
Approaching the Skyline in Z Order

Ken C. K. Lee† Baihua Zheng‡ Huajing Li† Wang-Chien Lee†

cklee@cse.psu.edu bhzheng@smu.edu.sg huali@cse.psu.edu wlee@cse.psu.edu
†Pennsylvania State University, University Park, PA16802, USA.

‡Singapore Management University, Singapore.

ABSTRACT
Given a set of multidimensional data points, skyline query retrieves
a set of data points that are not dominated by any other points. This
query is useful for multi-preference analysis and decision making.
By analyzing the skyline query, we observe a close connection be-
tween Z-order curve and skyline processing strategies and propose
to use a new index structure called ZBtree, to index and store data
points based on Z-order curve. We develop a suite of novel and
efficient skyline algorithms, which scale very well to data dimen-
sionality and cardinality, including (1) ZSearch, which processes
skyline queries and supports progressive result delivery; (2) ZUp-
date, which facilitates incremental skyline result maintenance; and
(3) k-ZSearch, which answers k-dominant skyline query (a sky-
line variant that retrieves a representative subset of skyline results).
Extensive experiments have been conducted to evaluate our pro-
posed algorithms and compare them against the best available al-
gorithms designed for skyline search, skyline result update, and
k-dominant skyline search, respectively. The result shows that our
algorithms, developed coherently based on the same ideas and con-
cepts, soundly outperforms the state-of-the-art skyline algorithms
in their specialized domains.

1. INTRODUCTION
Given a set of d-dimensional data points, skyline query retrieves

a set of data points that are not dominated by any other points. A
point p is said to dominate another point p′ if p is not worse than
p′ on all d dimensions and p is strictly better than p′ on at least one
dimension. Owing to a very large application base, skyline query
has received a lot of attentions in the database community [3, 10,
13, 15]. It is currently promoted for incorporating into commercial
database systems [6] as well.

Most of the work in the literature targets at improving the per-
formance of finding skyline points from a very large dataset [3, 10,
13, 15, 17]. Among all the performance criteria, search efficiency
and update efficiency are two most important ones. Additionally,
variants of skyline queries have been proposed, e.g., k-dominant
skyline query [5] that retrieves a representative subset of skyline
points from a high-dimensional data set. It relaxes the dominant
condition by considering k among d dimensions. While various
solutions have been proposed to address those different but closely
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related research issues, almost all of them are developed indepen-
dently. This work develops a generic yet highly efficient solution in
support of skyline queries as well as skyline updates, and demon-
strates the flexibility of our solution to answer k-dominant skyline
query coherently1. To the best of our knowledge, this is the first
work to address both the efficiency and the flexibility aspects in
skyline solutions in high data dimensional spaces.
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Figure 1: General skyline processing framework
Figure 1 shows a general framework commonly adopted by ex-

isting works for skyline query processing, e.g., [7, 13, 15]. Un-
der this framework, a skyline processor needs to carry out three
tasks to locate skyline points from a source dataset: (1) Data ac-
cess: loading potential skyline data points from the source dataset
for dominance tests2; (2) Candidate admission: admitting a skyline
candidate to the Candidate Set if it passes the dominance test, oth-
erwise discarding it; and (3) Candidate reexamination: performing
dominance tests on existing candidates against new candidates to
filter out false candidates. After the processing, all the remaining
skyline candidates are the final skyline points.

In the above framework, an update (i.e., an insertion or a dele-
tion) performed at the source dataset is also submitted to the skyline
processor (shown as (4) in Figure 1). An inserted data point can be
processed by first performing a dominance test (i.e., (2)) and then
if admitted, eliminating existing skyline points dominated by the
newly inserted skyline (i.e., (3)). However, when a skyline point is
deleted, some data points in the source dataset may become non-
dominated and thus are promoted to the skyline candidate/result
set. In this case, all the tasks (1)(2)(3) need to be invoked to locate
qualified data points for promotion. Additionally, this framework
can be adjusted to support k-dominant skyline by conducting tasks
(2) and (3) based on the k-dominance condition instead of conven-
tional dominance condition.

Skyline processing is obviously an expensive operation. Both
the I/O cost for accessing data from external storage and the CPU
cost for dominance test contribute significantly to the total process-
ing cost. Even though the processing time is typically dominated
by the I/O cost in database systems, the CPU time spent to perform
pairwise dominance tests here in skyline processing is not negligi-
ble. Through our analysis, we have obtained several observations:
1We plan to support other skyline variants in the future.
2A dominance test compares data points on a dominance condition.
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1. The access order of data points has a direct impact on the
performance. Identifying skyline points that dominate many
data points early can eliminate unqualified data points from
further examination. Moreover, certain access order of data
points may avoid candidate reexaminations.

2. Pairwise point-to-point dominance test is very time-consuming.
Efficient query processing and result update algorithms should
accelerate the dominance tests and facilitate search space
pruning in terms of blocks of data points.

3. The organization of skyline candidates and their examination
strategies are critical for the efficiency of dominance test.

Following the design principles derived from the above obser-
vations, we adopt an approach based on Z-order curve that carries
many good properties for processing skyline queries. Z-order curve
orders the data points and clusters them in blocks to facilitate ef-
ficient dominance tests and space pruning. A new index, namely,
ZBtree, is proposed to store data points and maintain the skyline
candidate set. A suite of algorithms, namely, ZSearch, ZUpdate
and k-ZSearch, are developed to process skyline queries, skyline
result updates, and k-dominant skyline queries, respectively. Fi-
nally, we conducted a comprehensive performance evaluation to
compare our proposal with existing algorithms.

The remainder of this paper is organized as follows. In Section 2,
we review the skyline problem and existing works. In Section 3, we
analyze the issues in skyline processing and explain why adopting
Z-order curve is an elegant solution, which leads to the introduction
of ZBtree to serve as the index of our algorithms. Section 4, 5 and 6
detail ZSearch, ZUpdate and k-ZSearch algorithms, respectively.
Section 7 evaluates the performance of our algorithms. Finally,
Section 8 concludes the paper.

2. PRELIMINARIES
This section first discusses the skyline problems and associated

properties, and then reviews closely related works.

2.1 Skyline Problems and Properties
Given a d-dimensional space S={s1, s2, · · · sd} and a set of

data points P={p1, p2, · · · pn} (where pi is a data point on S),
the dominance conditions and skyline problems are defined. We
use pi.sj to denote the j-th dimensional value of pi. We assume
the existence of a total order relationship, either ‘<’ or ‘>’, on each
dimension. Without loss of generality, we consider ‘<’ relationship
in this paper.

DEFINITION 1. Dominance. Given p, p′ ∈ P , p dominates p′

iff ∀si ∈ S, p.si ≤ p′.si ∧ ∃sj ∈ S, p.sj < p′.sj . �

We denote that p dominates p′ by p � p′ and use p �� p′ to
represent that p does not dominate p′.

DEFINITION 2. Skyline. A data point p ∈ P is a skyline point
in S iff p is not dominated by any other point p′(�= p) ∈ P , i.e.,
� ∃p′ ∈ P − {p}, p′ � p. �

We observe two important properties of the skyline problem,
namely, transitivity and incomparability, which provide important
insights to facilitate our algorithm development.

PROPERTY 1. Transitivity. Given p, p′, p′′ ∈ P , if p dom-
inates p′ and p′ dominates p′′, then p dominates p′′, i.e., p �
p′ ∧ p′ � p′′ ⇒ p � p′′. �

PROPERTY 2. Incomparability.Given p, p′∈ P , p and p′ are
incomparable if they do not dominate each other, i.e., p �� p′∧p′ ��
p. �

Based on the transitivity, if dominating points are always processed
before their dominated data points, a data point which passes the

dominance tests against all the skyline points ahead of it is guaran-
teed to be a skyline point. This property inspires the sorting-based
approaches [7, 8]. If two data points are known to be incomparable,
dominance tests between them can be avoided. This incomparabil-
ity inspires division-based approaches [3]. In addition, it is also
applicable to dominance tests on blocks of data points (and thus
can reduce the expensive individual point-to-point comparisons).

To retrieve a representative subset of skyline points, k-dominant
skyline query has been proposed [5]. With k-dominant skyline
query, data points with few good attributes would be dominated
and excluded from the result, based on the following k-dominance
condition. We denote that p k-dominates p′ by p �k p′ and that p
does not k-dominate p′ by p ��k p′.

DEFINITION 3. k-dominance. Given p, p′ ∈ P , p k-dominates
p′ iff ∃S′ ⊆ S, |S′| = k, ∀si ∈ S′, p.si ≤ p′.si∧∃sj ∈ S′, p.sj <
p′.sj . �

DEFINITION 4. k-dominant skyline. A data point p is a k-
dominant skyline point iff there is no point p′ (�= p) that k-dominates
p, i.e., � ∃p′ ∈ P − {p}, p′ �k p. �

For k-dominate skyline query, it is important to note that the
transitive property (Property 1) is no longer valid. This is be-
cause a data point p k-dominating another point p′ can also get
k-dominated by p′ at the same time, but in different k dimensions.
In this case, both p and p′ are not k-dominant skyline points, which
is the so-called cyclic dominance [5].

2.2 Related Work
In the following, we review representative algorithms for skyline

query, skyline result update and k-dominant skyline query. While
these algorithms are designed for specific problems, our suite of
algorithms, developed in the same design principles, can tackle all
of the addressed problems efficiently. In addition to the closely
related work to our research on centralized databases, many other
studies extend skyline queries in various environments, e.g., data
stream [11, 16], distributed databases [18], Web [1], Mobile Ad
hoc Network (MANET) [9], etc.

2.2.1 Skyline Query Processing
Skyline query processing algorithms, including Block-Nested Loop

(BNL) [3], Bitmap [15], Divide-and-Conquer (D&C) [3], Sort-Filter-
Skyline (SFS) [7], LESS [8], Index [15], Nearest Neighbor (NN) [10],
and Branch and Bound Search (BBS) [13], can be roughly classi-
fied by the techniques used, i.e., divide-and-conquer (D&C) and/or
sorting. Table 1 gives a short summary. BNL and Bitmap are brute
force algorithms. In the following, we review representative divide-
and-conquer, sorting and hybrid algorithms.

BNL Bitmap D&C SFS,LESS Index NN BBS
D&C χ χ � χ � � �
Sort χ χ χ � � � �

Table 1: Classification of skyline query algorithms

Divide and Conquer Algorithms. D&C divides a dataset into sev-
eral partitions small enough to be loaded into the main memory for
processing [3]. A partial skyline for each partition is computed.
Then, the complete skyline is obtained by merging all partial sky-
lines and removing dominated data points.

Sorting-based Algorithms. SFS is devised based on an obser-
vation that by getting a dataset presorted according to a certain
monotone scoring function such as entropy, or sum of attributes,
data points are guaranteed not to be dominated by others sorted be-
hind them and the partial query result can be delivered immediately.
SFS sequentially scans the sorted dataset and keeps a set of skyline
candidates. Those not dominated by skyline candidates should be
a part of the skyline. Dominance tests in SFS are based on an ex-
haustive scan on existing skyline candidates. Unless the number of
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skyline points is very small, SFS tends to be CPU-bound. LESS
combines external sort and skyline search in a multi-pass fashion.
It reduces the sorting cost and provides an attractive asymptotic
best-case and average case performance if the number of skyline
points is small. These sorting-based approaches have no search
space pruning capability and inevitably examine all the data points.

Hybrid Algorithms. Hybrid algorithms, including Index, NN and
BBS, use both divide-and-conquer and sorting techniques in sky-
line processing. We review BBS, the existing most efficient skyline
search algorithm below. Generally speaking, BBS is based on iter-
ative NN search. Figure 2(a) illustrates BBS with 9 2D points. In
the figure, p1, the nearest neighbor (nn) to the origin in the whole
space, is located as the first skyline point. Then, data points (i.e.,
p4, p8 and p9) fallen into the dominance region of p1, i.e., the re-
gion bounded by p1 and the maximal point of the entire space, are
not skyline and can be discarded safely. The second nn, p3, not
dominated by p1, is another skyline point. Similarly, p5, the third
nn, is retrieved and its dominated point p7 is removed. Finally p2

and p6 are retrieved and the search terminates.
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Figure 2: BBS and Main memory R-tree

BBS adopts R-tree as its underlying index structure for its effi-
cient nn search. It also uses a heap that keeps track of unexamined
data points and index nodes in distance order to alleviate repeated
access of upper portion of the R-tree and the main memory R-tree
to index the dominance regions of all skyline points. Via a main
memory R-tree, BBS performs dominance tests on an examinee
data point (or index node) by issuing an enclosure query. If the ex-
aminee is entirely enclosed by any skyline candidate’s dominance
region, it is dominated. In Figure 2(b), p8, an examinee data point,
is compared with Ba and Bb, intermediate index nodes’ MBBs in
the main memory R-tree. As p8 is enclosed in Ba, not Bb, p8 may
be dominated by those in Ba but not Bb. Finally, p8 is compared
with all data points inside Ba and found dominated by p1 (or p3).

However, the performance of R-tree that BBS depends on de-
teriorates when data dimensionality increases (due to the curse of
dimensionality [2]). Even worse, some data points and index nodes
are prematurely loaded into the heap, overconsuming the runtime
memory. Our proposed ZSearch (see Section 4) is also a hybrid ap-
proach. It processes the skyline by accessing data points in Z-order,
a widely received dimension reduction technique [14], where data
points are organized in a sorted and clustered fashion, improving
the processing time and the runtime memory consumption. With
block-based dominance tests, ZSearch can efficiently assert if a
block of data points is dominated.

2.2.2 Skyline Result Updates
Compared with skyline query processing, skyline result update

is a relatively new research area. In general, updates include inser-
tions and deletions. Insertions may bring in new skyline points. In
BBS-Update [13]3, a new data point is compared with dominance
regions of skyline candidates indexed by a main memory R-tree. It
first determines if the data point is dominated by any existing sky-

3We use BBS-Update to refer to the update algorithm and BBS for
search algorithm.

line point. If a new data point is not dominated, it is enrolled to the
main memory R-tree and those existing skyline points dominated
by this new point are removed. However, main memory R-tree is
inefficient to identify dominated skyline points. For example, in
Figure 2(b), p is a new skyline point and its dominance region in-
tersects with Ba and Bb, implying that some of their enclosed data
points may be dominated by p. Thus, p has to be compared with all
of enclosed data points. Our ZUpdate utilizes the sorting property
of Z-order curve to quickly figure out portions of skyline points not
dominated by the newly inserted point and portions need to perform
dominance tests.

Deletion is more complicate than insertion since data points pre-
viously dominated by a deleted point may no longer be dominated
and thus get promoted to the skyline result. BBS-Update defines
Exclusive Dominance Region (EDR) for each skyline point, i.e.,
the region inside which all the points are exclusively dominated by
the associated skyline point. However, in high dimensional spaces,
EDR could be in irregular and complex shape. To efficiently deter-
mine whether a data point p (or an index node) is exclusively dom-
inated by the deleted point, DeltaSky [17] extends BBS-Update by
maintaining d sorted lists, each corresponding to one dimension.
Each list sorts the data points according to their values on a partic-
ular dimension. If p is dominated, its dominating skyline point(s)
should be smaller than or equal to p in all d sorted lists. Based on
this idea, DeltaSky performs a negative test. It scans all the lists and
determines if all skyline points can be found greater than p among
all the lists. However, DeltaSky also suffers from a serious scala-
bility problem to high data dimensionality. First, it needs to scan
d lists in a high dimensional space. The number of skyline points
is expected to be large [5], which extends the length of all sorted
lists. Second, DeltaSky does not address insertion. Sorted lists fa-
vor deletions but they incur update overheads to insertions. Our
ZUpdate (shown in Section 5) can efficiently handle both insertion
and deletion (and even multiple deletions simultaneously).

2.2.3 k-Dominant Skyline Query Processing
By relaxing the dominance condition to consider k among d di-

mensions, k-dominant skyline query [5] reduces the size of skyline
result set. However, data points can k-dominate each other simul-
taneously. Figure 3 lists 4 3D data points, namely, p1, p2, p3, and
p4, which are all skyline points based on the conventional dom-
inance condition. If we consider 2-dominant skyline, p1 and p2

2-dominate each other. This cyclic dominance relationship violates
the transitivity property (Property 1), making all existing skyline
search algorithms inapplicable.

s1 s2 s3

p1 9 11 2
p2 2 11 11
p3 8 8 8
p4 1 25 1

Figure 3: k-dominant skyline example

In [5], three algorithms for k-dominant skyline query are pro-
posed, namely, One-Scan-Algorithm (OSA), Two-Scan-Algorithm
(TSA) and Sort-Retrieval-Algorithm (SRA). OSA scans the dataset
once. It maintains both k-dominant skyline points and conventional
skyline points to handle cyclic dominance. However, exhaustive
comparisons substantially slow down OSA. TSA improves OSA by
maintaining only k-dominant skyline but it scans the dataset twice.
The first scan collects candidate points, which might include false
hits, and the second scan eliminates those false hits. In Figure 3,
p1 is first picked and it 2-dominates p2 and p3 but not p4. After the
first scan, p1 and p4 are retained. In the second scan, p1 is checked
against p2 and gets dominated. It is removed from the candidate
set. p4, not 2-dominated after the second scan, is the 2-dominant
skyline. RSA is an elimination based approach. It initially puts all
data points as k-dominant skyline point candidates. In addition, all
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of them are stored in d sorted lists. Iteratively, it loads one data
point from one sorted list and compares it with all the candidates.
Those dominated candidates are removed. Finally, the remaining
candidates are k-dominant skyline points. Among all approaches,
TSA outperforms OSA and SRA as reported in [5].

With the relaxed k-dominant condition, more data points can be
dominated. The search space thus is significantly shrunk. However,
those three existing algorithms, not conscious of this fact, have to
access all individual data points. Obviously, points p1, p2 and p3 in
Figure 3 can be grouped as a block (i.e., (〈2, 9〉, 〈8, 11〉, 〈2, 11〉))
in the search space. It is easy to see that p4 2-dominates the entire
block, which eliminates the pairwise dominance tests between p4

and all the enclosed data points. Our k-ZSearch (shown in Sec-
tion 6) approaches this k-dominant skyline search problem by ex-
ploiting the clustering property of Z-order curve. When a cluster
of data points is found to be k-dominated, the examination of the
enclosed points is avoided, improving the search performance.

3. SKYLINE PROCESSING IN Z-ORDER
In this section, we first summarize some unique properties of the

Z-order curve that are observed to match perfectly well with some
processing strategies for skyline query. We develop ZBtree, an in-
dex structure based on Z-order curve to facilitate searches/updates.

3.1 Skyline and Z-Order Curve
The efficiency of skyline processing and result updating is highly

dependent on the three observations discussed in Section 1, two
of which are the invocation of dominance tests and the access or-
der of the data points. It is desirable to adopt block-based domi-
nance tests that quickly eliminate unnecessary pairwise point com-
parisons. The access order is important because the early identifi-
cation of skyline points that dominate lots of other data points can
eliminate many candidate examination and reexamination [7].
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Figure 4: Z-order curve example
Z-order space filling curve [14] has very nice geometric proper-

ties that fit the skyline processing strategies. For illustration, Fig-
ure 4(a) depicts a running example with 9 2D data points (p1, · · · p9).
Suppose we partition the entire space into four equal-sized quad-
rants, i.e., regions I, II, III and IV, along directions parallel to the
two axis. Data points in Region I are not dominated by data points
in the other three regions. On the contrary, all data points in Region
IV are dominated by any point in Region I. In other words, as long
as Region I is non-empty, all the points located inside Region IV
can be discarded from examination. In addition, Region II and III
are diagonally opposite to each other, and their data points do not
dominate each other (i.e., data points in Region II and those in Re-
gion III are not comparable). Dominance tests between them can be
avoided. However, points in Regions II or III may get dominated by
some data points in Region I. These observations provide excellent
heuristics for dominance tests in regional (i.e., block) level.

These observations also lead to a natural access order of the re-
gions (and their data points) for processing skyline search, i.e., Re-
gion I should be accessed first, followed by Region II, then Region
III (or Region III, then Region II) and finally Region IV4. The same
4The visiting order of Region II and III does not affect the correct-

principles are employed to subregions divided from each region.
The finest subregion can be small enough to cover only one distinct
coordinate. This access sequence exactly follows a (rotated) ‘Z’
order, which is the well known Z-order space filling curve. Fig-
ure 4(b) shows the Z-order curve, which starts at the origin and
passes through all coordinates (and data points) in the space once.
This curve can also be easily extended to a high-dimensional space.

Like other space filling curves, Z-order curve maps data points
in a multidimensional space to a one-dimensional space, with each
point represented by a unique number, called Z-address. A Z-
address is a bit string calculated by interleaving the bits of all the
coordinate values of a data point. For a d-dimensional space with
([0, 2v-1]) as the coordinate value domain ranges, the Z-address of
a data point contains dv bits, which can be considered as v d-bit
groups. The i-th bit of a Z-address is contributed by the (i/d)-th bit
of the (i%d)-th coordinate5. In our example, the Z-address of p2

(1,6) (i.e., (001,110) in binary) is 010110. Here, 01, 01, 10 are the
three 2-bit groups. 01 is formed by the first bit of x-coordinate 1
(i.e, 0 of 001) and that of y-coordinate 6 (i.e., 1 of 110). Similarly,
the Z-address of p4 (3,7) (i.e.,(011,111) in binary) is 011111 and
01, 11, 11 are the three 2-bit groups. This Z-address calculation
is reversible so the original coordinate can be recovered from its
corresponding Z-address6.

Z-addresses in nature are hierarchical. Given a Z-address with v
d-bit groups, the first bit group partitions the search space into 2d

equal-sized sub-spaces, the second bit group partitions each sub-
space into 2d equal-sized smaller sub-spaces, and so on. For in-
stance, p2 and p4 have the same first bit group (i.e., 01), and hence
both of them fall inside the left part along x-axis and upper part
along y-axis (i.e., the left-upper quad of the 2-D space). Based on
Z-addresses, the Z-order curve provides two important properties,
monotonic ordering and clustering, as stated below. They perfectly
match transitivity and incomparability properties of skyline prob-
lem already discussed in Section 2.1.

PROPERTY 3. Monotonic Ordering. Data points ordered by
non-descending Z-addresses are monotonic in a way that a domi-
nating point is placed before its dominated points. �

As shown in Figure 4(b), based on Z-order curve, p1 that dominates
p8 and p9 is accessed before both of them. Similarly, p2 and p3 are
accessed before p4, while p5 is accessed before p7. This access
order guarantees that no candidate reexamination is needed.

PROPERTY 4. Clustering. Data points ordered by Z-addresses
are naturally clustered as regions. �

Due to the hierarchical property of Z-addresses, data points located
in the same regions have similar Z-addresses. For instance, p2,
p3 and p4 (with the first bit-group (i.e., 01) in common) are lo-
cated closely in the same region. Similarly, p5, p6, and p7 hav-
ing the same first bit group (i.e. 10) are located in another region.
Grouping data points in regions can facilitate block-based domi-
nance tests. When two regions are incomparable, dominance tests
between points from each region can be safely eliminated. More-
over, once a point inside the region that dominates another region is
identified, all the points within the dominated region can be safely
omitted from dominance tests. For instance, p8 and p9 inside region
IV can be safely omitted once p1 that dominates them is identified.

Note that other space filling curves, e.g., Hilbert and Peano curves,
are not suitable for skyline processing due to the lack of monotonic
ordering property. These curves do not always start at the origin
of a space (subspace), i.e., dominating points may be placed after
their dominated points, and thus require reexamination.

ness of skyline result.
5’/’ and ’%’ are divider and modulus operators, respectively.
6We may use Z-address and coordinate interchangeably when the
context is clear.
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3.2 ZBtree Index Structure
As indicated above, Z-order curve provides two important prop-

erties, i.e., monotonic ordering and clustering, for skyline process-
ing. Thus, to facilitate efficient processing of skyline query, we
aim at designing an index structure that maintains these properties.
As we map multidimensional data points onto one-dimensional ad-
dresses, a natural indexing approach is to combine Z-order curve
and B+-tree, e.g., based on the seminal work of Orenstein and
Merett [12] or the more recent UB-tree [14]. However, those works
mostly focus on range queries that find data points within a spec-
ified rectangular region. On the other hand, focusing on finding
skyline points, our goals for such an index is to i) facilitate data
processing in Z-order sequence; and ii) preserve data points in
blocks to enable efficient search space pruning. Meanwhile, we
aim at further exploiting the Z-order properties and providing the-
oretical foundation for advanced skyline processing. The indexes
developed in [12, 14], while based on Z-order curve and B+-tree,
do not achieve our goals, e.g., [12] keeps regions as indexing infor-
mation rather than a bounding region as to enables efficient search
space pruning (to be shown later). Thus, we propose ZBtree, a
new variant of B+-tree, to organize data points in accordance with
monotonic Z-addresses. ZBtree strategically divide a Z-order curve
into disjoint segments (i.e., sequences of data points on the curve),
with each of which represents a region. As such, the clustering
property is preserved.

In ZBtree, leaf nodes maintain data points (i.e., Z-addresses) and
non-leaf nodes maintain intervals (denoted by [α, β]) which repre-
sent curve segments bounding the enclosed data points. The space
covered by a Z-order curve segment is called Z-region. For exam-
ple, the region passed by the curve staring at point p8 and ending
at point p9 is a Z-region, as shown in Figure 5(a). Since a Z-region
can be of any size and in any shape, we bound a Z-region with an
RZ-region, as defined in Definition 5.

DEFINITION 5. An RZ-region is the smallest square area cov-
ering a Z-region bounded by [α, β]. RZ-region is specified by two
Z-addresses, minpt and maxpt, so [α, β] ⊆ [minpt, maxpt]. �

maxpt

minpt

curve
segment

Z-region

RZ-region
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p8
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Figure 5: Example RZ-region and ZBtree
RZ-Regions can be easily derived based on Z-Regions (i.e., [α, β]).

First, the common prefix (i.e., some beginning d-bit groups) of both
α and β is retrieved. With the common prefix, minpt is formed by
appending all 0’s to the rest of bits and maxpt is formed by setting
all remaining bits to 1’s. Figure 5(a) shows an RZ-region derived
from the Z-region bounded by points p8 and p9. While forming
RZ-regions is straightforward, it has the following property that
can considerably boost the skyline search performance.

PROPERTY 5. Within an RZ-region, all data points (except the
one at minpt) are dominated by the data point at minpt; and the
data point located at maxpt is dominated by any point (except the
one at maxpt). �

As we shall discuss later, a ZBtree node can be safely discarded
from dominance tests if its corresponding RZ-region is found to
be dominated, thereby reducing comparison overheads. The search
efficiency depends on the way data points are organized to form
RZ-regions. To minimize the storage overhead of ZBtree, all data

points can be tightly packed. However, this strategy would result
in large RZ-regions which do not help much in pruning search
space. Following our example in Figure 4(b), if a leaf node con-
tains at most 3 data points, p1, · · · p9 are allocated into 3 separate
leaf nodes. Among them, p7, p8 and p9 are put in one node and
the corresponding RZ-region turns out to cover the entire space as
those three points do not share any common prefix. Since this big
RZ-region will not be dominated by any data point, the correspond-
ing leaf node together with all the enclosed data points need to be
accessed. As we observe from Figure 4(b), points p8 and p9 can be
discarded once we identify the point p1. Therefore, we strategically
trade some storage overhead for processing efficiency by putting as
many data points belonging to the same RZ-region as possible into
a node (instead of filling up the entire node capacity). Assume that
the minimum leaf node capacity is 1. p1 can be put into the first leaf
node. Next, p2, p3 and p4 are inserted into the second leaf node.
Similarly, p5, p6 and p7 occupy the third leaf node. Finally, p8 and
p9 are put into the last leaf node. This index structure is depicted
in Figure 5(b). Although this requires some storage overhead, the
search performance is significantly improved (as unnecessary node
traversal and comparisons between incomparable nodes are avoid).
Based on this principle, we group leaf nodes into appropriate non-
leaf nodes and recursively propagate the process upwards till the
root is reached.

3.3 ZBtree Index Manipulation
The primary objectives of ZBtree manipulations, including inser-

tion, deletion and bulkloading, are to maintain the monotonic and
clustering properties of ZBtree, while keeping the size of ZBtree
reasonably small. In the following, we detail the insertion, deletion
and bulkloading operations. We assume each node contains at most
N entries and the minimum node utilization threshold is M (where
M ≤ N/2).

Insertion places a data point with Z-address zins to a leaf node.
The search for the target leaf node is based on depth-first traver-
sal with zins as the search key. Along the traversal, the branch
whose [α, β] covers zins is explored. In case that no branch with
an interval covering the data point is identified, a branch with the
smallest resulted RZ-region is chosen7. After an insertion, a leaf
node filled with more than N entries becomes overflow and needs
to be split into two new nodes. These two nodes are formed to cover
two disjoint Z-order curve segments such that the total area of their
corresponding RZ-regions is the smallest among all possible splits.
After an insertion, the interval of the inserted leaf node is updated
to accommodate the newly inserted data point. This interval update
is propagated from the leaf node to its parent/ascendent nodes.

Deletion removes a data point with Z-address zdel from a ZB-
tree. First, a leaf node that contains the deleted data point is found
by depth-first search using zdel as the search key. The data point
is then removed from the node. In case that the leaf node, after
deletion, contains less than M entries, it needs to be removed. All
the enclosed data points are re-inserted into ZBtree. Similarly, the
intervals of the nodes along the deleted leaf node to the root node
are updated to reflect the deletion.

Bulkloading builds a ZBtree in a bottom-up fashion. It has two
steps. The first step sorts all the data points based on the non-
decreasing Z-addresses. The second step scans these data points
sequentially using a sliding window with N slots to form nodes.
Within the window, the largest number of data points (denoted as
x) to form a small RZ-region are put into a leaf node, where M ≤
x ≤ N . Specifically, we put all the sorted data points into a stack
and pop out the top N data points into the sliding window. First,
we form a RZ-region R using those N data points in the window.
Then, we, in each trial, push back the point with the largest Z-
address (i.e., decrement x by 1 where x is initialized to N ) to the

7A resulted RZ-region here refers to the extended region after in-
serting the new data point.
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stack and determine the corresponding RZ-region R′
x. If R′

x is
smaller than R, those x data points in the sliding window form a
node. If no R′

x (for all tried x) is smaller than R, we pop out all
N − x data points to form a node. As such, high space utilization
is guaranteed and formation of small RZ region is favored. This
process repeats until all the data points are examined. Then all leaf
nodes are examined in the same fashion to generate non-leaf nodes.
This process continues until a single node, the root, is formed.

4. ZSEARCH FOR SKYLINE QUERY
In this section, we discuss ZSearch, an efficient skyline search

algorithm based on ZBtree. Its efficiency is attributed to RZ-region
based dominance tests and effective space pruning.

4.1 RZ-Region Based Dominance Test
Dominance test is a key determinant of computational overhead.

Comparing data points pairwise is very time consuming. To alle-
viate this cost, we introduce block based dominance test in ZSearch
based on RZ-regions derived during traversal in ZBtree. In ZSearch,
we maintain one ZBtree for storing source data set (labelled as
SRC) and one ZBtree for maintaining skyline points (labelled as
SL). Both ZBtrees provide RZ-regions. The dominance condition
comparing two RZ-regions is defined in Lemma 1. When not caus-
ing any confusion, we use RZ-region R to denote all the data points
within it and use minpt(R) and maxpt(R) to refer to minpt and
maxpt of R, respectively.

LEMMA 1. Given two RZ-regions R and R′, the following three
cases hold:

1. If maxpt(R) � minpt(R′), then R � R′.
2. If maxpt(R) �� minpt(R′) ∧ minpt(R) � maxpt(R′),

then some points in R′ may be dominated by others in R.

3. If minpt(R) �� maxpt(R′), then R �� R′. �

Proof. We prove the lemma case by case.
Case 1. maxpt(R) � minpt(R′). By transitivity (Property 1),
∀p ∈ R−{maxpt(R)}, ∀p′ ∈ R′−{minpt(R′)}, p � maxpt(R)∧
minpt(R′) � p′ ⇒ p � p′ and as stated, maxpt(R) � minpt(R′).
Hence, R � R′. Rs and R1 in Figure 6(a) form an example.
Case 2. maxpt(R) �� minpt(R′) ∧ minpt(R) � maxpt(R′).
Some data points (e.g. maxpt(R′)) are dominated by minpt(R).
Thus, the case holds. Rs and R2 in Figure 6(a) form an example.
Case 3. minpt(R) �� maxpt(R′). This case can be proved by
contradiction. Assume p � p′ (p ∈ R, p′ ∈ R′). By transitivity,
minpt(R) � p � p′ � maxpt(R′) ⇒ minpt(R) � maxpt(R′).
This contradicts the condition of the case. Rs and R3 in Figure 6(a)
form an example. �

This dominance condition is generic enough to be applied to an
RZ-region which contains a single data point p, i.e., minpt(R) =
maxpt(R) = p. So, the dominance condition between two points
defined in Definition 1 in Section 2.1 is a special case of this lemma.
Figure 6(b) shows the dominance tests of R1, R2, R3 against p.
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Figure 6: Dominance test
Based on Lemma 1, we can perform effective dominance tests

on the RZ-region of any node from SRC against that from SL.
Figure 7 shows Algorithm Dominate for the dominance test. It
checks whether a given RZ-region R from SRC (represented by

Algorithm Dominate(SL, minpt, maxpt)
Input. SL: ZBtree indexing skyline points;

minpt and maxpt: endpoints of an RZ-region;
Local. q: Queue;
Output. TRUE if input is dominated, else FALSE;
Begin
1. q.enqueue(SL’s root);
2. while q is not empty do
3. var n: Node;
4. q.dequeue(n);
5. if n is a non-leaf node then
6. forall children node c of n do
7. if c’s RZ-region’s maxpt � minpt then
8. output TRUE; /* Case 1 of Lemma 1 */
9. else if (c’s RZ-region’s mint � maxpt) then

10. q.enqueue(c); /* Case 2 of Lemma 1 */
11. else /* leaf node */
12. forall children point c of n do
13. if (c � minpt) then
14. output TRUE;
15. output FALSE;
End.

Figure 7: Algorithm Dominate

its minpt and maxpt)8 contains any potential skyline points by
conducting dominance tests against all the identified skyline points
(i.e., those available in SL). The algorithm traverses SL based
on breadth-first traversal such that RZ-regions of high-level nodes
from SL are compared against R and drilled down if R needs fur-
ther examination against finer RZ-regions in SL.

In the algorithm, a queue is initialized with the root of SL. An
entry n popped from the queue will be further explored in two sit-
uations:

• n is a non-leaf node. If it may contain some points dominat-
ing R (i.e., Case 1 of Lemma 1), the algorithm indicates R is
dominated and the dominance test is completed (Line 7-8).
If the RZ-region of n may dominate some but not all points
inside R, (i.e., Case 2 of Lemma 1), the entry is queued for
further examination (Line 9-10). Case 3 of Lemma 1 is omit-
ted since it is implied by the failures of the above two cases
and there is no further comparison needed as these two RZ-
regions are found incomparable.

• n is a leaf node. We check R against individual skyline
points inside (Line 13-14).

This traversal continues until the queue is vacated (i.e., all rele-
vant nodes in SL are visited). Finally, R is reported as not dom-
inated. Note that the search might stop before the leaf level is
reached. That means fewer nodes in SL need to be accessed and
the efficiency of dominance test is enhanced.

4.2 ZSearch Algorithm
With the dataset organized in a ZBtree (i.e., SRC), ZSearch tra-

verses the tree to visit RZ-regions and potential skyline points in
a depth-first order, which exactly follows the Z-order, with a stack
keeping track of unexplored paths. The stack memory consumption
is bounded by a factor of the tree height of the SRC. Figure 8 de-
picts the pseudo-code of ZSearch. It fetches the index nodes/data
points from SRC (Line 2-14). At each round, the RZ-region of
a node is examined against SL by invoking Algorithm Dominate
(see Figure 7). If its corresponding RZ-region is not dominated, the
node is further explored (Line 7-13). Data points not dominated by
any skyline candidate in SL are collected and inserted to SL (Line
13). The organization of skyline candidates in SL enables forma-
tion of RZ-regions to facilitate dominance tests. SL may be too
large to store in the main memory. It can be stored on disk and
we use available memory as a cache. This approach is appropriate
since 1) the cached upper (and usually a small) portion of SL can
be sufficient to perform dominance tests without reaching the leaf

8In case of a data point, p, R contains p and minpt = maxpt.
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levels, and 2) clustered data points in SRC exhibit good access lo-
cality of related RZ-regions in SL. The algorithm terminates when
all entries from SRC are examined signaled by an empty stack.

Algorithm ZSearch(SRC)
Input. SRC: ZBtree for source data set;
Local. s: Stack;
Output. SL: ZBtree for skyline points;
Begin
1. s.push(source’s root);
2. while s is not empty do
3. var n: Node;
4. s.pop(n);
5. if Dominate(SL, n’s minpt, n’s maxpt) then
6. goto line 3.

7. if n is a non-leaf node then
8. forall children node c of n do
9. s.push(c);

10. else /* leaf node */
11. forall children point c of n do
12. if not Dominate(SL, c, c) then
13. SL.insert(c);
14. output SL;
End.

Figure 8: Algorithm ZSearch

We use the data points in Figure 4(a) to illustrate the algorithm,
with Figure 5(b) showing the corresponding ZBtree. The trace is
depicted in Figure 9. Initially, the root entries, i.e., [p1, p4] and
[p5, p9], are pushed to the stack and SL is empty. For simplicity,
only leaf nodes enclosed by {} are shown. First, we obtain p1,
the first skyline point. Next, p2, the second data point on the Z-
order curve, incomparable to p1, is inserted to SL. Note that BBS
accesses p3 (not p2) after p1. Then, p3 (incomparable to both p1

and p2) is inserted to SL. Assume the node capacity of SL to be 2.
Insertion of p3 triggers a node split. p2 and p3 are put together since
{p1} and {p2, p3} form smaller RZ-regions. p4, dominated by p2

(or p3), is discarded. Later, [p5, p9] is explored. As the RZ-region
of [p5, p7] is incomparable to that of {p2, p3}, the comparison with
p2 or p3 is saved. Next, explored p5 and p6 are inserted to SL
while p7 is dropped. Finally, [p8, p9] dominated by {p1} in SL is
skipped and the search completes.

Stack Skyline points SL
[p1, p4],[p5, p9] ∅
[p1, p1],[p2, p4],[p5, p9] ∅
[p2, p4],[p5, p9] {p1}
[p5, p9] {p1},{p2, p3}
[p5, p7],[p8, p9] {p1},{p2, p3}
[p8, p9] {p1},{p2, p3},{p5, p6}

Figure 9: ZSearch Trace

4.3 Discussion
Here we discuss the performance of ZSearch in terms of the run-

time memory consumption, the expected processing time and the
I/O costs. Let n, d, m be the data cardinality, data dimensional-
ity and the number of skyline points, respectively, where generally
speaking d � n and m ≤ n. We assume SRC and SL share the
same node capacity, which is a constant.

We first study the runtime memory consumption. Two data struc-
tures are used in ZSearch, i.e., a stack keeping track of unexplored
paths and SL maintaining skyline result candidates. The maxi-
mum space required for stack is bounded by the height of SRC
times node capacity, i.e., O(logd(n)). In contrast, BBS uses a heap
to maintain a number of unexplored nodes that is O(m). Conse-
quently, ZSearch is more space efficient than BBS in most cases.
Meanwhile, the maximum size of SL depends on the number of
candidates, i.e., O(m), the same size as BBS’s main memory R-
tree. Note that dominance test may terminate at some upper-level
nodes of SL but BBS has to reach the leaf nodes.

Next, we examine the processing time that is governed by sev-
eral factors, the number of times algorithm Dominate invoked,
the overhead of algorithm Dominate, and the I/O costs in terms of
number of disk pages accessed. Those vary with respect to data dis-
tributions, namely, correlated, anti-corrected and independent [3].
Based on these, we analyze the performance.

Correlated data distribution. In this case, only a few skyline
points are resulted while the majority of data points are dominated.
Consider a case that there is only one skyline point, i.e., m =
1. The skyline point should be the first accessed data point due
to monotonic ordering property of Z-order curve. Before retriev-
ing this data point, SL is empty, so the overhead of algorithm
Dominate is zero. Then the first data point (i.e., skyline point)
is inserted to SL. All other data points and index nodes in the
stack are examined by Dominate and get dominated. The over-
head of Dominate is 1 while examinee entries (data points and
index nodes) are on the path from the root to the first leaf node,
which is related to the height of the tree, i.e., O(logd(n)). Since
each dominance comparison considers d dimensions, the process-
ing time is O(d · logd(n)). Meanwhile, the I/O cost is equivalent
to the height of the tree, that is O(logd(n)).

Anticorrelated data distribution. Here, most of data points are
not dominated. Our analysis considers the worst case that all data
points are not dominated and they all are skyline points, i.e., m =
n. The number of times algorithm Dominate invoked equals to
the total number of nodes and data points, i.e., O(n). On the other
hand, the overhead of each Dominate call is O(logd(n)), since
the traversal in SL does not necessarily visit all branches and it
could terminate at a high-level node of SL. As a result, the process-
ing time is O(n · d · logd(n)) and I/O cost is O(d · n).

Independent data distribution. For this data distribution, m out
of n data points are skyline points. As suggested in [4], m =
Θ((log(n))d−1/(d − 1)!) that is highly dependent on the data di-
mensionality, d. Based on this, given n = 1000k, if d = 2, m is
6k (0.6%); if d = 9, m is 210k (21%); and if d ≥ 10, m = n. For
high dimensionality, the processing time and the I/O cost become
close to O(n · d · logd(n)) and O(n), respectively. For low dimen-
sionality, a few data points are skyline points and only the branches
from the root to those leaf nodes containing them are examined.
Then, the processing time and I/O cost of ZSearch are respectively
O(d · logd(n) · logd(m)) and O(logd(n)), as only some paths from
the root to skyline result points are examined while many branches
are found dominated at the upper level of tree and hence are pruned.

5. ZUPDATE FOR SKYLINE UPDATES
It is clearly inefficient to reevaluate a skyline query every time

when the underlying dataset is changed. This section presents ZUp-
date algorithm, which incrementally updates the skyline results us-
ing two previously discussed ZBtrees (i.e., SRC and SL). SL is
generated during ZSearch. An update on a dataset can be an in-
sertion of a new data point or a deletion of an existing one. As
modification of a data point can be regarded as deletion of the data
point (i.e. old value) followed by insertion of another point (i.e.
new value), we only discuss insertion and deletion below.

5.1 Insertion
Inserting a new data point, pins, to the dataset involves a domi-

nance test and possibly a candidate reexamination if pins passes the
dominance test. Dominance test in ZUpdate is based on Algorithm
Dominate (see Figure 7). Owing to the monotonic ordering prop-
erty of Z-order curve (Property 3), pins can only be dominated by
those skyline points whose Z-addresses are less than that of pins.
Therefore, only a portion of SL (i.e., data points with Z-addresses
smaller than pins’s) is examined. If pins passes the dominance
test, pins is inserted to SL and the candidate reexamination is per-
formed to discard those skyline points dominated by pins. Again,
because of the monotonic ordering property, reexaminations occur
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on those skyline points in SL with their Z-addresses larger than
pins’s.
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Figure 10: Update of Skyline Results

Figure 10(a) shows a new data point pinsert that locates between
p3 and p5 on the Z-order curve. In the dominance test, pinsert is
compared against both p1 and an RZ-region formed by p2 and p3. It
passes the dominance test and hence is inserted to SL. During the
candidate reexamination, p5 and p6 (whose Z-addresses are greater
than pinsert’s) are reexamined to check if they are dominated by
pinsert. Finally, p5 is removed while p6 is retained.

5.2 Deletion
Updating a skyline result due to deletion is more complicated

than insertion. Deleting any existing skyline point, say pdel, may
get some data points previously dominated by pdel promoted to
skyline. Since only those data points exclusively dominated by
pdel are promoted, an issue is how to locate them efficiently from
the source dataset. Owing to the monotonic ordering property of
Z-Order curve, those dominated by pdel should have Z-addresses
greater than that of pdel. ZUpdate starts traversal of SRC from
the Z-address of pdel and lookups the RZ-regions and data points
dominated by pdel, but not other skyline points in SL. The traver-
sal follows the non-descending order of Z-addresses. New skyline
points obtained from the search are inserted to SL.

Algorithm ZUpdate(SRC, SL, Pdel)
Input. SRC: ZBtree for source dataset;

SL: ZBtree for skyline points (with already Pdel removed);
Pdel: a set of deleted skyline points;

Local. s: Stack;
Begin
1. s.push(SRC’s root);
2. while s is not empty do
3. var n: Node;
4. s.pop(n);
5. if � ∃ p ∈ Pdel, p � n’s maxpt or
6. Dominate(SL, n’s minpt, n’s maxpt) then
7. goto line 3.

8. if n is a non-leaf node then
9. forall children node c of n do

10. s.push(c);
11. else /* n is leaf node */
12. forall children point c of n do
13. if ∃p ∈ Pdel, p � c and not Dominate(SL, c, c) then
14. SL.insert(c);
15. output SL;
End.

Figure 11: Algorithm ZUpdate (supporting multiple deletions)

To alleviate the average skyline update cost, multiple deletions
can be accumulated and performed as a batch. For instance, even
though p3 and p5 in Figure 10(b) have been deleted at different
times, the search for promoted skyline candidates due to their dele-
tions can be processed together at a later time. Figure 11 outlines
the pseudo-code of ZUpdate algorithm for searching promoted sky-
line points and it is general enough to handle multiple deletions.
We use Pdel to contain all the deleted skyline points. The algo-

rithm traverses SRC and checks RZ-regions and data points against
data points in Pdel and SL. RZ-regions of SL can alleviate some
comparison overheads. Only those points exclusively dominated
by Pdel are collected and inserted to SL. The algorithm terminates
after SRC is traversed.

6. K-ZSEARCH FOR K-DOMINANT SKY-
LINE QUERY

With a relaxed k-dominance condition, k-dominant skyline query
retrieves a smaller and representative subset of the conventional
skyline points. In this section, we propose k-ZSearch, also based on
the ZBtree, to process k-dominant skyline queries. To address the
challenging issue of cyclic dominance, k-ZSearch adopts a filter-
and-reexamine approach. In the filtering phase, we remove all
those k-dominated data points and retain possible skyline candi-
dates, which may contain false hits. In the reexamination phase, all
candidates are reexamined to eliminate false hits. Section 6.1 and
Section 6.2 detail these two phases.

6.1 Filtering Phase
The only difference of the filtering phase between k-ZSearch and

ZSearch is the dominance condition. k-ZSearch traverses SRC, the
ZBtree for the source dataset, once to filter out data points or RZ-
regions that are k-dominated by some candidate skyline points and
retrieves candidates. The candidate set for k-ZSearch may contain
false results due to cyclic dominance.

Extended from the definition of dominance condition to k-dominance
condition between RZ-regions, Theorem 1 describes the transitive
k-dominant relationship and Lemma 2 is derived for efficient can-
didate filtering in k-ZSearch.

THEOREM 1. Transitive k-dominance relationship. The fol-
lowing two transitive k-dominance relationships are true:

1. If p �k p′ and p′ � p′′, then p �k p′′.
2. If p � p′ and p′ �k p′′, then p �k p′′. �

Proof. For (1), given certain k out of d dimensions, si, p.si ≤
p′.si ≤ p′′.si must hold, implying p.si ≤ p′′.si. Suppose there is
one dimension out of k dimensions, sj , such that p.sj < p′.sj ≤
p′′.sj , in this case, p.sj < p′′.sj . Hence, p �k p′′.
Similarly for (2), given certain k out of d dimensions, si, p.si ≤
p′.si ≤ p′′.si must hold, so p.si ≤ p′′.si. Also, there exists at
least one dimension sj among those k dimensions, p.sj ≤ p′.sj <
p′′.sj , then p.sj < p′′.sj . Thus, p �k p′′. �

LEMMA 2. Given two RZ-regions, R and R′, the following three
cases hold:

1. if maxpt(R) �k minpt(R′), then R �k R′.
2. if maxpt(R) ��k minpt(R′) ∧ minpt(R) �k maxpt(R′),

then some points in R′ may be k-dominated by others in R.
3. if minpt(R) ��k maxpt(R′), then R ��k R′. �

Proof. We prove the lemma case by case.
Case 1. maxpt(R) �k minpt(R′). According to the first part
of Theorem 1, since maxpt(R) �k minpt(R′), minpt(R′) k-
dominates all data points in R′. By the second part of Theorem 1,
all data points in R (except maxpt(R)) dominate maxpt(R). As
a result, R �k R′. As shown in Figure 12(a), R1 and R2 are 2-
dominated by Rs in 3D space.
Case 2. maxpt(R) ��k minpt(R′) ∧ minpt(R) �k maxpt(R′).
Some points including maxpt(R′) might be k-dominated by some
points in R. Rs and R3 in Figure 12(a) form an example.
Case 3. minpt(R) ��k maxpt(R′). The case can be proved by
contradiction. Suppose p �k p′ (p ∈ R, p′ ∈ R′). By Theo-
rem 1, minpt(R) � p �k p′ � maxpt(R′) ⇒ minpt(R) �k

maxpt(R′). This contradicts the case condition. Rs and R4 in
Figure 12(a) are an example for this case. �

Lemma 2 is generic that an RZ-region can cover only one data
point (see Figure 12(b)). Based on this, Algorithm k-Dominate is
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Figure 12: 2-Dominance test in 3D space

derived to determine whether an RZ-region, R, presented as minpt
and maxpt, is k-dominated by any existing candidate k-dominant
skyline point maintained by the ZBtree for k-SL. The logic of this
algorithm is outlined in Figure 13. It adopts breadth first search to
traverse k-SL. Similar to Algorithm Dominate, the search termi-
nates when R is assured to be k-dominated by any RZ-region en-
closing some candidate skyline points, or when all relevant nodes
of k-SL are visited that indicates R not dominated.

Algorithm k-Dominate(k-SL, minpt, maxpt)
Input. k-SL: ZBtree (k-dominant skyline points);

minpt and maxpt: endpoints of an RZ-region;
Local. q: Queue;
Output. TRUE if the input is k-dominated, else FALSE;
Begin
1. q.enqueue(k-SL’s root);
2. while q is not empty do
3. var n: Node;
4. q.dequeue(n);
5. if n is a non-leaf node then
6. forall children node c of n do
7. if c’s maxpt �k minpt then
8. output TRUE; /* Case 1 of Lemma 2 */
9. else if (c’s mint �k maxpt) then

10. q.enqueue(c); /* Case 2 of Lemma 2 */
11. else /* n is leaf node */
12. forall children point c of n do
13. if c �k minpt then
14. output TRUE;
15. output FALSE;
End.

Figure 13: Algorithm k-Dominate

With Algorithm k-Dominate, the filtering phase of k-ZSearch
(line 1-18 in Figure 14) collects k-dominated candidate points in
k-SL. Meanwhile, those unqualified data points or index node en-
tries (i.e., k-dominated by any existing candidate) are reserved in
a non-candidate set (T ) which will be used in the reexamination
phase for false hit removal. The memory consumption for T is ex-
pected to be low, because most of branches of SRC can be pruned
at high levels owing to the relaxed dominance condition. The fil-
tering phase terminates when the SRC is completely traversed.

6.2 Reexamination Phase
The reexamination phase of k-ZSearch algorithm removes the

false hits from candidates collected in the filtering phase. The
main idea is that as long as a candidate in k-SL is found to be k-
dominated by any other point either in k-SL or in T , it is removed
from k-SL and inserted to T . All candidate points are reexamined.
The logic of this phase is depicted in Line 19-26 in Figure 14.

Since the number of candidates maintained in k-SL is much
smaller than that of points stored in T and those candidates usually
have a greater dominating power, our reexamination checks every
candidate data point p against others in k-SL first. If there is a
candidate p′ k-dominating p, p is moved to T . Otherwise, we pro-
ceed to check p against entries in T . If no RZ-regions/data points
in T k-dominate p, p retains in k-SL. If some index nodes in T

Algorithm k-ZSearch(SRC)
Input. SRC: ZBtree for source data set;
Local. k-SL: ZBtree (k-dominance skyline candidates);

s: Stack; T : Set;
Begin

/*** filtering phase ***/
1. s.push(source’s root);
2. while s is not empty do
3. var n: Node;
4. s.pop(n);
5. if Dominate(k-SL, n’s minpt, n’s maxpt) then
6. goto line 3. /* remove those dominated data points */
7. if k-Dominate(k-SL, n’s minpt, n’s maxpt) then
8. T .insert(n); /* n for reexamination. */
9. goto line 3.

10. if n is a non-leaf node then
11. forall children node c of n do
12. s.push(c);
13. else /* leaf node */
14. forall children point c of n do
15. if k-Dominate(k-SL, c, c) then
16. T .insert(c); /* c for reexamination. */
17. else
18. k-SL.insert(c); /* tentative result set */

/*** re-examination phase ***/
19. forall point p ∈ k-SL do
20. if ∃p′ ∈ k-SL, p′ �= p ∧ p′ �k p then
21. remove p from k-SL;
22. T .insert(p);
23. else if ∃p′′ ∈ T , p′′ �k p then
24. remove p from k-SL;
25. T .insert(p);
26. output k-SL;
End.

Figure 14: Algorithm k-ZSearch

need further exploring, they are replaced with all their children en-
tries (either data points or index nodes) in T . Finally, those kept in
k-SL are returned as the k-dominance skyline points.

7. PERFORMANCE EVALUATION
This section evaluates ZSearch, ZUpdate and k-ZSearch, respec-

tively, by comparing them with the state-of-the-arts for processing
skyline query, skyline update and k-dominant skyline query.

7.1 Experiment Settings
Our evaluations are based on both synthetic and real datasets.

Synthetic datasets are generated based on anti-correlated distribu-
tion and independent distribution (described in Section 4.3). Cor-
related distribution is not included due to space limitation. The
data dimensionality (d) varies from 4 to 16 and the data cardinal-
ity ranges from 10k to 10, 000k (ten millions) in order to evaluate
the scalability of the proposed algorithms. Real datasets, namely,
including NBA, HOU and FUEL follow anti-correlated, indepen-
dent and correlated distributions, respectively9. NBA contains 17k
13-dimensional data points, each of which corresponds to the sta-
tistics of an NBA player’s performance in 13 aspects (such as points
scored, rebounds, assists, etc). HOU consists of 127k 6-dimensional
data points, each representing the percentage of an American fam-
ily’s annual expense on 6 types of expenditures such as electricity,
gas, and so on. FUEL is a 24k 6-dimensional dataset, in which each
point stands for the performance of a vehicle (such as mileage per
gallon of gasoline in city and highway, etc). In the experiments,
values of all datasets are normalized to [0, 1023]d.

We implemented representative skyline algorithms, namely, SFS [7],
BBS [13], BBS-Update [13], DeltaSky [17]10 and TSA [5] for com-
parison. Similar to most of the related works in the literature, we
employ the elapsed time and the I/O cost as the main performance

9Those datasets are collected from www.nba.com, www.ipums.org
and www.fueleconomy.gov, respectively.

10Since DeltaSky focuses only on deletion, we adopt the insertion
algorithm of BBS-Update for DeltaSky.
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metrics. The former represents the duration from the time an algo-
rithm starts to the time the result is completely returned. The latter
is the number of disk pages accessed. We also measure the number
of skyline points, m, and runtime memory used for data structures
supporting different algorithms. All experiments were conducted
on Linux 2.6.9 Servers with Intel Xeon 3.2GHz and 4GB RAM.
The disk page size is fixed at 4KB. In the experiments, sufficient
memory (including both main memory and virtual memory pro-
vided by OS) was available for storing skyline results and related
data structures. Since Z-addresses can be used to derive the origi-
nal attribute values, we only keep Z-addresses in ZBtree to support
ZSearch, ZUpdate and k-ZSearch and derive the original attribute
values as needed. The R*-tree adopted by BBS, BBS-Update and
DeltaSky keeps data points in the leaf level. For SFS and TSA,
records are sorted (by default) in accordance with the sum of all
attribute values. All indices and sorted records are prepared prior
to the experiments. ZBtree SRC is created by bulkloading. The
results to be reported are the average performances of 30 sample
runs unless specified otherwise.

7.2 Experiments on Skyline Search
The first set of experiments studies the performance of ZSearch

in comparison with BBS and SFS, the state-of-art skyline search al-
gorithms. Additionally, to study the potential advantages of Z-order
on SFS, we employ Z-address to order data points for SFS (denoted
as SFS (Z-Order)). In SFS (Z-Order), the additional key for sorting
is not needed since Z-addresses can be used to recover the origi-
nal attributes. As a result, the storage cost is smaller than SFS. We
also implement a packed ZBtree (denoted as ZSearch (packed)) by
filling all leaf nodes to their full capacity to examine the effect of
our ZBtree node construction strategy that minimizes the sizes of
RZ-Regions.

Effect of dimensionality. Figure 15 plots the elapsed time against
the data dimensionality from 4 up to 16 for synthetic anti-correlated
and independent datatsets. The number of skyline points (m) is
plotted right below the x-axis. As observed in the figures, ZSearch
performs the best while BBS outperforms SFS for both data dis-
tributions. SFS seriously suffers from intensive dominance tests
that involve a lot of pairwise point-to-point comparisons. The per-
formance deteriorates significantly as m increases. ZSearch and
BBS respectively maintain SL and main-memory R-tree to reduce
unnecessary dominance tests, especially effective when high data
dimensionality is experimented. On the other hand, thanks for
the RZ-region properties, ZSearch can determine whether a sky-
line point or an RZ-region is dominated at upper-level nodes of SL,
resulting in shorter elapsed times than BBS that needs to reach the
leaf nodes of the main memory R-tree every time. In other words,
ZSearch can perform dominance tests much more effectively and
hence reduce computational cost and improve the elapsed time per-
formance.
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Figure 15: Elapsed time (search, d:4-16, n:100k)
We further notice that the resulted curves of the two types of

datasets are in different shapes. For anti-correlated datasets, many
skyline points are resulted that incurs high computational over-
heads. When the dimensionality reaches 12, over 95% of data
points are not dominated. As a result, the elapsed time perfor-
mances for all algorithms reach the maximal and become flat. In

contrast, for independent datasets with low data dimensionality,
many data points (and index nodes) are dominated and thus pruned.
Consequently, all the algorithms perform similarly well. As dimen-
sionality increases, the performance of SFS deteriorates as we ex-
plained above. However, ZSearch grows in a moderate rate and
performs better than BBS as discussed in Section 4.3.

The experimental results also show no visible difference between
SFS and SFS (Z-Order), indicating the sorting order is not a key
factor for SFS algorithms. Meanwhile, ZSearch (packed) performs
slightly worse than ZSearch for anti-correlated datasets, where al-
most all data points are not dominated and thus accessed eventually.
As a result, our node construction strategy does not have a signifi-
cant impact to the performance. On the other hand, for independent
datasets, ZSearch outperforms ZSearch (Z-Order) as data dimen-
sionality increases, demonstrating the effectiveness of our strategy.
As many data points in independent datasets are dominated, fitting
data points in RZ-regions can facilitate block based dominance test
and efficient space pruning.

Figure 16 depicts the corresponding I/O costs. In general, ZSearch
incurs the lowest I/O cost. For anti-correlated datasets, ZSearch
slightly outperforms others in low data dimensionality (d:4-8). As
dimensionality increases (d:10-16), all the algorithms result in sim-
ilar I/O costs because the majority of points are not dominated and
have to be retrieved from the source. For independent datasets, SFS
still needs scanning the entire dataset, resulting in the highest I/O
costs. BBS performs better than SFS in low dimensionality, but
it loses its advantage when data dimensionality reaches 16 due to
the curse of dimensionality. Compared with BBS, ZSearch incurs
much fewer false hit pages, resulting in few I/O costs. SFS (Z-
Order) requires less space than SFS and thus consistently results in
less I/O cost than SFS. Z-Search (packed), although more compact
in storage size than ZSearch, incurs false hits and thus results in a
higher I/O cost than ZSearch.
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Figure 16: I/O cost (search, d:4-16, n:100k)

1

10

100

1000

10000

100000

4 6 8 10 12 14 16

SFS
BBS (heap)

ZSearch (stack)

R
u

n
ti

m
e 

m
em

o
ry

 (
n

o
. o

f 
en

tr
ie

s)

Data dimensionality

(a) Anti-correlated

1

10

100

1000

10000

100000

4 6 8 10 12 14 16

SFS
BBS (heap)

ZSearch (stack)

R
u

n
ti

m
e 

m
em

o
ry

 (
n

o
. o

f 
en

tr
ie

s)

Data dimensionality

(b) Independent

Figure 17: Runtime memory (search, d:4-16, n:100k)

Figure 17 depicts the runtime memory consumption in terms of
the number of entries maintained in main memory to facilitate in-
dex traversal (in log scale)11. BBS uses a heap to order index pages
and data points; and ZSearch uses a stack. Since SFS does not
need any extra data structure, it incurs zero runtime memory con-
sumption. BBS takes much more memory (up to 1000 times) than
ZSearch especially when high dimensional datasets are searched.
Moreover, BBS heap entry that maintains the distance to the origin
of the space is slightly larger than ZSearch stack entry.

Effect of data cardinality. Figure 18 depicts the elapsed time
11The data structure to keep track of collected skyline points are not
counted.
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against the data cardinality (n: 10k up to 10000k). The number
of skyline result points (m) is listed below the x-axis. The elapsed
time of all algorithms (in log scale) increases as data cardinality
grows. Among all, ZSearch produces the shortest elapsed time.
This can be explained with similar reasons discussed above. Due
to limited space, the results in terms of I/O cost and runtime mem-
ory consumption are not presented.
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Figure 18: Elapsed time (search, d:10, n:10k-10000k)
Dataset m SFS BBS ZSearch
NBA 10816 2.933, 228 3.364, 230 1.723, 131
HOU 5774 1.334, 874 2.169, 896 0.944, 346
FUEL 1 0.031, 164 0.001, 3 0.001, 3

Table 2: Real datasets (Skyline search) (time (msec), I/O)

The experiment results of the real datasets are listed in Table 2.
ZSearch clearly outperforms SFS and BBS, the state-of-the-art sky-
line search algorithms, for both the elapsed time (in msec) and the
I/O costs. This shows the superiority of ZSearch for both real and
synthetic datasets with various dimensionality and cardinality. In
conclusion, ZSearch is the best skyline search algorithm.

7.3 Experiments on Skyline Result Update
The second set of experiments studies the performance of ZUp-

date for skyline result update. We employ BBS-Update [13] and
DeltaSky [17] as our comparison candidates. Recall that there
are two types of update operations, namely insertion and dele-
tion. To evaluate the performance for each type of operations,
our experiment is conducted as follows. We first obtain an ini-
tial skyline result set. Then, among all skyline points, we ran-
domly select 100 skyline points, delete them one by one from the
source dataset/skyline result and update corresponding data struc-
tures. The average performance of 100 deletions is reported. Then,
we insert the 100 deleted data points back one by one. These re-
inserted data points, i.e., some of initial skyline points, are not dom-
inated by any other skyline points and they should dominate those
skyline points promoted during deletions. We measure the perfor-
mance and report the average performance of 100 insertions. For
synthetic datasets, we vary the data dimensionality (d) from 4 up to
16 and data cardinality (n) from 10k up to 10,000k.

Figure 19 shows the performance of deletions for various data di-
mensionality (d:4-16), with a fixed cardinality (100k). The elapsed
times of BBS-Update and ZUpdates increase when d is increased
from 4 to 8. This is because many skyline points become not dom-
inated and get promoted. Then, the performance gradually drops
since the majority of data points are skyline points which leaves
only a few or even no data points being checked and being pro-
moted. DeltaSky keeps increasing as d grows due to a high scan-
ning overheads for multiple sorted lists to identify exclusively dom-
inated data points or index nodes. The length of each sorted lists
equals the number of skyline points. Among all the three algo-
rithms, ZUpdate performs the best. These findings are consistently
observed in both anti-correlated and independent datasets.

Figure 20 shows the performance of insertions. Compared with
deletions, insertions are lightweight operations since they do not
need to retrieve data points from the source datasets. In the fig-
ure, ZUpdate is the winner and BBS-Update performs better than
DeltaSky. With SL, dominance tests for newly inserted data points
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Figure 19: Elapsed time (deletion, d:4-16, n:100k)

can be done at a higher node level (and thus in larger blocks) but
BBS-Update needs to go down to the leaf level. In addition, BBS-
Update incurs expensive R-tree update costs. DeltaSky also suffers
a lot from updating both multiple sorted lists and a main memory R-
tree, making it less competitive than BBS-Update. This experiment
shows that ZUpdate is good at handling skyline result update for in-
sertions. Figure 21 shows the performance of deletions of the three
algorithms for various data cardinality (10k-10,000k), with dimen-
sionality fixed at 10. Again, ZUpdate consistently outperforms the
others. We omitted the results for insertions to save space.
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Figure 20: Elapsed time (insertion, d:4-16, n:100k)
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Figure 21: Elapsed time (deletion, d:10, n:10k-10000k)

Next, we evaluate the update performance on the real datasets.
The results are listed in Table 3. The observations are consistent
to what we made from synthetic datasets. Again, for both deletion
and insertion, ZUpdate outperforms BBS-Update and DeltaSky, the
known best skyline update algorithms.

7.4 Experiments on k-Dominant Skyline Search
The third experiment set examines the performance of k-ZSearch

algorithm, for k-dominant skyline search. In this part, we compare
k-ZSearch against TSA [5], an efficient k-dominant skyline search
algorithm. We generate a synthetic dataset with 15 as the dimen-
sionality and evaluate the performance of both TSA and k-ZSearch
with respect to different k’s and cardinality. In our experiments,
when k is smaller than 11, only a few or even no results are re-
turned. Therefore, we vary k from 11 to 14 (out of 15).

Figure 22 and Figure 23 depict the experiment results. The cor-
responding numbers of k-dominated skyline points are listed be-
low the x-axis. In terms of elapse time (as shown in Figure 22),
k-ZSearch outperforms TSA significantly. The advantage of k-
ZSearch decreases as k is reduced (e.g., k = 11), because only
a very small number of k-dominated skyline points are obtained
when k is small. When a large k is evaluated, k-ZSearch effec-
tively prunes the search space and requires only one dataset access
(while TSA needs two full scans). Therefore, I/O costs incurred
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BBS-Update DeltaSky ZUpdate
Dataset m del ins del ins del ins
NBA 10816 78.37 4.18 42.25 5.09 14.21 1.27
HOU 5774 492.11 5.22 482.31 5.98 339.96 2.44
FUEL 1 0.10 0.001 0.15 0.008 0.10 0.001

Table 3: Real dataset (skyline result update) (time (msec))
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Figure 22: Elapsed time (k-Dominant, k:11-14, n:100k)

by k-ZSearch is less than 50% of that of TSA. The plot is omit-
ted to save space. Figure 23 shows the experiment results with
different data cardinalities (with k fixed at 12). Again, k-ZSearch
outperforms TSA and the difference becomes more obvious as car-
dinality increases, because TSA has to access the dataset twice but
only a small portion of data points are actually the skyline results.
Table 4 shows the performance based on the real datasets. We set
k to (d − 1), (d − 2), and (d − 3) with d equivalent to the dataset
dimensionality. Consistent to our expectation, k-ZSearch is better
than TSA, showing the superiority of k-ZSearch for k-dominant
skyline search.

8. CONCLUSION
In this paper, we analyze the skyline problems and exploit the or-

dering and clustering properties of the Z-order curve which match
perfectly well with the skyline processing strategies. Through this
study, we have made the following contributions:

1. We propose to use ZBtree as a fundamental mechanism to
coherently support various skyline processing algorithms in-
cluding ZSearch, ZUpdate and k-ZSearch.

2. The ZSearch algorithm scales very well in both dimension-
ality and cardinality, and soundly outperforms BBS [13] and
SFS [7], the state-of-the-art search algorithms.

3. The ZUpdate algorithm efficiently updates skyline results in
presence of insertions and deletions in the underlying dataset.
It soundly outperforms BBS-Update [13] and DeltaSky [17],
the best skyline update algorithms available today.

4. The k-ZSearch algorithm efficiently handles the cyclic dom-
inance problem in k-dominant skyline query and soundly
outperforms TSA [5], the representative k-dominant skyline
search algorithm.

5. We conduct an extensive performance evaluation to compare
our proposal with existing best algorithms designed specifi-
cally for certain problem domains (i.e., skyline queries, sky-
line updates and k-dominance skyline queries). The result
demonstrates the superiority of our algorithms and validates
the design principles and basis of our proposal.

The potential of Z-order curves in tackling skyline processing
problems has not been fully exploited. As the next steps, we are
investigating other Z-order properties to support other variants of
skyline queries.
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Figure 23: Elapsed time (k-Dominant, k:12, n:10k-10000k)

Dataset k m TSA k-ZSearch
NBA 12 3794 7.931 2.696

11 682 1.980 0.731
10 79 0.322 0.171

HOU 5 22 0.815 0.226
4 0 0.487 0.220

FUEL 5 1 0.063 0.001
4 1 0.062 0.001

Table 4: Real dataset (k-Dominant Skyline) (time (sec))
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