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Abstract

This Thesis focuses on the Marginal Expected Shortfall (MES) and its application in

Finance as early-warning reference. I will specify a logit model that allows to link

MES to the conditional probability of financial crisis. The independent variable

consists of three different measures of entropy, so that the degree of “disorder” in

the financial markets is used to predict systemic events.

The analysis includes two bayesian density estimation approaches, which em-

bed the frequentist one as a special case. Also follows a calibration of the model

according to how much important the tails of the distribution of returns should

be. Robustness of the results is also checked by the bayesian choice.
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Chapter 1

Introduction

As for the latest financial crisis, much attention has been paid to modeling sys-

temic events. Many authors have come up with models to link crises across Coun-

tries and over time. A branch of the literature, reviewed in the next section, is fo-

cused on the joint probability of observing extreme, or tail, events. The theoretical

foundation for this approach relies on representing a panel of financial returns, R i
t ,

where t denotes time and i denotes an asset, as

Pr(R1
t ,R2

t , . . . ,R i
t , . . . ,Rn

t ), t = 1,2, . . . ,T.

This formulation allows to study both marginal and conditional probabilities, so

that the effects of one asset (or a set of them) on another asset (or another set) may

be explored and discussed.

The motivation about this study relies on the willingness to find out whether,

when and how we can predict — or, at least, explain — systemic events. On the

macroeconomic perspective, this is relevant given the objectives of the most im-

portant institutions like OECD, ECB, Federal Reserve and so on. The ability of

modeling systemic risk may enable financial and/or social regulators to pinpoint

the cause of tail events. There are a number of reasons for which such regulators

may need to predict, if not prevent, systemic crises. Acharya et al. (2010), for ex-

ample, show that only a small tax may be necessary to reduce the probability of

crises contagion among institutions, markets and, finally, countries.

On the statistical hand, the study of systemic events is the a challenge. It is well

known that any (current) statistical application only relies on past information.

This represents a strong limitation to the capability of predicting tail events. To

overcome this weakness, the ongoing statistical research on rare outcomes tries to

reach robustness, meant as the ability of the models to give the same — qualitative

— results independently of the input samples.

1



2 CHAPTER 1. INTRODUCTION

1.1 Literature review

A variety of papers and publications try to model systemic crises on different bases,

depending on the assumptions one may want to make. There are different views,

in the literature, that take into account different aspects of systemic phenomena

and, namely, different definitions of extreme systemic events. As for the crises,

Reinhart and Rogoff (2008) created a dataset of binary variables that indicate when

a certain country has been facing a currency, sovereign debt and/or banking crisis.

Broadly speaking, the idea of systemic crisis is associated to the joint variabil-

ity into a whole economic system, where the linkages among institutions are the

conditions for observing “domino” effects. That is, if an institution experiences

major issues, another institution, linked to the former, will experience the same as

a consequence of their economic relation.

Bisias et al. (2012) wrote a thorough survey about systemic crisis analytics,

which gathers many of such approaches taken so far in the related research. Part

of the literature sees an economic system as many interconnected subjects (con-

sumers, firms, banks, etc.), where systemic risk is grounded on the basis of such

connections. From this concept, a branch of the literature started investigating

network-like linkages among financial institutions, where the main research ques-

tion aims at discovering how a crisis unfolds and permeates an economic system.

See, for example, Billio et al. (2011), who developed a Granger causality test to spot

significant linkages among financial institutions, in order to tell apart which ones

are systemically important and how those relate to the rest of their economic sec-

tors.

Other authors, instead, see an economic system as a “portfolio” of institutions,

where the performance of one of them impacts the others, and how much its com-

ponents interact among themselves without actually questioning which are the

means and the relations that make such interactions possible. See, for example,

Adrian and Brunnermeier (2011), who developed the concepts of CoVaR and ∆-

CoVaR.

For both visions, many measures and analytics have been conceived in order

to first analyze and (hopefully) predict systemic issues. This Thesis embraces the

view of Acharya et al. (2010), who provided a micro-founded model about what

they called Marginal Expected Shortfall (MES). Their measure tell how much a spe-

cific institution is affected by another entity, be it another institution or the whole

market. MES is closely related to the concept of Value-at-Risk (VaR), which mea-

sures the losses in case of extreme, or tail, events. This approach is grounded on

two main facts. First, the sample variance of a distribution says how much the

tails are fat, but it gives no clue about the direction of the variability. Second, these

measures are basically relying on the joint probability, for institutions, of witness-
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ing extreme events.

Apart from defining a way to measure systemic risk, Acharya et al. (2010) also

introduce and solve a social welfare maximization problem in order to justify the

research on such measures. They show that a wise study on systemic risk measures

may allow the social planner to “force” financial institutions to also consider their

impact on other ones, by introducing a simple tax. That is, by means of such tax,

regulators may make banks and other financial institutions aware of how much

their probability of bankruptcy may affect the economic environment in which

they operate, whereas the same institutions would not care about the issue on

their sole own. In this way, regulators may easily maximize the social welfare (i.e.,

minimize the Systemic Expected Shortfall the authors define).

In this Thesis, rather than considering the joint probability of tail events, I take

a different approach to systemic risk. The approach follows the intuition that “dis-

order” in financial markets reinforces itself. During tail events the financial agents

observe more chaos in the markets, and therefore they start panicking and become

more sensitive about observed heterogeneity. So, spread behaviors and very dif-

ferent trends inside one market may signal the presence of important incoming

(or ongoing) events.

In Chapter 2.1, I will present the data and the distribution of returns and MES

at each time of the dataset. Specifically, in Section 2.2 I will show how to interpret

a continuous random variable in terms of a multinomial one, and I will present

four different bayesian ways to estimate the densities of MES, according to the

which estimators and which priors are elicited. Basing on a crisis indicator, I will

show in Chapter 3 how entropy measures are related to the conditional probability

of a systemic event given the dispersion of the returns’ distribution at each state.

Three different entropy measures are considered to assign different weights to the

degree of randomness in the distributions. The logit specifications will include

results of three of the four density estimation methods, and will show how the

difference among the entropy formulations affect the final fit. In Chapter 4, I will

draw some final considerations about the models and I will discuss possible future

developments of this Thesis.
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Chapter 2

The theoretical framework and the

data

The reference measure in my Thesis is the Marginal Expected Shortfall (MES), as

defined by Acharya et al. (2010). Starting from a series of asset returns R i , where

i denotes the asset, MESi is defined as the expected value of R i when a reference

asset (or a reference market) is in its “worst state,” below a certain qk quantile.

That is, for k = 0.05,

MESi
= E

[

R i
∣

∣

∣ Rm
< q5%

]

.

The authors, in their original formulation, put a minus in front of the expecta-

tion in order to meet consistency with the definition of “shortfall,” as the expected

returns in case of a tail event are intuitively thought to be negative. Moreover,

Acharya et al. (2010) considered MES as a measure of systemic risk, which assesses

the expected losses in case the market faces a tail event. The intuition behind MES

is that, if institution i is linked (no matter how) to a systemic event, the conditional

returns should highlight it. Yet, the authors did not consider MES for hypothesis

testing. They proposed and analyzed its properties at a firm-level risk manage-

ment point of view. In particular, they analyzed its predictive power. However, as

shown in Löffler and Raupach (2013), MES is successful in capturing systemic rela-

tions if calculated on the stock market returns, but it does not perform sufficiently

well for other financial instruments, like bonds and derivatives. The authors do

observe that MES, calculated on “mixed” portfolios, that is ones composed by not

only assets, gives a biased picture of its risk. Even though no specific reason is

offered in their paper, they suggest that derivatives, more than bonds, naturally

induce non-linear behaviors in their returns that MES cannot capture, being it a

linear estimator.

As it turns out, MES basically filters data in order to “pick” specific returns,

i.e., when the market is facing the so-called “black-swans.” To this matter, and

5
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depending on the frequency of the data, MES does not take into account lagged

influences. That is, MES only considers all those returns which are affected by the

market performance only during the tail event. Consequences, which are lagged

in time, are not captured by the measure. However, this “filtering” allows a specific

analysis of tail events in which one can isolate data.

In this Thesis, I focus on MES as a filtering device, in order to obtain represen-

tations about the worst states of the financial markets. In the analysis that follows,

the average in the definition of MES runs over time. To save data and avoid to come

up with a unique number, it has been convenient to implement the rolling win-

dow technique as shown in Zivot and Wang (2007), that considers subsequent sub-

samples in order to preserve degrees of freedom. It takes as input a time series and

returns, as output, a shorter and smoother times series, depending of the width of

the window. Namely, if the time series is about returns R i
t , with t = 1,2, . . . ,T , we

can either average the data over the whole period and get a unique estimate, or

consider smaller time intervals and get several numbers. For a window of width

w such that 1 < w < T , we have T − w + 1 averages over time, so that, for every

subperiod of length w , we have a representation of the worst states.

2.1 Data

2.1.1 Crisis indicators

In the literature there are many databases that track the crises over years. Exam-

ples of these include Reinhart and Rogoff (2008), Reinhart and Rogoff (2010b),

Reinhart and Rogoff (2010a), Laeven and Valencia (2008) and Laeven and Valen-

cia (2012). For a description of the databases in Reinhart and Rogoff (2008) and

Laeven and Valencia (2008) and their information, see Appendices A and B respec-

tively. Such databases may be relevant whenever one wants to develop an Early

Warning System, in order to have reference data for the crises. In particular, one

may model the crisis in a given country as

Ct =

{

1 if the country is in crisis at time t

0 otherwise.
(2.1)

The main difficulty in this kind of modeling is giving a proper definition of “cri-

sis” in a given country. As in Reinhart and Rogoff (2008), the idea of crisis is split

into several perspectives. Specifically, they define sovereign debt crisis, banking

crisis and currency crisis. As it will be clear in the next section, it is convenient to

consider banking crises for this Thesis.
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Supersector Sector

8330 Banks 8350 Banks

8500 Insurance 8530 Nonlife Insurance

8570 Life Insurance

8600 Real Estate 8630 Real Estate Investment & Services

8670 Real Estate Investment Trust

8700 Financial Services 8770 Financial Services

8980 Equity Investment Instruments

Table 2.1: Description of the ICB 8000 financials asset class.

2.1.2 Assets and returns

This Thesis considers empirical data collected by DataStream.® As I wanted to

consider systemic risk, the time series are about those firms which are classified

under the ICB code class 8000. This is the class for financial firms. A description of

this class of assets is in Table 2.1.

The data are about asset prices for many European countries, from 1st January

1985 to 12th May 2014 at a daily frequency, without holidays. Table 2.2 shows the

list of considered financial markets (countries) and the amount of assets for each

of them. For every country in the dataset, it is convenient to represent prices in

the following way:

P =



























P 1
1 P 2

1 · · · P i
1 · · · P N

1

P 1
2 P 2

2 P N
2

...
...

. . .
...

P 1
t P 2

t P i
t P N

t
...

...
. . .

...

P 1
T P 2

T · · · P i
T

· · · P N
T



























. (2.2)

The prices have then been converted to log-returns according to the formula in

Equation 2.3. Returns are also arranged in the same matrix structure as for prices.1

log(Rt ) = log

(

Pt+1

Pt

)

= log(Pt+1)− log(Pt ). (2.3)

Considering the overall EU market, that is aggregating all the data in a unique

array, the data are summarized in Figures 2.1 and 2.2. For that extent, each row has

been considered as distinct vector where to compute averages, quantiles, standard

deviation and so on.

For calculating MES, a reference asset is needed. As such, the MSCI Europe

index provides a comprehensive image of 15 countries in Europe, for a total of 437

1In the text, “returns” refers to log-returns, unless explicitly specified.
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Figure 2.1: Distribution of returns in Europe over time.
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constituents of any ICB class. Therefore, if Rm
t is the return computed on the MSCI

Europe index, MESi
t is given by:

MESi
t = E

[

R i
∣

∣

∣Rm
s < q5%

]

, s = t −w +1, t −w +2, . . . , t −1, t , (2.4)

that is the average of returns in those days when MSCI is in its worst 5% during

the time window of length w . The conditioning event basically tells over which

t = 1,2, . . . ,T we should average the returns of the i -th institution. The practi-

cal implementation of the rolling window technique has considered w = 180-days

long subsamples. That is, the first value of MES occurs at t = 180 and it is defined

as

MESi
180 = E

[

R i
∣

∣

∣Rm
s < q5%

]

, s = 1,2, . . . ,180,

the second value is

MESi
181 = E

[

R i
∣

∣

∣Rm
s < q5%

]

, s = 2,3, . . . ,181,

the third is

MESi
182 = E

[

R i
∣

∣

∣Rm
s < q5%

]

, s = 3,4, . . . ,182,

and so on. This allows us to save degrees of freedom and we obtain a vector of

T −179 values of MES for each institution. Figure 2.3 and 2.4 illustrate the main

features of the distribution of MES over time.

2.2 Methodology

As we can see in Figure 2.1, assets in Europe featured a more spread distribution

during the crisis years. This is highlighted in the representation for MES. As it turns

out, most of the observations for each country are concentrated from 1st January

2000 to 12th May 2014. Before that period, small changes in the distributions are

actually emphasized by the small amount of assets. For this reason, I will consider

the aggregate European dataset, starting from the beginning of 2000.

Given that the banking crisis indicator in Reinhart and Rogoff (2008) has its last

Austria 43 Belgium 73 Denmark 179

Finland 30 France 285 Germany 344

Greece 82 Hungary 16 Ireland 30

Italy 139 Latvia 1 Lithuania 5

Luxembourg 40 The Netherlands 87 Norway 78

Portugal 29 Spain 84 Sweden 113

Switzerland 149 United Kingdom 1310

Table 2.2: List of financial markets and no. of assets collected.
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Figure 2.3: Distribution of MES in Europe over time.
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Figure 2.4: Sample size and standard deviation of MES in Europe over time.
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record in 2010, I will also discard returns from 2011 to 2014. Also, the crisis indica-

tor is given on a per-country basis. Given that most of the assets in the sample are

registered under the British stock market, I have considered Europe to be facing a

banking crisis whenever the United Kingdom is. Another assumption regards data

frequency. Since the crisis indicator comes at a yearly frequency and the returns

are observed daily, I will assume that the crisis indicator will equal 1 for all days in

a given year, if the indicator equals 1 for that year. Although this is a very strong

assumption, it will be discussed later on in Chapter 4, along with the conclusions.

The practical implementation in MatLab® is shown in Appendix C, where the

core own-defined functions are presented.

2.2.1 Density estimation

One challenging task in doing statistics is estimating a density. This has a vari-

ety of applications and one of them is calculating an entropy index. The choice

in this Thesis is to employ a Bayesian non-parametric approach, where different

results can be obtained according to the prior knowledge one has when carrying

out research. Müller and Quintana (2004) represented the state of Bayesian non-

parametric methods known that far, with clear highlights about ongoing research

in that field. As the bayesian approach implies the elicitation of prior distributions

to represent prior knowledge about a parameter (or a whole parameter space), I

will consider the uniform distribution and the Jeffreys’ prior in order to state prior

ignorance. In addition, the frequentist approach follows in this Thesis as a special

case of the bayesian one.

Given the discretization of MES, which is a continuous random variable, it can

be seen as version of a multinomial density, where, instead of a category, we place

a specific value of MES into an interval. No specific meaning is actually assigned

to any of the subintervals, whereas in the pure multinomial framework, each cate-

gory may have some “label” attached. In this context, inference about the density

of MES has been carried out using the bayesian multinomial density estimation

approach as in Minka (2003). He started with the joint probability of a set of counts

defined as:

Pr(N1, N2, . . . , NK |p) =

(

N

N1, N2, . . . , NK

)

K
∏

k=1

p
Nk

k
, (2.5)

with

Nk =

K
∑

k=1

δ(x = k), and δ(x = k) =

{

1 if x = k

0 otherwise,

where p = (p1, p2, . . . , pK ) it the vector of probabilities such that pk = Pr(x = k).

As already introduced, one can compare the multinomial approach to the his-

togram one. Instead of a discrete-valued random variable, one can consider a real-

valued variable that takes values on a set of intervals. In this context, Nk is exactly
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the number of observations that fall within the k-th interval. Minka (2003) shows

that a conjugate prior for p is the Dirichlet distribution:

Pr(p|α) ∼D(α1, . . . ,αK ) =
Γ

(
∑

k αk

)

∏

k Γ(αk )

K
∏

k=1

p
αk−1
k

. (2.6)

And the posterior distribution obtained by applying the Bayes’ rule is:

Pr(p|X,α) ∼D(Nk +αk ) =
Γ

(
∑

k (Nk +αk )
)

∏

k Γ(Nk +αk )

K
∏

k=1

p
Nk+αk−1
k

. (2.7)

The hyperparameter αk can be thought of as a virtual count, on the same scale of

Nk , for the k-th bin, before observing X. As shown in Minka (2003), given a vec-

tor of data X and a Dirichlet distribution D(α1, . . . ,αK ) as a conjugate prior, and

rephrasing in terms of histograms, one can obtain the posterior predictive distri-

bution

Pr(x = k|X,α) = E
[

pk |X
]

=
Nk +αk

N +
∑K

k=1
αk

, (2.8)

or the Maximum A Posteriori (MAP)

p̂k =
Nk +αk −1

N +K +
∑K

k=1
αk

, (2.9)

where N is the number of IID samples X = {x1, x2, . . . , xN }, Nk is the number of

variables whose realizations are within the k-th bin and K is the total number of

bins. Table 2.3 describes how Equations 2.8 and 2.9 are written when the Jeffreys’

prior or the uniform one are employed. It can be noted that the Maximum A Pos-

teriori (MAP) estimate with uniform prior corresponds to the standard frequentist

histogram approach.

The point estimate of p carried out using MAP and the Jeffreys’ prior, however,

may produce invalid values of pk , as it may happen to be negative. Speaking in

practical terms, if one arbitrarily decides to use specific intervals for discretizing,

if may happen that, for some intervals, Nk is zero, so that the numerator becomes

negative. Otherwise, by setting such intervals, one is also imposing a specific value

for K , which may be such that N < K /2. In this case, the denominator becomes

negative. Figures 2.5 and 2.6 show the estimated densities according to the em-

ployed method. Significant changes regard the probabilities of the modes, whereas

the tails are somewhat equal. Qualitatively, however, the densities do not differ.

2.2.2 Entropy definition

As noted by Shannon (1948) and many subsequent works by many authors, the

entropy can be thought of a measure of disorder, or randomness. In fact, he noted

that the entropy index applied to probability is maximum when the underlying
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Figure 2.5: Estimated density of MES over time (MAP, with uniform prior).

Figure 2.6: Estimated densities of MES over time (posterior predictive with uni-

form and Jeffreys’ priors).
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probability distribution is uniform. In other words, given the vector p = (p1, p2, . . . , pK ),

if its elements are all equal, then the entropy associated to that vector is maximum.

Otherwise, if only one element pk = 1 and all the others are zero, the entropy is

minimum.

Denoting the entropy measures in Shannon (1948), Rényi (1960) and Tsallis

(1988), respectively, ES , ER and ET , we have;

ES =−

n
∑

i=1

pi log(pi ), (2.10)

ER =
1

1−α
log

(

n
∑

i=1

pα
i

)

, (2.11)

and

ET =
1

α−1

(

1−
n
∑

i=1

pα
i

)

. (2.12)

As discussed in Maszczyk and Duch (2008), the entropy in Shannon (1948) is a

special case of the other two formulations. In particular, according to the value of

α, the measures in Equations 2.11 and 2.12 assign more or less weight to the tails

of the distribution. To see this, assume that p = (p1, p2), with p2 = 1−p1, and look

at Figures 2.7, 2.8 and 2.9, which have been taken from Maszczyk and Duch (2008).

Compared to the entropy index in Shannon (1948), and depending on the value of

the parameter α, the entropy in Rényi (1960) penalizes the “mid-way” between the

uniform and the impulse distributions, while the entropy in Tsallis (1988) assigns

less importance to randomness, that is it penalizes uniformity in the distribution.

Therefore, for the entropy in Rényi (1960), the higher the parameter α and the less

the entropy for distributions “far” from the uniform, i.e., the tails of the distribu-

tion are penalized. In contrast, for the entropy in Tsallis (1988), the higher the

parameter α, and the less the entropy for distributions “close” to the uniform, i.e.,

the tails of the distribution are emphasized. It is clear that the “farther” a distri-

bution is from the uniform, the thinner its tails are. Entropies behave somewhat

symmetrically.

Method Uniform Jeffreys

Posterior predictive, E
[

pk |X
]

=
Nk +1

N +K

Nk +1/2

N +K /2

Maximum a posteriori, p̂k =
Nk

N

Nk −1/2

N −K /2

Table 2.3: The bayesian point estimates according to the uniform and the Jeffrey’s

priors.
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Figure 2.7: Plot of Shannon’s entropy for p = (p,1−p).

Figure 2.8: Plot of Renyi’s entropy for p = (p,1−p).

Figure 2.9: Plot of Tsallis’ entropy for p = (p,1−p).
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Chapter 3

The models and main findings

In this Thesis, I model systemic risk as a logistic function of entropy. For each

definition of entropy defined in Section 2.2, many models have been estimated in

order to take into account the effects of the parameter α in Rényi (1960) and Tsallis

(1988).

If Et is the entropy index (of any type) for the distribution of returns at time t

and Ct is the crisis indicator at time t , then the specified models are of the form

Pr(Ct = 1|Et ) =G(β0 +β1Et ), (3.1)

where G(·) is the logistic cumulative density function, namely

G(x) =
ex

ex +1
. (3.2)

In this Section, I analyze the results for the Shannon’s Entropy estimated on

the density obtained from the Maximum A Posteriori method with uniform prior

described in Subsection 2.2.1, which corresponds to the frequentist approach. The

results from the logit specification are presented in Table 3.1. Figures 3.1 and 3.2

give pictures of the models, the former in a scatter perspective (entropy versus cri-

sis indicator, both actual and predicted) and the latter in a temporal perspective

(time versus crisis indicator, both actual and predicted) and it emphasizes the use

of such a model in terms of Early Warning System.

Variable Coefficient St. Error t-ratio p-value

constant -32.3465 1.1631 -27.8106 0.0000

Entropy 10.9709 0.3963 27.6800 0.0000

No. of observations: 2870 (From 1-Jan-2000 to 31-Dec-2010)

Percentage of correctly predicted indicators: 86.48%

Table 3.1: Logit estimates on Shannon’s Entropy.

17
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Figure 3.1: Scatter-plot of actual and estimated response variable against the

Shannon’s entropy.
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Figure 3.2: Overview of actual and estimated response variable over time.
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The actual p-value for the coefficient associated to entropy is 1.2169×10−168.

That is, for any conventional confidence level, the entropy is statistically signifi-

cant in explaining the crisis indicator. This result is intuitively depicted in Figure

3.2, where the overall impression is that the model does “work.”

For evaluating the goodness of the models, many approaches can be consid-

ered. See Wooldridge (2009) for a list of most common goodness-of-fit measures.

For simplicity, the percent of correctly predicted indicators is here employed. It is

built as follows. With reference to the dependent variable, i.e., the crisis indicator

in Reinhart and Rogoff (2008), we can define a threshold as the percent of times

where it is equal to one. Namely

threshold =

∑T
t=1 Ct

T
. (3.3)

This threshold is selected to take into account the intrinsic features of the crisis

indicator: it is not completely separated by any entropy index, and the number of

times in which Europe is deemed to be facing a banking crisis is less than half the

considered time span. For the time between 1st January 2000 and 31st December

2010, such threshold is equal to 36.38%. Then, if Ĉt is the predicted probability of

crisis returned by the logit model, we can define a binary variable C̃t such that:

C̃t =

{

1 if Ĉt ≥ threshold

0 otherwise.
(3.4)

This way, we have T pairs of values (Ct ,C̃t ) which, at any t , can form four possible

permutations: either they are both equal to 1 or 0, or they are different. The per-

cent of correctly predicted indicators is the number of times where Ct = C̃t relative

to T .

3.1 Model calibration

More attention can be paid to the entropy indexes in Rényi (1960) and Tsallis (1988).

As they embed the parameter α, they allow the researcher to calibrate (i.e., to fine-

tune) the models.

Economically, it means identifying how much the tails of the distributions of

MES are relevant to the prediction of the crises. Intuitively, the more spread the

distribution, and the “fatter” its tails. As already discussed, the parameter α in the

entropy definitions helps understanding how important are the tails. One may fur-

ther develop the argument stating that such parameter assigns more or less weight

to the degree of uncertainty — or “disorder” — of the scenarios.

Statistically, that means minimizing a loss function. Such function is identi-
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Figure 3.3: Sum of Squared Residuals as functions of α.

fied, in this Thesis, with the Sum of Squared Residuals (SSR), namely

SSR =

T
∑

t=1

(

Ct − Ĉt

)2
, (3.5)

where Ĉt is the estimated probability of crisis returned by the logit model in Equa-

tion 3.1. In other words, α is chosen in order to “stabilize” the estimates, so that

they tend to be “stickier” to the true values of the dependent variable. It also means

that changes in the regressors have greater impact in the estimates of the proba-

bility of crisis.

For the entropies in Rényi (1960) and Tsallis (1988), Ĉt is a function of α, as it

derives from the logistic regression run on those indexes. We can therefore want

to minimize the SSR according to that parameter. That translates to

min
α

SSR(α) = min
α

T
∑

t=1

(

Ct − Ĉt (α)
)2

. (3.6)

For many positive values of α, the logit models have been estimated and the

SSR calculated. Figure 3.3 shows the behavior of SSR as a function of α for both

Renyi’s and Tsallis’ entropy indexes. The implication of such behavior is twofold:

asymptotically, the Renyi’s entropy has to be preferred to the Tsallis’ one. The

second implication has to do with the common minimizer. For both entropies,

minα SSR is achieved by setting α = 1.7. This confirms the intuition that the two

entropies behave somewhat symmetrically for values of α positive but not equal

to the unit.1 For the calibrated model, the logit estimates are described in Tables

3.2 and 3.3 and depicted in Figures 3.4, 3.5, 3.6 and 3.7.

1If α→ 1, the entropies converge to the Shannon’s one.
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Variable Coefficient St. Error t-ratio p-value

constant -60.2418 2.7521 -21.8896 0.0000

Entropy 27.8391 1.2809 21.7336 0.0000

No. of observations: 2870 (From 1-Jan-2000 to 31-Dec-2010)

Percentage of correctly predicted indicators: 88.89%

Table 3.2: Logit estimates on Renyi’s Entropy (α= 1.7).

Variable Coefficient St. Error t-ratio p-value

constant -138.5621 6.3163 -21.9373 0.0000

Entropy 124.3537 5.6838 21.8785 0.0000

No. of observations: 2870 (From 1-Jan-2000 to 31-Dec-2010)

Percentage of correctly predicted indicators: 89.20%

Table 3.3: Logit estimates on Tsallis’ Entropy (α= 1.7).

An overall comment about the results is that the models perform fairly well. As

expected by the minimization of SSR, the estimates tend to “stick” to the real values

of the crisis indicator. The estimates correctly react to the crises at the beginning

of the 21st century, where the dot-com bubble and the terrorist attack to the Twin

Towers in New York have largely impacted the financial markets. Moreover, some

sharp movements of the predicted probability of crisis can be noted to happen in

2006, where the first instabilities in the market for houses in the US appeared.2

The model also highlights the instabilities that began in mid 2007. Recall that, on

14th September 2007, Norther Rock’s shares had a crash in the stock market due to

a bank run. See Wallop (2007) on this.

Comparing the results with the model on Shannon’s entropy, one can see that

different measures of entropy basically make the new estimates more responsive

with respect to changes in the independent variable. That is, the intuition that

the entropies in Rényi (1960) and Tsallis (1988) assign different weights to the tails

of the distributions is confirmed. This can be easily seen in the second half of

2006.3 The entropy in Shannon (1948) reacts somewhat fairly, while the models

with the Rényi’s and Tsallis’ entropy measures feature sharper changes in the esti-

mated probability of crisis.

3.2 Robustness check

One may wonder whether or not the estimates presented so far are dependent on

the available sample. Given that the exogenous variable is based on probabilities

2Recall that one of the ICB supersectors included in the dataset is made of firms active in the Real

Estate financial markets (supersector 8600).
3Compare Figures 3.2 3.5 and 3.7.
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Figure 3.4: Scatter-plot of actual and estimated response variable against the

Renyi’s entropy.
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Figure 3.5: Overview of actual and estimated response variable over time.
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Figure 3.6: Scatter-plot of actual and estimated response variable against the Tsal-

lis’ entropy.
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Figure 3.7: Overview of actual and estimated response variable over time.
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(rather than directly on MES quantiles), a way of checking the robustness of the

model is to change the way such probabilities are estimated.

In Section 2.2, different density estimation methods have been introduced,

which have to do with the bayesian non-parametric multinomial approach, as

thoroughly studied by Minka (2003). As already described in Subsection 2.2.1, MES

has been discretized and it is assumed to come from a multinomial distribution.

Here I evaluate the same logit models as in Equation 3.1, taking into account

the same entropy indexes. Different densities have been estimated using the pos-

terior predictive function with a uniform prior and the Jeffreys’ prior. To recall,

such posterior predictive function is expressed as

E
[

pk

∣

∣X
]

=
Nk +αk

N +
∑K

k=1
αk

(3.7)

=
Nk +1

N +K
with a uniform prior, (3.8)

=
Nk +1/2

N +K /2
with the Jeffreys’ prior. (3.9)

As already noted in Figures 2.5 and 2.6, the effects of such methods is that the

modes of the distributions are less likely, that is the probability of observing the

mode is less than the same probability in the frequentist approach, while the prob-

ability associated to the tails is not zero, which is to say that the tails are “fatter” in

these estimates.

Table 3.5 compares all the calibrated models, for the three entropy indexes and

for the three different bayesian estimates. It can be noted that no much difference

occurs between the models. The values of α that calibrates the model goes from

1.7 to 1.6. The minima of SSRs are at different heights, confirming that the fre-

quentist approach is “stickier” to the dependent variable. Considering both the

percent of correctly predicted probabilities and the SSR, all the models based on

the Maximum A Posteriori estimate with uniform prior perform slightly better than

the others, but the improvement is not of critical magnitude. In contrast, when

evaluating which entropy index is to be preferred, the formulation in Rényi (1960)

is marginally better than the others, apart for the frequentist density estimation

case, where the entropy in Tsallis (1988) performs best.

In any case, however, the main insights of the model are proved to be robust, at

least with respect to different estimation methods. All the t-ratios are at compara-

ble levels and no p-value changes in a way that calls into question the significance

of any regressor. Table 3.4 provides an insight about the magnitude of the p-values.

The main conclusion on this is that entropy, no matter how it is defined, is a

reliable factor in explaining a crisis.
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Figure 3.8: Sum of Squared Residuals as functions of Renyi’s α.
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p-values

Entropy index Estimator a b

Shannon

MAP + uniform 1.2168 −168

Pred. + uniform 8.5118 −128

Pred. + Jeffreys 1.4312 −148

Renyi

MAP + uniform 9.8718 −105

Pred. + uniform 1.0449 −146

Pred. + Jeffreys 8.2805 −150

Tsallis

MAP + uniform 4.1629 −106

Pred. + uniform 2.5954 −149

Pred. + Jeffreys 5.7417 −153

Table 3.4: The p-values for the coefficients of the entropy indexes expressed in

scientific notation a ×10b .

Variable Coefficient St. Error t-ratio p-value

Shannon constant -32.3465 1.1631 -27.8106 0.0000

MAP + Uniform Entropy 10.9709 0.3963 27.6800 0.0000

[86.48%]

Shannon constant -185.0967 7.6778 -24.1080 0.0000

Pred. + Uniform Entropy 30.2427 1.2575 24.0492 0.0000

[73.94%]

Shannon constant -118.9344 4.5665 -26.0449 0.0000

Pred. + Jeffreys Entropy 21.5589 0.8305 25.9592 0.0000

[75.40%]

Renyi (α= 1.7) constant -60.2418 2.7521 -21.8896 0.0000

MAP + Uniform Entropy 27.8391 1.2809 21.7336 0.0000

[88.89%]

Renyi (α= 1.6) constant -75.7430 2.9128 -26.0032 0.0000

Pred. + Uniform Entropy 15.6532 0.6069 25.7936 0.0000

[80.91%]

Renyi (α= 1.6) constant -69.7720 2.6512 -26.3167 0.0000

Pred. + Jeffreys Entropy 17.6278 0.6762 26.0686 0.0000

[83.17%]

Tsallis (α= 1.7) constant -138.5621 6.3163 -21.9373 0.0000

MAP + Uniform Entropy 124.3537 5.6838 21.8785 0.0000

[89.20%]

Tsallis (α= 1.6) constant -440.7371 16.9129 -26.0593 0.0000

Pred. + Uniform Entropy 279.8046 10.7515 26.0248 0.0000

[80.70%]

Tsallis (α= 1.6) constant -281.8222 10.6735 -26.4039 0.0000

Pred. + Jeffreys Entropy 186.4599 7.0774 26.3457 0.0000

[82.96%]

Table 3.5: Results from the logit fits for all the density estimation methods. Num-

bers in brackets show the percent of correctly predicted indicators given the

threshold in Equation 3.3. For all the models, the number of observations is 2870

(from 1st January 2000 to 31st December 2010).



Chapter 4

Conclusions

In Chapter 3, I have outlined the main numerical results for various logit specifi-

cations. For each density estimate, three measures of entropy have been used as

independent variables. Considering the fact that each model has only one regres-

sor, the models sport fairly well and each of them is statistically significant.

In the course of this Thesis, some assumptions have been made, sometimes

also implicitly. Expanding the banking crisis indicator in Reinhart and Rogoff (2008)

from its yearly frequency to a daily frequency required the strong assumption that,

for a given year, if a country is facing a crisis, then it is facing it all the days in that

year. This represents a choice that can be addressed in future works. A possible

substitution of such dependent variable is the database about the standing facil-

ities offered by the European Central Bank. In particular, given that banks are all

connected to each other also through such facilities, one may pinpoint and fur-

ther develop the idea of systemic risk, especially in the banking sector. The extent

to which each bank resorts to the standing facilities may represent a good indicator

of how much all the other banks are exposed to external risks.

Another assumption is the use of data about assets only. While such choice

has been justified by the work of Löffler and Raupach (2013), who state that MES

is not robust with respect to other financial instruments, working out the assump-

tion may constitute a valid direction of advances. Exploring the role of bonds and

derivatives in MES and in the entropy of returns may provide additional insights

about the distributions of returns over time. An accurate study of the effects of

non-asset instruments on returns may allow to capture relevant non-linearities in

the behavior of the markets.

The models presented here rely on the logit specification, so that one may in-

terpret how much “disorder” contributes to a banking crisis. Such reliance on a re-

gression model may be relaxed. Along with the bayesian framework, Minka (2003)

also provided a test for homogeneity in the distributions. He shows that the proba-

bility that two samples X and Y come from the same multinomial distribution can

27
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be expressed in terms of the odds in favor of difference. The log-odds can be ap-

proximated by the Jensen-Shannon divergence. Therefore, one can use such test

to understand when samples come from different distributions, and see whether

or not there is correlation between such changes and the crisis indicator.

However, the main economic implications from the contents of this Thesis are

two. On one hand, one understands that MES is a valuable starting point for ana-

lyzing systemic risk. It provides a simple, yet effective, “rule of thumb” for filtering

data, so that one focuses on those states where an institution or a whole market

are experiencing financial troubles. On the other hand, although the concept of

entropy may be seen as a trivial expression of variability, it allows some considera-

tions about the agents’ behavior. As in thermodynamics, entropy is interpreted as

a measure of “disorder,” with the underlying idea that entropy acts as a count for

the number of possible outcomes that can be witnessed. This directly follows from

the conditions set in Shannon (1948) in order to define entropy in that specific way.

Thus, entropy can be employed in order to micro-found a model where agents

in the financial market react to disorder. A behavioral approach in terms of Prospect

Theory or Behavioral Finance may lead to the conclusion that agents not only obey

the advice given by the pure mathematical understanding of the financial state,

but also other biasing elements, linked to the situation of the financial market, are

at play when making financial decisions.



Appendix A

The database in Reinhart and

Rogoff (2008)

The database from Reinhart and Rogoff contains qualitative information built on

quantitative sources, which are not available in the same database. The time frame

ranges from 1800 to 2010 and features annually-paced binary variables.

Every variable in the Reinhart-Rogoff database is binary. Table A.1 lists all vari-

ables and their definitions. Table A.2 lists all analyzed countries.
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Variable Equals one when. . .

Independence Year The first year of independence occurs and all sub-

sequent years.

Inflation The annual inflation is 20% or higher.

Currency crash The annual depreciation rate against USD (or any

more relevant anchor currency, like GBP, DEM,

FRF or EUR) is 15% or higher.

Currency debasement (type 1) The reduction in the metallic content of coins in

circulation is 5% or higher.

Currency debasement (type 2) A currency reform replaces a much-depreciated

earlier currency (like in China, in 1948).

Banking crisis (systemic) Bank runs occur and cause closure, merge or pub-

lic takeovers of one or more financial institutions.

Banking crisis (distress) No bank runs occur, but there anyway is a closure,

merge or public takeovers of one financial institu-

tion that cause a series of similar events.

Debt crisis (external) There is a failure to meet a principal or interest

payment on the due date.

Debt crisis (domestic) The definition for the external debt crisis applies

and domestic bank deposits are frozen or forced

to be converted from USD to the local currency.

Table A.1: List of binary variables in Reinhart and Rogoff (2008).

Algeria Angola Argentina

Australia Austria Belgium

Bolivia Brazil Canada

Central African Republic Chile China

Colombia Costa Rica Cote D’Ivoire

Denmark Dominican Republic Ecuador

Egypt El Salvador Finland

France Germany Ghana

Greece Guatemala Honduras

Hungary Iceland India

Indonesia Ireland Italy

Japan Kenya Korea

Malaysia Mauritius Mexico

Morocco Myanmar Netherlands

New Zealand Nicaragua Nigeria

Norway Panama Paraguay

Peru Philippines Poland

Portugal Romania Russia

Singapore South Africa Spain

Sri Lanka Sweden Switzerland

Taiwan Thailand Tunisia

Turkey United Kingdom United States

Uruguay Venezuela Zambia

Zimbabwe

Table A.2: List of countries analyzed in Reinhart and Rogoff (2008).



Appendix B

The database in Laeven and

Valencia (2012)

The database used by Laeven and Valencia (2012) features the variables of interest

in their paper, which are mainly macroeconomic and related to GDP, liquidity in

the banking system, fiscal and monetary policies.

The database is both included in the paper and as an Excel annex available at

the IMF website.1

The database does not provide “raw” data, but makes reference to aggregated

and calculated summary data referred to as “Authors’ calculations” and “Staff re-

ports.” Most of the figures are expressed in ratios to (or percentage of) GDP or

other macroeconomic variables like foreign liabilities kept by the country’s domes-

tic banking system.

No frequency is clearly stated in the paper, although (at least) monthly-paced

data is suggested by a graph which indicates how many crises arose on each month

of the year. The data relates to the period 1970-2011.

Table B.1 lists all macroeconomic variables used and discussed in the paper,

along with a short description. Table B.2 lists all countries analyzed in the IMF

paper. The database features 162 countries.

1http://www.imf.org/external/pubs/ft/wp/2012/Data/wp12163.zip
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Variable Definition

Output loss In percent of GDP, it is the cumulative sum of the differ-

ences between actual and trend real GDP over the period

T,T +1,T +2,T +3, where T denotes the starting year of

a crisis.

Fiscal costs They include gross fiscal outlays related to the restruc-

turing of the financial sector.

Gross outlays and recov-

eries

They measure fiscal outlays (and subsequent repay-

ments by banks) in percent of GDP.

Peak liquidity Liquidity is measured as the ratio [central bank claims

on deposit money banks] + [liquidity from the Treasury]

over [total deposits and liabilities to non-residents]. To-

tal deposits are the sum of [demand deposits] + [other

deposits] + [liabilities to non-residents]. Reference is

made to IFS lines.

Liquidity support See “Peak liquidity.” Relates to support measures (other

than fiscal outlays) which contributed to fuel the bank-

ing system with new liquidity (like large purchases of real

and/or financial assets).

Peak NPLs Non-Performing Loans in percent of total loans. Data

come from IMF Staff reports and Financial Soundness

Indicators.

Public debt Measured in percent of GDP. Increases in public debt are

measured over the interval [T −1,T +3], where T denotes

the starting year of a crisis.

Monetary expansion Measured as the change in the monetary base between

its peak during the crisis and its level one year prior to

the crisis.

Credit boom As defined in Dell’Ariccia et al. (2012)

Table B.1: List of variables in Laeven and Valencia (2012).
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Albania Algeria Angola

Argentina Armenia Australia

Austria Azerbaijan Bangladesh

Barbados Belarus Belgium

Belize Benin Bhutan

Bolivia Bosnia and Herzegovina Botswana

Brazil Brunei Bulgaria

Burkina Faso Burundi Cambodia

Cameroon Canada Cape Verde

Central African Rep. Chad Chile

China, P.R. Colombia Comoros

Congo, Dem. Rep. of Congo, Rep. of Costa Rica

Côte d’Ivoire Croatia Czech Republic

Denmark Djibouti Dominica

Dominican Republic Ecuador Egypt

El Salvador Equatorial Guinea Eritrea

Estonia Ethiopia Fiji

Finland France Gabon

Gambia, The Georgia Germany

Ghana Greece Grenada

Guatemala Guinea Guinea-Bissau

Guyana Haiti Honduras

China, P.R.: Hong Kong Hungary Iceland

India Indonesia Iran, I.R. of

Ireland Israel Italy

Jamaica Japan Jordan

Kazakhstan Kenya Korea

Kuwait Kyrgyz Republic Lao People’s Dem. Rep.

Latvia Lebanon Lesotho

Liberia Libya Lithuania

Luxembourg Macedonia Madagascar

Malawi Malaysia Maldives

Mali Mauritania Mauritius

Mexico Moldova Mongolia

Morocco Mozambique Myanmar

Namibia Nepal Netherlands

New Caledonia New Zealand Nicaragua

Niger Nigeria Norway

Pakistan Panama Papua New Guinea

Paraguay Peru Philippines

Poland Portugal Romania

Russia Rwanda São Tomé and Principe

Senegal Serbia, Republic of Seychelles

Sierra Leone Singapore Slovak Republic

Slovenia South Africa Spain

Sri Lanka Sudan Suriname

Swaziland Sweden Syrian Arab Republic

Switzerland Tajikistan Tanzania

Thailand Togo Trinidad and Tobago

Tunisia Turkey Turkmenistan

Uganda Ukraine United Kingdom

United States Uruguay Uzbekistan

Venezuela Vietnam Yemen

Yugoslavia, SFR Zambia Zimbabwe

Table B.2: List of countries analyzed in Laeven and Valencia (2012).
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Appendix C

Own defined functions in MatLab

C.1 Density estimation

function p = minka(x,method,prior)

% MINKA estimates data density as in Minka (2003)

%

% P = minka(X,METHOD,PRIOR)

%

% X is a vector of data, whose density has to be estimated.

%

% The function provides two methods and two priors.

% At this stage of the development of the script, no other

% priors can be used without modifying the script.

%

% METHOD is either ’predictive’ or ’map’

% PRIOR is either ’jeffreys’ or ’uniform’

%

% Note that P = minka(X,’map’,’uniform’) corresponds to the

% frequentist relative frequency approach.

%

% Reference: Minka, Thomas P. (2003),

% "Bayesian inference, entropy, and the multinomial

% distribution"

% Technical Report, Microsoft

k = -0.5:0.001:0.5;

K = length(k);

N = length(x(~isnan(x)));

Nk = hist(x(~isnan(x)),k);
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switch [method prior]

case ’predictivejeffreys’

p = (Nk + 1/2) / (N + K/2);

case ’predictiveuniform’

p = (Nk + 1) / (N + K);

case ’mapjeffreys’

p = (Nk - 1/2) / (N - K/2);

warning([’Make sure the output sums to 1 and every ’...

’element of the output is between 0 and 1!’])

case ’mapuniform’

p = (Nk / N);

otherwise

error(’Method and/or prior have been misspecified’)

end

end

C.2 Entropy formulations

C.2.1 Shannon (1948)

function H = shannon(p,base)

% SHANNON calculates the entropy index as in Shannon (1948)

%

% H = shannon(P,BASE)

%

% P is a vector of probabilities, or relative frequencies

% BASE can be either ’natural’ or ’binary’ and refers

% to the logarithm in the formula.

%

% Reference: Shannon, Claude E. (1948)

% "A Mathematical Theory of Communication"

% Bell System Technical Journal 27 (3): 379–423

%

switch base

case ’binary’

H = -sum(p(p>0).*log2(p(p>0)));

case ’natural’
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H = -sum(p(p>0).*log(p(p>0)));

end

end

C.2.2 Rényi (1960)

function H = renyi(p,alpha,base)

% RENYI calculates the entropy index as in Renyi (1961)

%

% H = renyi(P,ALPHA,BASE)

%

% P is a vector of probabilities, or relative frequencies.

% ALPHA is a scalar parameter.

% BASE can be either ’natural’ or ’binary’ and refers

% to the logarithm in the formula.

%

% Reference: Maszczyk, T. and Duch, W. (2008)

% "Comparison of Shanon, Renyi and Tsallis Entropy

% used in Decision Trees"

%

%% checking for errors

if nargin == 1

error(’A value of ALPHA must be specified’)

end

%% checking for errors

if alpha == 1

error(’Infeasible inputs (ALPHA can’’t be 1)’)

end

%% checking for errors

if sum(p.^alpha) <= 0

error(’Infeasible inputs (domain of log)’)

end

%% main part of the function

switch base

case ’binary’
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H = (1/(1-alpha))*(log2(sum(p.^alpha)));

case ’natural’

H = (1/(1-alpha))*(log(sum(p.^alpha)));

end

end

C.2.3 Tsallis (1988)

function S = tsallis(p,alpha)

% TSALLIS calculates the entropy index as in Tsallis (1988)

%

% S = tsallis(P,ALPHA)

%

% P is a vector of probabilities, or relative frequencies.

% ALPHA is a scalar parameter.

%

% Reference: Maszczyk, T. and Duch, W. (2008)

% "Comparison of Shanon, Renyi and Tsallis Entropy

% used in Decision Trees"

%

%% checking for errors

if nargin == 1

error(’A value of ALPHA must be specified’)

end

%% checking for errors

if alpha == 1

error(’Infeasible inputs (ALPHA can’’t be 1)’)

end

%% main part of the function

S = (1/(alpha-1))*(1-sum(p.^alpha));

end
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