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Abstract Genome-wide association studies (GWAS)

using a large number of single nucleotide polymorphisms

(SNPs) have successfully been applied to identify genetic

variants of common diseases. However, genotyping using

the new array technologies is often associated with spuri-

ous results that could unfavorably affect analyses of

GWAS. Consequently, data cleaning is of paramount

importance in excluding spurious genotyping results. In

this study, we investigated the criteria required for the

appropriate cleaning of 389 unrelated healthy Japanese

samples analyzed using the GeneChip Human Mapping

500K Array Set for GWAS. The samples were randomly

subdivided into two groups, and the allele frequencies in

the groups were compared for individual SNPs as a quasi-

case-control study. Then, observed results were filtered by

four parameters (SNP call rate, confidence score obtained

using the Bayesian Robust Linear Model with Mahalanobis

genotype-calling algorithm, Hardy–Weinberg equilibrium,

and minor allele frequency) and assessed for deviation

from the null hypothesis. We found that appropriate data

cleaning could be achieved using these four parameters.

Our findings offer an avenue for obtaining appropriate data

from GWAS.
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Introduction

One of the goals underlying the study of common diseases

is to identify susceptibility and/or resistance genes associ-

ated with them. Previous studies of common diseases

include two broad categories: family-based linkage studies

across the entire genome, and population-based case-con-

trol association studies of candidate genes. Although there

have been notable successes, progress has been slow.

Linkage studies usually have low power except when a

single locus explains a substantial fraction of the disease.

In case-control association studies of candidate genes,

researchers can target only those genes that have been

functionally described.

In contrast, new high-throughput single nucleotide

polymorphism (SNP) typing technologies for genome-wide

association studies (GWAS) have recently been launched

(Matsuzaki et al. 2004; Oliphant et al. 2002). GWAS

provide opportunities to identify novel susceptibility and/or

resistance loci without any prior information about gene

functions. GWAS have successfully identified genetic

variants associated with common diseases, including

macular degeneration, QT interval prolongation, Crohn’s

disease, type 2 diabetes, and cerebral infarction (Arking

et al. 2006; Dewan et al. 2006; Klein et al. 2005; Kubo

et al. 2007; Rioux et al. 2007; Sladek et al. 2007; The

Wellcome Trust Case Control Consortium 2007).

However, one fundamental problem is that the results

obtained by the new array technologies are not always

accurate. In such large data sets, small systematic differ-

ences can produce effects that are capable of obscuring the

true associations being sought (Clayton et al. 2005; Zon-

dervan and Cardon 2004). The major causes of inaccurate

results are systematic errors of array reaction, incomplete

genotype-calling algorithms, and SNPs in regions that

exhibit copy number variations. Less accurate genotyping

data unfavorably affects GWAS analyses. Therefore, data

cleaning is of paramount importance, and data should be

checked thoroughly (Balding 2006). At present, a consen-

sus for data-cleaning criteria has not been established. In

this study, we assessed the following parameters for data

cleaning: (1) SNP call rate, (2) confidence score in the

Bayesian Robust Linear Model with Mahalanobis

(BRLMM) genotype-calling algorithm, (3) fitness to

Hardy–Weinberg equilibrium (HWE), and (4) minor allele

frequency (MAF). We typed 389 unrelated healthy Japa-

nese samples by the GeneChip Human Mapping 500K

Array Set and analyzed different thresholds for these four

parameters.

Materials and methods

Subjects and genotyping

The subjects included 389 unrelated, healthy Japanese indi-

viduals living in Japan. This study was approved by the

research ethics review committees of the University of Tokyo.

Genotyping of 500,568 SNPs was performed using the

GeneChip Human Mapping 500K Array Set (Affymetrix).

This array set consisted of two chips (Sty I and Nsp I) with

approximately 250,000 SNPs each that were used for each

individual. Approximately 250 ng of genomic DNA was

digested with two restriction enzymes (StyI and NspI) and

processed according to the manufacturer’s protocol. The

genotyping calls were analyzed using the GCOS 1.4 and

GTYPE 4.1 software packages, which adopted the BRLMM

genotype-calling algorithm (Rabbee and Speed 2006).

BRLMM performs a multiple-chip analysis, enabling

simultaneous estimation of probe effects and allele signals

for each SNP. The confidence score in BRLMM is assigned

for each observation according to the normalized distance

from the center of the genotype cluster. The confidence

score is d1/d2, where d1 is the smallest distance of the three

and d2 is the second-smallest distance. The confidence score

threshold is the maximum score at which the algorithm will

make a genotype call. All lower-quality confidence calls

with scores greater than the threshold result in a no call.

Assessment of data cleaning

To assess the appropriate data-cleaning methods, the 389

healthy control samples were divided into two temporary

groups (group A and group B). Each group was separately

analyzed by the BRLMM algorithm of GTYPE 4.1 because

the analytical capacity of this software was 250 samples

(maximum). Then, to remove the bias associated with

BRLMM analysis, group A and B samples were equally

subdivided into two new groups (group 1 and group 2);

group 1 consisted half of group A’s and half of group B’s

samples, and group 2 consisted the remaining samples

(Fig. 1). As a quasi-case-control study, group 1 was com-

pared with group 2 using the chi-square test for the

difference between allele frequencies of each SNP. SNPs

on chromosome X were omitted because these groups were

not matched by gender. Next, for reshuffling analysis, 100

new combination sets were prepared using the same 389

healthy control samples. To confirm that the appropriate

data cleaning was reproducible in sets having the bias

associated with BRLMM analysis, each set was formed

from two groups separately analyzed by the BRLMM

algorithm, such as the set of groups A and B (Fig. 1). Each

set was also analyzed by the chi-square test for the dif-

ference in allele frequencies of each SNP.
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The following four parameters were assessed in this

surveillance:

1. SNP call rate: to remove an SNP for which genotyping

was consistently problematic, SNPs with call rates

C85, C90 and C95% in both groups were prepared.

2. Confidence score with the BRLMM: Confidence

scores of 0.3, 0.4, 0.5, and 0.6 were applied. Each

overall call rate was 93.3% (StyI: 92.2%; NspI: 94.4%)

for a confidence score of 0.3; 95.3% (StyI: 94.4%;

NspI: 96.1%) for 0.4; 96.6% (StyI: 96.0%; NspI:

97.2%) for 0.5; and 97.6% (StyI: 97.1%; NspI: 98.0%)

for 0.6 before data cleaning. For a confidence score of

0.5, the distribution of call rates (per SNP and sample)

is shown in Supplementary Figs. 1 and 2.

3. HWE: Deviations from HWE can occur by chance.

However, they can also be due to genotyping errors,

inbreeding, and population stratification. Testing for

HWE can be helpful to check data (Balding 2006). We

removed SNPs for which we observed genotype

frequencies that significantly deviated from HWE

(HWE P \ 0.001 and P \ 0.01). Evaluation of HWE

was carried out using the chi-square test. In general,

case-control studies, SNPs that deviate from HWE in a

control group are removed. We considered one group

in a set as controls. The possibility that a deviation

from HWE is due to a deletion or duplication

polymorphism, which could be important for disease

susceptibility, should now be considered (Bailey and

Eichler 2006; Conrad et al. 2006; Nielsen et al. 1998).

4. MAF: We removed SNPs in which the minor allele

frequency was \1 or \5% in all samples.

SNPs with low MAF would produce inappropriately

small P values in the chi-square test. However, in this

study, the chi-square test could be used for the quasi-case-

control studies and evaluation of HWE because SNPs with

low MAF were removed for data cleaning.

First, the number of significant SNPs in a quasi-case-

control study (P \ 0.0001 and P \ 0.001) was counted for

each result after data cleaning and compared against the

expected number calculated from each P value and the total

number of SNPs. Next, the log quantile–quantile (QQ) P

value (Balding 2006; Weir et al. 2004) was adopted for

interpreting each result. The negative logarithm of P values

was plotted against –log (i/(L + 1)), where L is the number

of SNPs. Deviation from the expected number and the y = x

line corresponds to loci that deviate from the null hypothesis.

The close adherence of P values to the expected number and

the expected line, which corresponds to the null hypothesis

over most of the range, is encouraging, as it implies that there

are few systematic sources of spurious association because

mutual healthy control groups were compared.

Results

Criteria for data cleaning

We compared two healthy groups (groups 1 and 2, Fig. 1)

using the chi-square test as a quasi-case-control study.

Then, we assessed the deviation of the results from the null

hypothesis after each data cleaning (see ‘‘Materials and

methods’’ for details). A small or no deviation implies that

there are few systematic sources of spurious associations.

1. SNP call rate

As shown in Table 1, the number of SNPs with a call rate

C95% was close to the expected number calculated from

each P value and the total number of SNPs. For a confidence

score of 0.5, the ratio of observed and expected number of

SNPs with a call rate C95% was 1.05–1.50, whereas the

ratio with call rates of C90% and C85% was 1.35–2.47 and

1.52–2.96, respectively (Table 1). The observed number of

significant SNPs with call rates C90% and C85% was more

inflated. For other confidence scores (0.3, 0.4, and 0.6), the

ratio of observed and expected number of SNPs with a call

rate C95% was 1.05–2.04, whereas the ratio with call rates

C90% and C85% was 1.08–3.39 and 1.21–3.73, respec-

tively (Supplementary Table 1). SNPs with call rates C90%

and C85% also caused inflations. However, for a confidence

score of 0.5, the ratio of observed and expected number of

389 healthy control samples

Group-1

Half of A Half of B

Group-2

Half of A Half of B

Temporary Group-A Temporary Group-B

B
R
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Fig. 1 The principle for making groups. The 389 healthy control

samples were divided into two temporary groups (groups A and B).

Each group was separately analyzed by the Bayesian Robust Linear

Model with Mahalanobis (BRLMM) of GTYPE 4.1 software. Then, to

remove the bias associated with the BRLMM analysis, the samples of

groups A and B were equally subdivided into two new groups (groups

1 and 2); group 1 consisted half of group A’ s and half of group B’ s

samples, and group 2 consisted of the remaining samples. Group 1

was compared with group 2 using the chi-square test for the

difference between allele frequencies of each single nucleotide

polymorphism. Next, for reshuffling analysis, 100 new combination

sets were prepared using the same 389 healthy control samples. Each

set was formed from two groups separately analyzed by the BRLMM

algorithm, such as the set of groups A and B
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SNPs with a call rate C95% was up to 1.50. Nine significant

SNPs with P \ 0.0001 in the same region (within about

100 kb) were responsible for this random deviation. These

SNPs, showing uniformly low P values, existed in a linkage

disequilibrium block with a solid spine of D0[ 0.8. It was

shown that SNPs with a lower call rate are likely to contain

genotyping errors, and SNP call rate is important for data

cleaning.

Next, thresholds of SNP call rate ranging from 92% to

97% at increments of 1% were set, and the ratio of

observed and expected number of SNPs in each threshold

was calculated (Fig. 2). This ratio was saturated at SNPs

with a call rate C95%, implying that they had few spurious

associations and were considered to be the key threshold.

We focused on SNPs with a call rate C95% in the fol-

lowing analyses using other parameters.

2. Confidence score in BRLMM

In the BRLMM analysis, the ratio of observed and

expected number of SNPs was 1.05–1.56 for confidence

scores of 0.3, 0.4, and 0.5. However, this ranged from 1.13

to 2.04 for a confidence score of 0.6 (Table 2). Conse-

quently, a confidence score of 0.6 would cause spurious

associations. The total number of SNPs for a confidence

score of 0.5 ranged from 229,907 to 262,854, whereas for

confidence scores of 0.3 and 0.4, this was 146,469–217,818

(Table 2). On equivalent adequacy, the total number of

SNPs for each confidence score (0.3, 0.4, and 0.5) should

be taken into consideration. Then, the overall call rate for a

confidence score was 93.3% for 0.3, 95.3% for 0.4, and

96.6% for 0.5. Therefore, it is suggested that a confidence

score of 0.5 should be selected.

3. HWE

SNPs with an HWE of P C 0.001 or P C 0.01 did not

result in unexpected inflations. For a confidence score of

0.5, the ratio of observed and expected number of SNPs

with an HWE of P C 0.001 was 1.05–1.50, whereas for

HWE with P C 0.01, it was 1.05–1.48 (Table 1). We can

conclude that, as hundreds of thousands of SNPs were

analyzed in this study, deviation from HWE might be

caused by chance for SNPs with an HWE of P C 0.001.

Table 1 Comparison of group 1 and group 2 for a confidence score of 0.5

Confidence MAF (%) HWE Call rate (%) Total SNPs Number of SNPs

(obs. P values)

Number of SNPs

(exp. P values)

Ratio of obs. number/

exp. number

P \ 0.0001 P \ 0.001 P \ 0.0001 P \ 0.001 P \ 0.0001 P \ 0.001

0.5 5 0.01 95 229,907 34 254 23 230 1.48 1.10

90 305,001 71 415 31 305 2.33 1.36

85 328,894 91 501 33 329 2.77 1.52

0.001 95 233,023 35 258 23 233 1.50 1.11

90 310,687 73 428 31 311 2.35 1.38

85 336,275 93 520 34 336 2.77 1.55

1 0.01 95 259,186 38 272 26 259 1.47 1.05

90 349,900 86 471 35 350 2.46 1.35

85 378,496 112 592 38 378 2.96 1.56

0.001 95 262,854 39 277 26 263 1.48 1.05

90 356,361 88 485 36 356 2.47 1.36

85 386,702 114 612 39 387 2.95 1.58

Data cleaning was conducted using the following four parameters: single nucleotide polymorphism (SNP) call rate, confidence score in the

Bayesian Robust Linear Model with Mahalanobis (BRLMM) genotype-calling algorithm, Hardy–Weinberg equilibrium (HWE), and minor allele

frequency (MAF). When group 1 was compared with group 2 using the chi-square test for difference in allele frequencies of each SNP, the

number of significant SNPs (observed P values) was counted for each result. The number of significant SNPs (expected P values) was logically

calculated from the total number of SNPs

obs. observed, exp. expected

0.5

1.0

1.5

2.0

2.5

92% 93% 94% 95% 96% 97%

Call rate

R
at

io

Fig. 2 Ratio of observed and expected number of single nucleotide

polymorphisms (SNPs) with a call rate at 1% intervals between 92%

and 97%. Ratio of observed and expected number of SNPs was

calculated in each call rate, a confidence score of 0.5, Hardy–

Weinberg equilibrium (HWE) P C 0.001 and minor allele frequency

(MAF) C5%
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4. MAF

SNPs with MAF C5% or C1% did not exhibit unexpected

inflations. For a confidence score of 0.5, the ratio of

observed and expected number of SNPs for MAF C5% was

1.10–1.50, whereas for MAF C1%, this was 1.05–1.48

(Table 1). The decision regarding which SNPs with MAF

C5% or C1% should be adopted depends on the sample

size of each association study.

The log QQ P value plot was described after data

cleaning using the criteria identified by the above analyses

(SNP call rate C95%, confidence score 0.5, HWE

P C 0.001, and MAF C5% or C1%; Fig. 3a, b). Plots of P

values were close to the expected line (y = x). However,

approximately 12 SNPs deviated from the expected line of

low P values. The nine significant SNPs with P \ 0.0001

in a linkage disequilibrium block with a solid spine of

D0[ 0.8 were also responsible for this random deviation.

Taken together, these results indicated that data cleaning

could be appropriately conducted in our Japanese samples

using SNP call rate C95%, a confidence score of 0.5, HWE

P C 0.001, and MAF C5% or C1%.

Reshuffling analysis

Next, to confirm that the identified appropriate criteria

were reproducible, 100 new combination sets were

Table 2 Results of confidence scores in Bayesian Robust Linear Model with Mahalanobis (BRLMM) for single nucleotide polymorphisms

(SNPs) with a call rate C95%

Call rate (%) MAF (%) HWE Confidence Total SNPs Number of SNPs

(obs. P values)

Number of SNPs

(exp. P values)

Ratio of obs. number/

exp. number

P \ 0.0001 P \ 0.001 P \ 0.0001 P \ 0.001 P \ 0.0001 P \ 0.001

95 5 0.01 0.3 146,469 21 161 15 146 1.43 1.10

0.4 191,916 29 206 19 192 1.51 1.07

0.5 229,907 34 254 23 230 1.48 1.10

0.6 265,186 52 307 27 265 1.96 1.16

0.001 0.3 148,065 21 165 15 148 1.42 1.11

0.4 194,245 30 211 19 194 1.54 1.09

0.5 233,023 35 258 23 233 1.50 1.11

0.6 269,310 55 317 27 269 2.04 1.18

1 0.01 0.3 163,484 25 178 16 163 1.53 1.09

0.4 215,019 33 225 22 215 1.53 1.05

0.5 259,186 38 272 26 259 1.47 1.05

0.6 302,494 57 343 30 302 1.88 1.13

0.001 0.3 165,407 25 182 17 165 1.51 1.10

0.4 217,818 34 231 22 218 1.56 1.06

0.5 262,854 39 277 26 263 1.48 1.05

0.6 307,282 60 355 31 307 1.95 1.16

The results in comparison of group 1 and group 2 are arranged according to confidence scores in BRLMM

MAF minor allele frequency, HWE Hardy–Weinberg equilibrium, obs. observed, exp. expected

Fig. 3 Log quantile–quantile (QQ) P value plot for the results after

data cleaning. a and b were analyzed using groups 1 and 2,

respectively. Cleaning criteria were a single nucleotide polymorphism

(SNP) call rate C95%, confidence score 0.5, Hardy–Weinberg

equilibrium (HWE) P C 0.001, and minor allele frequency (MAF)

C5%; b SNP call rate C95%, confidence score 0.5, HWE P C 0.001,

and MAF C1%

890 J Hum Genet (2008) 53:886–893
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prepared. In addition, to consider that the bias associated

with BRLMM analysis cannot be removed when other

investigators make use of our frequency data, each set was

formed from two groups separately analyzed by the

BRLMM algorithm, such as the set of groups A and B

(Fig. 1). Then, two groups in each set were compared as a

quasi-case-control study. The mean ratio of observed and

expected number of SNPs with a call rate of C95% was

0.91–0.98, whereas the mean ratio with call rates of C90%

and C85% was 1.21–3.62 and 2.74–18.18, respectively

(Table 3). Unexpected deviations were not observed in

comparisons of these 100 sets when data cleaning was

conducted using SNP call rate C95%, a confidence score of

0.5, HWE P C 0.001, and MAF C5 or C1%.

Discussion

GWAS have considerable potential for detecting suscepti-

bility and/or resistant genes for various complex diseases.

However, the considerable amount of data may occasion-

ally create difficulties for investigators. One hundred

thousand to 1 million SNPs are targeted for GWAS. It is

important to note that the results obtained from genotyping

so many SNPs are not always precise and that inaccurate

data will unfavorably affect GWAS analyses. In this study,

it was shown that spurious associations could be excluded

using the criteria that we identified. However, it may not be

possible to apply these criteria to data from the GeneChip

Human Mapping 500K Array Set or other arrays used by

other investigators, because the criteria may be affected by

differences in overall call rates between studies. In such

cases, the same analyses using four parameters (SNP call

rate, confidence score in BRLMM, HWE, and MAF) would

facilitate identification of appropriate criteria for each

study. In the GeneChip Human Mapping 500K Array Set,

these criteria can be applied to data that is of the same

quality as our data, with an index for overall call rate (for a

confidence score of 0.5, overall call rate was 96.6% before

data cleaning in this study).

The tradeoff exists between overall call rate and accu-

racy. If a high accuracy is of greater importance than a high

overall call rate, a higher-quality threshold for data clean-

ing should be selected. Alternatively, if a high overall call

rate is of greater importance than a high accuracy, a lower

quality threshold for data cleaning should be selected. In

this study, we assessed each data-cleaning method by the

deviation from the null hypothesis to obtain accurate data.

Additionally, on equivalent adequacy, a higher overall call

rate was considered. Therefore, the appropriate data

cleaning methods we identified satisfy both overall call rate

and accuracy.

In GWAS with the GeneChip Human Mapping 500K

Array Set, the genotyping results of case–control samples

were decided by the BRLMM algorithm. In the reshuffling

analysis (100 sets), two groups in each set were separately

analyzed by the BRLMM algorithm. The maximum mean

ratio of observed and expected number in the reshuffling

analysis was up to 18.18 (Table 2), whereas that in groups 1

and 2, equally subdivided from groups A and B, was 2.95

(Table 1). This result suggested that separate BRLMM

analyses result in a bias of genotyping results. However, as

shown in Table 3, unexpected deviations were not observed

in the reshuffling analysis after the appropriate data cleaning

(cleaning criteria: SNP call rate C95%, a confidence score

of 0.5, HWE P C 0.001, and MAF C5 or C1%). We assume

that the appropriate data cleaning could remove SNPs

affected by the bias associated with BRLMM analysis.

Some studies required that samples pass a threshold of

overall call rate (Buch et al. 2007; Rioux et al. 2007; The

Wellcome Trust Case Control Consortium 2007), whereas

we evaluated data cleaning methods for SNP selection. As

Table 3 Reshuffling analysis

Confidence MAF (%) HWE Call rate (%) Total SNPs (SD) Mean number of SNPs in obs.

P values (SD)

Mean ratio of obs. number/

exp. number (SD)

P \ 0.0001 P \ 0.001 P \ 0.0001 P \ 0.001

0.5 5 0.001 95 235,227 (9,904) 22.38 (7.95) 230.64 (28.47) 0.95 (0.33) 0.98 (0.11)

90 308,134 (13,769) 60.75 (12.67) 372.65 (39.63) 1.97 (0.40) 1.21 (0.12)

85 334,375 (15,499) 375.30 (41.86) 916.84 (79.48) 11.20 (1.09) 2.74 (0.18)

1 95 265,192 (11,265) 24.23 (8.10) 249.61 (29.46) 0.91 (0.30) 0.94 (0.10)

90 352,067 (15,910) 127.45 (22.39) 628.48 (58.25) 3.62 (0.60) 1.79 (0.14)

85 383,413 (17,935) 697.85 (72.62) 1814.64 (141.78) 18.18 (1.61) 4.73 (0.27)

To confirm whether the two criteria identified in the comparison of groups 1 and 2 are reproducible, 100 new combination sets were prepared,

and each set was compared using the chi-square test for difference in allele frequencies of each SNP

MAF minor allele frequency, HWE Hardy–Weinberg equilibrium, SNPs single nucleotide polymorphisms, obs. observed, exp. expected, SD
standard deviation
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a result, the data cleaning methods we identified could

exclude spurious associations, suggesting that it would not

be necessary to require sample selection when the appro-

priate data cleaning for SNP selection is conducted.

The four parameters (SNP call rate, confidence score in

BRLMM, HWE, and MAF) are mutually correlated. In

these four parameters, SNP call rate was considered to be a

key parameter because SNPs with a lower call rate, par-

ticularly, caused irrelevant inflations (Tables 1, 3; Fig. 2).

In GWAS, it would be better to change the threshold of

SNP call rate when the ratio of observed and expected

number of SNPs with low P values is inflated. If the ratio is

close to one according to the threshold of SNP call rate, it

is suspected that SNPs with low P values include spurious

associations due to errors as well as true associations with

the target disease.

In the reshuffling analysis, we calculated deviations

from expected P values of each chip (StyI and NspI).

Before data cleaning, the maximum mean ratio of observed

and expected number of SNPs on StyI chip was 47.08,

whereas that of SNPs on NspI chip was 30.10 (Supple-

mentary Table 2). Thus, the mean ratio for StyI chip was

more inflated. There might be a difference in the accuracy

between the two chips before data cleaning. However, after

the appropriate data cleaning, the maximum mean ratio of

observed and expected number of SNPs on StyI chip was

0.98, whereas that of SNPs on NspI chip was 0.93 (Sup-

plementary Table 2). Accordingly, unexpected deviations

were not observed in either chip after the appropriate data

cleaning.

Even though data cleaning using appropriate criteria was

conducted, sample size should be carefully considered

when SNPs with an MAF C1% are used. The frequency of

an SNP has a marked influence on statistical power. To

identify SNPs with low MAF associated with complex

disease, sample size must be large (Ohashi and Tokunaga

2001, 2002; Ohashi et al. 2001; Risch 2000). In instances

where SNPs with low MAF are used, at the very least,

desirable sample sizes should be calculated based on the

frequencies of the targeted SNPs, and sufficient samples

should be collected when planning the GWAS.

Generally, 300,000 SNPs might be required to capture

most of the common genetic variation in a population

(Balding 2006). The GeneChip Human Mapping 500K

Array Set provides genotyping data for approximately

500,000 SNPs. However, only about 250,000 SNPs were

extracted after data cleaning in our Japanese samples

(Table 1). This reduction is caused by the presence of

numerous SNPs with low MAF on the GeneChip Human

Mapping 500K Array Set in Japanese. There are approxi-

mately 150,000 SNPs with an MAF \5% and 100,000

SNPs with an MAF \1% on this array set. Ideally, SNPs

with low MAF are not likely to be suitable for GWAS

(Ohashi and Tokunaga 2001, 2002; Ohashi et al. 2001;

Risch 2000), and it is hoped that new arrays for different

ethnic groups will be developed.
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