove something that was true 
forever. I thought like that quite a long time but when I started to study 
Foundations of analysis I realised how difficult it was to prove and, above 
all, understand a proof… But as I think now, proof is not correct forever, but 
only as long as somebody has accepted it as a proof. And there is always a 
human being who says “This is valid as a proof”.  

(S – A, 2004) 

The previous quotation illustrates the view that there is an authority, a text-
book or a mathematician, who judges when a proof is valid and when it is 
not. 

Induction/Deduction 

However, as I discussed in the theory chapter (see p. 44) proof is not always 
an explanation or verification for the students. The analysis of the responses 
to the multiple-choice question (4) (Appendix 2) and the focus groups’ re-
flections on the question shows that even if a majority of the newcomers did 
not consider examples as correct proofs they sometimes convinced them-
selves with “proofs” with specific numbers. Sometimes they also wanted to 
put numbers in general formulas or proofs in order to understand them bet-
ter.  

According to the responses to the multiple-choice question (4) university 
entrants did not consider specific examples as correct proofs. Most of them 
preferred the algebraic proof rather than the other alternatives. Almost 70 
percent of the newcomers chose Lisa’s or Peter’s proofs (or both of them) as 
a correct proof. Mattias’ proof was chosen by 12 percent of the students. 
Only 4 percent chose the specific example as a correct proof. 

I met three focus groups who had responded to the questionnaire and 
asked them to comment on their choices of the correct proof. In one of these 
focus groups the students reflected on Tove’s example in the following way.  

A: It only shows the special cases. 

C: It doesn’t say anything about numbers greater than hundred or even 
greater than six. 

(S – I, 2004) 
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However, this is the way some of the students in these groups checked, for 
example correctness of rules or formulas. Students in the focus groups talked 
about testing formulas with particular numbers in the following way: 

K: No one has chosen Tove’s answer... 

J: But I quite often do it like her. If there is a statement that seems to be a lit-
tle fuzzy I usually put in some numbers and check if it is right, that I do al-
most all the time… 

M: Yes, I also do that, on a scrap paper. 

J: Yes, exactly. 

M: If this is correct. 

J: Yes, exactly. 

M: But you keep it to yourself. 

J: Yes, exactly, you have proofs very often as a…  

N: The teacher has often quite complicated steps and if you want to see 
clearly how it goes, you can put numbers there as an example and that is 
sometimes a good way to teach too. 

(S – B, 2004) 

The discussion above shows, that newcomers often preferred particular spe-
cific numbers when testing some properties or, for example, convincing 
themselves of the correctness of a formula. However, they felt that that was 
something private and not accepted in real mathematics. About 60 percent of 
the beginner students who responded to the surveys stated that examples 
more or less convinced them about the truth of a mathematical result. 
Whereas mathematicians in my study stated that they could not be convinced 
and go on if they lacked a general proof (see p. 91).  

N’s utterance above shows that putting special numbers in the proofs 
helped her to understand the steps taken in the arguments (see p. 44). Whilst 
some of the students preferred algebraic symbols because of the general 
structure that they illustrated in proofs they felt that the use of them made 
mathematics more abstract and thus difficult, which the following dialogue 
shows. This could partially explain why students preferred special numbers 
rather than algebraic symbols when they wanted to understand a formula or a 
proof.  

E: You see the system when you use a and b. 
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M: But at the same time it becomes more abstract and therefore possibly 
more difficult to understand. 

(S – B, 2004) 

The previous example also shows that there are different sorts of understand-
ing. With the help of algebraic symbols you can understand structures and 
systems. However, when testing formulas with examples students could 
become familiar with these structures. Thus, it seemed to enhance other kind 
of understanding of them. About half of the students responding to the sur-
veys partially or strongly agreed with the statement: It is easier to under-

stand that a statement is true after seeing an example than after seeing a 

proof. (Figure 29) 
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Figure 29   It is easier for me to understand that a statement is true after seeing an 
example than after seeing a proof 

Similar results as reported above are well documented in mathematics edu-
cation research (e.g. Balacheff, 1988; Chazan, 1993).  

Language and rigour 

Many of the students in the focus groups in different phases of their studies 
seemed to think that proofs had to be written in a special language with 
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mathematical symbols. This is interesting because not many mathematicians 
stressed the importance of the language or rigour. However, the use of cor-
rect mathematical language is one of the grading criteria in upper secondary 
school mathematics. What distinguishes the best mark from the others is that 
the students “demonstrate clear thinking in correct mathematical language”. 
The following examples illustrate how the demands/ examples of formal 
language in the practice had influenced students’ views of proof. 

“…I think the first one (Lisa’s answer, question 4, Appendix 2) looks most 
like a proof, mathematically correct. I think I chose it because proof is also a 
lot of different variables and most often not written in ordinary Swedish. It is 
shortened by the use of all the strange symbols.” 

(S – I, 2004) 

I will come back to the formal demands regarding proof as students talked 
about them in Section 5.4 where I describe students’ participation in the 
mathematical practice and their difficulties in constructing proofs. 

5.2.3   Some correlations 

Besides the percentages, I investigated correlations between different state-
ments and questions concerning students’ experiences on the one hand and 
how they related to proof on the other hand. I also examined correlations 
between statements concerning how students related to proof in order to 
validate the questions and investigate if the negative and positive responses 
correlated to each other.  

There was a positive correlation (Spearman’s rho on the 0.01 significance 
level) between the statement I would like to learn more about mathematical 

proof and the following statements. The correlations are given below after 
the statements. 

   
• Mathematical proof both verifies and explains  (0.29) 
• Proof is an essential part of mathematics  (0.29) 
• Proofs help me to understand mathematical connections  (0.30) 
• It is fun to construct mathematical proofs  (0.49) 
• Studying proofs teaches me logical thinking  (0.50) 
• I like to try to show/demonstrate mathematical statements  (0.49) 
• It is nice to know some mathematical proofs  (0.51) 

We can see that the correlations here are from low to modest (Bryman & 
Cramer, 1990). Hence, those who related positively to proof sometimes 
showed it in different statements. In accordance with this result, there was a 
modest negative correlation (Spearman’s rho on the 0.01 significance level) 
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between the following statements and the statement I would like to learn 

more about mathematical proof: 
 

• If a result seems to be intuitively correct there is no need for prov-

ing it  (0.44) 
• I see no meaning with proof; famous mathematicians have already 

proved all the results  (0.36) 
• It is more boring to prove statements than to solve computational 

problems  (0.43) 

These correlations indicate that there is a small minority of the students who, 
already at the beginning of their studies, show negative feelings about proof 
in many aspects and hence, show a non-participation identity regarding 
proof.  

There was a background question in the questionnaire (Appendix 2) about 
students’ motives for studying mathematics (1). The majority of the students 
stated that they studied mathematics because they liked it and were inter-
ested in it (Figure 30). I wanted to investigate if there was a relation between 
the motives for mathematical studies and students’ relation to proof. I was 
interested in finding out if those who studied mathematics for some external 
purpose were less interested in proof than those who stated that they studied 
mathematics because they liked it. 
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Figure 30   Why do you want to study mathematics? 

I found no relation between the reasons for why the students wanted to study 
mathematics and how they related to proof. On the other hand, there were 
some interesting relations between students’ stated upper secondary school 
experiences and how the students related to proof. There was a modest nega-
tive correlation (0.41 on 0.01 significance level) between the statement It is 

difficult for me to prove statements and on the other hand, the question How 

often did you practice to prove statements yourself in upper secondary 

school. There was also a negative correlation (0.38 on the 0.01 significance 
level.) between the statements It is difficult for me prove statements and I 

have had exercise enough in constructing proofs in school.  Hence, those 
who stated that they had not had exercise often stated that it was difficult for 
them to prove statements. This seems quite natural.  

When choosing the students for the focus groups, I also tried to get in 
touch with students who related negatively to proof. It was difficult, because 
those who wanted to volunteer most often showed an identity of participa-
tion concerning proof. However, I managed to engage some students at the 
beginning of their studies who related negatively to proof. One of them (L) 
had responded to the question 2 (Appendix 2) above in the following way: 
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L: “The tasks dealing with proof very often lead to strenuous lines of reason-
ing.” 

(S – B, 2003) 

His experiences about proof in upper secondary school were quite poor ac-
cording to his responses to the survey questions and what he said during the 
focus group discussion. He stated that he did not want to learn more about 
proof and he would not have liked to learn more about proof in upper secon-
dary school either. In the focus group discussion he explained his responses 
in the following way. 

L: “No, because I didn’t have very good or especially fun memories of prov-
ing, because in the proving situation the teacher when teaching was even 
more isolated from the class than usual.” 

(S – B, 2004) 

The rest of the focus group had more experience of proof and also related 
positively to proof. In the end of the discussion, student L seemed to have 
changed his way of talking about proof and showed some curiosity when he 
at last stated: 

L: “I notice that I’ve really been starved of proofs (svältfödd på bevis) as a 
matter of fact, I noticed this when we went through the sine-, cosine- and tan-
gent laws here (at the university). I had never seen them, well, I had seen 
them but not the proofs for them so I had never given it so much thought …” 

(S – B, 2004) 

 

To sum up the results in this section, contrary to what many of the mathe-
maticians thought, most of the students related very positively to proof when 
they entered the practice. They wanted to learn more about proof. They also 
viewed proving as a meaningful activity. Most of the newcomers considered 
proof as an essential part of mathematics. Students seemed to adapt quite 
quickly to the view conveyed by mathematicians on proof as real mathemat-
ics in contrast to upper secondary school mathematics that was seen as rule 
learning. According to the theory of Wenger (1998), building an identity 
consists of negotiating meanings of our experiences in social communities. 
Right from the beginning, when students enter the practice, being in the 
practice influences their identities. They are forging their identities, and in 
order to participate, they must gain some access to the history they want to 
take part in, so they start to make it part of their identities.  

According to Wenger, one’s identity is never constant, it is forever chang-
ing. Although the majority of the students related positively to proof and the 
learning of proof when they entered the practice, many of them very soon 
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reported a lot of difficulties in understanding the proofs and the meaning of 
proofs they met at the university. That is something I will describe and ex-
emplify in the following four sections where I report what different kinds of 
occasions for negotiation of meaning concerning proof there were available 
to the students in the mathematical practice and how students in different 
phases of their studies talked about their experiences in the practice.  

5.3   Newcomers’ participation in the lectures  

Wenger (1998) defines four components to characterise social participation 
as a process of learning: doing (practice), belonging (community), experi-
ence (meaning) and becoming (identity). These components are mutually 
defining and interconnected. As described in the theory chapter, students 
participate in the practice when they, for example, grapple with their lecture 
notes and try to follow proofs and mathematical arguments, or when they 
discuss a new concept with some other students or when they take part in the 
examinations. In all these activities students can experience meaning and 
belonging. The participation also influences their identity. In this section, I 
describe students’ participation in lectures. 

There are various ways for mathematicians to present mathematics in the 
lectures. They can focus on examples and applications, or they can also start 
with a definition and go on presenting the contents deductively. Mathemati-
cians can also present proofs in various ways in the lectures. The most usual 
way, according to the observations of the lectures and to the mathematicians’ 
and the students’ utterances, is to present proofs by writing on the board 
without further discussions or structuring. However, there are differences in 
how carefully mathematicians write all the steps in proofs. Most of the stu-
dents participate by writing lecture notes and/or by trying to follow the rea-
soning. Outside the lectures students can study the lecture notes, textbooks, 
old examinations and other material and try to understand the lines of rea-
soning in them. Students can also get help from a teaching assistant if there 
is something they wonder about.  

Almost all the mathematicians who I interviewed claimed that they 
avoided dealing with proof in the introductory course for different reasons 
(see p. 198). This is interesting because students in the focus groups talked 
about an experience from the beginning of their university studies where 
mathematicians were proving a lot of statements during the lectures. I will 
come back to this issue in Section 6.1.2 when contrasting the results of the 
mathematicians’ practice with the results of the students’ practice.  
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5.3.1   Possible hindrances for students’ engagement in the 

lectures 

Engagement in practice gives us certain experiences of participation. 
Wenger (1998) emphasises that in order to support learning, engagement 
requires access both to the participative (interaction with other participants) 
and the reificative (symbols, tools, language, documents, and the like) as-
pects of practice (ibid., p. 184). This could mean students’ possibilities to 
interact with other participants but also students’ confidence with mathe-
matical language, symbols and proofs and other reifications in the practice. 
There were a lot of possibilities for the students to interact with each other 
but they had not always absorbed the important reifications or even part of 
them into their practice. So that was often a hindrance for their participation 
and also for interaction. Students have not created the rules of reasoning or 
the mathematical language, theories or proofs but these reifications have to 
be reappropriated into a local process by students in order to become mean-
ingful for them (see p. 37). One hindrance for students’ engagement in the 
negotiation of meaning during the lectures would also seem to be the high 
tempo of the lectures.  

Tempo 

Moreover, the focus groups somehow touched of the high tempo in the pres-
entation of mathematics in the lectures. 

”…They go through the things very fast in the lectures and if they are to 
prove something, for example logarithms, you have to be absolutely clear 
what a logarithm is and how it can be rewritten, all these rules, and if you 
don’t do that you cannot follow […] I noticed that the tempo is much faster 
also with proofs, not so many comments on what the teacher does as in upper 
secondary school.” 

(S – B, 2004) 

Also some mathematicians complained that they had to go through a lot of 
material in a short time and they experienced that they had less time now 
than earlier for the students. According to the statistics about the organising 
of the lectures, before 1997 there was one mathematician with about 30 stu-
dents and three hours for lectures where they could combine the theory with 
applications (Strömbeck, 2006). Now there is a lecture of two hours and one 
mathematician with about 100 students, so there is less time for the contents 
if mathematicians try to do the same within two hours as they did earlier in 
three hours (see p. 16).  

Language 

The notion of reification in Wenger’s theory refers to abstract and concrete 
objects that are the projection of our meanings into the world. In the mathe-
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matical practice, for example mathematical symbols, definitions, theories 
and proofs can be seen as typical reifications for that practice. Engagement 
in practice requires access to all these reifications. According to the students, 
the mathematical language at the university level was different from that of 
upper secondary school. Also the lack of experience with mathematical 
symbols was mentioned as a hindrance for students’ participation. 

”Now it’s much more mathematical language, in upper secondary school it 
was possible to say everything with a little easier language and when the 
language becomes more difficult it’s difficult to fully follow. You have to 
know these different symbols they write on the board, what it means.” 

(S – I, 2004) 

Yet, some of the students stated they had got a short introduction to logical 
symbols during the introductory course. They also pointed out that it was 
possible to study them in the textbooks. Vretblad’s (1999) book was men-
tioned as informative in this aspect by some of the students. 

”In a chapter in Vretblad’s book, Algebra och kombinatorik, you can read 
what those things mean and I think that’s the best description I have found or 
read but that is nothing one follows up in the courses…it’s difficult to work 
with the notions by yourself.” 

(S – I, 2004) 

The students studying advanced courses had also experienced the hard 
tempo and the learning of terminology as a problem. Hence, they must have 
tolerated a certain amount of experiences of non-participation in order to 
proceed in the practice. 

”I’ve experienced mathematics as a language where you have to learn a lot 
of words and grammar. And if you forget some words the teacher talks and 
talks and it can take some minutes before you recall the meaning of the words 
but then the teacher already talks about other things and you’ve lost the 
thread a long time ago. And the rest of the lecture you just try to catch up. So 
it’s very demanding with so many new words and expressions that we are ex-
pected to know from the first time we hear them, which we don’t. Instead, you 
have to drill them and that takes time. Often you haven’t learned it until the 
end of the course.” 

(S – A, 2004)  

Concerning the mathematical language and symbols, there were two dis-
cernable styles in mathematicians’ ways of talking about them. According to 
the deductive style they should be introduced and used from the very begin-
ning in order to accustom the students to them at once whereas within the 
progressive style a teacher should try to avoid them at first, and then gradu-
ally introduce them (see p. 110). 
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Rigour 

Sometimes gaps in the proofs and small careless mistakes in the lecture 
notes can cause a lot of problems for students’ understanding when they 
come back to the lecture notes at home.  

”I feel that when I read the proofs, sometimes they don’t write all the argu-
ments and I think they assume that we understand that some assumptions 
have some implications and then they do not write these implications…I’m 
not so used to, for me it’s a gap in my thinking. And then I can stand for 
hours without understanding the proof until someone explains the implication 
for me and then I feel: Oh, now I understand! And that’s something disturb-
ing that they don’t always write all the arguments.” 

(S – A, 2004) 

That is something, I also observed in the lectures. Mathematicians seem to 
usually be in a hurry when they write proofs on the board. It is often difficult 
to follow and control that all the steps in proofs are correct. Also in the text-
books for the basic course, often some steps are left for the reader to justify.  

There are differences in the presentation of mathematics between differ-
ent mathematicians with respect to rigour according to the students and the 
observations of lectures. With rigour, I refer to how carefully mathemati-
cians write and justify all the steps they take in their presentation of mathe-
matics and proofs. 

5.3.2   Different approaches among teachers and students 

What makes engagement in practice possible and productive is as much a 
matter of diversity as a matter of homogeneity (Wenger, 1998). In the com-
munity of practice of mathematics at the mathematics department, there are 
diverse views on how to teach and present mathematics in the best way, both 
among the old-timers and the newcomers. In this subsection I present two 
aspects, on which there were different views, rigour and inductive/deductive 
approaches.  

Rigour  

Different teaching styles relate differently to rigour. Some of the mathemati-
cians stated that they did not like rigorous proofs (see p. 124), whereas oth-
ers wanted to show every step especially for the newcomers (see p. 116). It 
is not only the mathematicians who have various views on how rigorously 
mathematics and proofs should be presented to the students. As the next 
dialogue shows, there were differing views among students as well. Some of 
them wanted the proofs to be properly and rigorously presented whereas 
some of them wanted to get inspiration from the lecturer in forms of ex-
tended information for example about the history of mathematics. They 
stated that they could study the proofs in the textbooks.  
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I: But the most important thing for me is the structure of the lectures, because 
there are such huge differences between the teachers. A teacher who can 
really hold the planned structure and has certain techniques for the black 
board writing and writes the important things and goes through everything 
step by step, it gives much more than someone who just says “This can be 
proved with combinatorial methods” and then writes down something in-
complete and then goes on to the next subject. 

… 

P: You notice very clearly that certain teachers have very different views on 
their role as teacher, I mean what is expected of them as teachers. Because 
some of them, a few of them anyway, think that they are to be there and bab-
ble in general terms and like inspire students to study the textbook them-
selves. And some think that they really should teach everything on the board. 
And these are quite different things and it’s clear that if a student expects one 
thing and the teacher is of the other sort, then it becomes quite strange…       

I: …I think that I’m kind of a structure person and I totally lose the appetite 
for learning maths if they just stand there and prattle and don’t even finish 
the examples. 

P: It’s as if I fall to sleep if they like go through a proof extremely carefully 
like […] But, anyway, it still reads very clearly in the textbook, there are 
definitions, theorems and proofs on and on and on. 

(S – A, 2004) 

I argued in Section 3.4.4 that, according to the theory of Wenger (1998), the 
condition of transparency can be considered from the point of view of teach-
ing as well as learning. Teachers’ intentions of focusing on certain things in 
their presentation do not necessarily imply that these aspects become visible 
to students (see pp. 27 and 60). The following dialogue also illustrates how 
differently two students saw the same presentation. The student A did not see 
any structure in mathematics by studying proofs, theorems and definitions 
whereas the student B stated that it was there she saw the structure.  

A: “I think, I want to get new ideas, want to see patterns and such things, 
that is what is interesting, not proof, theorem and definition and so on.” 

B: It is there (definition, theorem, proof) I see the patterns. 
(S – A, 2004) 

The first student (A) gets a structure by patterns and new mathematical ideas 
and finds them interesting whereas the student B sees the very pattern in 
definitions, theorems and proofs. There were similar examples of the differ-
ences between students in other focus groups as well. 
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Induction/Deduction 

Some students had recognised different styles in mathematicians’ ap-
proaches also concerning the aspect of Induction/Deduction and stated that 
some mathematicians use more time presenting examples of different prob-
lems to students whereas some others are more concerned with presenting 
the mathematical theories to them.  

“Some of them are a little more interested in giving examples and calculation 
tasks and others think it’s more important with the theoretical part of 
maths.” 

(S – I, 2004) 

Some students complained about the abstract level of mathematics and 
wanted to go straight examples and applications. The following quotation is 
an example of a student, who, regardless of a lot of different kinds of experi-
ences of proof in upper secondary school, did not appreciate the learning of 
proof very much. It was enough for her to see the proofs or know that they 
existed but the applying of formulas was the most important thing for her.  

“But I think proofs are good but I have never bothered to learn any of them, 
not here either. When we sit in the lectures and they write a proof I stop writ-
ing. It’s because, anyway, I don’t go back to them but I don’t  think mathe-
matics is the most exciting subject in the whole universe so I learn the for-
mula and I’ve an extremely good memory…, and then apply, apply, apply 
and I know that this formula exists, it is proved and then you can just go on.” 

(S – I, 2004) 

For students who had made progress and proceeded in their trajectories fur-
ther in the mathematical practice, the meaning of mathematics seems less 
likely to be regarded as the applications of formulas for problem solving as it 
is for students studying at the basic level. Instead, they spoke of a pleasure to 
know proofs the results of which could be used in other mathematical con-
texts. 

”I think such proofs are still quite fun, where you really can prove something 
profoundly or a big theorem where the results can be used in other contexts, 
maybe only to prove other results.” 

(S – A, 2004) 

This view is very similar to that of mathematicians in my study. They stated 
that with the help of proof one could obtain general results that could be 
used in other mathematical contexts. The following two examples show the 
complexity regarding the best way to draw the newcomers into the mathe-
matical practice and how to meet the different expectations of the students. 
Some of the mathematicians proved Taylor’s theorem when they presented it 
to the students during the basic course in calculus, others did not do that. 
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Some of the students had difficulties seeing the point of studying the theo-
rems. 

”For example, this is the way the teacher introduced us into Taylor McLau-
rin…and, “Yes, I will take Taylor’s and McLaurin’s formulas, yes I start with 
the proof.” So, I start with a proof and then I thought, what’s this? I didn’t 
know anything about what Taylor and McLaurin was at all, what are they 
good for, like Why? We started with the proof and then he went on for half an 
hour, I mean I didn’t grasp anything. Then in the end of the lecture, anyway, 
he came to the applications. And if you don’t grasp, you learn to shut it out 
because you don’t understand anything, anyway.” 

(S – I, 2004) 

Some students, however, taking advanced courses complained that the 
teacher did not make it clear from the very beginning that they did not need 
to memorise all the formulas but they could be derived using the Taylor’s 
formula. 

”The teacher should have said during the lectures that with this formula you 
can get all the Taylor developments but he didn’t say it and I don’t under-
stand it…” 

(S – A, 2004) 

Finally, I offer an example about a student who liked to work with mathe-
matical proofs in physics. The way in which the student in the next quote 
works with the proofs in calculus can be compared to studies that show that 
many students want to test the proofs empirically. 

“…for example, in Analysis 4, I first studied all the proofs and all of them 
were applicable in physics, for example in electricity. So I worked with all 
these proofs once again in physics and proved them in a…and that gave me 
another kind of understanding to do the proofs without presuming this most 
general language at the beginning but I could assume that I really had some-
thing important and the proofs could be accomplished, I mean in principle, I 
wrote the same thing arguing in a convincing way because it was like real-
ity.” 

(S – A, 2004)  

There were also different views among students on whose responsibility it 
was to enhance discussion in the lectures or whether it was possible to hold a 
discussion during the lectures. There are some examples of it in the follow-
ing two subsections. 
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5.3.4   Participating in the negotiation of meaning by posing 

questions 

It is possible for students to pose questions during the lectures. This is not 
usual according to the mathematicians, the students and the observations of 
lectures. The questions could enhance students’ identity of participation/non-
participation depending on if they understand the questions that the other 
students pose and could follow the answers. The following extract of a group 
discussion exemplifies students with experiences of non-participation and a 
student with experiences of participation concerning the posing of questions. 
One of them (B), saw the possibilities to participate whereas the others saw 
the hindrances. There were also different views among the students in this 
group about whose responsibility it is to create discussions in lectures.  

B: Then it’s often that nobody dares to ask. We won’t know if no one says 
anything. I think that you still can get help in the math library (students can 
get help from a teaching assistant). You have to go and ask if there’s some-
thing you don’t understand. That is my opinion. 

 T: But there’s not a very open atmosphere for questions.  

G: No. 

T: It’s a little like if you ask something you are stupid. 

G: Absolutely. 

T: The atmosphere is very inhibiting. 

G: Yes. 

T: Why doesn’t anybody ask when no one understands anything? 

B: But I don’t feel like that at all…  

G: I would put it in this way. You must really be a certain type of a person to 
pose questions in this place it feels like, curious, not afraid, think it’s fun. 
Many students are not like that. 

B: It’s a pity that so many are not interested, maybe. 

T: No, but I’ve tried to ask, in many cases it’s difficult to formulate the ques-
tion, don’t know if anybody even understands the question. Then one feels 
that one’s a big problem. Take for example this one hour proof. If one would 
say at the end of the proof that one didn’t understand, we would never get rid 
of that boring proof.  
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G: And you don’t want to ask before you have sat at home and tried to under-
stand yourself.  

(All agree.) 

B: If you have prepared yourself before you come to the lectures and really 
have wondered, I understand this part of the proof but not the other part and 
when they give the proof you can ask that question… But I have to say that 
the mathematicians seem happy when somebody asks something […] It 
shouldn’t only come from the lecturer.  

G and T: Mmm, yes. 
(S – I, 2004) 

One mathematician also stated that not many students pose questions during 
the lectures. The groups are big and it is difficult to create discussion. 

“One of the goals of the course Mathematical Analysis 3 is to teach students 
proof but there are too many in a group, about 50, so it’s impossible for stu-
dents to show something on the board. There are few who ask questions.” 

(M – 2003) 

Students had different views on whose responsibility it was to create discus-
sions. 

“ But it has to come, it can’t just come from the lecturer.” 
(S – I, 2004) 

Some students stated that the last lecture was aimed at dealing with students’ 
questions. According to the following student, the questions were about 
problem solving, not proofs. 

S: We have got the last lesson for questions. 

K: Will there be any questions on proof? 

S: During the last lesson, which is devoted to questions, there is more discus-
sion, but not about proof because they are already forgotten, but calculation 
tasks and such. 

(S – I, 2004) 

But there were other experiences as well. Some students said that they had 
opportunity of posing questions and going through proving tasks during the 
last lecture. 
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“We have lessons where we go through calculation tasks and may pose ques-
tions and then the teacher takes it again, a little slower. Then one has time to 
understand a proof or a definition.” 

(S – I, 2004) 

So, it depended on the teacher whether the last hour was used for problem-
solving tasks or proving tasks or questions about proofs. 

5.3.5   Engaging students in the presentations of proofs 

During the lectures a teacher has a possibility to invite students to fill some 
gaps or in other ways engage them in the proving act. This could lead to 
enhanced demands on students’ engagement in the negotiation of meaning 
during the lecture if students could follow the discussions. In my observing 
of the lectures, there was a mathematician who wanted to activate students 
by giving a proving task to them in the middle of the lecture. It was about 
mathematical induction. However, the high tempo seemed to be a hindrance 
again. The time for solving the task was short; the students did not have a 
chance to do it. After that the mathematician presented the proof himself. I 
had a focus group interview with four students who had participated in the 
lecture and they said that the initiative was good but the time too short. Be-
sides, some of them advocated group discussions in the connection of this 
kind of tasks.  

D: I like these kinds of lecturers who try to get into contact with the students 
and push them a little.    

E: It’s definitely better than “You understand this anyway”. 

K: Did you get enough time to solve it? 

E: I think it would be better to discuss in small groups, for example, or that 
you do more than just wait for two minutes, it was far too short a time. You 
start to try and think, like, and then he gives away the answer himself. 

F: The question is if there is time for such things at all. These courses are so 
intensive. 

E: Time for? 

F: I mean sit in small groups and so on. 

E: You could also say that this is something you can solve in groups for to-
morrow. It doesn’t need to take time from the lectures. It doesn’t need to be 
run by the teacher, so there are pedagogical refinements. 

(S – I, 2004) 
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Student F had apparently been enculturated to the practice and “understood” 
that there was not so much time, for example for group work, because there 
were a lot of mathematical contents that needed to be dealt during the 
courses. However, just as in the example about the posing of questions, there 
were different views among the students as to whose responsibility it was to 
create discussions among students. One of the students pointed out that for 
example, discussing proof in small groups does not need to be run by the 
teacher, nor take time from lectures. However, he seems to expect that this 
kind of work would be organised by mathematicians. Participating in the 
lectures is the students’ response to the conditions in the practice and, ac-
cording to the theory of Wenger (1998) students are active agents in that 
practice and can make use of the possibilities there. However, students have 
various identities and backgrounds and they all respond to the conditions in 
the practice in unique ways.    

In this section, I described issues concerning students’ possibilities to par-
ticipate in the negotiation of meaning regarding proof in the lectures. A hard 
tempo, students lacking knowledge about mathematical symbols and lan-
guage, and gaps in the presentation of proofs could hamper students’ partici-
pation. I concluded the section with two examples where students talked 
about how to create discussion and participation in the lectures and whose 
responsibility it was to do that.  

In the next section, I describe students’ participation in constructing their 
own proofs.  

5.4   Constructing their own proofs 

Sometimes students get proving tasks that they themselves should solve by 
constructing their own proofs. This happens by working alone or together 
with someone outside the lectures. Most of the mathematicians I talked with 
claimed that proving tasks are difficult for students (see p. 203). The results 
of the survey analysis also showed that students consider proving tasks to be 
more difficult than problem solving right from the beginning of their studies 
(see p. 147). 

5.4.1   Students’ difficulties 

The students in the focus groups talked a lot about difficulties they experi-
enced when constructing their own proofs. They did not know how to start, 
they did not know what they could take for granted and when they had 
proved the statement. These difficulties were also identified and reflected on 
in mathematicians’ utterances belonging both to the progressive and the de-



 174

ductive approaches. They are also documented in earlier research (e.g. 
Moore, 1994).  

Proving tasks are more difficult than those in upper secondary school 

The students who had had some experiences with proofs in upper secondary 
school talked about the difference between the proving tasks there and at the 
university. They claimed that proving tasks were much more difficult at the 
university. 

K: Now you have studied here for one year. How do you experience the dif-
ference between upper secondary school mathematics and university mathe-
matics regarding proof?  

L and J: The proofs are much more difficult.  

J: Now the proving tasks are the difficult ones, it’s usually difficult to under-
stand the proofs because they are so abstract and they have to work in so 
many different cases and then it’s impossible to understand how one has de-
rived  them, the proofs and how we ourselves… 

K: Do you agree? 

L: Yes, I do, it’s become much more difficult. 
(S – I, 2004) 

According to the students, the proving tasks in upper secondary school were 
most often of the type “Show that the left hand side equals the right hand 
side.” (see p. 135). The students appreciated the comments on their proofs 
that they sometimes got from mathematicians but it was not usual according 
to the students; it sometimes occurred in the lessons and in the scope of more 
advanced courses.  

Have I really proved it? 

One of the difficulties they talked about was deciding when one was ready 
with the proof, when one had really proved the theorem.  

“Well, we often get tasks like “Show that” and then I often think afterwards: 
“Have I really proved it now?” I don’t feel sure even though I’ve really man-
aged to show what I am supposed to show. And it can depend on lack of 
experience, that you cannot decide yourself that it is enough now, now I’ve 
actually shown what I was supposed to show. And I can also be insecure, 
now I’ve learned certain things, for example what “if and only if” means, 
that you have to show that if something is true then something else is true and 
then also in the opposite direction. So you learn these kinds of tricks, how to 
construct a proof.” 

(S – A, 2004) 
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Students seemed to lack knowledge about elementary logic, for example 
what is meant by “if and only if” which the student in the quote above calls a 
trick. Some of the difficulties students talked about are well documented in 
research, for example the understanding of when one has proved something, 
when the proof is complete (e.g. Pettersson, 2004; Wistedt & Brattström, 
2005).  

What can I take for granted? 

It was also difficult for the students to know what they could take for granted 
and what they had to justify. The difficulty to recognise what to take for 
granted and what to prove can sometimes be arbitrary and is not always 
clearly stated by the old-timers, as a mathematician pointed out in the inter-
view. They are conventions that are seldom discussed (see p. 102).  

“Yes, I also think it is really hard to decide if you are finished or not. And 
then some things that you prove you don’t have to prove because they are 
supposed to be evident. There are other things you think are evident that you 
have to show and to find out what is what, is difficult. And that has to do with 
experience, I suppose…” 

(S – A, 2004) 

The difficulty to decide what to prove and what to take for granted was es-
pecially connected to Euclidean geometry by some mathematicians (see p. 
102). 

Logic and structure 

Focusing on the logical structure of proofs is an aspect of visibility (see p. 
54). The role of understanding the definitions for learning and understanding 
of proof was stressed in mathematicians’ utterances belonging to the deduc-
tive style (see p. 120). The difficulties concerning the understanding of the 
role of definitions in proofs was also discussed by the students:  

”We never met theorems or definitions in upper secondary school. Sometimes 
I still have difficulties understanding the difference. I think that a theorem 
can look like a definition.” 

(S – I, 2004) 

There is not much discussion about proof or the logical structure of different 
kinds of proofs according to the mathematicians, the students and the obser-
vations of the lectures. One of the mathematicians stated that the opportunity 
to discuss proof did not present itself earlier than in the course Foundations 

of Analysis (Appendix 1). 

“Not earlier than during the course Foundations of Analysis one learns to 
prove oneself and has a possibility to discuss proof.” 

(M – 2004)  
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Some students also talked about discussions during that course and during 
the advanced course Algebra (see Appendix 1).  

A: In Foundations of Analysis and Algebra, which are such courses where 
one is to get understanding for how to prove, I think that one quite deeply 
goes through and talks about what a proof is and so, more than in other 
courses anyway. 

B: Much more than in the other courses. 
(S – A, 2004) 

However, there were differences in the way in which mathematicians 
planned these courses regarding discussions about proof, according to some 
students. Not all mathematicians seemed to give precedence to discussions.  

“But is it really the meaning that one should drill theorem proof, theorem 
proof, theorem proof, theorem proof all the days? Shouldn’t one discuss what 
one is doing on the blackboard?” 

(S – A, 2004) 

According to this student, the lecturer copied the textbook onto the board 
without any discussions. 

According to the mathematicians, there is no discussion about proof tech-
niques now when Vretbald’s textbook is not in use any more (see p. 99). 
Thus, the newcomers try to find out many things about proof without the 
systematic guidance of the old-timers. The lack of the knowledge of elemen-
tary logic, for example, causes difficulties for the students. The learning of 
proving statements seems to happen quite randomly, if indeed if it happens 
at all. Some students on the advanced level said that they had felt that it was 
expected that they knew what a proof was and how to construct proofs from 
the very beginning of their studies.  

“I have felt that it was expected that you know what it is all about. Yes, when 
we started it was taken for granted that you knew what a proof was. It’s noth-
ing you have learnt. I think it was combinatory…when someone happened to 
say something about “If and only if” that you have to first show it in one di-
rection and then in the other. So it wasn’t until then I heard it.  So there is 
nobody who has told you what a proof is.” 

(S – A, 2004) 

The quotation above is an example of the feeling that the learning of proof 
takes place occasionally. Some students also stated that they felt that they 
were expected to learn to prove statements by trial and error. 

“Now when we study algebra we get home exercises and sometimes they are 
“Show that” and then you try and then you make a mistake and then you get 
back your tasks and the key and then you see: “Oh, it was like this I should 
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have done.” But no one has told us that “Now when you are going to prove 
statements, think that…” Rather, you have to try to catch up as much as pos-
sible by yourself.” 

(S – A, 2004) 

According to the students, it was more usual to get feedback for proving 
tasks during the more advanced courses. The contents in these courses have 
not changed as much as the contents in the basic course so it is possible that 
students do not have so much practice in constructing their own proofs be-
fore it is required of them at a higher mathematical level.  

Language and rigour  

The students in the focus groups also discussed the formal requirements of 
proof. They seemed to struggle a lot to find out what was demanded by the 
community of mathematical practice. They felt they were not capable of 
using the correct mathematical language that was demanded/used by the 
community. 

“…that is something I am always afraid of when I write proofs. I feel I use 
too many words. If I only had some more symbols it would look more profes-
sional. But what I do in the text, is that I tell that because I have this theorem 
I can draw these conclusions and this expression and then I get this. Then 
I’m always afraid of reasoning too much, that that is not OK in mathematics, 
that only symbols are allowed.”  

(S – A, 2004) 

This is also an example of newcomers’ endeavour to be like old-timers in the 
practice. The next extract is an example about questions the newcomers are 
struggling with for themselves. In upper secondary school one of the criteria 
for the different marks is the use of natural language and the use of symbols. 
To get the lowest mark “pass” you have to be able to reason in natural lan-
guage. To get the mark “pass with distinction” you are demanded to use both 
natural language and symbols. To get the best mark “pass with special dis-
tinction” you have to only use correct mathematical language. This is some-
thing that may have influenced the students’ view of symbols as necessary 
for proofs.  

”When I write a proof myself I don’t want to use any words, but when I read 
in the textbook there are expressions like “Because we do like this” I mean it 
is really written with words. But then I think it is only because of the educa-
tional purpose, actually if you are really professional you should omit all 
these words, but I am surely wrong.” 

(S – A, 2004) 

The previous quotations about the formal requirements of proof are impor-
tant regarding the condition of transparency. The students struggle to figure 
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out these by themselves, they build their own theories about the pedagogy in 
the textbooks and about what the mathematicians demand and what is really 
professional. This can be contrasted to the different pedagogical styles. The 
progressive style is to let students themselves decide if a proof is valid and 
not to discuss the formal requirements of the community (see p. 112). Ac-
cording to the deductive style the expectations of the community are not 
made clear for students and it is important for teachers to explain, for exam-
ple the difference between a definition and a description (see p. 120).  

Guidance by old-timers  

The students talked a lot about the lack of getting some explicit guidance in 
constructing proofs. 

“It would not be wrong if we had one lesson at least, where we would go 
through how one constructs a proof and maybe would get some clear exam-
ples and discuss why we do like we do and how we should think. Because 
there are many ideas and a lot of thinking behind the proofs that are actually 
not visible.” 

(S – A, 2004) 

In the textbook for linear algebra (Tengstrand, 1994), there are solutions for 
many problems but not for proving tasks.  

There were also examples of situations when students had got some guid-
ance. One student studying at advanced level talked about the help that she 
had got during the lessons (see p. 16) belonging to the basic course, Mathe-

matical Analysis 1 and Mathematical Analysis 2 (Appendix 1).    

“In Analysis 1 and Analysis 2, it was quite good; we got two tasks, I think 
during each course, and the tasks were some kind of proving tasks. Then we 
would present them on the black board for other students. And that was actu-
ally quite good. […] I mean we could both ask the lecturer and the teaching 
assistants who worked on the basic course. Yet, we still didn’t get a clear pic-
ture of what was actually demanded but more like when one asked the assis-
tant he answered: “Yes, but here you have a little gap, but you can fill it.” 
But I never understood that there were any patterns of how to build up what 
one would show…” 

(S – A, 2004) 

There was also some material about the constructing of proof the teacher in 
abstract algebra had given to students. The material as well as the individual 
comments that students had got about their own proofs were really appreci-
ated by them. 

K: What is that about? 

A: What you should have in mind when you construct a proof. 
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B: He has chosen a proof as an example. It is about factorising into primes. 
First you have to show that it is possible to factorise and then show that the 
factorising is unique. 

C: I think it was good because it is the only thing I got about proof, actually. 
(S – A, 2004) 

Hence, in advanced courses the students had sometimes received individu-
ally feedback to their own proofs. However, it seemed to be occasional and 
depended on the teacher. 

”In Foundations of Analysis I got… we got tasks to hand in instead of an or-
dinary exam. And the teacher I had, I think that mathematics always depends 
so much on the teacher, but from that teacher we got quite difficult tasks, all 
of them of the type “show that”, quite extensive. Then we handed in the tasks 
individually and got comments personally on everything we had done and 
that was quite good. And that was the only time you had really constructed a 
proof and then you got to know that: “Here you made typical logical mis-
takes, here you should have done like this instead”. But the teacher felt it was 
too demanding to give personal comments on everybody’s work so the fol-
lowing tasks were easier group tasks.” 

(S – A, 2004) 

The following extract is an example of a student who stated that he had got a 
little more self-confidence and guidance in constructing proofs. He had pro-
ceeded in the mathematical practice and was already positioned near the 
doctoral students. 

”Now when I study more advanced courses and one notices that they are at 
another level, we get a lot of tasks every week and then we must prove or 
show a lot of things. And then one has to believe in oneself a little. I have to 
check what I have used, and then I have to maybe assume that something is 
true and so on. And that’s actually very good, especially that I have to decide 
that now I’m ready… you learn a lot, you can write your own proofs and get 
comments.” 

(S – A, 2004) 

The feedback the student described in the quote above was obtained in a 
specialised course in Algebra (Appendix 1). 

According to a socio-cultural perspective students need direction and 
guidance (Säljö, 2005b) to proceed in their mathematical practice. Figure 31 
(p. 180) illustrates how students’ experiences of participation swing back 
and forth when struggling with a proving task. 
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Figure 31   A student gets a proving task. 

Invisibility/Visibility 

The metaphor of transparency (Lave and Wenger, 1991) refers to the way in 
which using artefacts and understanding their significance interact in the 
learning process. Visibility of artefacts is a form of extended access to in-
formation about the specific artefact. There is an intricate balance between 
how much we focus on different aspects of proof at a meta-level and how 
much we use proof invisibly in the teaching of mathematics (see p. 54). 
Many quotations in this section illustrate the experience of invisibility re-
garding some aspects of proof. Utterances like “And then some things that 

you prove you don’t have to prove because they are supposed to be evident. 

There are other things you think are evident that you have to show and to 

find out what is what, is difficult.”  is an example of the lack of visibility of 
the conventions in the mathematical practice regarding where to put the 
boundaries for what has to be justified and what one can take for granted. 
The quotation “I think that a theorem can look like a definition.” illustrates 
the invisibility of the role of definitions. Further, several of the utterances in 
this section express the lack of discussion about what proof is. “So there is 

nobody who has told you what a proof is.”, The learning of the construction 
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of one’s own proofs seems to happen without any focus on proving tech-
niques or the role of definitions: “But no one has told us that “Now when 

you are going to prove statements, think that…”. Rather, you have to try to 

catch up as much as possible by yourself.”, One student stated that it would 
be good to have at least one lesson with discussion of what to think about 
when constructing proofs “because there are many ideas and a lot of think-

ing behind the proofs that are actually not visible.” Finally, students strug-
gled a lot to understand the demands of the practice concerning the mathe-
matical language and symbols. They wanted to act as professional mathema-
ticians but were uncertain how to do so. “If I only had some more symbols it 

would look more professional.”; “…actually if you are really professional 

you should omit all these words, but I am surely wrong.” 

5.4.2   Working in an investigative manner 

In Chapter 2, I described the new trends in the teaching of proof (see p. 47) 
that advocate explorative activities for students. None of the students in the 
focus groups had experiences about working inductively with proofs, pro-
ducing conjectures and then trying to prove their conjectures.  

“Proof is something you usually learn by heart, anyway, it is not often that 
you sit and prove something by yourself, something you have not seen before 
or that you notice a pattern and try to find a proof. That is something I have 
never been demanded to do, I think.”  

(S – I, 2004) 

Most of the students did not have such experiences from upper secondary 
school mathematics either (see p. 136). According to the textbook study 
(Nordström & Löfwall, 2005), there were some tasks where students would 
find patterns in the upper secondary school textbooks, which were in the 
focus of our study. However, there were not many tasks encouraging stu-
dents to find a proof to their conjectures and they were often outside the 
ordinary course. In Vretblad’s (1999) textbook that was earlier used in the 
basic course, there is an introductory section about finding patterns and 
proving conjectures that is very instructive (ibid., p. 25). It was presented in 
Section 2.3.4, p. 59, as an example of how to make the aspect of Induc-
tion/Deduction visible in the teaching of proof.  

Mathematicians related positively to this working manner but, at the same 
time, saw a lot of possible hindrances to their being able to apply this man-
ner in their teaching, for example the lack of time, the lack of students’ com-
petence and the difficulty finding suitable problems that suited the majority 
of the students (see p. 105).   
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To sum up this section, I described students’ participation in the construct-
ing of proofs. The learning of proving statements seems to happen randomly 
and many students struggle with the language and the demands of the prac-
tice that are not always made visible for students. Students stated that they 
lacked the support and the guidance of old-timers, especially at the begin-
ning of their studies. According to Wenger (1998), one component of social 
participation as learning is the doing. It looks like there are not many occa-
sions for students to practice proving. Not until during some of the advanced 
courses, is there a possibility for students to seriously participate in, and get 
some feedback from old-timers about constructing their own proofs.  

In the next section, I describe how students talked about the meaning of 
proof and provide the reader with examples from the data about expressions 
of participation as well as non-participation regarding proof. 

5.5. The meaning of proof 

A central notion for social practices is the process of negotiation of meaning 
(see p. 35). The negotiation of meaning involves the interaction of two con-
stituent processes, participation and reification. A defining character of par-
ticipation is the possibility of developing an identity of participation (see p. 
34). In this section, I give examples of how students’ feeling of meaning is 
connected to their experiences of participation or non-participation.   

The utterances expressing non-participation in relation to proof often con-
cerned problems about following and understanding the proofs presented to 
the students in the lectures. The students had various backgrounds and they 
related to proof in individual ways, even if, at that moment they were all 
influenced by the culture of the mathematical practice. There could be, of 
course, a lot of possible factors influencing the students’ capacity to develop 
an identity of participation, for example their earlier experiences and the 
presentation of the material and how they related to mathematics. The stu-
dents with participation identity could also have tolerated a certain amount 
of non-participation in order to proceed.  

5.5.1   Expressions of non-participation 

Many students stated that they could not understand why the mathematicians 
wrote the lengthy proofs on the board when they themselves did not need to 
know them and the knowledge about the proofs were not demanded in the 
examination. There were also many students in the focus groups who won-
dered what a proof actually was and why it was needed. They stated that it 
was never discussed.  
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What is proof? 

Students had some interpretations about proof and the importance of proof in 
mathematical practice and stated that they wanted to learn more about it 
when they entered the practice (see p. 140). The students in the focus groups 
stated that they, in the very beginning of their studies, met a lot of proofs in 
the lectures but at the same time struggled with the question of what proof 
actually is and why it is needed. Here is a typical example about how many 
students felt when they started to study mathematics: 

”I’ve an example here. In the basic course, the first time I met a proof, as I 
remember it anyway, so here’s the proof and what’s the proof? You never 
learned what a proof was or that you yourself would struggle with something 
and show things and then, the teacher used an entire hour for filling three 
boards with one proof.” 

(S – I, 2004) 

Some of these students also seem to feel that mathematicians give proofs as 
an obligatory ritual, without any real purpose.  

“I often feel that they have to give the proof whether or not someone under-
stands it, that’s how it feels.” 

(S – I, 2004) 

The students who showed a lot of expression of non-participation stated that 
they had difficulties seeing a purpose in studying proof because they could 
not use them in problem solving or applications.  

”Most often you don’t have to be able to know anything of the proofs in order 
to solve problems.” 

(S – I, 2004) 

They also advocated working manners and tasks where they could use the 
proofs in some ways in order to enhance their own engagement with proofs. 

”I mean tasks in which you are supposed to calculate something using 
proofs. At least for me, it is easier to understand if I really use them for some-
thing.” 

(S – I, 2004) 

Some students also discussed the lack of studying some proofs in detail, in 
order to enhance their understanding of the proofs and their meanings. 

“I think it’s wrong to give proofs like that, then it’s better to omit them and 
take the proofs that are inspiring and interesting and then really go through 
the proof profoundly and make something of it instead of almost always 
spreading the feeling that they give them because they have to. Better to 
cover proofs because they are fun and interesting, I think.”      (S – I, 2004) 
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“The lecturer should not just take the proof as it is in the book but make the 
proof simpler and explain it in a way that makes it easier to understand as 
well.”  

(S – A, 2004) 

Wenger (1998) discusses what makes information knowledge and what 
makes it empowering. He states that it is the way in which it can be inte-
grated within an identity of participation. The way, in which the students in 
the previous examples talked shows that the information about proof they 
got in the lectures did not build up to an identity of participation but re-
mained alien, fragmented and unnegotiable to them.  

The lack of history 

Proofs as reifications always assume a long history of participation (see Sec-
tion 1.3). Students in the focus groups said that they sometimes understood 
and could follow a proof but at the same time showed a feeling of giving up 
and they stated that they would never be able to construct such proofs.  

“Sometimes I feel, well yes, sure this was evident, but how could I ever find it 
out myself.” 

(S – I, 2004) 

Thus, the lack of the historical knowledge about how proofs were con-
structed for the first time could cause a feeling of inadequacy among stu-
dents. There are concerns among some mathematicians in the practice about 
the students’ lack of historical knowledge. Tambour (2005) points out that 
proofs have developed over a long time and have in many cases, been made 
“simpler”. So, if there is never a focus on the difficulties with the formula-
tions of proofs that the mathematicians have encountered during the long 
historical development of mathematics, newcomers can obtain a tainted pic-
ture and think that there is something wrong in their own capability to con-
struct such proofs and this leads to experience of non-participation. 

Also a student in a focus group advocated information about the situations 
where the proofs were constructed for the first time. 

”It occurred to me that it would be good if the teacher gave some back-
ground information about the proofs when teaching them, in what kind of 
situation the proof was constructed first. For example the proof he took last 
Tuesday, the half circle and the triangles in it, who found it out and how? 
Because I would never be able to find such proofs in that way.” 

(S – B, 2004)   

“The proof is left as an exercise for the reader…” 

The style in some textbooks also seems to cause a feeling of inadequacy 
among students and, thus, can lead to an experience of non-participation. 
Very often, some of the arguments in the textbooks are left for the reader to 
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prove. They can be suitable exercises for those who know how to prove 
statements while for others who are not familiar with proof they can enhance 
the experience of non-participation. 

“In this book (Analys i en variabel) I read the introduction where the authors 
say in this way: This is evident and clear but you must not feel stupid if you 
do not understand it. And then I thought, of course not, I mean I also use 
words like consequently, dada, dada, dada, evident…, but when I started to 
read this book I noticed that I sometimes don’t understand how you come 
from this step to the next step and […] I think you create wrong expectations. 
At the beginning we have here the hyperbolic functions and you can read: 
The following theorem is easy to prove and then we had tasks where we 
would prove these theorems and there I sat and searched and searched in the 
book, what? No, it’s not so easy as they…, but of course if you have studied 
eleven years and know all these things backward and forward …” 

(S – B, 2004) 

I checked the textbook in calculus (Persson & Böiers, 1990) that the student 
talked about. In the introduction the authors write that in the text one many 
times finds comments like “follows immediately”, “a simple control”, “one 
realises easily” but they warn the reader not to take these comments too seri-
ously, at least not during the first reading. Then the authors give three “good 
reasons” for these comments. The first reason they give is because they think 
that a too rigorous and pedantic presentation makes the text difficult to 
grasp.17 The second reason is that according to the authors these comments 
work as a spur for the reader to work actively, which is, according to them, 
very important in mathematics. The third reason the authors give is that the 
arguments that have been omitted should be seen as a control about the 
learning, since the omitted arguments should be experienced as easy and 
simple when one masters the contents.  

The reason for why the student in the quote above talked about wrong ex-
pectations can be that although working hard she cannot find enough infor-
mation about how to tackle the problem. To be able to solve the proving task 
in question, “Show that the derivative of sinh (x) is equal to cosh (x)”, one 
has to start revealing the definitions, which might be one of the problems the 
student experienced.  

All the others know 

Some of the students expressed a feeling that all the others in the classroom 
knew what a proof was because the teacher did not explain or discuss the 
issue. They felt that it was implicitly expected that all the students knew 
what it was all about.  

                               
17 This dilemma is connected to the condition of transparency in teaching of proof (see p. 54). 
At the same time, when focusing on the rigorous treatment of proof and when trying to make 
every step visible, maybe some other aspects, like the structure of the proof can be obscured. 
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“I became so… because when showed something it was not accepted as a 
proof, but I understood exactly what I was supposed to prove, and why it is 
wrong when I do it but when the teacher does it, it’s right? What is it that 
makes the difference? How do you define a proof? Because we have never 
been informed about that, so you think: “OK, the rest of the class knows what 
a proof is.” 

(S – A, 2004) 

An assumption that someone else understands what is going on refers to an 
identity of non-participation in relation to ownership of meaning (Wenger, 
1998).  

Invisibility/Visibility 

I have earlier in the previous section dealt with visibility of language and 
logic and the formal demands of the practice (see p. 180). In this section, I 
have exemplified students’ struggling with questions like what proof is “So 

here’s the proof and what’s the proof?”. The lack of discussions about the 
issues led to a feeling that all the others know what is going on “How do you 

define a proof? Because we have never been informed about that, so you 

think: “OK, the rest of the class knows what a proof is.”. I also described the 
invisibility of historical knowledge about how the proofs were once con-
structed and the feeling of inadequacy among students “sure this was evi-

dent, but how could I ever find it out myself” These utterances illuminate the 
experience of invisibility of some aspects of proof in the presentation of 
mathematics. 

5.5.2   Expressions of participation 

According to the theory of Wenger (1992), participation and reification have 
to be considered as an interacting pair where reification always rests on par-
ticipation. In the theory chapter (see p. 38), I discussed Wenger’s view that 
in general, a more abstract formulation viewed as reification, would require 
more intense and specific participation to remain meaningful, not less. I 
questioned if a higher level of abstraction in reifications, like in mathemati-
cal formulas in general, requires more participation than a concrete problem 
with a lot of details. Abstraction in mathematics can often help us to see 
connections and structures and in that way we can use them on many occa-
sions without participating in the negotiation of meaning on all levels. I also 
pointed out that these kinds of abstractions offer us a means of understand-
ing problems in new contexts. On the other hand, there is a lot of participa-
tion before a student learns the mathematical language and learns to follow 
arguments.  
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Benefits of the learning of proof 

The students who showed expressions of participation regarding proof did 
not share the negative feelings shown by the others regarding the meaning of 
proof but declared the advantages of studying them. The following quote is 
an example about a student who states that mathematics becomes easier 
when one learns proof. However, she also states that it can be hard to work 
through proofs but that it is worthwhile. Hence, according to her, one has to 
struggle to come to a certain level where it is possible to take advantages of 
the abstract and the general and in that way make life easier. 

“I think that if you go through the proofs and understand them you get a lot 
for free, since you can always go back, I mean a proof is often a rather 
concentrated piece and if you have understood it you hardly have to cram at 
all (laughter). No, I mean that then you don’t have to sit with everything else 
that takes so much time if you want to spare some time. It is clear it can be 
hard to work through them and really acquaint yourself with them but it can 
actually be worthwhile.” 

(S – I, 2004) 

Abstract formulas and concentrated results have naturally demanded a lot of 
effort and participation during their history and, for an individual, to obtain a 
level where he/she is able to handle with these abstractions and utilise them 
requires a lot of participation.  

Another student expressing participation states that proofs are sometimes 
intuitively trivial and not so important whereas the value of more compli-
cated proofs is to see how everything is related.  

”I think that benefits of studying proofs are that – sometimes the proofs are 
naturally intuitively trivial like…, yes I cannot recall any but certain proofs 
we can feel that OK it is clear that they work and then it is not so important 
with proof. But the more complicated definitions you have to deal with the 
more difficult it can be to see that it is possible that all these things are re-
lated, and then one gets in black and white, that yes, they are related.” 

(S – A, 2004) 

Hence, the students when showing expressions of participation talked about 
proofs explaining mathematical relations and giving the general results that 
made life easier, in a very similar way as the mathematicians did.  

I am unique 

It happened that the students who strongly expressed participation in the 
mathematical practice talked about other students as not being interested or 
capable to understand the benefits of studying proof or abstract mathematics. 
This has become a part of their identity.  
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“Last autumn, I had a colleague and his aim was to pass these studies be-
cause he would study physics afterwards. And before the examinations he 
used to say: “I just want to learn a method that works.” And I, who will be-
come a teacher, I want to understand so that I can explain to my pupils, so I 
was extremely oriented to understanding. So we had completely different 
ways of approaching mathematics then. I went crazy if someone just pre-
sented: “this is an algorithm that works” because I want to know why it 
works.” 

(S – A, 2004) 

Wenger (1998) states that experiences of non-participation do not necessar-
ily build up to an identity of non-participation. The next quote offers an ex-
ample of a student studying the intermediate courses who expressed partici-
pation even if she sometimes had had difficulties following arguments and, 
thus, there must have been strains of non-participation. She also holds the 
same point of view about other students (as anxious and afraid of proof) as 
many of the mathematicians held.  

K: How did you feel having a teacher who started with theory when in upper 
secondary school they often started with examples?  

F: I don’t think I’m representative of all students but for me it was only fun. I 
like theory the most. But I know that there were protests at the lectures some-
times and there were very many who said: “How can we understand delta 
and epsilon; help, this is tough!” Most of the students thought it was enor-
mously difficult and tough to understand where all this would lead. I didn’t 
perhaps understand very much myself all the time but I thought it was so very 
fascinating, very fun, for me it was more like a spur; I want to learn more 
about this. For the others it was frightening, “Help, I will never learn this!” 
In that group I was actually quite alone and it is not easy to be together with 
others who think a bit differently. 

(S – I, 2004) 

The previous quote is also an example about the work of imagination in 
identity building in the mathematical practice “…I didn’t perhaps under-

stand very much myself all the time but I thought it was so very fascinat-

ing,…”. Wenger (1998) talks about this as an ability to “accept non-
participation as an adventure.” (ibid., p. 185) 

In this section, I have dealt with the experience of meaning of proofs and 
exemplified expressions of participation and non-participation from the data. 
I discussed the metaphor of transparency in relation to the results and 
showed with some examples how students’ lack of various kinds of extended 
information about proof, for example the lack of discussions about what 
proof is and the lack of knowledge about the history of participation in con-
structions of proof, could lead to experiences of non-participation. I also 
discussed the relation between reification and participation in connection to 
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abstractions and generalisations and how students expressing an identity of 
participation talked about the benefits of learning proof. 

5.6   Examinations 

Some of the students expressed that there was no meaning in studying and 
struggling to understand the proofs because they were seldom demanded in 
the examinations. Examinations can be seen as important reification at the 
mathematics community. They are crucial for students’ future trajectories. In 
my experience, examinations have a huge influence on students’ identities 
and on how they see other students, what they focus on in their studies and 
their future. Students have to participate in and pass the examinations in 
order to get their study points. Thus, students have to prepare themselves to 
be able to solve the types of tasks demanded in these examinations. Exami-
nations are almost always individual. Textbooks are not allowed to be used 
in them. A part of the examinations can sometimes be done by handing in 
assignments or by participating in the lessons (see p. 16) in the basic course.  

In Section 1.2, I described the changes in the role of proof in the examina-
tions. The first time students have an examination on proofs and theories is 
in the course Mathematical Analysis 3 (Appendix 1 and Appendix 4). 

5.6.1   Proof does not concern me 

Some of the students felt that proof was nothing that concerned them at the 
beginning of their studies because of the lack of proofs in the examinations 
for the basic course (see p. 204). This was even mentioned as a problem by 
some mathematicians. Hence, examinations seem to have significance for 
the experience of meaning in learning for some of the students, since 
mathematicians when posing questions in the examinations, at the same 
time, convey their view on what is important/reasonable or possible for stu-
dents to learn. In the next quote a student compares the demands of the ex-
aminations in the mathematical practice to the demands in the examinations 
in upper secondary school where he has worked as a teacher and he states 
that if a teacher does not demand some parts of course contents in examina-
tions students are not going to study them:  

“I’ve learnt from upper secondary school and my pupils there that if I don’t 
say to them that these can pop up in the exams, no one studies the proofs and 
it’s similar here.  

…when he (a mathematician) stands and draws the proofs that you know 
are not demanded in the exam, I stopped, all the others stopped writing down 
the proofs[…] Then I think I have to try to understand these proofs and then I 
try to concentrate but at last you give up and concentrate instead when he 
comes to the applications and the theorems and…But when the teacher says: 
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now you have to know these proofs, it’s a little like one learns them by heart 
and then tries to understand them and then these courses have some meaning 
for understanding. But the proofs that are not demanded in the exams or 
which you don’t understand at all, when he goes through them, you don’t un-
derstand the meaning of going through so many proofs in Analysis 1 of which 
no one grasps anything. I don’t usually get so high marks on the exams but 
those who do, they don’t understand anything of the proofs either, not a 
thing.”  

(S – I, 2004) 

This view was criticised by one of the students who seemed to have got in-
sights in the benefits of the understanding of mathematics by learning proof 
and, thus, showed identity of participation regarding proof.  

”I think that sounds terrible: if it doesn’t pop up in the exams…, so it’s for 
your own sake, mathematics becomes much easier.” 

(S – I, 2004) 

Although mathematicians said that they had to avoid tasks beginning “Prove 
that…” in the basic course, because students were afraid of proving tasks, 
sometimes proving tasks popped up in examinations. Some students claimed 
that it was difficult to exercise the proving tasks before the examination (see 
Section 6.2.3). 

5.6.2   A change in students’ relation to proof 

In intermediate courses and in more advanced courses proofs are sometimes 
demanded in oral examinations, for example in the courses Mathematical 

Analysis 3, Algebra and Foundations of Analysis (Appendix 1), and to pass 
these examinations students have to study the proofs and learn to reproduce 
them. Three of the focus groups had studied Mathematical Analysis 3 and 
talked about the change concerning their relation to proof caused by the ex-
amination on proofs in analysis. The students were mostly positive towards 
the examination but some of them complained about the abruptness of the 
demand that they should know so many proofs (Appendix 4).  

I really had my eyes opened 

The following dialogue shows how one of the groups reflected on this 
change.  

A: I had the same kind of experiences concerning the first 20 study points; I 
mean the basic course, when I saw a proof in the textbook I thought: “I won’t 
read that.” I learned the theorems and skipped the proofs. But then in Analy-
sis 3 we had an oral examination on a lot of proofs and there I really had my 
eyes opened to proof and since then I’ve studied the proofs extremely care-
fully and really tried to understand the proofs in the textbook, also so that I 
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can follow and understand why different theorems can be applied and under 
what circumstances they can be applied, what premises that have to be met. 
Now I’m meticulous about it.  

… 

B: I think it started to change during Analysis 3, as A said. We had to study 
the proofs and then I discovered that they were interesting and that they ac-
tually gave something. And naturally you got more understanding when you 
arrived at “I see, it is from these facts that the consequences come and if we 
combine them we get this third one” and then suddenly it all became interest-
ing. 

(S – A, 2004) 

The students really appreciated the insights they had got during the interme-
diate course Mathematical Analysis 3. The following example is from an-
other group, a student’s comment to another when she heard that the other 
student had not yet started to study the course Mathematical Analysis 3. 

“Then I understand why you don’t like proofs. I started to like them when I 
studied Analysis 3. I got an aha-experience because there were so many theo-
rems that we had gone through in Analysis 1 and Analysis 2 and then we saw 
how everything was connected and it was nice to see that I don’t have to 
memorise a formula, I can derive it and I feel great.” 

(S – A, 2004) 

These results are interesting because they show that the requirements of the 
students posed by the mathematicians in terms of demanding students to 
learn a lot of proofs helped them get insights into the benefits of studying 
proofs. Wenger (1998) discusses demanding alignments by a community of 
practice, and points out that they do not need to mean the lack of negotiabil-
ity but demanding alignment itself can be a means of sharing ownership of 
meaning. “The reluctant compliance of students with the directives of a de-

manding teacher can take these students beyond their own limitations, likes, 

and dislikes, and may result in their reaching new understandings of their 

own.” (ibid., p. 206) 

Why not get this aha-experience earlier 

At the same time several of the students also expressed that they would have 
liked to get the insights earlier.  

B: I also liked it but I thought it was tragic that we could not get this aha-
experience earlier when we sat and listened to the teacher. 

A: I think we should have got this experience as early as in Analysis 1. 

C: As early as in the C-course in upper secondary school.     (S – A, 2004) 
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Students talked about school mathematics as rule learning and applying for-
mulas and connected understanding, questioning and logical reasoning to 
proof. Some of them expressed that it was a pity that they were not given an 
opportunity to become familiar with this side of mathematics earlier in 
school.     

”I often feel that people do not like mathematics because they do not under-
stand anything. If they have never learned to question and understand it is 
clear that they do not question and then they have nothing to understand. Ei-
ther it’s easy for you to apply the formulas or it’s difficult for you to apply 
formulas. That is what ability in mathematics is all about in upper secondary 
school and it’s really a pity, because if you want to make young people a lit-
tle more curious about mathematics and teach them to understand mathemat-
ics they would, with help of proof and some kind of derivation, I believe, they 
would stimulate another kind of interest in mathematics.” 

(S – A, 2004) 

The previous quotation is also an example of the dissatisfaction with school 
mathematics that several students expressed. The student quoted above be-
lieves that another focus in school mathematics, would make young people 
curious and they “would get another kind of understanding in mathematics.” 

There was also a feeling of having been taken in, in some of the students’ 
utterances: 

”In upper secondary school we didn’t do anything in the math lessons. The 
teacher said: You can do arithmetic (räkna), you will get a good mark you 
can go now. In Komvux (adult secondary education) I was prepared to meet 
difficulties but nothing really difficult popped up there. When you say about 
Analysis 3 that it is so fun (jävla roligt) with proof, I agree, but what a “kick 
in the teeth” (jävla spark i ansiktet) it was to me after that I had had it so 
easy, waltzed through and then suddenly, what is this all about, no sums to 
do, it was really a big changeover (rejäl omställning).” 

(S – A, 2004) 

Some students were a little sceptical as to whether students in upper secon-
dary school were mature enough for proof whereas most of the students 
stated that it is possible to deal with proof in school, if it happens on a proper 
level.  

C: I think the proofs of the theorems have appeared quite properly, it began 
quite calm in Analysis 3. 

M: In upper secondary school I don’t think one would absorb it. 

L: No. 

… 
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J: I think, that if we wouldn’t have had this oral part in Analysis 3, where 
they demanded that one would give an account of about 24 proofs, I would 
not have started to study the proofs then either. One does it, only when one 
has to do it. And it’s the same in upper secondary school…I think that trying 
to prove statements would suit very well, to sit four and four and argue 
about, why is it like this, how are things related. And then they can try to give 
an account of as well as they can. I think it would be a good exercise, since 
one learns to think about mathematics, that it is not just doing sums, but also 
reasoning. 

(S – A, 2004) 

Students also talked about the difficulty to get the understanding (“the big 
picture”) at the beginning of the studies and the difficulties of conveying an 
aha-experience to someone else.  

S: But I think that it’s extremely difficult, to explicit put across the thing one 
gets aha for since I very often feel in this way when I arrive at something: 
“Why don’t they reveal this, why don’t they tell it like it is?”  

G: It’s so extremely personal too, it’s nothing one can share. It’s awfully per-
sonal like. 

(S – A, 2004) 

Also some mathematicians talked about the difficulty of giving the “big pic-
ture” at the beginning of a course and they claimed that students had to tol-
erate some amount of ignorance and first after a while everything would fall 
into place (see p. 117). These considerations can be connected to the condi-
tion of transparency as well as Sfard’s (1991) vicious circle metaphor (see p. 
59).  

Aesthetics 

Students who had studied the intermediate course Mathematical Analysis 3 

with the oral examination of proofs talked also about an aesthetic experience 
they gained when reading proofs. This is similar to some mathematicians’ 
views (see p. 93).  

“I think that it’s common to say that mathematics is one of the fine arts and I 
would like to have a bit more of that feeling. And that is something I can get 
when I read a proof and feel “Yes, it fits” and one feels so happy. And then 
one really feels that mathematics is one of the fine arts, but I would like the 
teachers to convey a little more of that, the clearness that exists in mathemat-
ics.” 

(S – A, 2004) 

But the examination was not the only reason for the insights into proof stu-
dents had gained on the higher level of their studies. As one of the students 
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pointed out, they had got some experience of proving themselves, during the 
advanced course, Algebra and in other more advanced courses. 

”When I started the elementary course, it was the introductory course, and 
there they stood and proved and proved and I didn’t really understand what 
it would be good for. I thought that for me those proofs were totally unneces-
sary… Though now when I study the intermediate courses and more ad-
vanced courses I have understood how important the proofs actually are. And 
now I become irritated if a teacher says: “I won’t go through this proof now; 
you can study it in the textbook.” Because now I want the proofs presented in 
a structured way, so I can pose questions and so. Because they are important. 
But I think it’s because we have had to write a little ourselves also; there 
have been a little more questions of the type “Show that…”.” 

(S – A, 2004) 

Both activities (doing in practice), studying proofs and learning to reproduce 
a set of proofs, on the one hand, and exercising the proving of statements, on 
the other hand, offer students different kinds of occasions for negotiation of 
meaning. Students on more advanced level seem to have got also more indi-
vidual guidance and feedback from old-timers. According to the students in 
the focus groups, this sometimes happened during the courses Mathematical 

Analysis 3, Algebra and Foundations of Analysis (Appendix 1). 

To sum up this section, some of the students expressed that there was no 
meaning in studying proofs because they were not demanded in the examina-
tions. After the first oral examination in proof, students expressed a changed 
relation to proof. Many of the students stated that they had got an aha-
experience during the time they studied the proofs but complained that they 
got this experience so late.    

5.7   A summary 

I started the chapter about students’ practice by describing the students’ 
school backgrounds and showed that the students had various backgrounds 
regarding their experiences about proof when they entered the practice. Fur-
ther, over 80 percent of the newcomers related very positively to proof. They 
considered proof as a central part of mathematics and wanted to learn more 
about it. I then described what possibilities there were for the newcomers to 
engage in negotiation of meaning with respect to proof in the mathematical 
practice and how students talked about their experiences in the practice. 
Several students spoke of the learning of proof as occasional and that they 
lacked discussions on the subject and guidance from mathematicians. I dem-
onstrated with some examples how students’ lack of various kinds of ex-
tended information about proof could lead to experience of non-
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participation. Students’ relation to proof seems to change after the first oral 
examination on proof in calculus. 
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6   Contrasting the results regarding 
mathematicians’ and students’ practices 

Pedagogical activity, pedagogical intentions and instructional material create 
a context in which learning can take place. Learning is viewed as increasing 
participation in the practice (Wenger, 1998). In this chapter, I draw together 
the different parts of the results and discuss them.  

My aim in the first two sections is to give a general description of the re-
sults concerning students’ encounters with proof. I first report what the 
mathematicians and the students stated about some issues regarding the 
teaching of proof and how these statements could be supported using the 
complementary data. I go on contrasting the mathematicians’ views on stu-
dents as learners of proof with what the students themselves stated about 
their relation to proof.  

In the third section, I discuss the three teaching approaches to proof that 
were constructed, how students may experience these styles and how the 
styles can be related to the condition of transparency. What opportunities do 
they offer various students to engage in the negotiation of meaning concern-
ing proof in the practice? I also make some epistemological remarks con-
cerning the styles.  

The results reported in this chapter are based on the data analyses of the 
interviews with mathematicians and students, the surveys with university 
entrants, as well as the complementary data, like textbooks, examinations 
and protocols from observations of lectures. 

6.1   Proof in the teaching of mathematics 

The mathematicians’ and the students’ views (as I have interpreted them) on 
several issues concerning the treatment of proof in the lectures and lessons 
were coherent but sometimes there were inconsistencies in the data. First, I 
present the topics where their views were quite similar.  

6.1.1   Discussion about proof 

Both the mathematicians and the students agreed that there was not much 
discussion about proof or proving techniques in the basic or intermediate 
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courses (see pp. 183, 176). They pointed out the advanced course Founda-

tions of Analysis as the course where it was possible to discuss proof and 
learn to construct proof. Earlier, Vretblad’s (1999) textbook offered univer-
sity entrants discussion about proof and how to construct proofs on an ele-
mentary level (see p. 15). The book was mentioned both by some mathema-
ticians and students studying at more advanced level as helpful in drawing 
students into the practice of proving and understanding the role of symbols 
and logic in it (see pp. 99, 165). Some students also talked about the material 
they had got during the advanced course Algebra, where certain aspects of 
reading proof and constructing own proofs were focused on (see p. 178). In 
the new edition of the textbook for mathematical analysis, Analys i en varia-

bel (Persson & Böiers, 2001), that is used at the basic and intermediate level, 
there is a new section dealing with proof (ibid., pp. 26-33). However, neither 
students nor mathematicians mentioned the section. The ignoring of the sec-
tion suggests that it has not been focused on in the lectures or lessons. 

The mathematicians and the students in my study also agreed that few 
students posed questions during the lectures of basic and intermediate 
courses (see p. 170). Some of the students stated that it was not easy to pose 
questions in the lectures: 

“I would put it this way. You must really be a certain type of a person to pose 
questions in this place. You have to be like, curious, unafraid, think it’s fun. 
Many students are not like that.” 

(S – I, 2004) 

The mathematicians also stated that there were not many students asking 
questions in the lectures.  

“There are few students who ask questions.” 
(M, 2003) 

This was also true according to the field notes. Questions during the lectures 
in the basic and intermediate courses were unusual.  

Working in an investigative manner was not usual in the teaching of 
mathematics at the university according to both the mathematicians and (see 
p. 105) and the students (see p. 181). 

Hence, so far the students’ views and mathematicians’ views were simi-
lar. However, there was an inconsistency in data regarding how much proof 
was dealt with in the lectures for newcomers, which I describe and discuss in 
the following subsection. 
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6.1.2   How much proof is dealt with in the lectures? 

In general, all the mathematicians in my study conveyed a very careful posi-
tion concerning the teaching of proof in the basic course. Most of them 
claimed that they avoided proof in the basic course for different reasons (see 
Section 4.3.2).  

”We do not deal with proof much, some simple things, but I do not demand of 
them that they (the students) would be able to present them. Possibly, they 
can get a task where they have to demonstrate some simple formula.”  

 
Contrary to this, students in the focus groups talked about an experience 
from the beginning of their university studies about mathematicians proving 
statements during the lectures even if they mentioned that some mathemati-
cians omitted long and technical proofs (see p. 163). 

”When I started to study the elementary course, it was the introductory 
course, and there they stood and proved and proved and I didn’t really un-
derstand what it would be good for. I thought that for me those proofs were 
totally unnecessary…” 

(S – A, 2004) 

There can be various reasons for this discrepancy between the mathemati-
cians’ declared intentions and how many students experienced the lectures. I 
suggest two possible ones, which I base on the classroom observations and 
the analyses of the interviews:  

  
1) Mathematicians cannot help giving some “nice proofs” now and then 

even if they state that they do not prove so many statements (see p. 123). 
2) The mathematicians’ and the students’ views on proof were similar in 

many aspects (see pp. 150, 152). Yet, proving statements can mean dif-
ferent things for different persons. It is natural for mathematicians to 
present mathematics in a deductive way starting with definitions and 
proceeding in a deductive manner, justifying the most steps they take. 
They might not always think of this as proving even if many of them 
who I interviewed talked a lot about derivations of formulas as proving 
and also stated that proof somehow existed in all mathematics. Students 
may conceive this as different from the way mathematics was presented 
to them in upper secondary school and as proving.    

It is also possible that students experienced the lectures at the beginning of 
their studies as containing a lot of proof due to both of the reasons presented 
above. Anyway, this inconsistency shows that what is intended to be of fo-
cus by mathematicians is not necessarily of focus by all students (see p. 60). 
However, this issue would need further examinations (see 7.3.). 
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In the following section, I describe and discuss how mathematicians 
viewed students as learners of proof and what students stated about them-
selves and their relation to proof. 

6.2   Mathematicians’ views on students as learners of 

proof 

There were some inconsistencies in the mathematicians’ views on students’ 
interest in proof, and what students themselves stated about how they related 
to proof at the beginning of their studies. In this section, I first describe and 
discuss these inconsistencies. Then, I go on describing and discussing how 
mathematicians talked about students’ difficulties regarding proof and what 
students themselves stated about them. I conclude the section by describing 
the examinations for the basic course and discuss why students did not suc-
ceed in the proving tasks in the examinations.  

6.2.1   How did students relate to proof? 

Mathematicians had a variety of views on students as learners of proof. Sev-
eral mathematicians assumed that students in general were not interested in 
proof and assumed that students wanted instead to get “recipes” about how 
to carry on with mathematical problems. This was not consistent with what 
students stated about themselves. Next, I discuss these inconsistencies in the 
results. 

Students are not interested in proof 

According to several mathematicians, there was only a small minority of 
students who were interested in proof (see p. 99).   

However, right from the beginning of their studies, the newcomers con-
veyed a view on proof as an essential part of mathematics (see p. 150). A 
majority of the newcomers (over 80 percents) also stated that they wanted to 
learn more about proof and they would like to have learned more about proof 
in school (see p. 140). Contrary to what mathematicians assumed, there was 
only a small minority of students who related negatively to proof when they 
entered the practice (see p. 160).  

It seems natural that students related positively to proof when they en-
tered the mathematical practice at the department, since they considered 
proof as an essential part of mathematics. Students’ positive responses to the 
statements in the questionnaire might also reflect a socio-cultural effect: 
thoughts and feelings are influenced by the culture and the situation at the 
time for the responses. However, even if students related positively to proof 
at the beginning of their studies, there seems to be a difficulty in drawing 
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students into the practice of proving because many students in different 
phases of their studies experienced difficulties in understanding the meaning 
of proof in the basic course (see Section 5.5.1). They also indicated that it 
was often hard for them to follow the presentation in the lectures and many 
of the students gave up and stopped listening (see p. 190).  

Thus, it is not surprising, that many mathematicians felt that students 
were not interested in proof. According to the analysis of the interviews with 
students, hindrances for students’ ability to follow the proofs and the reason-
ing in mathematicians’ presentations was the lack of knowledge about and 
confidence with mathematical symbols and the deductive way of presenting 
mathematics (see pp. 164 and 166). According to the mathematicians and to 
some earlier studies (e.g. Bylund & Boo, 2003; Högskoleverket, 1999; 
Thunberg & Filipsson, 2005), students also had difficulties with elementary 
algebra and they lacked confidence with manipulation of fractions. This also 
hinders their capability to participate in the lectures. All these problems can 
also partly explain why students experienced the tempo in mathematicians’ 
presentations as a problem (see p. 164).  

Students are not interested in the question “why?” 

Several mathematicians assumed that most of the students just wanted to get 
their study points but were not interested in the question “why?” (see p. 99) 
whereas most of the students who entered the practice stated that they 
wanted to understand what they did in mathematics (see p. 142). Students 
were certainly interested in getting their study points but at the same time 
they stated that they wanted to understand what they did in mathematics.  

There were also mathematicians who stated that students were not willing 
to understand that it was better to derive formulas (because it has to do with 
proof) instead of memorising them. 

”…students in the basic course think that they have to memorise enormously 
many formulas. And this is because they are unwilling, it has to do with 
proof, unwilling to understand that twenty formulas are consequences from 
one. Because they are afraid of proof, if we scare them, they get trapped in 
relation to proof and this can contribute to a reluctance to see these simple 
relations, we have to teach them them.” 

(M, 2004) 
 

However, most of the newcomers stated that they preferred the knowledge 
about how to derive formulas rather than recipes or memorising the formulas 
(see p. 143). It is possible that students lacked the knowledge about how to 
derive the various formulas because in upper secondary school, students use 
a table of formulae in exercises and in mathematics examinations instead of 
memorising or deriving the formulae. One of the mathematicians also 
pointed this out as a difficulty for students. 
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“For example, trigonometric formulas are difficult for the students. In school 
they have used the set of formulas and not been expected to derive them so 
much. They rarely thought why the formulas are as they are.“ 

(M, 2003) 

As the student who had very little experience of proof in upper secondary 
school, expressed it (see p. 162):  

“I notice that I’ve really been starved of proofs  as a matter of fact, I noticed 
this when we went through the sine-, cosine- and tangent laws here (at the 
university). I had never seen them, well, I had seen them but not the proofs 
for them so I had never given it much thought …” (S – B, 2004)    

Also students’ utterances after the first oral examination in proof show that, 
when studying and learning to reproduce the proofs, they got an aha-
experience concerning how everything in mathematics was related (see p. 
190). 

“I got an aha-experience because there were so many theorems that we had 
gone through in Analysis 1 and Analysis 2 and then we saw how everything 
was connected and it was nice to see that I don’t have to memorise a formula, 
I can derive it and I feel great.” 

(S – A, 2004) 
 
Both students and mathematicians regarded proving tasks as difficult for 

students. They pointed out several similar reasons for the difficulties.  

6.2.2   Students’ difficulties 

Many mathematicians stated that proving tasks were more difficult for stu-
dents than problem-solving tasks. 

“The most common attitude (among students), which I think you know as well 
as I, is that, you can give a caricature like this: If it (the task) says: “Solve 
the equation x2=4” all of them succeed but if it says: “Prove that the solution 
is ±2” they don’t succeed.” 

(M, 2004) 

When they entered the practice, a majority (85 percent) of the students also 
stated that it was more difficult for them to prove mathematical statements 
than solve computational problems (see pp. 147 and 174). There was also a 
consensus among mathematicians and students regarding some of the rea-
sons for these difficulties. Several mathematicians stated that students had 
difficulties with exact mathematical language (see p. 119). Students them-
selves talked a lot about difficulties with the language, which was different 
from the language that they were used to in their upper secondary school 
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mathematics classrooms (see p. 164). Some mathematicians as well as some 
students mentioned the problem of getting started with a proof and knowing 
when the statement was proved.  

“I very often get the question from the students: “When is a proof finished?” 
or How does one start a proof?“ These two issues, I think characterise stu-
dents’ difficulties. Either they do not understand how to start or, after making 
a lot of calculations, do not know if they have proved the statements.” 

(M, 2003) 

“Well, we often get tasks like “Show that” and then I often think afterwards: 
“Have I really proved it now?” I don’t feel sure even though I have really 
managed to show what I am supposed to show.” 

(S – A, 2004) 

“For me it’s difficult to organise all my thoughts in my head, what is going to 
be first, what step do I take first in order to make it elegant.” 

(S – B, 2004) 

These difficulties coincide with those Moore (1994) describes in his study of 
undergraduate students participating in a transition course.  

Both students and mathematicians also talked about the difficulty students 
experienced concerning what had to be justified and what one could take for 
granted. The difficulty to recognise what to take for granted and what to 
prove can sometimes be arbitrary and is not always clearly stated by mathe-
maticians, as one of them pointed out. They are conventions that are seldom 
discussed.  

“And then some things that you prove you don’t have to prove because they 
are supposed to be evident. There are other things you think are evident that 
you have to show and to find out what is what, is difficult.” 

(S – A, 2004) 

 “… to be honest because, anyway, it is completely unthinkable to formalise 
everything profoundly. You have to a certain point, to a certain level accept 
intuition but where we put the boundaries is arbitrary, so it’s a difficulty for 
the students, to understand, why prove some evident things while other evi-
dent things can be accepted without a proof.” 

(M, 2004)  

One mathematician also pointed out particularly the proving of evident state-
ments as a difficulty for students. 

“In the last examination there was a task that if a<b<c<d you were to show 
that you had (a+b)/(b+d)>a/d or something like that. And basically, these are 
totally evident inequalities but they (students) experience that as an extra dif-
ficulty. The fact that it is evident makes them not really know what to focus on 
(sätta stöten på).”      (M, 2004) 
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However, no student mentioned the proving of evident statements as particu-
larly difficult. I find the assumption that proving evident statements is more 
difficult than proving non-evident statement interesting and worth further 
investigations. 

Many students stated that they had difficulties understanding what proof 
is and lacked discussion about the subject (see p. 183). 

“In the basic course, the first time I met a proof, as I remember it anyway, so 
here’s the proof and what’s the proof? You never learned what a proof was 
or that you yourself would struggle with something and show things…” 

(S – I, 2004) 

Also one mathematician had recognised this as a problem.  

“I have noticed that students have difficulties understanding what a proof 
is.”  

(M, 2003) 

As pointed out earlier in this chapter (see Section 6.1.1, p. 196), there was 
not much discussion about proof or the role of proof in mathematics. Many 
students did not have much experience of proof in their upper secondary 
school mathematics (see p. 139) and they stated that learning of proof oc-
curred occasionally (see p. 176).   

Many of the mathematicians who I interviewed stated that students were 
afraid of proving tasks. More than half of the students showed positive feel-
ings than negative feelings when confronting a task that began “Show 
that…“ and several students expressed a feeling they were getting an intel-
lectual challenge when trying to solve proving tasks, when they entered the 
practice. One half of the university entrants stated that they liked to try to 
prove mathematical statements (see p. 145). However, some of the students 
in the focus groups who had experiences with proof in upper secondary 
school said that proving tasks in school mathematics were much easier than 
the proving tasks at the university so they might have soon developed a feel-
ing of insecurity instead of feeling of getting an intellectual challenge (see p. 
174). In that case, it is natural that many mathematicians had a picture about 
students of being afraid of proving tasks.  

Important didactic questions are what in these tasks could scare students 
and how mathematicians can help them to overcome these feelings. One 
mathematician pointed out students’ lacking knowledge about how to derive 
formulas as a reason for students’ difficulties with and for their fear for prov-
ing tasks.  

“They (students) are afraid of tasks that begin with “Show that…” and leap 
over them directly. Even tasks where there is to show that formulas are true 
are difficult even if it is demanded only to calculate from the beginning to the 



 204

end. They are afraid of proving tasks, actually in vain, more a psychological 
problem than a problem concerning their knowledge. One reason for the fear 
might be that students are not able to derive formulas.” 

(M, 2003) 

However, there were several students who talked about proving tasks exem-
plified in the previous quotation as easier than ordinary problems (see p. 
135). 

“I don’t remember it as hard either. I think I even thought it was fun. They 
were easier than other tasks because you already knew the answer. I am 
good at careless mistakes and then I know that I have got the right answer 
and if not I just have to check where my careless mistakes are.” 

(S – I, 2004) 

For many mathematicians the solution to the problem that students were 
afraid of proving tasks was to avoid them instead of trying to get students 
used to them. 

“Students have difficulties with proving tasks. We have to avoid formulations 
like “Prove that…” that may frighten and block the students.” 

(M, 2003) 

Yet, there were sometimes proving tasks even in the examinations for the 
basic course. The proving tasks were not only about mathematical induction 
which was dealt with at the beginning of the course Linear Algebra 1 (Ap-
pendix 1).   

6.2.3   Examinations 

Some mathematicians assumed that students’ lack of interest towards proof 
was partly because proofs and theories were not demanded in the examina-
tions. Examinations rule students’ life and where they put their efforts. 

”For students proofs seem to be abstract and distant, “Do we need to know 
the proofs in the examination?” they ask.” 

(M, 2003) 

 “As far they know that they are not demanded in the examinations they do 
not care so much…” 

(M, 2004) 
 
This was also mentioned by some students as one of the reasons for why 
they felt the studying of proof lacked meaning (see p. 189).   
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“But the proofs that are not demanded in the exams or which you don’t un-
derstand at all, when he goes through them, you don’t understand the mean-
ing of going through so many proofs…” 

(S – I, 2004) 

However, another student who showed a participation identity regarding 
proof and talked about the benefits of learning proof criticised the view, 
according to which one should only learn proof for the sake of examinations 
(see p. 190).  

In the Introductory course, between 2002 and 2006, three tasks of about 
180 tasks began with “Show that…”. They were the following: 

    (1)    Show that ( ) bb acac

loglog =  for all { }1:R,, >∈∈ xxcba . 
         (Introductory course, 050531) 
 
(2)    Show (preferably by using a Venn diagram) that if A, B and C are   
         subsets of the complex numbers, then    
         ( ) ( )( ) ( ) ( )( ).BACBABACBA ∩∪∩∪=∪∩∪∩        
             (Introductory course, 040312) 
 

(3)    Suppose that  .0 dcba <<<< Show that .
c
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d

a
<

+

+
<  

           (Introductory course, 040108) 

Besides the tasks presented above, there were two tasks in the examinations 
for the introductory course where students were to “motivate” something, 
although the solutions of the tasks were proofs. This is similar to upper sec-
ondary school textbooks, where the words like show, prove and proof were 
avoided and replaced by words like “justify” and “explain” (Nordström & 
Löfwall, 2005). This can be because one does not want to “frighten and 

block the students”. 

Some mathematicians stated that the proving tasks that were given to stu-
dents were easy and just demanded a little self confidence.  

“I use to, even if it is not usual in the introductory course, I have given a 
proving task of a kind that does not demand a sort of deeper mathematical 
knowledge at all. But if you only have a little self confidence and try then you 
will also succeed.” 

(M, 2004) 

Yet, for example the few proving tasks in the examinations for the introduc-
tory course (1), (2) and (3), represent different kinds of problems, so it is 
difficult for students to exercise them, for example in old examinations. 
Though mathematicians may consider them as simple tasks, for students they 
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are not trivial. Students are used to proving tasks where they have to show 
that the left hand side equals the right hand side and which just involve di-
rect calculations (see p. 135). The tasks above are not of this type. They de-
mand, for example understanding of the role of definitions when proving 
statements.   

In Linear algebra 1, between 2002 and 2006, there were, besides the 
proving tasks demanding mathematical induction, six proving tasks of about 
130. Three of them were ordinary problem solving tasks of the type “Show 
that the line is parallel with the plane.” where the line and the plane are ex-
plicitly given. In Mathematical Analysis 1 the number of proving tasks was 
also low.  

In the examinations for Mathematical Analysis 2, proving tasks were 
more frequent than in the other examinations for the basic course. Only six 
of 26 examinations lacked proving tasks. There were also several proving 
tasks of similar kinds (for example about convergence and limits), so stu-
dents could have met them more often in old examinations.    

Most of the students were not familiar with proof at all. They had not ex-
ercised proving tasks very much in upper secondary school. Students lacked 
guidance and feedback from old-timers and they struggled a lot with the 
formal demands of the practice (see p. 177). The following quotation is an 
example from a student who complains the lack of exercise and guidance 
concerning these tasks.  

”In Linear algebra 2 (Appendix 1), there are these kinds of tasks, show that 
this is a linear map, show that this is a scalar or…One thinks they are damn 
hard and I don’t understand how one can… in exams there are always such 
tasks of different level of difficulty but in the whole book there are only three 
or four tasks of a similar level […] but my opinion is that they should teach 
us more, when we get two of these exam tasks, that is what I feel.” 

(S – I, 2004) 

As mentioned before (see p. 178), in the textbook for linear algebra, there 
are no solutions to proving tasks, only answers to problem-solving tasks. 
However, in the old examinations, there are solutions for the proving tasks. 
There is also a student who privately sells solutions to many textbook prob-
lems and this was mentioned by one student in the focus groups.   

Since students had not had much guidance or practice in constructing 
proofs (see pp. 178 and 190), proving tasks in examinations just seemed to 
confirm what mathematicians and students said; that students had great diffi-
culties with such tasks. In this way, these tasks could enhance students’ ex-
perience of non-participation regarding proof. 

“One always knows that it is the proving tasks that the students fail in the ex-
aminations.” 

(M, 2004) 



 207 

However, as shown in Section 5.6.2, the students’ relation to proof seems to 
change after the first oral examination on theories and proofs during the in-
termediate course Mathematical Analysis 3. After that, students in the focus 
groups talked about an aha-experience about how everything is related.    

In the two previous sections, I contrasted and discussed the general results 
about the mathematicians’ views with the results about the students’ views 
regarding the teaching and learning of proof and students’ relation to proof, 
as I have perceived the utterances in the data analysis. I also discussed some 
inconsistencies in the data as well as some pedagogical issues, like students’ 
difficulties. In the following section, I discuss how students’ experiences of 
participation and non-participation can be related to the different teaching 
styles identified in the data.  

6.3   How did students experience the three 

approaches to the teaching of proof? 

I set up a table to illustrate three different styles of how proof van be ap-
proached in the teaching, based on the issues emerging from the data (see 
Section 4.4 and Appendix 5). The main criteria for different categories were 
the mathematicians’ intentions, their views on students and the aspects of 
proof in the conceptual frame (see Section 2.3). The styles are idealised and 
no individual could perfectly fit in one of them. Further, a mathematician 
when demonstrating some of theses styles or a mixture of styles in the teach-
ing does it in his/her very personal manner. Next, I discuss how various stu-
dents may experience the different teaching styles. What aspects of proof are 
intended to make visible/invisible on the one hand, and what aspects are 
experienced as visible/invisible by students, on the other hand (see p. 60)? 
When may the various styles lead to experiences of participation or non-
participation? I also make some epistemologies remarks concerning these 
styles. 

6.3.1   The progressive style 

The progressive style (see Section 4.4.1) implies that proof is invisible in the 
calculations and the derivations of formulas without a focus on them as 
proofs. However, some aspects of proof are more visible in this style than in 
the other styles, for example the meaning of proof. According to this style it 
is preferable to come to proof “via natural ways in calculations” and in that 
way appeal to students’ feeling of the need for proof. Natural language is 
preferred before formal symbols, which enhances students’ possibilities to 



 208

participate in the lectures since many students are not familiar with mathe-
matical symbols (see p. 110).  

Also, the way of eventually introducing the symbols makes the benefits of 
the use of symbols visible for students. However, some aspects of proof re-
main hidden, where evident, long and technical proofs are always avoided 
and there are no discussions about the formal demands of the community.  

Some students talked about teachers, who only chose the “important 
proofs” or omitted some of the proofs saying that they were boring or tech-
nical. 

”…there were some proofs in Algebra 1 but not so many but that may depend 
on the teacher, he could say like this: “This proof is quite easy but involves 
long calculations and I think you consider it so boring, so it’s in the book.” 
This he said several times.” 

(S – I, 2004) 

According to the theory of Wenger (1998) students by participating in the 
mathematical practice absorb the culture in different ways. They observe the 
masters in the practice, what they do, how they talk and how they work, 
what they enjoy and what they dislike. Hence, utterances, like “This proof is 

long and technical and I think you consider it boring…” suggest to students 
that proof is not so important for the newcomers.  

According to the progressive style, only a small minority of students 
would need proof and they would learn it themselves. The mathematicians 
when expressing this style indicate that they have also no intention of trying 
to awaken students’ interest by discussions about proof but they expect the 
students who are interested in proof, to find out the demands themselves. 
The following example about confronting an utterance of a student with a 
mathematician’s utterance expressing the progressive style, illustrates very 
clearly the gap between students’ needs and expectations, on the one hand, 
and mathematicians’ intentions within the progressive style, on the other 
hand.  

“I became so… because when I showed something it was not accepted as a 
proof, but I understood exactly what I was supposed to prove, and why is it 
wrong when I do it but when the teacher does it, it’s right? What is it that 
makes the difference? How do you define a proof? Because we have never 
been informed about that, so you think: “OK, the rest of the class knows what 
a proof is.” 

 (S – A, 2004) 

Whereas a mathematician talks in the following manner:  

”I have not felt a need for some more profound discussion about the formal 
demands of proof, but rather that one often gets questions as all of us do from 
the students: “Does this do as a proof?” and then they are waiting for a for-
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mal answer, but I want instead that they will have an answer from inside of 
themselves where the proof fits if they understand. So I do not want to go too 
far regarding these formal discussions.” 

(M, 2004) 

The progressive style can lead to teaching that does not reveal important 
aspects of proof that could make the idea of proof and proof techniques more 
available for students. Students are left for themselves to find out and judge 
if their solutions are correct and why. The example above is interesting, be-
cause earlier research (e.g. Pettersson, 2004) and analysis of the focus group 
interviews show that students want to see the “correct” solutions to the prov-
ing tasks which they have been struggling with whereas mathematicians 
within the progressive style do not want to choose one solution as the only 
correct solution.   

I conclude the subsection with some epistemological considerations on 
this teaching style. It is possible to discern some features of constructivism 
(learning theory, see p. 25) – as it has been interpreted in mathematics class-
rooms – in the utterances categorised as the progressive style. According to 
constructivism, a learner actively constructs the knowledge and thus finds 
the meaning of learning proof themselves. It is impossible for teachers to 
transmit the knowledge about proof, or the meaning of proof, to students. In 
Sweden, the constructivist ideas have largely influenced the pedagogy and 
the school work during the last decades (Säljö, 2005a). Hanna and Jahnke 
(1996) claim that the influence of constructivism has also had a deleterious 
effect on the teaching of proof, “if only because it has been interpreted in a 

way that undermines the importance of the teacher in the classroom.” (ibid., 
p. 885) As Hanna (1995) remarks, a lot of studies have shown that it is cru-
cial for the teacher to take an active part in helping students understand why 
a proof is needed and when it is valid. “A passive role for the teacher also 
means that students are denied access to available methods of proving: It 
would seem unrealistic to expect students to rediscover sophisticated 
mathematical methods or even the accepted modes of argumentation.” (ibid., 
p. 45).  

6.3.2   The deductive style 

Typical for the deductive style (see Section 4.3.3) is to use a deductive ap-
proach in the teaching of mathematics and proof. There is no intention of 
avoiding the word proof, abstractions or mathematical symbols, but rather 
the opposite. Students should get used to them in the very beginning of their 
studies. Contrary to the progressive style, there is a desire to discuss proof 
and students are considered to be capable of learning abstract thinking. It is 
important to focus on techniques for proving and on logic, whilst at the same 
time make the formal demands of mathematical practice clear to the students 
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from the very beginning. The learning of proof occurs partly by first 
memorising a proof.  

There are differences between students’ capabilities of following and un-
derstanding the deductive presentation of mathematics at the beginning of 
their studies (see p. 210). A lot of students had very little experience about 
proof when they entered the practice (see p. 139). Further, newcomers have 
great difficulties with the general results in mathematics and in understand-
ing and using the algebraic symbols (e.g. Thunberg & Filipsson, 2005). Then 
the deductive style at the beginning of the studies causes experiences of non-
participation caused by too big a gap between students’ earlier experiences 
and the new ones they meet in the mathematical practice.  

The following focus group discussion with newcomers, serves as an ex-
ample of how a group of newcomers experienced their first lecture in one 
part of the basic course, where the presentation of mathematics could be 
characterised as deductive according to the field notes. These students had 
had experience of proof in upper secondary school. Yet, they talked about 
dry definitions and getting something very hard into their brains. They obvi-
ously had difficulties following the deductive and compact way of present-
ing mathematics. The presentation was very careful, the mathematician justi-
fied every step he took so there were no logical gaps in it but the tempo was 
quite fast.  

L: We had the first lecture last Monday and the teacher… started with a defi-
nition and then gave one or two examples of it, the definition was in a dry 
mathematical language, very formal (korrekt) and… 

A: […] very general terminology and then there were eight pages of lecture 
notes.   

V: I threw away those lecture notes. 

A: It’s like getting something very hard in your head (få nånting väldigt hårt I 
huvudet), it’s like, what, help. 

N: If you in some way would understand that the domain is x and the range is 
y but such a dry definition and then you sit there and try to struggle, I strug-
gled maybe some minutes, wait, what does this mean, I mean what does this 
mean for the things coming after…  

(S – B, 2004) 

The last utterance in the previous dialogue also offers an example of how 
students struggled to follow and experience meaning in what they saw and 
heard during the lectures. 

“…I struggled maybe some minutes, wait, what does this mean, I mean what 
does this mean for the things coming after…”    (S – B, 2004) 
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Hence, the first confrontation with a deductive teaching style of these stu-
dents seemed to lead to an experience of non-participation. Some of the stu-
dents even threw away their lecture notes or stopped writing the notes, so 
they could not study them outside the lectures either. 

However, some of the students, because of their backgrounds and/or their 
capability of accepting a certain amount of non-participation at the begin-
ning of their studies, succeed in proceeding further in their mathematical 
practice and gain a participation identity (see p. 194). It is typical in the de-
ductive style for mathematicians to view the students in general as capable 
of learning proof and deductive reasoning and the results about students’ 
experiences concerning the first oral examination of proof show that the 
requirements of the students could help them get insights to the benefits of 
studying proofs (see p. 190). As Wenger (1998) points out, “a demanding 

teacher can take these students beyond their own limitations, likes, and dis-

likes, and may result in their reaching new understandings of their own.” 
(ibid., p. 206)  

It is also stressed within the deductive style that students should get a very 
detailed presentation because they are not used to following proofs and have 
difficulties filling the gaps themselves. This enhances the newcomers’ ability 
to follow and learn to follow the presentations if they are familiar with 
mathematical language, symbols and the deductive presentation of mathe-
matics (see p. 166). So there is a kind of sensitivity towards the newcomers 
visible in the utterances belonging to the deductive style but in a different 
way than in the utterances characteristic to the progressive style. However, if 
the gap is too big between students’ competence and the level of presenta-
tion of mathematics, it can be difficult for a student to follow and learn.  

The deductive style confronts students at once with the mathematical lan-
guage that is seen as important in the practice. Hence, it can be a more encul-
turative style than the progressive style and can draw students to the culture 
of mathematics and proof if students have the proper prerequisites. The 
learning of proof is compared to the learning of language, and learning by 
heart is not rejected but it is seen to be one part of the learning process, to 
imitate.  

Finally, some epistemological remarks. In this style, some features of the 
view on the teaching and learning as a quite unproblematic “transmission of 
knowledge” can be discerned. At the same time as this style does not attempt 
to hide anything, one can question if everything is going to be revealed for 
the students. For example the approach exemplified in Section 4.4.2, p. 114, 
under the heading “Nothing concealed?” can lead to a situation for newcom-
ers where everything is concealed if students have no knowledge and experi-
ence about mathematical language and symbols or the deductive way of 
presenting mathematics when they enter the practice.  
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6.3.3   The classical style 

Characteristic of the classical style is a great admiration of proof. Proofs can 
be beautiful and offer intellectual challenge. There are not so much peda-
gogical considerations regarding the teaching proof. One either gives a proof 
or does not give a proof. Although the great appreciation of proof, mathema-
ticians express no intention of dealing with proof in lectures and lessons for 
newcomers because of external circumstances (see p. 123). However, some-
times some “nice proofs” are given if there is time for that. The presentation 
is often intuitive, not rigorous. Mathematicians want to convey ideas that 
they themselves consider as fantastic, so they often leap over elementary 
steps.  

This style can lead to participation if students are able to follow the pres-
entation and find a meaning in proofs that are sometimes given to them. The 
students studying mathematics get increasing understanding of what old-
timers enjoy, dislike, respect and admire (see p. 34). For example, a proof 
that is sometimes given by a mathematician can be experienced as logical, 
simple, beautiful etc depending on students’ prior experiences and how 
mathematicians present the proof. The following quotation is an example of 
a student who seems to be satisfied with this kind of presentation.  

“In Analysis 3 our teacher omitted many of these pedantic and fidgety exam-
ples or proofs and only went through the ones which were a little more 
proper…” 

(S – A, 2004) 
 
However, there were examples in the data about gaps between what 

mathematicians’ intentions were and how students experienced their presen-
tation. For example a “nice proof” that was considered by a mathematician 
as simpler than the one in the textbook was not at all appreciated as such by 
the student who could not understand what was better in that proof.  

“…so I have given very few proofs in the lectures. But I can’t help giving 
some handsome and short proofs, often in a simpler manner than in the text-
book.” 

(M, 2003) 

”The way in which anyway M used to do: “The book has done it in this way 
but this is much more exact.” And then he used to compare and say: “This is 
much better but then it’s much more complicated than the proof in the 
book.”” 

(S – I, 2004) 
 

The classical style is epistemologically close to a master-apprentice style of 
learning, where the learning occurs without any deeper reflections on the 
teaching and learning by the master. The teacher is a professional mathema-
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tician in the first place and by practicing mathematics himself/herself draws 
students in to the practice. It is also possible that this style can inspire and 
enthuse students, especially on the higher levels. However, too much of the 
classical style may lead to disinterest in students and their practice and to a 
minimal engagement in teaching of newcomers that in turn can make stu-
dents feel that they are incapable of learning to appreciate proof. 

6.3.4   Students have various styles 

As shown in the previous section, there are different styles that mathemati-
cians mix and apply in their personal ways in the teaching of newcomers, but 
also students are individuals with various backgrounds (see Section 5.1). 
They have different goals with their studies as well as different tastes regard-
ing the presentation of mathematics. Some students may prefer a careful 
presentation of mathematical contents with definitions, theorems and proofs 
whereas some others get bored when listening to that kind of presentation 
(see p. 166). 

Q: …I think that I’m kind of a structure person and I totally lose the appetite 
for learning maths if they just stand there and prattle and don’t even finish 
the examples. 

P: It’s as if I fall to sleep if they like go through a proof extremely carefully 
(liksom)  

(S – A, 2004) 

The student Q might prefer a deductive teaching style, whereas the student P 
could be more satisfied with the classical style: 

“No rigorous proofs, too formalised proofs are unbearable. A piece of po-
etry, (proof) can be as attractive as the entire theorem.” 

(M, 2003) 

Mathematicians struggle with a lot of difficulties in teaching the newcomers 
mathematics and the teaching of proof was conceived as particularly prob-
lematic by many mathematicians.  

“Because they conceive proof as a sort of extra burden that don’t know how 
to handle. And I would very much like to help them to get out of this but it is 
not easy.” 

(M, 2004) 

The groups are often big and heterogeneous (see p. 16). Students have a 
variety of backgrounds regarding their experiences about proof, their confi-
dence with mathematical language, symbols and deductive presentation of 
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mathematics (see p. 139). There is so much content in the courses that some 
mathematicians feel that they do not have time enough for discussions about 
proof. Also other practices, such as the department of physics, have their 
own demands of the course contents (see Section 1.2). 

In this chapter, I have contrasted the results about the mathematicians’ 
practice with the results about the students’ practice in order to shed light on 
how the structuring resources and mathematicians’ views and intentions 
became resources for learning (participation). Utterances categorised as be-
longing to both the progressive style and to the deductive style expressed 
deep reflections on the didactic problems in the practice. Yet, my study 
shows that pedagogical reflections can lead to totally different teaching prac-
tice depending on the style of approaching mathematics and proof.  
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7   Conclusions and discussion 

The aim of the thesis was to describe and characterise the culture of proof in 
a community of mathematical practice at a mathematics department and how 
newcomers are engaged in proof and proving in this practice. In the first 
section of this chapter, I describe how the thesis illuminates the general re-
search questions and what conclusions it allows me to draw. In the second 
section, I summarise the new theoretical ideas and describe the theoretical 
tools that I have developed in the thesis and which I have used in analysing 
the material. I conclude the chapter by discussing in what way the thesis can 
contribute to the educational practice and suggest both some theoretical and 
empirical issues for further research.  

7.1   Conclusions 

At the beginning of the thesis, I formulated the following general research 
questions: 

 
• How do students meet proof in the community of mathematical practice at 

the mathematics department? 
• How are students drawn to share mathematicians’ views and knowledge 

of proof? 

Next, I describe and discuss very briefly the conclusions regarding the gen-
eral research questions that I have drawn from the results reported in the 
previous chapters.  

7.1.1   How do students meet proof in the community of 

mathematical practice at the mathematics department?  

The first encounter 

Students meet a mixture of the styles described in Sections 4.4 and 6.3 when 
they enter the practice. An important result in my thesis is that although most 
of the mathematicians in my study had no intention of teaching newcomers 



 216

proof and they stated that they did not deal so much with proof in the basic 
course, students in the focus groups talked about an experience where they 
were confronted with proof from the beginning of their studies (see p. 163). 
Many of the mathematicians are concerned to present the mathematical con-
tents in a more informal manner and focus on enhancing students’ under-

standing. They do not want to scare students as they think students are afraid 
of proof, so there is no intention of dealing with proof (see p. 203) and they 
do not think about their presentation as proving. As described in the theory 
chapter (see p. 60), the condition of transparency does not only concern the 
intended presentation of mathematics but how it is experienced and what 
students focus on. According to Wenger’s (1998) theory, “the learning that 

actually takes place is but a response of the pedagogical intentions of the 

setting.” (p. 266) The students who can follow and understand the presenta-
tion are drawn into the “understanding” that mathematicians want to take 
them. Yet, those students who can not follow the lines of reasoning may 
distance themselves and start to look at the presentation as an object and try 
to figure out what is going on. They observe the structures in the presenta-
tions, notice typical repeated utterances and concepts, symbols and so on. 
All these observations can lead to the experience that mathematicians are 
proving. It seems also that sometimes mathematicians consciously give 
proofs although they have no intention of doing it (see p. 123). What actually 
goes on in the lectures when mathematicians state that they are not proving 
whereas students experience the presentation as proving, needs further re-
search. I will come back to the issue in the last section of this chapter. 

Invisibility/Visibility 

Following this first encounter, students continuously meet proof in different 
manners although proof is not so much in the focus of teaching (see Section 
6.1.1 and 6.3). One mathematician gives students a complicated proof with 
formal presentation and does not expect them to fully understand everything, 
another avoids giving a proof, but instead offers some informal explanation 
not labelled as proof, and yet another omits the proofs or sometimes gives a 
“nice proof”18. This may be a good balance for students in propitious circum-
stances and enhance their learning (participation). But many students strug-
gle with the very notion of proof (see Section 5.5.1). They may miss-
interpret an intuitive presentation as a proof, may not understand that an 
explanation sometimes is a proof; students may struggle with the mathemati-
cal presentation of a complex proof without seeing any structure in it; they 
might not see that a proof is “nice” and so on.  

A lot of aspects of proof remain invisible as experienced by the students. 
Discussions about proofs or logical structures in proofs seem to be unusual. 
Students in the focus groups often wondered what a proof was “So here’s 

                               
18 This can also refer to the same mathematician in different occasions. 
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the proof and what’s the proof?”. Constructing own proofs does not seem to 
be focused on in either the basic or the intermediate courses according to the 
students, the mathematicians and the observation of lectures “But no one has 

told us that “Now when you are going to prove statements, think that…”.” 

(see pp. 180 and 186). Depending on the teaching style applied in the lec-
tures various aspects and functions of proof could become visible/invisible 
for students in the presentation of mathematics (see Section 6.3). However, 
as exemplified under the previous heading, it is not evident that what 
mathematicians intend to focus on in their teaching, becomes the focus of 
students but rather that students respond to the settings in their own personal 
ways.  

The first oral examination on proof 

The first time students have an examination on theories and proofs is during 
the intermediate course Mathematical Analysis 3 (see Appendix 1 and 4)19. 
This is the first real encounter between mathematicians and students where 
they literally talk with each other about proofs and use the same language. 
Proof is visible for both of them. At a more advanced level there are some-
times also discussions about proof during the lectures (see p. 196).  

7.1.2   How are students drawn to share mathematicians’ views 

and knowledge of proof?  

Students interested at the beginning 

Most students in my study showed interest in proof and the learning of proof 
at the beginning of their studies (see p. 153) and they were conscious about 
the centrality of the role of proof in this practice (see p. 150). Mathemati-
cians had no real intention of teaching students proof in the beginning, but 
for mathematicians proof is a natural part of exercising and presenting 
mathematics. By merely being mathematicians they offer exemplars to the 
newcomers. As students observe what and how the old-timers do in the prac-
tice, they learn a lot about proof implicitly without a meta-level focus on the 
activity. In my thesis, I have described how students are forging their identi-
ties right from the start of their studies (see Section 5.2, p. 153). Some of 
them start very soon to talk in a way, similar to the mathematicians about 
school mathematics as rule learning and university mathematics as real 
mathematics, understanding and proof (see p. 153). There was also a desire 
among the students to become professional and particularly the use of 

                               
19 However, we have to bear in mind that a majority of the students who start to study mathe-
matics just take the basic course or a part of it and do not study the intermediate course 
Mathematical Analysis 3. 
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mathematical symbols in proofs was connected to it. “If I only had some 

more symbols it would look more professional.”  
However, according to the theory, students are all active agents in the 

practice and they respond to challenges in the practice in individual ways, 
depending on their earlier experiences, and on how much and in what ways 
they invest themselves in the practice. They have also different goals with 
respect to their mathematical studies. Hence, the expression “drawn into the 
practice” in the second research question, does not mean that students are 
passive in the process of enculturation into the practice. 

Non-participation/Participation 

There are various possible trajectories for students after the first encounter 
with proof. According to Wenger, one’s identity is always changing (see p. 
34). Peripheral participation involves a mix of participation and non-
participation. The students who cannot follow the presentation may eventu-
ally develop a non-participation identity regarding proof. They leap over the 
proofs in the textbook and stop listening to the lecturer when he/she gives a 
proof or just presents mathematics in a deductive manner, which students 
may experience as proving (see p. 189).  

It is also possible that students accept non-participation as an adventure 
(see p. 188) and the encounter with proof for them leads to enhanced partici-
pation when they struggle to find out what proof is and to understand its role 
and meaning in the practice. The students, who had proceeded further in 
their trajectories, talked both about experiences of participation and experi-
ences of non-participation (see p. 194). The learning of proof seems to hap-
pen quite randomly. Students talked about the invisibility of many aspects of 
proof when trying to grasp and understand the rules and the formal demands 
of the practice. “Rather, you have to try to catch up as much as possible by 

yourself.”  Students had various tastes (see Section 5.3.2 and 6.3.4) and 
mathematicians applied various teaching styles in their own personal ways. 
This encounter also influenced the way in which students got access to 
proof.  

However, students’ capability of participating in different activities re-
garding proof depends on their earlier experiences and their ability to follow 
the deductive lines of reasoning, as well as their familiarity with mathemati-
cal language and symbols. Students had various school backgrounds regard-
ing their experiences with proof, and, hence they were in very different posi-
tions as regards to how they could participate in negotiation of meaning con-
cerning proof (see p. 139). Some of the students stated that they could not 
even ask questions because, anyway, they could not understand the answers 
and sometimes they found it hard even to formulate the questions, since 
there was too much that they did not understand (see p. 170). Since proving 
tasks are occasional in the examinations (see Section 6.2.3), it is possible to 
study the basic course in mathematics without much participation in proof.  
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Proceeding further in the practice 

Students in the focus groups on the advanced level talked about an aha-
experience they had obtained on how everything was related in mathematics 
when they studied the theory questions and learned to reproduce the proofs 
during the preparation for the examination in Mathematical Analysis 3 (Ap-
pendix 4). Hence, mathematicians’ demands on students to study and repro-
duce a lot of proofs helped them get insights into the benefits of studying 
proofs (see p. 190). Students also talked about getting more insights into 
proof by constructing own proofs and getting feedback for them (see p. 193).     

At the same time, some students in the focus groups on the advanced 
level talked about the difficulty to achieve the understanding (“the big pic-
ture”) at the beginning of the studies and the difficulties conveying an aha-
experience to someone else (see p. 193). Also some mathematicians talked 
about the difficulty of offering the “big picture” at the beginning of a course 
and they claimed that students had to tolerate some amount of ignorance and 
that first after a while everything would fall into place (see p. 117). These 
considerations are also illuminated by the metaphor of transparency (see p. 
40) in the sense that it is difficult to focus on something you have no experi-
ence about, for example at the beginning of a course.  

It seems that when students themselves started to use proof as a tool in 
their mathematical practice and got hold of extended information from more 
experienced persons, textbooks or other material, they were able to make 
progress in their mathematical practice and gained an identity of participa-
tion. Moreover, the oral examination, where many students, for the first 
time, not only studied the proofs and how everything was related, but also 
talked about proofs with a mathematician, seems to be a crucial step that 
contributes to students’ access to proof (see Section 5.6.2).  

In the next section, I discuss how the theoretical framework that I have 
developed in my thesis contributed in shedding light on the research ques-
tions described in this section.  

7.2   Theoretical contributions of the thesis 

I have analysed data from mathematical practice at the mathematics depart-
ment from a perspective of “community of practice” (Wenger, 1998), where 
the joint enterprise, the practice, is the learning of mathematics in a broad 
sense. I have found this perspective well suited to considering the newcom-
ers, the students, as active participants, a role for them which is well attested 
to in the interview material. I also argue that, in accordance with Wenger’s 
(1998) theory of learning, researching new mathematics can be seen as 
learning (see p. 34). Hence research into mathematics can be seen as a part 
of a broad spectrum of mathematics learning within the department. Thus, 
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both mathematicians and students are participants in the same community of 
practice. I find this stance a better starting point for didactical research on 
proof than focusing on different (and possibly conflicting) practices because 
the boundaries between various positions in this practice are not clear cut. 
However, this standpoint does not mean that problems or conflicts (e.g. 
mathematicians’ various pedagogical intentions) in the broad practice are 
ignored, rather they are seen as a (necessary) part of the joint enterprise. 
Sometimes problems can also function as the engine for the learning. In my 
study, I have investigated the problems of drawing newcomers into the prac-
tice of proof.      

Wenger’s theory of learning as increasing participation in communities 

of practice leading to changing identities offered a straight forward tool for 
data analysis for discerning students’ utterances and expressing participa-
tion/non-participation with respect to proof and, thus, helped me to describe 
how students were drawn into the practice of proof. Both the fundamental 
assumption about the character of learning and the view on a person in the 
practice as an active agent who invests more or less of herself in the practice 
but at the same time, is influenced and absorbed in the culture of practice 
matched well to the way in which I wanted to look at the teaching and learn-
ing conditions of mathematics and, hence, offered an appropriate starting 
point to the thesis (see Section 2.1). In the data analysis, in coherence with 
the theory, I considered the mathematicians and the students as participants 
in the community of mathematical practice and interpreted their utterances, 
not entirely as their own opinions but also as reproductions of views belong-
ing to the community.    

One of the main arguments I have put forward in my thesis is that from a 
socio-cultural perspective proof can be seen as an artefact in mathematical 
practice, as a tool which has a lot of functions in this practice. I examined 
proof as an artefact by using Säljö’s (2005) classification (see p. 38). In this 
way, proof is viewed as a symbolic and intellectual tool. I found support for 
this view from both the literature and from the data (see p. 95). As an arte-
fact, I see proof also as reification20 in Wenger’s terms. This implies a view 
of proof as both a process and a product, a view that allows me to describe 
the complex process of working with and creating proofs. Proof is not only 
formalising mathematics and organising it in a deductive manner but also 
creating conditions for new theorems and proofs and also a means of com-
munication and thus production of a new context of both participation and 
reification which are two constituent processes in negotiation of meaning 
(see p. 35). There is an ongoing negotiation of meaning along with the inter-
acting aspects of proof, for example Intuition/Formality and Induc-

                               
20 Wenger uses the concept of reification very generally to refer to the process of giving form 
to our experience by producing objects that congeal this experience into “thingness”. In doing 
so we create points of focus around which the negotiation of meaning becomes organised.  
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tion/Deduction in which both mathematicians and students participate 
(Figure 4, p. 42). The didactical research on various functions of proof can 
be seen as an examination of proof as an artefact whereas didactical research 
on various approaches/properties of proof, for example Intuition/Formality 
and Induction/Deduction can be connected to proof as a process of reifica-
tion (Figure 6, p. 62). This is the way I have brought together a socio-
cultural perspective, the social practice theories of Lave and Wenger (1991) 
and Wenger (1998) and didactical research on proof.   

Lave and Wenger (1991) introduce the metaphor of transparency of arte-
facts (Invisibility/Visibility) which I examined with respect to proof, since it 
seemed to be a powerful notion in illustrating the intricate dilemma about 
how much to focus on various aspects of proof at a meta-level and how 
much to work with proof without a focus on it as a proof in the teaching of 
mathematics. That is why I included the aspect of Invisibility/Visibility in 
the conceptual frame about the aspects of proof (see p. 42). This dilemma 
ought to be a fundamental concern of the teaching of mathematics, as can be 
seen in my material (see pp. 40, 54, 167 and 213). I created the conceptual 
frame from didactical literature and used it in the data analysis. In this way, I 
linked the issues that mathematicians and students talked about, to the main 
themes in didactical research on proof. The conceptual frame was also the 
main tool in constructing and characterising the three different styles in the 
teaching of proof.  

The theoretical model that I have presented; of the different idealised 
styles of mathematicians as teachers of proof; has given structure to my ma-
terial (see p. 82). The model could be developed further, for example seeing 
whether it is applicable, at different levels of study, for example in upper 
secondary school, teacher education and graduate courses, and even for stud-
ies in different countries. It would also be interesting to take it as a basis of 
an analysis of focus group interviews with mathematicians in order to study 
more closely mathematicians’ practice. Finally, it could also serve as a 
benchmark in an internal discussion at a department of mathematics aimed at 
developing more effective way to attack the problem of drawing newcomers 
into the mathematical practice. 

In the next section of this chapter, I discuss what insights the empirical 
findings, as well as the theoretical arguments that I have put forward in the 
thesis, offer to educational practice and suggest some theoretical and practi-
cal items for further studies. 
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7.3   Challenges to educational practice and issues for 

further research 

The theoretical framework developed in the thesis, as well as the empirical 
findings suggest the following questions for further research in the field of 
proof in mathematics education.  

Issues from the practice 

There was an inconsistency in the data concerning how much proof is dealt 
with in the lectures (see Section 6.1.2 and Section 7.1.1). What does actually 
happen when students experience in the lectures that mathematicians are 
proving whereas the mathematician does not think he/she is proving, just 
presenting mathematics to students? This has to do with the condition of 
transparency in a sense that if the activity can be characterised as proving, 
then it is invisible for the mathematician but visible for students who experi-
ence the presentation as proving. Such an inquiry could also make it easier 
for mathematicians to be conscious about their way of presenting mathemat-
ics and how students experience it (see p. 213). 

My thesis brings about the importance of the role of examinations. 
Mathematics examinations are important in that they inform students about 
the view of mathematicians regarding what is important/possible/desirable 
for students to learn. There were students who experienced studying proof as 
meaningless because proofs were not demanded in examinations (see p. 
204). Further, the first oral examination in proof seemed to be important for 
students’ relation to proof (see Section 5.6.2). It would be interesting to 
study closer the impact of this examination and other forms of examinations 
concerning proof.   

What proofs are useful for various purposes? 

The conceptual frame about the aspects of proof and the view of proof as an 
artefact prompts further studies on various proofs with respect to what dif-
ferent functions and aspects of proof these proofs can illuminate in the di-
dactic processes. Questions like: “In what phase of mathematical studies and 
in what ways certain proofs benefit students’ learning of mathematics?” are 
important to investigate. It could help to improve the teaching of mathemat-
ics by asking: What proofs are useful for the illumination of different aspects 
of proof and mathematics? Why is this very proof important to give on this 
level? Why is Pythagorean Theorem seen to be the best theorem to start with 
in school? Here, the conceptual frame I have developed in the thesis makes a 
contribution by helping to discern and analyse proof from different points of 
view. 
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Transfer 

The function of transfer (see pp. 61, 93 and 151) included in the conceptual 
frame has not been included in the earlier models of functions of proof (de 
Villiers, 1990; Hanna & Jahnke, 1996; Weber, 2002) but it partly overlaps 
the aspect Weber (2002) describes. The function of transfer refers to two 
basically different things. Firstly, working with proofs can be useful in other 
contexts than in mathematics. Secondly, some proofs can provide methods 
or techniques useful in other mathematical contexts. How does the function 
of transfer relate to other functions of proof in the earlier models? What sig-
nificance has the function of transfer to mathematics on the one hand, and to 
mathematics education, on the other hand?  

The condition of transparency 

Students in my study often wondered what proof was and lacked discussions 
about the subject (see pp. 180 and 186). Proof was there as a mysterious 
artefact even if the word proof was avoided and the intention of teaching 
proof was not always there. Students showed interest towards proof when 
they started to study mathematics. According to Lave and Wenger (1991), 
there is an intricate dilemma in the teaching of newcomers regarding the 
balance between an unconscious use of artefacts on the one hand, and focus-
ing in different ways on these artefacts, on the other hand, by offering some 
extended information about the artefact. The condition of transparency of 
proof suggests that proof should not only be used and given in the teaching 
practice but focused on from different points of view (see the conceptual 
frame about the aspects of proof Section 2.3). There are various ways of 
focusing on proof. For example, mathematicians can make it clear to stu-
dents where they are proving or not proving. They can discuss why an induc-
tive argument based on examples cannot be seen as a mathematical proof. 
They can offer a meta-level analysis of the complex proofs they demon-
strate. They can reflect openly on how such proofs are constructed by 
mathematicians in the first place. Mathematicians can make it clear to stu-
dents why they prefer some proofs and omit some others. They can point out 
when a proof is useful in other mathematical contexts. Finally, they can fo-
cus on various aspects of proof, like historical dimensions about how proofs, 
axiomatic, tricks or special proving techniques. According to students, 
mathematicians and the observations of lectures, these kinds of focus some-
times take place but are occasional in the teaching of newcomers.  

The condition of transparency of proof is an intricate balance and it is not 
an easy task for mathematicians to decide what to focus on and when. Some-
times, focusing on one aspect leads to the obscuring of another. For example, 
a very detailed, rigorous, linear presentation of a proof makes all the logical 
steps visible for students but, at the same time, can obscure the overall logi-
cal structure of the proof. The condition of transparency regarding proof 
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would need to be focused on in further studies. How and how much should 
the teacher focus on various aspects of proof in the teaching? Is it possible, 
by making various properties/approaches and functions of this artefact visi-
ble, to help students experience proof as worthwhile and enhance their un-
derstanding and access to proof? 

Evident statements 

A question that has also to do with the condition of transparency of proof is 
the assumption held for example by some mathematicians in my study that 
proofs for evident statements are unnecessary and that teachers should avoid 
them because students do not see any meaning in them but consider them as 
pedantic and do not feel the need for proof. There are others, for example 
Weber (2002) who claims, that it is not wrong to give a proof for 1+1=2 by 
using Peano axioms, but the teacher has to make visible why this proof is 
interesting and what aspects of mathematics it enlightens. In scrutinising 
proofs for evident statements together with students, the results are not in 
focus or questioned but the focus is on the actual proof. This kind of treat-
ment makes the role of formal mathematics and formal definitions in 
mathematics visible. A question for further studies is if these kinds of activi-
ties help students to better understand for example, the difference between a 
description and a definition and the difference between intuition and a de-
ductive proof. Is it possible, by working with some proofs in detail to en-
hance students’ understanding of how proofs are constructed as well as their 
understanding of the role of critical thinking in exercising mathematics?  

How is proof dealt with in school and in teacher education? 

Even if most of the students related positively to proof when they entered the 
practice, many of them lacked the necessary tools to follow and understand 
the lines of reasoning in them. Many students, especially those with a Swed-
ish upper secondary school background, had minimal or no experience at all 
about proof, especially the constructing of their own proofs in their earlier 
mathematical studies and, yet, there was a small minority who had practiced 
proof in many different ways in their upper secondary school mathematics. 
Hence, students were in different positions when they started their studies at 
the university.  

My study only gives a hint of Swedish upper secondary school teaching 
concerning proof. Hence, there is obviously a need for research about how 
proof is dealt with in upper secondary school classrooms. In the suggestions 
for a new national curriculum for upper secondary school mathematics, 
proof is paid more attention than in the previous curriculum (Skolverket, 
2006). Teacher education has a key role in communicating new ideas to pro-
spective teachers. The teacher education in Sweden has been reformed many 
times during the last decades and the extent of mathematical studies at the 
mathematics department involved in the teacher education has diminished 
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(e.g. Bergsten et al., 2003). When at the same time the position of proof has 
become diminished in the basic course at university, there is a risk that the 
teachers with the new education are not very familiar with the issue of proof. 
There is no research on how proof is dealt with in teacher education in Swe-
den. The theoretical framework developed in my thesis could be beneficial, 
if applied in research both in school mathematics and in teacher education.      

7.4   Final words 

My study illuminates the teaching and learning conditions of proof in a 
community of mathematical practice at a mathematics department where the 
joint enterprise is the enhancing of learning of mathematics in a broad sense 
(see p. 31). The thesis is a descriptive account and gives a contribution to 
knowledge in this area by shedding light on the diversity of pedagogical 
views on proof among mathematicians. It illuminates the complexity of the 
didactic issue of proof from both students’ and from mathematicians’ per-
spective. The fusing of a socio-cultural perspective with the social practice 
theory of Lave and Wenger (1991) and Wenger (1998) and theories about 
proof offers a fresh perspective, which I have argued is well suited to under-
standing and describing the diversity of the culture involving such a complex 
concept as proof. I hope it will prove useful for further studies. 

The results bring about the following reflections. Students related posi-
tively to proof and they wanted to learn more about proof when they entered 
the practice. How then, could mathematicians, in the best way, take care of 
students’ positive relation and expectations regarding proof and help them to 
proceed in their mathematical practice? Both the students and the mathema-
ticians agreed on the fundamental role of proof in mathematics. Hence, a 
focus on proof as a dynamic notion could serve as a source of inspiration for 
both teachers and students. Examining various aspects of proof creates an 
excellent possibility to look at mathematics as a human enterprise with rules 
and conventions and definitions that do not have a truth value. But at the 
same time these activities could allow newcomers to learn to appreciate 
mathematics as a fantastic body of knowledge that is always growing and 
changing, a practice where people exercising mathematics investigate, ques-
tion, criticise, define, test conjectures, prove statements, calculate, solve 
problems, reason, argue and so on.  

I hope this thesis will rouse a debate about the role of proof in mathemat-
ics curricula, both in school and at university, because in the end, it is a 
question of value whether proof is included in the curriculum, a question that 
has to do with how mathematics is seen and what aspects of mathematics are 
in the focus of teaching. I also hope that the thesis with both the empirical 
findings and the theoretical insights about the teaching of proof will enhance 
consciousness among mathematicians, upper secondary school teachers, the 
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authors of mathematics textbooks and teacher educators about the role and 
functions of proof in the teaching of mathematics as well as the problems in 
drawing students to the practice of proof.  
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Appendix 1 (http://www.info.su.se/english/edu/ECTS/Departments/Courses.List.403.shtml) 

Mathematics, Basic course (30 ECTS Credits) 

Course description: 

Introductory course (7.5 ECTS credits) 

Polynomial division, The factor theorem, factorizations, 

inequalities, absolute value, geometric sum, functions, the 

straight line, power functions, exponential- and logarithmic 

functions, geometry (congruence and similarity), trigonometry, 

trigonometric functions. Somewhat about sets. Complex 

numbers. 

 

Linear algebra (7.5 ECTS credits). 

The binomial theorem, proof by induction. 

Systems of linear equations, matrix algebra, determinants, 

vectors in 2 and 3 dimensions, linear independence, dot 

product, vector product, straight lines and planes, linear 

mappings. 

 

Mathematical Analysis 1, (7.5 ECTS credits). 

Inverse functions, cyclometric functions.  

Limits, continuity, derivatives, derivation rules, derivation of 

elementary functions, extreme value problems, asymptotes, 

inequlities, integrals, relation between primitive functions and 

integrals, partial integration, method of substitution, integrals of 

certain classes of functions. 

 

Mathematical Analysis 2, (7.5 ECTS credits). 

Functions of one variable:  

Applications of integrals. Differential equations (separable, 

linear first- and second-order equations), Taylor´s formula. 

Functions of several variables: Limits, partial derivation, level 

curves and level surfaces, tangent plane, linear approximation, 

extreme value problems over compact domains, double 

integrals.  

Teaching and learning methods: 

Lectures: 8 hours per week.  

Lessons in small groups: 7 hours per week  

Methods of assessment: 

Written examination in each of the four sub-courses of 7.5 

ECTS credits  



 

Bibliography: 

Persson-Böiers, Analys i en variabel, Studentlitteratur  

Persson-Böiers, Analys i flera variabler, Studentlitteratur  

Tengstrand, Lineär algebra med vektorgeometri, 
Studentlitteratur  

Linear Algebra 2, Intermediate course (7.5 ECTS Credits) 

Course description: 

Linear spaces, linear independence, base, dimension, 

coordinates in different bases. Inner product. Cauchy-Schwarz 

inequality, orthogonal bases. Matrices, row spaces and 

column spaces, rank of matrix, invertibility, orthogonal 

matrices, determinants. Linear mappings, matrix 

representation in different bases, null space, range, 

Eigenvectors, diagonalization. Quadratic forms with applictions 

to curves and surfaces of the second degree.  

Teaching and learning methods: 

Lectures 6 hours a week  

Methods of assessment: 

Written examination  

Bibliography: 
 

Tengstrand, Lineär algebra med vektorgeometri, 

Studentlitteratur 

Mathematical Analysis 3, Intermediate course (7.5 ECTS Credits) 

Course description: 

Functions of one variable: Theory of limits, continuity, 

differentiation, integration and Taylor´s formula. 

Functions of several variables: Limits, continuity, 

differentialbility, the chain rule, gradient and directed 

derivative. Higher derivatives, Taylor´s formula, optimization 

problems, local extrema. Dubble integrals, change of 

variables.  

Teaching and learning methods: 

Lectures 6 hours a week  

Methods of assessment: 

Written and oral examination  



 

Bibliography: 

Persson & Böiers, Analys i en variabel, Studentlitteratur  

Persson & Böiers, Analys i flera variabler, Studentlitteratur  

Mathematical Analysis 4, Intermediate course (7.5 ECTS Credits) 

Course description: 

Analysis in one variable: Series, generalized integrals and 

power series. 

Analysis in several variables: Triple integrals, curves, line 

integrals, Greens formula, surfaces, surfce integrals, theorems 

of Gauss and Stokes.  

Teaching and learning methods: 

Lectures 6 hours a week  

Methods of assessment: 

Written examination  

Bibliography: 

Persson & Böiers, Analys i en variabel, Studentlitteratur  

Persson & Böiers, Analys i flera variabler, Studentlitteratur  

Algebra and Combinatorics, Intermediate course (7.5 ECTS Credits) 

Course description: 

Recursion and induction, set theory (functions and relations), 

combinatorics (combinations and permutations), divisibility and 

factorization of integers, modular arithmetic, group theory, 

somewhat about rings and fields  

Teaching and learning methods: 

Lectures 6 hours a week  

Methods of assessment: 

Written examination  

Bibliography: 

Biggs, Discrete Mathematics  

 



Foundations of Analysis, Advanced course (7.5 ECTS Credits) 

Course description: 

Real numbers. Bolzano-Weierstrass theorem. Theorems for 

continuous functions on compact intervals. 

Derivation and integration i R^n. Series of functions, uniform 

convergence. Implicit functions.  

Teaching and learning methods: 

Lectures 6 hours per week  

Methods of assessment: 

Written and oral examination  

Bibliography: 

Rudin, Principles of Mathematical Analysis, McGraw-Hill  

Analytic Functions, Advanced course (7.5 ECTS Credits)  

Course description: 

Analytic functions. Integration and series expansion of analytic 

functions. Residue calculus. 

Conformal mappings. Harmonic functions. Applications to 

physics.  

Teaching and learning methods: 

Lectures 6 hours per week.  

Methods of assessment: 

Written examination.  

Bibliography: Saff & Snider, Fundamentals of Complex 

Analysis, Prentice-Hall  

Algebra, Advanced course (7,5 ECTS Credits) 

Course description: 

Group theory: Subgroups, cosets, Lagrange´s theorem, 

homomorphisms, normal subgroups and factor groups, 

permutation groups, simple groups. 

Rings and fields: Matrix rings, Quaternions, ideals and 

homomorphisms, quotient fields, polynomial rings, principal 

ideal domains and Euclidean domains. 

Fields and vector spaces: Vector spaces of finite dimension, 

algebraic extensions, finite fields.  



 

Teaching and learning methods: 

Lectures 6 hours per week  

Methods of assessment: 

Written and oral examination  

Bibliography: 

Beachy & Blair, Abstract Algebra, Waveland Press  

Logic, Advanced course (7,5 ECTS Credits) 

Course description: 

Predicate logic in axiomatic form and in natural deduction, 

completeness theorem of predicate logic and its apparent 

applications, among them the theoretical background of the 

resolution method.  

Teaching and learning methods: 

Lectures 6 hours per week  

Methods of assessment: 

Written examination  

Bibliography: 

van Dalen, Logic and Structure, Springer  

Algebra, Specialized Course (7.5 ECTS Credits) 

Course description: 

Noetherian rings, Hilbert´s basis theorem.  

Modules: Direct sum, finitely generated modules over principal 

ideal rings with application in linear transformations. 

Semi-simple algebra: Maschke´s theorem, Wedderburn´s 

theorem. 

Multilinear algebra: Tensor products, exterior products.  

Teaching and learning methods: 

Lectures two hours per week  

Methods of assessment: 

Written or oral examination or written home assignments.  

Bibliography: 

Stenström, Algebra, Stockholms universitet  

 



Appendix 2 
 
En undersökning om bevis (An investigation about proof )  

Jag är doktorand i matematik med ämnesdidaktisk inriktning vid Stockholms universitet. Jag 

är intresserad av bevis och dess roll i undervisningen varför jag nu gör en enkätundersökning 

bland nybörjarstudenter i hela landet. Jag är tacksam om du vill medverka genom att svara på 

följande frågor. Om platsen inte räcker till fortsätt gärna på andra sidan av papperet. 

(I am a doctoral student in didactics of mathematics at the University of Stockholm. I am 

interested in proof and its role in teaching. That is why I now conduct a survey among 

university entrants in different parts of the country. I am grateful if you can contribute 

through responding to the following questions. If there is not place enough to write your 

answers, please use the other side of the paper.)   

 

Tack på förhand! (Thank you!) 

 

Kirsti Nordström 

 

1. Varför vill jag studera matematik (Why do I want to study mathematics)? 

 ________________________________________________________________________   

________________________________________________________________________ 

_______________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

 

2.  När jag får en uppgift som börjar "Visa att…" känner jag mig oftast (When I get a task 

starting “Show that…” I most often feel) 

a) nyfiken (curious) 

b) orolig (anxious) 

c) ivrig (eager) 

d) dum (stupid) 

e) osäker (insecure) 

f) annat (some other way)_______________________________________ 

g) har aldrig fått en sådan uppgift (I have never got a task like that) 



3. Vilka egenskaper anser du att ett bevis skall ha? (What do you think is characteristic of a 

proof?)   

            ________________________________________________________________ 

      ________________________________________________________________ 

      ________________________________________________________________ 

      ________________________________________________________________ 

      ________________________________________________________________ 

      ________________________________________________________________ 

 

4. Lisa, Tove, Peter, Mattias och Lina försökte visa att följande påstående är sant/inte sant 

(Lisa, Tove, Peter, Mattias and Lina tried to show that the following statement is 

true/not true): 

Summan av två godtyckliga jämna tal är alltid ett jämt tal. (The sum of two 

arbitrary even integers is always an even integer.) 

Lisas svar (Lisa’s answer)    

  a är ett godtyckligt heltal    

  b är ett godtyckligt heltal   

  2a och 2b är godtyckliga jämna heltal  

  2a + 2b = 2(a + b)   

  (a is an arbitrary integer   

  b is an arbitrary integer   

  2a and 2b are arbitrary even integers  

  2a + 2b = 2(a + b))   

    Så Lisa säger att påståendet är sant. 

    (So Lisa says the statement is true.)  

 
 



 

Toves svar (Tove’s answer)    

  2 + 2 = 4          4 + 2 = 6   

  2 + 4 = 6          4 + 4 = 8   

  2 + 6 = 8          4 + 6 = 10 

 

Så Tove säger att det är sant. (So Tove says the statement is true.) 

     

Peters svar (Peter’s answer) 

Jämna tal kan delas med 2. När man adderar tal med en gemensam faktor, i detta 

fall 2, har svaret också den samma gemensamma faktorn. 

You can divide even integers by 2. When you add integers with the same 

common factor, in this case 2, the sum has also the same common factor. 

Så Peter säger att påståendet är sant. (So Peter says the statement is true.) 

 

Mattias svar (Mattias’ answer) 

Jämna tal slutar med 0, 2, 4, 6 eller 8. När du lägger ihop två sådana tal slutar summan 

också med 0, 2, 4, 6 eller 8. (The last number of even integers is 0, 2, 4, 6 or 8. When you 

add two of these the last number of the sum is also 0, 2, 4, 6 or 8.) 

Så Mattias säger att det är sant. (So Mattias says the statement is true.) 

 

Linas svar (Lina’s answer) 

Låt x = ett godtyckligt heltalssvar,  y = ett godtyckligt heltal. (Let x = an arbitrary integer,  

y = an arbitrary integer.) 

x + y = z 

z – x = y 

z – y = x 

z + z – (x + y) = x + y + 2z 

Så Lina säger att det är sant. (So Lina says the statement is true.) 

Välj de svar som bäst motsvarar din bild av ett korrekt bevis och motivera ditt svar. 

(Choose the answer(s) which best correspond(s) to your view of a correct proof and give 

a reason for your choice.) __________________________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 



5.    Hur ofta bevisade din gymnasielärare påståenden för klassen (How often did your 

upper secondary school teacher prove statements to your class)? 

a) varje lektion (every lesson) 

b) en gång i veckan (once a week) 

c) en gång i månaden (once a month) 

d) ett par gånger i terminen (about twice a term) 

e) mera sällan (more seldom) 

 

6.   Hur ofta övade du själv att bevisa matematiska påståenden i gymnasiet (How often did 

you practise proving statements yourself in upper secondary school)? 

a) varje lektion (every lesson) 

b) en gång i veckan (once a week) 

c) en gång i månaden (once a month) 

d) ett par gånger i terminen (about twice a term) 

e) mera sällan (more seldom) 

 

7.   Hur ofta arbetade du i gymnasiet med egna undersökningar (ensam eller i en grupp) 

som ledde fram till hypoteser och eventuella bevis (How often did you work on your own 

investigations (alone or in a group) that led to conjectures and sometimes to proofs)? 

a) varje lektion (every lesson) 

b) en gång i veckan (once a week) 

c) en gång i månaden (once a month) 

d) ett par gånger i terminen (about twice a term) 

e) mera sällan (more seldom) 

 

8.   Hur ofta genomförde du muntligen matematiskt resonemang i gymnasiet (How often 

did you reason orally in upper secondary school)? 

f) varje lektion (every lesson) 

g) en gång i veckan (once a week) 

h) en gång i månaden (once a month) 

i) ett par gånger i terminen (about twice a term) 

j) mera sällan (more seldom)  



9. Hur ofta fick du muntligt bevisa matematisk påståenden i gymnasiet (How often could 

you orally prove mathematical statements in upper secondary school)? 

k) varje lektion (every lesson) 

l) en gång i veckan (once a week) 

m) en gång i månaden (once a month) 

n) ett par gånger i terminen (about twice a term) 

o) mera sällan (more seldom) 

 

Eventuella kommentarer till frågorna 11-15 (Possible comments about the questions 5-9): 

______________________________________________________________________ 

______________________________________________________________________ 

______________________________________________________________________ 

______________________________________________________________________ 

______________________________________________________________________ 

 

10. Tag ställning till följande påståenden och välj det svarsalternativ som sammanfaller med 

din åsikt eller situation. Ringa in lämpligt svarsalternativ (Choose the alternative which 

corresponds to your opinion or situation).  

 

1. Helt av annan åsikt, 2. delvis av annan åsikt, 3. kan inte säga, 4. delvis av samma åsikt, 5. helt av samma åsikt 

(1. totally disagree, 2. partially disagree, 3. cannot say, 4. partially agree, 5. totally agree) 

1) Matematiskt bevis skiljer sig från andra typer av bevis 

(Mathematical proofs are different from other kinds of proofs)          

2) Matematiskt bevis både verifierar och förklarar  

(Mathematical proof both verifies and explains)                                 

3) Jag har fått tillräckligt med övning i skolan i att konstruera 

bevis  

(I have had exercise enough in constructing proofs in school)         

4) Exempel övertygar mig om att ett matematiskt resultat är sant 

(Examples convince me that a mathematical result is true)           

5) Bevis är en väsentlig del av matematiken 

(Proof is an essential part of mathematics)                                          

6) Det är svårt att själv utföra ett bevis 

(It is difficult for me to prove statements) 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

1     2     3     4     5 



7) Bevis bör användas i undervisningen i grundskolan 

(Proofs should be used in mathematics education in 

comprehensive school) 

8) Jag har fått öva i skolan att muntligt bevisa påståenden 

(I have had the possibility to practise proving orally in school) 

9) Bevis bör användas i undervisningen i gymnasieskolan 

(Proofs should be used in mathematics education in upper 

secondary school) 

10) Jag tycker att det är roligt att själv försöka visa påståenden i 

matematiken (I like to try to show/demonstrate mathematical 

statements)  

11) Jag ser ingen vits med bevis: alla resultat har redan visats av 

kända matematiker (I see no meaning with proof; famous 

mathematicians have already proved all the results) 

12) Om ett resultat i matematik verkar intuitivt rätt finns det inget 

behov att bevisa det (If a result seems to be intuitively correct 

there is no need of proving it) 

13) Jag vill gärna lära mig mera om matematiskt bevis 

(I would like to learn more about mathematical proof) 

14) Ett kriterium för betyget MVG för alla gymnasiekurser är att 

eleven genomför såväl muntligt och skriftligt matematiska bevis 

(One criterion for the best mark in mathematics in all courses in 

upper secondary school is that the pupil can prove statements both 

orally and in writing) 

15) Jag brukar kontrollera på olika sätt att ett resultat av en 

räkneuppgift är korrekt (I usually control the correctness of the 

result of a mathematical task in different ways) 

16) Min gymnasielärare brukade ofta bevisa påståenden för 

klassen (My teacher in upper secondary school often used to prove 

statements to us) 

17) Jag vill alltid förstå vad jag gör i matematik 

(I always want to understand what I do in mathematics) 

 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 



18) Jag hade gärna lärt mig mera om bevis i skolan  

(I would like to have learned more about proof in school) 

19) Det är bra att kunna härleda formler 

(It is good to be able to derive formulas) 

20) Det är svårare att bevisa påståenden än att lösa räkneuppgifter 

(It is more difficult to prove statements than solve problems) 

21) Jag har fått övning i skolan att skriftligt formulera bevis 

(I have had the possibility to practise proving by writing in school) 

22) Det räcker att kunna använda formler, det är inte så viktigt att 

förstå allting (It is enough to be able to use formulas. It is not so 

important to understand everything) 

23) Det är roligt att kunna några matematiska bevis 

(It is nice to know some mathematical proofs) 

24) Det är lättare att förstå att ett matematiskt påstående är sant om 

man ser ett exempel än  om man ser ett bevis (It is easier for me to 

understand that a statement is true after seeing an example than 

after seeing a proof) 

25) Bevis hjälper mig att förstå matematiska sammanhang (Proofs 

help me to understand mathematical connections) 

26) Det är tråkigare att syssla med bevis än att lösa räkneuppgifter 

(It is more boring to prove statements than to solve computational 

problems) 

27) Jag tycker att det är roligt att försöka bevisa i matematiken 

(It is fun to construct mathematical proofs) 

28) Ett matematiskt bevis beror på andra matematiska resultat 

(A mathematical proof depends on other results in mathematics) 

29) Jag har fått bekanta mig med olika typer av bevis i skolan 

(I have had the possibility to familiarise myself with different kinds 

of proofs in school) 

30) Att studera bevis lär mig logiskt tänkande 

(Studying proof teaches me logical thinking) 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 

1     2     3     4     5 

 

1     2     3     4     5 

 

 



Eventuella kommentarer till påståendena (Possible comments about the statements): 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

Till slut önskar jag att du svarar på några frågor angående dig och din bakgrund. 

(Finally, I want you to answer some questions concerning you and your background.) 
 

1. Ålder (Age)______ 

2. Kön (Gender)______________ 

3. Året när jag gick ut gymnasiet (The year I finished upper secondary 

school)__________ 

4. Gymnasielinje/program (The study programme in upper secondary 

school)_________________________________________ 

5. Kunskaper i matematik (Knowledge in mathematics)  

          

Kurs/ Nivå (Course/Level) År (Year) Betyg 

(Mark) 

   

   

   

   

   

   

   

   

 

6. Utländsk gymnasieexamen, Land (Foreign upper secondary school background, 

Country)_______________________________________ Linje 

(Course/Programme)_____________________________________________ 



7. Eftergymnasiala studier (Studies after upper secondary school) 

Kurs (Course) År (Year) 

  

  

  

  

  

  

 

8. Jag ställer upp för en fokus-grupp intervju. Du kan nå mig på följande e-

postadress/telefonnummer (med riktnummer) (I agree to be interviewed. 

You can contact me by the following e-mail address/ telephone number): 

____________________________________________________ 

                                             Tack för din medverkan (Thank you for your contribution)! 



Appendix 3 
 
Tables about some survey results  
Questions 5 – 9  

  more 

seldom 

about 

twice a 

term 

once a 

month 

once a 

week 

every 

lesson 

Swedish 

upper 

secondary 

school 

background 

How often 

did your 

upper 

secondary 

school 

teacher prove 

statements to 

your class? 

15,6% 15,6% 14,3% 38,8% 15,6% 

 How often 

did you 

practice 

proving 

statements 

yourself in 

upper 

secondary 

school? 

40,4% 19,2% 15,9% 17,9% 6,6% 

 How often 

did you work 

on your own 

investigations 

(alone or in 

groups) that 

led to 

hypothesis 

and probably 

to proofs? 

74,0% 12,3% 5,8% 5,2% 2,6% 

 How often 

did you 

reason orally 

in upper 

secondary 

school 

mathematics? 

60,8% 17,6% 7,2% 8,5% 5,9% 

 How often 

could you 

orally prove 

mathematical 

statements in 

upper 

secondary 

school? 

73,4% 16,2% 3,9% 3,9% 2,6% 



Foreign 

upper 

secondary 

school 

background 

How often 

did your 

upper 

secondary 

school 

teacher prove 

statements to 

your class? 

      33,3% 66,7% 

 How often 

did you 

practice to 

prove 

statements 

yourself in 

upper 

secondary 

school? 

8,3% 8,3% 25,0% 16,7% 41,7% 

 How often 

did you work 

with own 

investigations 

(alone or in 

groups) that 

led to 

hypothesis 

and probably 

to proofs? 

33,3% 25,0% 16,7% 16,7% 8,3% 

 How often 

did you 

reason orally 

in upper 

secondary 

school 

mathematics? 

25,0% 8,3% 33,3% 8,3% 25,0% 

 How often 

could you 

orally prove 

mathematical 

statements in 

upper 

secondary 

school? 

33,3% 8,3% 16,7% 33,3% 8,3%� 

 



Question 10 

 

 totally 

disagree 

partially 

disagree 

cannot say partially 

agree 

totally agree 

 % % % % % 

1. Mathematical 

proofs are 

different from 

other kinds of 

proofs 

13,9% 17,6% 20,6% 33,9% 13,9% 

2. Mathematical 

proof both 

verifies and 

explains 

0,6% 8,4% 16,3% 35,5% 39,2% 

3. I have had 

exercise enough 

in constructing 

proofs in school 

33,9% 30,9% 21,2% 10,3% 3,6% 

4. Examples 

convince me that 

a mathematical 

result is true 

12,9% 15,2% 11,4% 37,1% 23,5% 

5. Proof is an 

essential part of 

mathematics 

0,0% 2,4% 7,2% 25,1% 65,3% 

6. It is difficult 

for me to prove 

statements 

4,2% 15,6% 21,6% 34,1% 24,6% 

7. Proofs should 

be used in 

mathematics 

education in 

comprehensive 

school 

1,8% 7,8% 21,7% 33,7% 34,9% 

8. I have had a 

possibility to 

practise proving 

orally in school 

47,9% 29,3% 9,6% 9,6% 3,6% 

9. Proofs should 

be used in 

mathematics 

education in 

upper secondary 

school 

0,6% 1,2% 6,6% 30,7% 60,8% 

10. I like to try to 

show/demonstrate 

mathematical 

statements 

5,5% 13,4% 16,5% 40,2% 24,4% 



 

11. I see no 

meaning with 

proof; famous 

mathematicians 

have already 

proved all the 

results 

65,3% 22,2% 9,6% 1,2% 1,8% 

12. If a result 

seems to be 

intuitively correct 

there is no need 

of proving it 

59,0% 25,3% 7,2% 7,2% 1,2% 

13. I would like 

to learn more 

about 

mathematical 

proof 

2,4% 6,0% 9,6% 36,1% 45,8% 

15. I usually 

control the 

correctness of the 

result of a 

mathematical task 

in different ways 

3,0% 9,0% 12,0% 48,5% 27,5% 

16. My teacher in 

upper secondary 

school often used 

to prove 

statements to us 

15,6% 22,8% 22,2% 25,7% 13,8% 

17. I always want 

to understand 

what I do in 

mathematics 

0,0% 4,2% 5,4% 22,8% 67,7% 

18. I would like 

to have learned 

more about proof 

in school 

,0% 6,6% 13,8% 29,9% 49,7% 

19. It is good to 

be able to derive 

formulas 

0,0% 4,2% 4,2% 21,0% 70,7% 

20. It is more 

difficult to prove 

statements than 

solve problems 

1,2% 4,2% 10,2% 29,3% 55,1% 

21. I have had a 

possibility to 

practise proving 

by writing in 

school 

28,3% 25,3% 19,9% 19,3% 7,2% 



 

22. It is enough to 

be able to use 

formulas. It is not 

so important to 

understand 

everything 

47,0% 34,3% 12,0% 3,6% 3,0% 

23. It is nice to 

know some 

mathematical 

proofs 

0,6% 4,9% 15,9% 31,1% 47,6% 

24. It is easier for 

me to understand 

that a statement is 

true after seeing 

an example than 

after seeing a 

proof 

8,4% 19,9% 24,7% 33,7% 13,3% 

25. Proofs help 

me to understand 

mathematical 

connections 

,0% 4,2% 13,3% 45,5% 37,0% 

26. It is more 

boring to prove 

mathematical 

statements than 

solve 

computational 

problems 

17,5% 22,3% 26,5% 21,1% 12,7% 

27. It is fun to 

construct 

mathematical 

proofs 

3,0% 13,9% 28,5% 32,7% 21,8% 

28. A 

mathematical 

proof depends on 

other results in 

mathematics 

2,5% 6,1% 41,7% 22,1% 27,6% 

29. I have had the 

possibility to 

familiarise myself 

with different 

kinds of proofs in 

school 

16,9% 23,5% 17,5% 28,3% 13,9% 

30. Studying 

proofs teaches me 

logical thinking 

1,2% 1,2% 19,9% 38,6% 39,2%� 

 



Appendix 4

Mathematical Analysis 3, Theory questions for oral examination

Part 1, Functions of one variable

1. Define the limit of a function f(x) when x → +∞. Formulate and prove
the sum-, product-, quotient- and squeeze laws for such limits.

2. Define a limit of a function f(x) when x → a. Formulate and prove the
sum-, product-, quotient- and squeeze laws for such limits.

3. Define a limit of a number sequence. Formulate and prove the sum-,
product-, quotient- and squeeze laws for such limits.

4. Define supremum and infimum. Define the limit of a number sequence.
Formulate the supremum axiom. Formulate and prove a theorem about
limits of monotonic number sequences.

5. Account for the definition of the number e as a limit and prove that this
limit exists.

6. Define continuity. Formulate and prove the intermediate value theorem.
(If the intersection theorem of intervals is used it must be proved.)

7. Define continuity. Formulate and prove the intersection theorem of inter-
vals. Formulate and prove the theorem of the maximum value and the
minimum value.

8. Define the derivative of a function. Show that differentiability implies con-
tinuity. Show the sum-, product-, and quotient laws for derivatives.

9. Define the derivative of a function. Formulate and prove the theorem of
differentiability of a composite function of two differentiable functions (the
chain rule).

10. Define the derivative of a function. Formulate and prove the theorem of
the derivative of an inverse function.

11. Show that if a function f has a local maximum or a local minimum at a
point a, so is the derivate of f at zero under appropriate circumstances.
Formulate and prove the mean-value theorem.

12. Formulate the mean-value theorem. Formulate and prove a theorem about
the relation between monotonic functions and the derivative.
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Part 2, Functions of one variable

1. Formulate and prove Taylor’s formula.

2. Formulate and prove the uniqueness theorem of Maclaurin expansions.

3. Let f be a function that is bounded on a closed and bounded interval I.
Define the notions of the lower and upper integral of f over I. Show that
the lower integral is less than or equal to the upper integral. Define the
notions of integrability and the integral of f on I. Show that if f and g

are bounded and integrable on [a, b] (where a < b) then f + g is bounded

and integrable on [a, b] and
∫

b

a
(f(x) + g(x))dx =

∫
b

a
f(x)dx +

∫
b

a
g(x)dx.

4. Let f be a function that is bounded on an interval [a, b] where a < b. As-
sume that f is integrable on [a, c] and [c, b] where a < c < b. Show that f

is integrable on [a, b] and that
∫

b

a
f(x)dx =

∫
c

a
f(x)dx+

∫
b

c
f(x)dx. Formu-

late and prove also a theorem about integrability of monotonic functions.
Explain then how one can combine both of these results and obtain the
result that a great collection of functions are integrable.

5. Define the notions of continuity and uniform continuity. Explain the re-
lation between these notions. Formulate and prove the theorem about
integrability of continuous functions.

6. Let f and g be functions that are bounded on a closed and bounded
interval I. Show that if f is bounded above by g on the interval I, then
the integral of f over the interval I is less than or equal to the integral of
g over the interval I. Formulate and prove the two mean value theorems
for integral calculus.

7. Formulate and prove a theorem about the relation between the deriva-
tive and the integral. Formulate and prove the fundamental theorem of
calculus.

8. Define convergence, divergence and the sum (if it exists) of an infinite
series. Show that the terms of a convergent series approach zero. Define
the notions of absolute convergence and conditional convergence. Show
that an absolute convergent series is convergent.

9. Define convergence, divergence and the sum of an infinite series (if it ex-
ists). Formulate and prove the integral criterion and two comparison cri-
teria for positive series.

10. Define convergence, divergence and the sum of an infinite series (if it ex-
ists). Formulate and prove the ratio and the root test for series.

11. Define convergence, divergence and the sum of an infinite series (if it ex-
ists). Formulate and prove Leibniz’ convergence criterion.

12. Show that if a power series converges at more than one point, then the set
of points where it converges is an interval. Define the notion of radius of
convergence and give an account of how a power series can be differentiated
and integrated.
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Part 3, functions of several variables

1. Define the notions of limit, continuity, partial derivative and differentia-
bility for a function of several variables. Show that if a function of several
variables is differentiable then it is also continuous and has partial deriva-
tives of first order.

2. Define differentiability. Show that if a function of several variables has con-
tinuous partial derivatives of first order then the function is differentiable
(only the case of two variables is demanded).

3. Formulate and prove the theorem according to which the both mixed sec-
ond derivatives for a function in two variables are equal under appropriate
conditions.

4. Formulate and prove the chain rule for the case of a composite function of
the type t 7→ f(g(t), h(t)). Formulate and outline the proof for the general
chain rule for vector-valued functions of several variables.

5. Define the directional derivative and the gradient. Formulate and prove
the theorem about the relation between the directional derivative and
the gradient. Formulate and prove a theorem about the relation between
the increasing of a function of several variables and the direction of the
gradient of the function.

6. Show Taylor’s formula of second order in two variables.

7. Define a local extreme point of a function of several variables. Define the
notions of a positive definite, negative definite and indefinite quadratic
form. Formulate and prove a theorem about how the quadratic form in
the Taylor expansion decides the character of a local extreme point (only
the case of two variables is demanded).

8. Formulate the general theorem about Lagrange multipliers and prove it
for the special case of two variables and one constraint.

9. Formulate and prove Green’s Theorem for domains in the plane with one
lower and one upper and one left and one right part. Then sketch how to
obtain Green’s Theorem for more general domains in the plane.

10. Let F be a continuous vector field defined in a pathwise-connected open
subset Ω of the plane. Show that line integrals of F in Ω are independent
of the path if and only if F has a potential in Ω.

11. Let F = (P,Q) be a continuously differentiable vector field defined in a
simply connected open subset of the plane. Show that line integrals of F

in Ω is independent of the path if and only if D2P = D1Q in Ω. Give an
example which shows that this is not true if simply connected is changed
to pathwise-connected.

12. Formulate and prove the Divergence Theorem for domains in space with
one lower and one upper surface, one left and one right surface and one
back and one front surface. Then sketch how to obtain the Divergence
Theorem for more general domains in space.
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Appendix 5 
 

 

 

 

Meaning of dealing 

with proof 

Induction/ 

Deduction 

 

Intuition/ 

Formality 

Transparency The reasons 

for 

not dealing 

with proof 

The view on 

students 

I P
ro

g
re

ss
iv

e 

 

Invisible tool in the 

derivation of 

formulas, 

“Proof must be 

needed”: given only 

if they enhance 

understanding or 

offer conviction  

Start by 

examples, 

calculations 

 

Informal, 

Prefer natural 

language, 

Avoid symbols in the 

beginning, 

Omit technical and  

long proofs, 

Avoid proving 

evident statements 

Invisible: 

No discussions on  

proof, The word  

‘proof’ avoided, 

No proofs for “evident” 

statements 

Visible: the need for  

proof, 

the need of the  

symbols 

No intentions 

because: 

Most of the 

students  

need 

something 

else, 

Calculations 

more 

important, 

Students not 

interested 

Students not 

capable, 

Afraid, 

Most of them do 

not understand the 

meaning of proof, 

Not interested 

 

II
 

D
e
d
u
ct

iv
e 

 

Real mathematics, 

Abstract and general, 

Conviction +  

explanation 

connected to critical 

thinking 

  

Prefer deductive 

approach  

Quite formal with 

mathematical 

symbols, 

Rigorous, because 

students need to see 

all the steps in the  

beginning, 

Nothing is evident  

Visible: logical steps, language  

and symbols, Formal demands, 

Difference between intuitive 

and formal, the word ‘proof’, 

evident statements 

Invisible: inductive 

approaches and the origins of 

proofs 

Lack of time  Students interested 

and capable, but 

have too little 

experience 

  

 

 

II
I 

 

C
la

ss
ic

al
 

Aesthetic, 

Inspiring, 

Intellectual 

challenge, 

Logical reasoning-

transfer, 

Soul of mathematics 

Mostly deductive Intuitive and 

informal, not 

rigorous, 

Symbols used when 

needed, Do not 

bother proving 

evident statements 

Invisible: No discussions on  

proof, Logical steps on 

elementary level 

Visible:  

What proofs they like 

themselves, great ideas, 

aesthetic 

External 

reasons 

Most of them not 

interested, not 

capable, 

Pity for the few 

others 

 



 
 



Appendix 6 
 
An example of how I have worked with NVivo. Here the free nodes have been organised into 
a tree. 

 

Mathematicians’ pedagogical perspectives (node) 
 

• Intentions (child node) 
o intentions of dealing with proof 
o no intentions of dealing with proof 

� external reasons 
- students’ prior knowledge 
- lack of time 
- examination 
- … 

� internal reasons 
- students do not need proof 
- first intuitive knowledge 
 

o discussion about proof 
o own investigations 

 
 

• How see students as learners of proof 
o difficulties 

� idea of proof 
o … 
 

• The practice 
o changes in the practice 
o courses 

� basic course 
� … 

o … 
 

• Pedagogical considerations 
o the dilemma of transparency 
o general 

 
 
* An example of the utterances coded into the child node “own investigations”. In every 
child node there are a number of utterances from different documents coded into the node. 
 

* Det är säkert väldigt roligt för dem som har lyckats komma på 
några saker men jag tror i och för sig att om det där ska bli 
framgångsrik så måste man ha tänkt igenom det där ordentligt och 
tagit några saker som inte är allt för svårt att påstå att det är sant… 
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