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PREFACE 

The objective of this dissertation is to determine the role of uterine unfolded protein 

response (UPR) preconditioning in the maintenance of myometrial quiescence. The 

overarching hypotheses is that preconditioning the myometrial UPR would allow for the 

maintenance of non-apoptotic caspase 3 (CASP3) activity, and thus sustain uterine 

quiescence. In chapter one, we test the specific hypothesis that preconditioning the UPR 

in vitro in the immortalized human myocyte would be effective in activating and 

maintaining CASP3 in a non-apoptotic state. Following Tunicamycin (TM) or Thapsigargin 

(Thaps) preconditioning, ERSR activation and apoptosis will be examined along with 

inflammatory responses. In the second chapter, we expand our hypothesis and test the 

role of endogenous pregnancy-generated stress stimuli in preconditioning the 

myometrium for the maintenance of uterine quiescence. Using a pregnant mouse model 

with phenyl butyric acid (PBA)-dependent sub-preconditioned mice, we will analyze the 

effects of inappropriate UPR preconditioning on gestational length, the regulation of 

uterine CASP3, inflammation and the process of luteolysis. In the final chapter we will 1) 

characterize the UPR-generated secretome in stressed uterine myocytes, 2) test the 

functional capacity of the UPR-secretome to transmit the stress response in a paracrine 

and endocrine manner and 3) evaluate changes in the UPR secretome with pregnancy 

associated pathologies. We hypothesize endoplasmic reticulum stress (ERS) in the 

uterine myocyte produces a unique secretome that has the capability of propagating the 

ERS response in a paracrine and endocrine manner and may be used in modulating 

systemic adaptations to pregnancy. The following work will review our results and discuss 

the main implications of this collection of studies. 

 



 

vi 

TABLE OF CONTENTS 

Dedication ii 

Acknowledgements iii 

Preface v 

List of Tables ix 

List of Figures x 

Chapter 1 1 

General Introduction 1 

Preterm Birth 1 

The Female Reproductive System 4 

Ovary 4 

Oviducts 5 

Uterus 6 

Cervix 7 

Vagina 7 

Parturition 8 

Initiation of Uterine Activation 8 

Contractile Associated Proteins 9 

Smooth Muscle Contraction 16 

Transition of the Uterus from Quiescence to Contractility 17 

Progesterone 17 

Inhibition of Inflammation, Estrogen Signaling and CAPs by Progesterone 19 

Luteolysis and Progesterone Decline in Lower Mammalian Species 24 

Functional Progesterone Withdrawal 25 

Endoplasmic Reticulum 28 



 

vii 

Endoplasmic Reticular Milieu 28 

Co-Translational Translocation, Folding and Protein Trafficking 29 

Protein Quality Control 30 

Activation of the Unfolded Protein Response 31 

Glucose Regulated Protein 78 32 

Inositol Required Kinase 1α 33 

Activating Transcription Factor 6 34 

Protein Kinase RNA-like ER Kinase 35 

Extracellular Functions of the Unfolded Protein Response 36 

CASP3-Dependent Apoptosis 38 

Non-Apoptotic CASP3 Function 39 

The UPR and Inflammation 40 

Preconditioning 41 

Preconditioning of the Endoplasmic Reticulum Stress Response 42 

Remote Preconditioning of the Endoplasmic Reticulum Stress  
Response 45 

Thesis Aims 46 

Chapter 2 48 

Introduction 48 

Materials and Methods 51 

Results 54 

Discussion 62 

Chapter 3 69 

Introduction 69 

Materials and Methods 71 

Results 75 



 

viii 

Discussion 83 

Chapter 4 89 

Introduction 89 

Methods 94 

Results 98 

Discussion 105 

Chapter 5 113 

Conclusion and Synthesis 113 

Appendix A IACUC Protocol Approval Letter 124 

Appendix B IRB Approval Letter 125 

References 126 

Abstract 190 

Autobiographical Statement 193 

  



 

ix 

LIST OF TABLES 

Table 1: The Effects of In Vivo Preconditioning on Uterine Quiescence 76 

Table 2: Proteins with Increased Stress-Induced Secretion 101 

Table 3: Proteins with Decreased Stress-Induced Secretion 102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

LIST OF FIGURES 

Figure 1: UPR preconditioning renders the hTERT-HM uterine myocyte  
CASP3 non-apoptotic 55 

Figure 2: UPR preconditioning increases cell viability of the hTERT-HM  
uterine myocyte in the presence of active non-apoptotic CASP3 55 

Figure 3: Preconditioning dose of TM has negligible impact on UPR,  
inflammatory, pro and anti-apoptotic indices in the hTERT- 
HM uterine myocyte 56 

Figure 4: Thaps mediated UPR preconditioning renders the hTERT-HM  
uterine myocyte CASP3 non-apoptotic 57 

Figure 5: UPR preconditioning ablates NF B activation in the hTERT- 
HM uterine myocyte 59 

Figure 6: UPR preconditioning differentially regulates activation of the  
pro and anti apoptotic arms of the UPR in the hTERT-HM  
uterine myocyte 61 

Figure 7: Increased maintenance of pro-survival molecules with TM  
mediated UPR preconditioning in the human uterine myocyte 62 

Figure 8: Endogenous preconditioning prevents premature activation of  
uterine inflammation in the pregnant mouse. 77 

Figure 9: Endogenous preconditioning prevents premature activation of  
NFκB in the myometrial and endometrial compartments of  
the pregnant mouse 78 

Figure 10: Endogenous preconditioning facilitates the maintenance of  
non-apoptotic CASP3 and suppresses iPLA2 activation in 
the pregnant mouse uterus 79 

Figure 11: Preconditioning facilitates the suppression of prostaglandin  
synthesis thereby preventing premature luteolysis and  
P4 withdrawal 81 

Figure 12: UPR Preconditioning in vivo suppresses local uterine  
prostaglandin production 82 

Figure 13: Premature apoptotic CASP3 in the endometrium increases  
prostaglandin synthesis 82 

Figure 14: SILAC-dependent identification and quantification of TM- 
induced protein secretion in hTERTHM cells 99 



 

xi 

Figure 15: GRP78 is actively secreted from uterine myocytes in a  
stress-dependent manner 101 

Figure 16: hTERT-HM cell plasma membranes are intact at the time of  
media collection 102 

Figure 17: TM-dependent activation of the myometrial UPR generates a  
unique stress-specific secretome 103 

Figure 18: Serum GRP78 and GADD153 concentrations from normal and  
preeclamptic pregnancies in women who participated or  
refrained from cigarette smoking 105 

 

 

  



1 

 

CHAPTER 1 

General Introduction 

Preterm Birth 

Preterm birth (PTB), which is classically described as the delivery of a baby prior 

to 37 weeks of gestation, is the number one cause of mortality in children under 5 years 

of age.1 Each year approximately 15 million babies are born premature worldwide, and 

this number continues to rise.2,3 Due to the incomplete development of vital organs at 

birth, premature infants that are fortunate enough to survive often suffer major health 

complications. Consequently, the risk of health problems and mortality associated with 

preterm delivery is inversely correlated to gestational age and organ development at the 

time of birth.4 As a result of immature organ development, babies born preterm have an 

increased risk of neurologic and developmental disabilities, such as cerebral palsy, 

hearing and vision impairments, as well as respiratory complications.5,6 Recent studies 

have also demonstrated direct correlations between PTB and latent diseases such as 

asthma, insulin resistance and hypertension.7-9 Unfortunately, the treatment of such 

conditions, in addition to direct complications of preterm birth, poses as a major financial 

hardship for affected individuals. In the United States alone, the treatment of PTB and 

resulting acute and chronic disorders costs nearly 26.2 billion dollars annually.10   

To reduce the burden of premature delivery and improve subsequent maternal and 

neonatal treatment a large portion of clinical research has begun to examine maternal 

risk factors associated with preterm delivery. As such, a few of the major discernable risk 

factors for preterm labor include low socioeconomic status, advanced age, tobacco use, 

high stress, inflammation, infection, short cervical length and race.11-17 In 2014, the final 

U.S birth reports revealed a continuation of extreme preterm birth rates in the Black 
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population; compared to Caucasians or Hispanics, Black women had a 50% greater 

chance of delivering prematurely.14 While the exact genetic component responsible for 

the disproportionate rate of preterm birth remains elusive, one study examining genetic 

predispositions for PTB identified multiple single nucleotide polymorphisms in black 

women that augment infection and inflammatory responses, which could increase the 

individual’s risk of preterm delivery.18 Independent of race, women who have reduced 

cervical length at term, multiple fetuses, or previously undergone preterm birth are also 

at an increased risk of early delivery.19 

Currently there is no cure for preterm birth, but three preventative treatments are 

available 1) mid-trimester progesterone, 2) cervical cerclage and 3) cervical pessary. To 

date, four key randomized, double-blinded, placebo-controlled clinical trials have been 

performed examining the effectiveness of mid-trimester vaginal progesterone treatments 

in delaying the onset of labor in women at high risk for delivering preterm.20-23  In each of 

these studies all women included were found to be at risk of undergoing preterm birth due 

to 1) having a cervical length between 10-20mm, 2) previously having a spontaneous 

preterm birth, 3) having a uterine malformation or 4) having a twin pregnancy.  Overall, 

vaginal progesterone significantly reduces the risk of preterm birth at less than <32 weeks 

of gestation (RR, 0.47; 95% CI, 0.24-0.91) and decrease composite perinatal morbidity 

and mortality (RR, 0.43; 95% CI, 0.20-0.94).24 Unfortunately, mid-trimester vaginal 

progesterone treatment did not reduce the frequency of preterm birth in a multicenter 

randomized control trial in which women with a cervix of less than <30mm were included. 

Besides mid-trimester vaginal progesterone, cervical cerclage has also been examined 

as a potential treatment for reducing the risk of preterm birth.25-29  In a recent retrograde 

meta-analysis reviewing five control trials, cervical cerclage significantly decreased the 
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risk of preterm birth less than <32 weeks of gestation (RR, 0.66; 95% CI, 0.48-0.91) and 

lessened composite perinatal morbidity and mortality (RR, 0.64; 95% CI, 0.45-0.91) in 

women previously identified as being at risk of preterm birth primarily due to having a 

cervical length of <25mm.24 When comparing the effectiveness between mid-trimester 

vaginal progesterone or cervical cerclage in women with a cervical length less than 

<25mm or who have previously had a spontaneous preterm birth, no differences were 

found.24 The last treatment method currently being used/studied as a preventative option 

for preterm birth is cervical pessary. Studies examining the use of cervical pessary have 

given more convoluted results than either progesterone or cervical cerclage. One 

multicenter randomized control trial performed in Spain, cervical pessary in women 

between the ages 18-43, with a cervical length of 25mm or less found spontaneous 

delivery less than 34 weeks was significantly reduced (12 [6%] vs 51 [27%], odds ratio 

0.18, 95% CI 0.08–0.37; p<0.0001) with cervical pessary compared to the expected 

management group.30 Further, Goya and colleague found no significant differences 

between the effectiveness of 1) vaginal progesterone, 2) cervical cerclage or 3) cervical 

pessary as a management strategy for preterm birth in women with singleton 

pregnancies, a history of preterm birth and a sonographic short cervix.31 On the contrary, 

a more recent large multicenter randomized control-trial with 932 participant only 

including women with a cervix length of 25mm or less did not find cervical pessary 

reduced the risk of spontaneous preterm delivery before 34 weeks of gestation.32 

Similarly, in a randomized control trial of 1180 women, the use of cervical pessary did not 

reduce the risk of preterm birth in women undergoing a twin pregnancy when compared 

to routine treatment.33 Subsequently, more research is necessary accurately elucidate 

the effectiveness of cervical pessary. 



4 

 

With the number of preterm births occurring annually, it is clear there is still much 

work needed to increase the effectiveness of preventative treatments and additionally, 

the tocolytic drugs given to women who are actively undergoing premature contractions. 

Currently, the best tocolytic agents available are only effective in impeding the immediate 

processes of active labor by 24-48hrs.34,35 The most common of these agents used 

include Nifedipine, a calcium channel blocker, Indomethacin, a cyclooxygenase 2 inhibitor 

(COX-2).36,37 While 24-48hrs is not a long period of time it does allow for the 

administration of antenatal corticosteroids and magnesium sulfate to improve respiratory 

and neurological fetal development, thereby reducing fetal morbidities.38,39 Unfortunately, 

once a woman presents with premature contractions, there is nothing that can be done 

to stop at that point to stop the labor from occurring. Consequently, for the continuation 

of therapeutic development and successful prevention of preterm birth it is imperative that 

we first understand the complex regulatory networks responsible for the maintenance of 

uterine quiescence and subsequent transition into parturition during both term and 

preterm birth. 

The Female Reproductive System 

For a complete understanding of gestational regulation, it is necessary to start by 

reviewing the female reproductive system including the primary female sex organ (ovary), 

secondary female sex organs (oviducts, uterus and vagina) and the menstrual cycle 

(ovarian and uterine). 

Ovary 

In a developed female there are two ovaries located slightly superior and bilateral 

to the uterus within the pelvic girdle, which are held in place via the broad ligament.40 

Each ovary can be separated into two distinct regions, the medulla and the cortex. The 
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innermost region of the ovary is referred to as the medulla, and is comprised of loose 

connective tissue, spiral arteries, autonomic nerves and hilus cells. The cortex 

surrounding the medulla, which is made up primarily of dense connective tissue, functions 

to maintain primordial follicles. Primordial follicles are the most basic form of a female 

gamete. Following puberty, a small proportion of stored primordial follicles will undergo 

folliculogenesis, which will lead to the development of a mature oocyte. At the time of 

ovulation, an oocyte is released into the oviducts for further fertilization. Subsequent to 

ovulation, the corpus luteum will remain within the cortex until fertilization and/or luteolysis 

(degradation of the corpus luteum) occurs.41 

Oviducts 

Directly adjacent to the ovaries are bilateral tube-like structures known as the 

oviducts. These structures function to transport the ovum from the ovary to the uterus, as 

well as provide an appropriate environment for fertilization of the ovum by sperm. The 

luminal membrane of the oviducts consists primarily of cuboidal and columnar epithelial 

cilia and secretory cells, which are surrounded by multiple layers of smooth muscle.42,43 

Each oviduct can be divided into three sections: the infundibulum, the ampulla, and the 

isthmus. The infundibulum is the distal most part of the oviduct and is primarily comprised 

of finger-like structures projecting towards the ovary, known as fimbriae. During ovulation 

when the cumulus-oocyte complex is released from the ruptured follicle in the cortex of 

the ovary it is collected by the fimbriae of one of the oviducts.44 Upon retrieval, the ovum 

then passes through the ampulla, located proximal to the infundibulum, and is fertilized 

within the ampulla/isthmus junction.45 While smooth muscle contraction and mucosal 

secretions play a role in ovum transport, it is generally accepted that ciliary action is 

largely responsible for propelling the ovum through the oviduct.46 Approximately 80 hours 
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after being taken in by the oviducts, the fertilized embryo exits through the isthmus into 

the superior region of the uterus.47   

Uterus 

The uterus is a hollow organ made up of multiple components. Most notably, the 

uterine body can be separated into two functional domains: the fundus and corpus. For 

this review, I will not discuss tissue specific differences between the fundus and corpus 

regions but will instead describe the body of the uterus as a whole. The uterine body can 

be delineated into three specific layers of tissue: the endometrium, the myometrium, and 

the perimetrium. The endometrium lines the lumen of the uterine cavity, and functions to 

support the implantation and growth of a fetus. The endometrium, exposed to the uterine 

cavity, is a single layer of columnar epithelial cells. These cells are bordered by the 

functionalis, which is primarily composed of epithelial and stromal cells. The 

endometrium, along with the majority of the functionalis is shed from the uterus following 

the secretory phase of the menstrual cycle in a non-pregnant uterus.48 In contrast, the 

basement layer of the endometrium, termed the basalis, remains largely intact throughout 

menstruation. The basalis is rich in stromal cells, as well as secretory glands that have 

been demonstrated to extend proximally into the functionalis and deep into the circular 

layer of the neighboring myometrium.49,50 The myometrium is the smooth muscle layer of 

the uterus located between the endometrium and the perimetrium. Structurally, it is made 

up of two distinct muscle layers arranged in a circular and then longitudinal pattern, 

respective to the endometrium, to enhance the contractile potential of the tissue.51,52 

However, the myometrium remains in a quiescent state through the active suppression 

of contraction throughout the majority of gestation to allow for proper fetal development. 

It is not until the onset of labor at approximately 40 weeks gestation that the contracting 



7 

 

myometrium must expel the fetus from the uterus.53,54 The perimetrium, a serosal 

membrane collectively surrounding the myometrium, functions to support the uterus and 

acts as a protective barrier.55  

Cervix 

The cervix is a tightly regulated canal structure which connects the uterine cavity 

to the vagina.56 In the average woman, the cervical canal is between 3-4 centimeters in 

length and is comprised of: the endocervix located superior to the vagina, the external 

and internal os junctions located where the cervix meets the vagina and uterine cavity, 

respectively and the exocervix located inferior to the vagina.57 The interior portion of the 

cervix is comprised of the extracellular matrix and to a lesser extent a cellular 

component.58 The extracellular matrix is predominantly comprised of collagens type 1 

(70% and type 3 (30%), but also contains elastin fibers intertwined between the 

collagen.58 The inner cellular component is made up of smooth muscle, fibroblasts, blood 

vessels and the epithelium, which lines the cervical canal.58,59 Specifically, simple 

columnar epithelia within the endocervix and both columnar and squamous epithelia 

within the exocervix.57 Similar to the endometrium, the cervical epithelia contains glands, 

which secrete a hormone regulated-sugar rich mucosal substance, which primarily 

contains water, electrolytes and mucins.60,61 Together, the three main functions of the 

cervix/cervical mucosa are 1) act as a protective barrier against external microorganisms, 

2) maintain intrauterine integrity during fetal development and 3) undergo cervical 

remodeling late in gestation to facilitate parturition.61-63 The detailed process of cervical 

remodeling is discussed in the following parturition section. 

Vagina 

The most distal organ in the reproductive tract is the vagina, which functions as an 
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intermediate organ connecting the uterus to the external genitalia.64 Unlike the cervix, the 

epithelial lining of the vagina is a thick layer of stratified squamous cells approximately 

0.15-0.2 centimeters in length. This epithelial lining can be categorized into three 

sections: the basalis comprised of round-shaped cells with prominent nuclei, an 

intermediate zone with flatter cells, and the hormone responsive superficial layer of 

cornified cells.59 Encasing the vaginal epithelium is a smooth muscle layer, continuous 

with the uterine muscle previously discussed. 

Parturition 

Much of how the dynamic regulatory network functions throughout the course of 

gestation remains largely unknown. Subsequently, the advancements in tocolytic 

therapies over the past decade have been minimal. To improve upon the development of 

future preventative treatments for preterm delivery, it is necessary to further our 

understanding of the basic mechanisms that maintain uterine quiescence and those that 

coordinate the progression of the myometrium from a quiescence state to a fully 

functioning contractile unit with the onset of parturition. 

Initiation of Uterine Activation 

While the exact mechanisms responsible for the commencement of parturition 

remains undefined, it is well described that induction of parturition is demarcated by 

heightened uterine inflammation in both term and preterm labor.65,66 Uterine inflammation 

is observed as the infiltration of both activated innate (macrophages, neutrophils, mast 

cells) and adaptive (B-lymphocytes and T-lymphocytes) immune cells, and increased pro-

inflammatory cytokines in the amniotic fluid, myometrium, cervix, decidua and fetal 

membranes.67-69 As term approaches integrated endocrine signaling and mechanical 

stretch of uterine myocytes induce uterine chemoattractant proteins, i.e. SP-A, CXCL8-
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CXCL11, CCL2 and CCL5.70 Chemoattractant proteins then act to propagate 

macrophage and neutrophil migration, as well as alter the ratio of adaptive pro-

inflammatory CD4+ effector T-cells to immunosuppressive naïve regulatory T cells in favor 

of increased inflammation.70-75 Subsequently, both innate and adaptive inflammatory cells 

secrete major labor modulating cytokines such as IL-1β, interleukin-6 (IL-6), interleukin-8 

(IL-8) and tumor necrosis factor α (TNFα) into the surrounding uterine tissue.76-78 Within 

uterine tissues, increased pro-inflammatory cytokines leads to the activation of the 

multifactorial transcription factor nuclear factor kappa B (NFB) and the activating protein 

1 (AP-1) family of transcription factors (jun, fos or ATFs).75 Prior to stimulation, NFB is 

held inactive within the cytoplasm bound to the inhibitor protein termed inhibitor kappa B 

alpha (IκBα).79 With the binding of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα 

to their appropriate receptors proteasome-mediated degradation of IκBα occurs and 

NFB is able to translocate to the nucleus.80-84 Upon nuclear translocation, NFB 

increases the expression of inflammatory and contractile associated proteins (CAPs), as 

described in the following section Contractile Associated Proteins.80,82,85-88 Consequently, 

the AP-1 family of transcription factors, which are primarily regulated at the level of 

transcription, are also induced upon cytokine stimulation.89 Together, AP-1 and NFB 

mediated increases in CAP expression transform the uterus into a uterotonic sensitive, 

synchronous contractile organ which allows for the successful expulsion of the fetus at 

term.90,91 

Contractile Associated Proteins 

Cyclooxygenase 2- Prostaglandin endoperoxide synthase 2 (cyclooxygenase 2, or 

COX-2) is an inducible contractile associated enzyme upregulated in human gestational 

tissues with the onset of spontaneous labor.92,93 The biochemical role of COX-2 in vivo is 
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to mediate prostaglandin synthesis.94 Accordingly, COX-2 assists in the conversion of 

arachidonic acid, which has been liberated from phospholipids in the membrane, into the 

unstable intermediate endoperoxide.94 Thereafter, prostaglandin specific synthases 

further transform endoperoxide into their respective prostaglandin products. Analysis of 

NFB targets in human myometrial cells revealed IL-1-mediated binding of the NFB 

subunit RelA to the promoter region of the COX-2 gene increases mRNA levels of COX-

2.82,95 Furthermore, increasing mechanical stretch and estrogen signaling within the 

myometrium at term directly increases the expression of COX-2 via AP-1 mediated 

induction of COX-2 transcription.91,96 Consequently, the upregulation of COX-2 leads to 

the increase in prostaglandin synthesis, specifically prostaglandins E2 (PGE2) and F2α 

(PGF2α), which act as uterotonic agents within the pregnant uterus. 

Prostaglandins- PGE2 and PGF2α have classically been recognized as major 

contributors to the onset of parturition, and as previously mentioned, are both highly 

upregulated during the process of labor.97-99 Through activation of G-coupled protein 

receptors EP1-4 and FP respectively, PGE2 and PGF2α primarily function to 1) stimulate 

smooth muscle contraction of the myometrium, 2) prime the cervix for delivery of the fetus 

and 3) initiate rupture of the fetal membranes.  Prostaglandins are potent CAPs, as the 

application of exogenous PGF22α alone is enough to stimulate myometrial contractions.100 

The mechanism in which PGF2α is capable of stimulating myometrial contractility is by 

directly and indirectly altering intracellular calcium concentrations.101 With the binding of 

PGF2α to its Gαq-coupled protein receptor, phospholipase C (PLC) is activated. 

Subsequently, PLC second messenger signaling transduction through inositol 1,4,5-

triphosphate (IP3) and diacylglycerol (DAG) stimulate ligand-regulated calcium channels 

within the cell membrane and calcium channels within the sarcoplasmic reticulum to 
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increase mobilization of intracellular calcium.102 Increased intracellular calcium 

concentrations decrease the electrochemical gradient across the plasma membrane 

which in turn activates membrane bound voltage-gated calcium channel causing further 

mobilization of calcium into the cell.103 Consequently, increased calcium concentrations 

trigger the cycling of actin and myosin to generate smooth muscle contractions; further 

outlined in the upcoming section Smooth Muscle Contraction. PGE2 binding to the EP1 

receptor also triggers intracellular calcium mobilization. However, this is through a loosely 

defined PLC-independent process which involves activation of G inhibitory protein.104 

Secondary to the regulation of myometrial contractility, prostaglandins also partake in 

cervical remodeling. As the major role of the cervix prior to parturition is to act as a 

mechanically competent protective barrier for the uterine cavity, extensive remodeling of 

the cervical tissue must occur before the delivery of the fetus through the cervical-vaginal 

canal. The process of cervical ripening, in which the cervix becomes soft, thin and easily 

stretched, is typically characterized by the reorganization and altered biochemical 

properties of cervical collagen.105 One mechanism in which prostaglandins in the 

endocervical canal contribute to cervical ripening is by stimulating the upregulation of 

matrix metalloproteases (MMPs) secretion and collagenase activity.106 Increased MMP-1 

and collagenase activity leads to decreased collagen concentrations which increases the 

compliance of the cervical canal.107 Similarly, prostaglandin stimulation has also been 

shown to increase the synthesis of hydrophilic glycosaminoglycans, which act to increase 

collagen solubility and thereby increase cervical pliability.108 However, as cervical 

mucosal concentrations of prostaglandins do not increase during late gestation and 

inhibitors of prostaglandin synthesis inhibit cervical ripening, further studies are necessary 

to elucidate the dynamic prostaglandin-mediated regulation of cervical ripening.109,110 In 
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addition to cervical ripening, prostaglandins also participate in the remodeling (i.e. 

rupture) of fetal membranes during parturition.  In both term and preterm labor, the rupture 

of fetal membranes in utero is an integral step in the expulsion of the fetus from the uterine 

cavity.111,112 As in the cervix, PGE2 and PGF2α in fetal membranes have been shown to 

stimulate the production of MMPs, specifically MMP-2 and MMP-9.113,114 As a result, 

increases in MMPs synthesis, concomitant to a labor associated decline in the expression 

of tissue inhibitors of MMPs, leads to the decreased structural integrity of fetal 

membranes and membrane rupture via extracellular matrix degradation.115   

Prostaglandin Receptor Regulation- In addition to increased concentrations of 

COX-2 and prostaglandin E2 and F2α, recent studies have also demonstrated augmented 

prostaglandin receptor expression in the uterus at the time of parturition.80 When 

comparing expression of both EP and FP receptors in non-pregnant versus pregnant 

myometrium, there is a significant reduction in pregnant uterine tissues to suppress 

contractility while the fetus develops.116 Subsequently, in the laboring versus non-laboring 

pregnant myometrium prostaglandin FP receptors are highly upregulated.116,117 Further 

studies have since shown, increased FP receptor expression late in gestation is induced 

by IL-1β/NFB-mediated transcriptional regulation.80,118 Unlike the FP receptor, which 

only participates in myometrial contractility, it has been demonstrated that various EP 

receptors isoforms can propagate both myometrial relaxation (EP2 and EP4), as well as 

myometrial contractility (EP1 and EP3). Multiple studies examining gestational regulation 

of the EP receptor isoforms have found that the relaxation associated EP2 receptor is high 

in the myometrium throughout early and mid-gestation, but significantly declines as term 

approaches, which is in agreement with receptor function.119,120 Taken together, 

differential regulation of COX-2, prostaglandins and prostaglandin receptors during late 
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gestation contributes to the multifactorial process of parturition indirectly by priming the 

uterus for optimal prostaglandin activity and directly through the initiation and propagation 

of myometrial contractility, cervical ripening and fetal membrane rupture. 

Oxytocin- Unlike prostaglandins E2 and F2α, the uterotonic nonapeptide hormone 

oxytocin is highly upregulated in the myometrium only after parturition has been 

initiated.121 Subsequently, oxytocin is not responsible for stimulation of uterine 

contractions, but instead increases contractile force after the commencement of labor.  

Typically, oxytocin is synthesized in the magnocellular neurons in the supraoptic and 

periventricular nuclei of the hypothalamus in the form of a pro-peptide.122 The pro-peptide 

is processed into the mature nonapeptide via neurophysin, while being transported via 

secretory vesicles down the neuronal axons, which terminate in the posterior lobe of the 

pituitary.  Upon depolarization, oxytocin is released into circulation through exocytosis.123 

However, during pregnancy oxytocin is also locally produced in the myometrium, 

endometrial epithelium, corpus luteum and placenta.124-126 At the time of parturition in 

particular, oxytocin mRNA is approximately 70-fold greater in the uterus than in the 

hypothalamus. 

Oxytocin Receptor- Within target tissues, such as the myometrium, oxytocin exerts 

its physiological effect via ligand binding to the G-coupled rhodopsin-type class 1 oxytocin 

receptor (OTR).127 Activation of the OTR at the end of gestation is thought to increase 

myometrial contractility through multiple mechanisms, one being the alteration of 

myometrial calcium dynamics. Like prostaglandins, oxytocin acts to increase intracellular 

Ca2+ concentrations through a multifactorial process, which involves the mobilization of 

Ca2+ entry, as well as inhibition of Ca2+ efflux from the cytosol. Currently, there is evidence 

to support two modalities of OTR-mediated Ca2+ entry: 1) through the activation of PKC 
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and downstream signaling events which stimulate store-operated calcium entry (SOCE) 

channels within the plasma membrane and 2) via the release intracellular calcium stores 

from the sarcoplasmic reticulum to directly increase the intracellular concentrations of 

calcium.128-130 Secondary to both SR Ca2+ release and SOCE channel dependent 

increases in the membrane potential, voltage operated L-type calcium channels open to 

further increase the influx of extracellular Ca2+.131 In addition, oxytocin/OTR activity 

inhibits the SR Ca2+ ATPase (SERCA) responsible for sequestering cytoplasmic Ca2+ and 

relocating it back into the lumen of the SR; this process again, indirectly raises 

cytoplasmic Ca2+ to concentrations which are necessary for calmodulin activation and 

subsequent myosin/actin cross-bridge cycling.132 More recently, there has been evidence 

to suggest oxytocin receptor activity may also indirectly increases contractility through the 

inhibition of myosin light chain phosphatase, which is an enzyme that de-phosphorylates 

myosin light chain kinase (MLCK). As phosphorylation is necessary for MLCK to take part 

in Ca2+/calmodulin mediated myosin/actin cross-bridge cyclin, an increase in its 

phosphorylation state leads to heightened uterine contractility.133,134 Conclusively, 

oxytocin has also been demonstrated to upregulate the expression of the CAPs PGF2α, 

in which we have previously discussed, and connexin 43.135-137 

Oxytocin Receptor Regulation- An additional level of oxytocin signaling regulation 

occurs through the augmentation of oxytocin receptor expression. Unlike increases in 

uterine oxytocin expression, which occurs subsequent to the initiation of parturition, it is 

well established that the concentration of uterine OTR mRNA is significantly increased 

prior to the onset of labor.138-140 Similar to FP receptor expression, IL-1β mediated NFB 

activity plays a synergistic role with CCAAT/enhancer-binding protein-β to increase OTR 

promoter activity and concomitantly OTR mRNA late in gestation.86,141 Additional studies 
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have demonstrated that estrogen also significantly stimulates OTR gene 

expression.142,143 Furthermore, independent of inflammatory or estrogenic effects, 

increasing mechanical stretch, as experienced by the myometrium near term, was shown 

to increase OTR mRNA in uterine myocytes.144 Not surprisingly, following the 

multifactorial increase in OTR mRNA, OTR protein expression is significantly increased 

within the myometrium at term compared to early gestation and post parturition.145 The 

physiological consequence of augmented OTR expression at term is heightened 

myometrial sensitivity to oxytocin at the time of parturition and thus increased myometrial 

contractility.146 

Connexin 43- The ultimate responsibility of the myometrium at the time of 

parturition is to produce contractions forceful enough to expel a fetus from the uterine 

cavity, through the cervical canal and out of the vagina. As the contraction of a single 

uterine myocyte does not produce the amount of force required for successful parturition 

of the fetus, the myometrium must contract as a synchronous unit. To do this, regional 

intercellular communication must be established which allows for the propagation of 

periodic contractile signaling. Similar to the majority of other cell types in the body, 

myocytes achieve cellular connectivity through the formation of permeable gap junction 

channels within the plasma membrane.147,148 Generally, gap junction channels are formed 

between adjacent cells through the attachment of porous hexameric structures termed 

connexins, located within the plasma membrane. The formation of permeable channels 

between series of cells allows for chemical and electrical signals to pass freely through 

intracellular compartments, thereby speeding up the processes of intracellular 

communication.149 In the uterus, the establishment of electrical conductance between 

myocytes is particularly important for the propagation of calcium signaling at the time of 
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parturition.150,151 With intercellular coupling, calcium signals that originate in the fundal 

region are transduced throughout the body of the myometrium creating a powerful 

synchronous contraction that is capable of generating sufficient force to expel the 

fetus.152,153 While there are numerous types of connexins present throughout the human 

body, connexin 43 (Cx43) is the primary gap junction protein expressed within the 

myometrium. During a normal pregnancy multiple factors e.g. the biological withdrawal of 

progesterone activity further discussed later in this chapter, myometrial stretch, estrogen, 

prostaglandins and AP-1/c-jun, stimulate the induction of Cx43 expression in the 

myometrium as late as 24hrs prior to start of labor.154-158 It is known that increased Cx43 

late in gestation is necessary for successful parturition, because multiple studies in mice 

have demonstrated that the functional loss of Cx43 prior to labor causes impaired uterine 

contractility and delays the onset of birth.159,160  

Smooth Muscle Contraction 

Thus far, each of the CAPs discussed contributes to myometrial contractility by 

altering intracellular calcium ([Ca2+]i) signaling and/or sensitivity in uterine myocytes. 

Appropriate regulation of [Ca2+]i across gestation is extremely important, as the level of 

[Ca2+]i is the primary determinant of myometrial contractile potential.161 In the 

myometrium, [Ca2+]i is derived from two separate compartments, the plasmalemma and 

the sarcoplasmic reticulum. The primary method of extracellular Ca2+ mobilization is 

through voltage-gated Ca2+ channels e.g. transient receptor potential channel (TrpC) 1 

and TrpC6.162 However, as previously mention, receptor-operated and store-operated 

Ca2+ channels also facilitate the internalization Ca2+.102 Within the cell, Ca2+ release from 

the sarcoplasmic reticulum is mediated through the ryanodine receptor.163 While type 1, 

2 and 3 of the ryanodine receptor exist within the myometrium, type 2 is the only receptor 
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differentially upregulated during pregnancy.164 Once in the intracellular space, four Ca2+ 

molecules will cooperatively bind calmodulin, which in turn activates MLCK through n-

terminal binding and conformational changes in the enzyme.165,166 Active MLCK then 

initiates contraction through the modulation of smooth muscle cell (SMC) contractile 

architecture. The canonical SMC contractile architecture consists of two primary 

components, the thick filament (myosin) and the thin filament (actin). The myosin filament 

can further be broken into three units, two heavy chains and a pair of regulatory and 

essential light chains (MLC20 and MLC17, respectively).167 The heavy chains, are 

comprised of a globular head domain attached to the end of long rod-like base.168 The 

thin filament is comprised mainly of actin polymers that form an alpha helical coil. Upon 

activation, MLCK phosphorylates Ser-19 on the MLC20. In the phosphorylated state, 

MCL20 significantly increases actin-dependent myosin ATPase activity which produces 

the energy necessary for cross-bridge formation.169 In a study utilizing Wortmannin and 

ML-9, inhibitors of MLCK, diminished MLCK activity in both human and rat myometrium 

completely abolished uterine force, illustrating its importance during labor.170 During 

cross-bridge cycling, myosin ATPase activity perpetuates continual binding and release 

of the myosin head to the actin filament in a specific motion that collectively shortens the 

longitudinal axis of a SMC to generate contractile force.168 It is then, only through 

coordinated regional contractions of uterine SMCs, that sufficient force is produced and 

parturition commences. 

Transition of the Uterus from Quiescence to Contractility 

Progesterone 

Thus far, we have discussed the role in which inflammation and CAPs participate 

in promoting myometrial contractility and the cellular mechanisms required to produce a 
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contraction. However, as premature labor is deleterious to fetal development the 

myometrium must be maintained in a quiescent state for 40 weeks until the fetus has 

reached full term. Current evidence suggests that the steroid hormone progesterone (P4), 

acting through the P4 receptor (PR), may be the master regulator of uterine quiescence.171 

For most mammals, such as mice, rats, horses, cows and rabbits, circulating P4 is 

maintained by the corpus luteum throughout the length of gestation.172 Whereas, in 

humans and non-human primates, luteal P4 synthesis by the ovary declines between 6-8 

weeks due to reduced human chorionic growth factor (hCGF) stimulation, and placental 

trophoblast instead become the major source of P4 production for the remainder of 

gestation.173 Compared to pre-ovulatory concentrations of less than 1ng/ml, circulating P4 

concentrations are significantly higher, ranging from 11-90ng/ml during the first and 

second triamesters.174-178 P4 activity is mediated through ligand binding to the PR. The 

PR exists as two isoforms transcribed from the same gene, termed PRA and PRB.179 In 

vivo, PRB is the predominant transcription factor, which acts to regulate the expression of 

progesterone-responsive genes.180 In contrast, PRA is a ligand-dependent dominant 

negative transcription factor that functions to inhibit the genomic action of PRB.181 

Differential expression of PRA/PRB in the myometrium throughout gestation is thought to 

play a role in the maintenance of quiescence, as well as the transition to uterine 

contractility.182 Two major pieces of evidence support the role of P4/PR as the main 

regulator of myometrial quiescence 1) the inhibition of P4/PR activity in mammals at any 

point throughout gestation, via progesterone receptor antagonist e.g. RU486 or 

misoprostol, results in spontaneous abortion of the fetus and 2) the treatment of 

exogenous P4 to mice late in gestation blocks the onset of labor indefinitely.70,183 

Encouragingly, as previously mentioned, the administration of vaginal P4 to women with 
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high risk of preterm delivery reduces the rate of spontaneous preterm birth by 45%.23 

Examination of the mechanisms in which P4, through the PR, inhibits uterine contractility, 

a select set of anti-contractile processes have continued to present as important 

downstream consequences of P4 activity. These processes primarily include, but may not 

be limited to, the inhibition of inflammation, estrogen signaling and expression of CAPs. 

Inhibition of Inflammation, Estrogen Signaling and CAPs by Progesterone 

Inflammation- As previously described, the induction of labor is demarcated by an 

upregulation of uterine inflammation largely characterized by infiltration of leukocytes and 

a subsequent induction of cytokines and chemokines within the myometrium.69 Prior to 

labor however, the myometrium is subjected to relatively low levels of inflammation due 

to the inhibitory actions of P4 and the PR.  The effect of hormones, including P4, on uterine 

inflammation was first characterized by examining leukocyte infiltration during a normal 

menstrual cycle.184,185 These studies found that macrophage and neutrophil invasion is 

highest during the estrous cycle when concentrations of estrogen are elevated and the 

concentration of P4 remain low. In contrast, when levels of P4 increase throughout 

diestrus, and estrogen availability declines, the uterine macrophage and neutrophil 

population is substantially reduced. Further examination of the antagonistic properties of 

P4/PR using normal and PR knockout mice validated P4-dependent inhibition of estrogen 

mediated macrophage and neutrophil infiltration.186,187 In both studies, PRKO mice did 

not respond to exogenous P4 treatment, reiterating the importance of PR activity in the 

prevention leukocyte invasion. One mechanism by which P4/PR action can reduce 

leukocyte infiltration is through direct inhibition of the expression of certain 

chemoattractants.  During a normal pregnancy the concentration of uterine 

chemoattractants, such as monocyte chemoattractant protein-1 (MCP-1), do not increase 
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until late in gestation prior to the onset of labor. In a rat, MCP-1 expression is not seen to 

increase until gestation day 21-22.70 The delivery of RU486 to pregnant rats on gestation 

day 19 however, causes significant premature increases in both mRNA and protein levels 

of MCP-1, as well as substantial macrophage infiltration demonstrating that P4 action 

prevents myometrial inflammation.70 Whereas, rats given exogenous P4 during late 

gestation (E21-24) maintain low concentrations of MCP-1, comparable to levels seen 

during early gestation where there is minimal leukocyte infiltration.70 Secondary to P4/PR-

mediated inhibition leukocyte invasion in the myometrium, concentrations of canonical 

inflammatory cytokines (IL-β, TNFα and IL-6) are significantly reduced during early 

gestation compared to late in gestation.188,189 Consequently, downstream inflammatory 

signaling events, e.g. NFB and AP-1 activation, are depressed throughout early and 

mid-gestation in a P4/PR-dependent manner.190,191  

Estrogen- Similar to P4, estrogens (estrone [E1], estradiol [E2], estriol [E3]) are a 

major reproductive hormone derived from cholesterol.192 During human pregnancy, a 

large concentration of circulating estrogen is synthesized in the placenta where maternal 

cholesterol is aromatized via fetal aromatases.193 In all mammalian species, the level of 

circulating estrogens steadily increases across gestation, peaking prior to onset in 

parturition.176,194,195 In humans, estrogen concentrations peak at approximately 38 weeks’ 

gestation.196,197 Of the three ER agonists, E2 is the most abundant in circulation during 

pregnancy.196 The genomic effects of estrogen are mediated through ligand binding to 

the nuclear receptors ERα and ERβ.192 However, characterization studies of ER isoform 

expression within myometrium have demonstrated that ERα is the dominant receptor.182 

While the expression of myometrial ERβ remains relatively low and unchanged across 

gestation, there is a sharp increase in ERα expression late in gestation.182 Consequently, 
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increased levels of ERα leads to increased estrogen responsiveness within uterine 

tissues.  Functionally increased estrogen responsiveness near term is important because, 

as previously mentioned; estrogen activity contributes to uterine activation through the 

up-regulation of AP-1 transcriptional activity, as well as COX-2, OTR and Cx43 

expression.96,158,198-200 P4 inhibits estrogen activity in the uterus, with the purpose of 

preventing E2-mediated premature myometrial contractility.201 Initial studies identified 

differential ER expression as a mechanism for decreased estrogen responsiveness; the 

dynamic regulation of P4 and estrogen signaling within the uterus was not clearly defined 

until recently.  Mesiano and colleagues demonstrated for the first time in 2002, that the 

ratio of PRB/PRA expression was important for the regulation of ERα expression in-

utero.182 Consequently, increased expression of PRB/PRA is inversely correlated to the 

expression of ERα.  It is thus extrapolated that similarly to inflammation induced proteins, 

P4 through PRB inhibits ERα expression and subsequently minimizes myometrial 

estrogen responsiveness and prevents estrogen mediated uterine activation. 

Nuclear Factor Kappa B- In addition to the downregulation of upstream 

inflammatory and estrogen signaling, P4 acting through the PR is able to directly disrupt 

myometrial NFB activity.191 While multiple mechanisms contribute to P4/PR mediated 

NFB inhibition the most conventional method is binding of the PR to the RelA subunit 

(p65).202 In doing so, PR physically inhibits the DNA binding domain, located on p65, from 

attaching to the promoter region of target genes and altering transcription. Interestingly, 

in vitro evidence suggests PR binds p65 in a ligand-independent, as well as ligand-

dependent manner. Both mechanisms however, require an intact DNA binding domain 

on the PR for successful antagonism.202 Secondary to direct inhibition, P4/PR also 

regulates inflammatory signaling by reducing NFB nuclear translocation.190 In order for 
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nuclear translocation to occur the inhibitor protein, IBα, must be phosphorylated and 

degraded by the proteasome to expose the nuclear localization sequence (NLS) on the 

p65 subunit.203 To prevent exposure of the NLS, PR-mediated transcriptional regulation 

of the IBα gene leads to increased intracellular concentrations of both IBα mRNA and 

protein.190 P4/PR activity has also been shown to inhibit IL-β dependent decreases in IBα 

protein concentrations, suggesting PR action may prevent IBα degradation.190 

Subsequently, increased transcription and decreased degradation leads to an 

upregulation of active IBα and the reduction of NFB nuclear translocation.  A third, less 

defined, method of NFB inhibition has been proposed in which downstream events of 

P4/PR-mediated activation of MAPK-phosphatase-1 (MKP-1) lead to inhibition of NFB 

nuclear translocation.171 Using T47D human breast cancer cells, Chen and colleagues 

demonstrated PR binding to P4 response elements downstream of the MKP-1 

transcription start site induces MKP-1 expression.204 An additional study, examining the 

effects of MKP-1 on NFB nuclear translocation in prostate tissue, discovered MKP-1 

expression inversely correlates with nuclear translocation of NFB.205 These findings 

suggest MKP-1-mediated inhibition of NFB is due to decreased p38 MAPK expression, 

which is known to activate NFB.206 Together, these P4/PR regulated mechanisms work 

to depress nuclear NFB activity and therefore reduce overall inflammatory signaling. 

Activating Protein 1- Like NFB, the AP-1 family of transcription factors must be 

gestationally regulated to prevent premature induction of labor. However, the regulatory 

actions of P4/PR on AP-1 transcription factors (fos, jun and ATFs) within the uterus 

remains largely undefined compared to the regulation of NFB. Never the less, it has 

been demonstrated within the myometrium specifically, the pretreatment of P4 attenuates 
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stretch induced activation of c-fos and fosB.207 Beyond inhibiting AP-1 protein expression, 

PR activity also decreases AP-1 DNA binding and therefore transcriptional activity. In the 

endothelial cancer cell line Hec50, chromatin immunoprecipitation findings demonstrate 

reduced AP-1 binding at the promoter of its target gene cyclin D1 in the presence of P4.208 

Based on these studies, it is reasonable to propose P4/PR activity further attenuates 

uterine inflammation by augmenting AP-1 signaling. 

Contractile Associated Proteins- AP-1 and NFB signaling increase expression of 

CAPs e.g. COX-2, prostaglandins, OTR and Cxn43, which function to prime the 

myometrium for labor and initiate uterine contractions. However, the expression of CAPs 

is also tightly controlled via P4/PR action during early and throughout mid-gestation to 

prevent the uterus from establishing premature contractility. The main mechanism in 

which P4 represses the expression of CAPs, such as COX-2, OTR and Cxn43, is by 

inhibiting AP-1 and NFB transcriptional activity.190,209,210 Subsequently, the direct 

inhibition of inflammatory signaling pathways indirectly prevents uterine activation and 

therefore facilitates the maintenance of quiescence. Interestingly, certain P4 responsive 

microRNAs (miRNAs) and downstream targets have also recently been shown to regulate 

the expression of certain CAPs.171 More specifically, Renthal and colleagues 

demonstrated the zinc finger E-box binding homeobox transcriptional repressor proteins 

(ZEB)-1 and ZEB-2 directly inhibit transcription of the contractile associated genes 

encoded for OTR and Cx43.211 Moreover, ZEB-1 and ZEB-2 were later found to 

upregulate the microRNA cluster miR-199a and miR-214, during early and mid-gestation 

in a P4 dependent manner.212 Functionally, active miR-199a and miR-214 target and 

inhibit transcription of the COX-2 gene. In the absence of uterine COX-2, OTR and Cx43, 

prostaglandin synthesis is limited, calcium signaling is disrupted and the contractile 
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potential of the myometrium is insufficient to induce labor.213 

Luteolysis and Progesterone Decline in Lower Mammalian Species 

Just as it is important that the uterus remains quiescent during pregnancy, it is also 

imperative the uterus undergoes appropriate transformation prior to onset of labor to allow 

for successful deliveries of the term neonate. In most lower mammal species, such as 

rabbits, rats and mice, prostaglandin-mediated regression of the corpus luteum near term 

induces a sharp decline in circulating P4.214 As term approaches heightened estrogen 

action in the uterus, increases the concentration of oxytocin receptors within the 

endometrium.210 Together, endometrial estrogen and oxytocin activity stimulate the 

production of prostaglandins (e.g. PGE2 and PGF2) by regulating the enzymes 

necessary for prostaglandin synthesis, particularly phospholipase A2 (PLA2) and 

prostaglandin synthase.215-217 PLA2 exists in three forms: calcium sensitive cytosolic 

(cPLA2), secretory (sPLA2) and calcium independent PLA2, which all function to 

enzymatically convert membrane bound arachidonic acid into free arachidonic acid.218 In 

the context of prostaglandin synthesis, free arachidonic acid is important as it is the initial 

substrate for prostaglandin endoperoxide synthase-dependent synthesis of PGG2, which 

is then converted into PGH2 in a COX1/2-dependent reaction.219 Subsequently, as COX 

expression is regulated by NFB activation as previously mentioned, the classical 

increase in inflammation in the uterus as term approaches further augments 

prostaglandin synthesis.82 PGH2 is then converted by tissue specific prostaglandin 

synthase into multiple prostaglandins, including PGF2 and PGE2.219 Following 

synthesis within the endometrium, PGF2 leaves through the uterine vein and enters the 

ovarian artery to act through its receptor at the level of the corpus luteum.220 Within the 

corpus luteum, PGF2 acts to reduce the enzymes necessary for the P4, cytochrome 
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P450 side-chain cleavage enzyme and 3-beta-hydroxysteroid-dehydrogenase 

(HSD3B2).221 As circulating P4 acts in an autocrine manner to preserve the corpus 

luteum, PGF2-dependent decreases in P4 cause the subsequent regression of the 

corpus luteum and further decreases in circulating P4 necessary for the induction of labor 

in lower mammalians.222 

Functional Progesterone Withdrawal 

In higher mammal species e.g. chicken, sheep and baboons, a developmental-

dependent increase in fetal corticotrophin-releasing hormone results in elevated levels of 

adrenocorticotropic hormone and thus increased circulating cortisol.223,224 Heightened 

cortisol, augments steroidogenesis in the placenta promoting the synthesis of estrogen 

from C21 steroids e.g. P4.225 For many years it was accepted that the withdrawal of 

circulating P4 increased inflammatory signaling pathways, E2/ERα activity and expression 

of CAPs to allow for the cessation of labor.182,195,226 However, it has since been 

established that although the levels of P4 in the circulation are significantly reduced, they 

still remain above the Kd for binding to the PR, meaning the levels of P4 are sufficient to 

bind PR and induce P4/PR downstream signaling.227 Furthermore, in humans and primate 

species, circulating levels of P4 continue to rise until parturition has commenced and the 

placenta is expelled.177 Subsequently, despite having circulating concentrations of 

approximately ≤300ng/ml P4 during the third trimester, the majority of women mount an 

appropriate contractile response within the myometrium and undergo active labor around 

40 weeks’ gestation.178 Taken together, these observations suggested the existence of a 

secondary mechanism for diminished P4 activity at term.  Thus, in 1965 Csapo theorized 

a mechanism of functional withdrawal of P4 within the uterine tissues, which then would 

allow for the progression of labor.228 In decades since, multiple regulatory mechanisms 
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have been shown to contribute to the functional withdrawal of P4 as seen in the uterus 

prior to the onset of labor independent of circulating levels of P4. 

Progesterone Availability- While in circulation, P4 can be found in two major forms 

1) unbound or free and 2) bound to the corticosteroid-binding globulin transcortin.229 

Characterization of plasma samples taken from pregnant women across gestation 

revealed the binding capacity of transcortin for P4 increases linearly between 10 and 20 

weeks’ gestation.230 Furthermore, increased transcortin binding capacity was found to be 

estrogen dependent. These results suggest estrogen-mediated increases in the 

sequestration of active P4 by transcortin over time may contribute to a reduction in the 

bioavailability of P4. Additional studies have also established a secondary mechanism in 

which is P4 availability is diminished through the regional upregulation of P4 metabolism.  

Initially, increases in the P4 metabolite 20α-dihydroxyprogesterone were observed in 

human myometrial tissue late in gestation.231 These results can be explained by additional 

studies examining local P4 metabolism, which established an upregulation of myometrial 

P4 metabolizing enzyme 20α-hydroxysteroid-dehydrogenase (20 α-HSD).232-234 

Importantly, mice deficient in 20 α-HSD experience delayed parturition, delivering the 

fetuses several days late. Recently, novel clusters of miRNAs have been identified that 

further regulate P4 metabolism. In particular the miR-200 family of miRNAs, under the 

control of E2/ERα mediated signaling processes, act to oppose P4/PRB function.211,233 

Microarray analysis of miRNA and gene expression of uterine tissues revealed 

concentrations of miR-200 family members to be abundant at term.233 Analysis in mice 

models of term and preterm labor validated these findings and further demonstrated an 

increase in the expression of miR-200s late in gestation, concomitant to a downregulation 

in the P4 responsive anti-contractile transcriptional repressors ZEB1, ZEB2, miR199a and 
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miR214. Importantly, the upregulation of miR-200s facilitated the inhibition of signal 

transducer and activator of transcription (STAT5b), which had previously been shown to 

repress the expression of 20α-HSD in reproductive tissues.235 Taken together, the 

increased metabolism of myometrial P4 and decreased availability of circulating P4 limits 

the bioactivity of P4 and thus its anti-contractile properties. 

Regulation of Progesterone Receptors- In addition to the direct inhibition of P4 

activity through decreased regional P4 concentrations, indirect inhibition occurs via 

modulation of downstream P4 signaling pathways.  One mechanism in which myometrial 

P4 signaling is regulated is by differential PR isoform expression.236 As previously 

mentioned, the P4 receptor exists as two functionally distinct isoforms PRA, the dominant 

negative receptor, and PRB, the transcriptionally active form.179 In term laboring tissues, 

the ratio of PRA/ PRB mRNA and protein levels are 2-fold greater than in non-laboring 

term tissues.182,236 Furthermore, across gestation the ratio of PRA/PRB mRNA positively 

correlates with the expression of ERα suggesting that differential PR isoform expression 

both diminishes P4 responsiveness and heightens estrogen responsiveness, leading to 

increased myometrial contractility at term. Another mechanism in which P4/PR signaling 

modulated at term is through differential expression of PR co-activators. Specifically, 

mRNA and protein expression of cAMP-response element-binding protein and steroid 

receptor co-activators 2 in the uterus are reduced during labor.237 As nuclear receptor co-

activators typically increase PR transcriptional activity through the stabilization of the pre-

initiation complex, a decrease in PR co-activators inherently reduces the transcription of 

P4-responsive genes.238 Thus, the differential expression of P4 co-activators at term 

further hampers the transcriptional activity of P4/PRB indirectly increasing myometrial 

contractility. 
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Endoplasmic Reticulum 

The endoplasmic reticulum (ER) is an intracellular reticular membrane structure 

that is contiguous with the nuclear envelope. The ER can be defined by two functionally 

distinct sub-domains, the rough ER and the smooth ER.56 Structurally, there is no 

definitive separation between the two compartments.239 However, the rough ER is 

demarcated by an increased number of ribosomes embedded within the cytosolic portion 

of the membrane, which is lacking in the smooth ER. Functionally, the smooth ER is 

primarily responsible for lipid synthesis and drug metabolism, while the rough ER is 

associated with managing intracellular calcium stores, regulating the synthesis and 

folding of secretory and membrane bound proteins, and coordinating protein trafficking to 

the adjacent Golgi apparatus.240-244 

Endoplasmic Reticular Milieu 

To maximize the process of protein folding, the ER compartment maintains a 

distinct luminal milieu.245 For example, the ER lumen maintains a greater oxidative state 

than the cytosol.246 While the major intracellular redox buffer for both compartments is 

glutathione, the ratio of reduced to oxidized glutathione is between 1:1 and 3:1 in the ER 

lumen, whereas the ratio is greater than 50:1 in the cytosol.247 This unique oxidative 

environment is optimal for protein disulfide isomerase (PDI) mediated disulfide bond 

formation in the ER, which is necessary for proper protein folding.247 In addition to altered 

redox state, Ca2+ concentrations are augmented in the ER lumen.  As the major site of 

intracellular storage, ER Ca2+ concentrations are 50 times that of the cytosol, i.e. 5mM 

versus 0.1mM respectively.248 Increased Ca2+ availability in the ER is advantageous as 

Ca2+ participates in electrostatic interactions with newly synthesized proteins in a manner 

that further propagates appropriate hydrophobic interactions essential for protein 
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maturation.249 Additionally, Ca2+ binding is required for chaperone protein function.250,251 

Chaperone proteins by definition aid in proper protein folding during the process of protein 

maturation.252 Compared to all other compartments, the ER lumen is equipped with a 

heightened quantity of chaperone folding proteins that refine protein-folding processes. 

These chaperones include glucose regulated protein 78 (GRP78), calreticulin, calnexin 

and PDI.253-256 Another important factor involved in chaperone protein function is 

adenosine triphosphate (ATP).257 To maintain energy demands the ER actively 

translocates ATP through multiple antiporters located in the ER membrane.258 In addition 

to participation in chaperone function, ATP further assists in disulfide bond formation and 

protein glycosylation.257,259 Taken together, the distinct chemical and protein composition 

of the ER lumen enhances the processes of protein folding to allow for more dynamic and 

complex protein structures to be synthesized. 

Co-Translational Translocation, Folding and Protein Trafficking  

It is important that secretory and membrane bound proteins are synthesized within 

the tightly controlled environment of the ER lumen, rather than the cytoplasm. In general, 

these proteins consist of both hydrophobic/transmembrane and hydrophilic/cytoplasmic 

domains, which require precisely, coordinated post-translational modification, e.g. 

disulfide bond formation, hydrophobic interactions and glycosylation, for successful 

maturation.260,261 In addition, the ER secretory pathway, which is responsible for 

trafficking proteins to the cytoplasmic membrane, is necessary to ensure secretory and 

membrane bound proteins reach their appropriate destination following completion of 

translation.262 However, as messenger RNA is secreted into the cytosol following 

transcription, it must first be targeted to the ER membrane via a signal recognition 

sequence located within the nascent peptide.263 When the signal recognition sequence is 
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initially translated by the ribosomal complex, it is immediately identified by free cytosolic 

signal recognition particles (SRPs).264 Binding of the SRP to the nascent peptide-

ribosomal complex within the cytoplasm has two effects 1) it temporarily inhibits protein 

translation and 2) it shuttles and attaches the nascent peptide-ribosomal complex to a 

protein-conducting channel within the ER membrane.265 These protein-conducting 

channels, termed translocons, are aqueous pores that span the entire length of the ER 

membrane.266 After binding to the translocon, elongation of the nascent peptide is re-

initiated and co-translational translocation of the protein into the ER lumen occurs.267,268 

With the help of chaperone proteins the N-terminus of the nascent peptide begins to 

undergo post-translational modifications, such as protein folding, glycosylation, disulfide 

bond formation, etc., immediately after entering into the ER lumen.267,269 Upon completing 

translation, proteins 1) further undergo oligomer formation, if necessary 2) are recognized 

by cargo receptors and 3) are sorted via surveillance protein complexes composed of a 

small ras-related GTPase (Sar1p) and two Sec proteins (Sec23p-Sec24p) or membrane 

adaptor protein complexes located within in the ER transition zone.270,271 Clathrin or coat 

protein complex II vesicles packaging cargo proteins are then trafficked out of the ER 

lumen to the cis-Golgi network.272 In the event of inappropriate maturation however, 

proteins are inhibited from being trafficked to the cis-Golgi network, and instead are 

retained within the ER lumen by a series of quality control processes. 

Protein Quality Control 

To prevent cellular dysfunction, abnormal protein products e.g. proteins with point 

mutations, deletions, insertions or intermediate glycosylation states, are withheld from 

cis-Golgi apparatus trafficking.273,274 While some proteins are recycled through the protein 

folding process and eventually become folded properly, others become are unable to 
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reach their appropriate conformational state. In the case of soluble proteins, terminally 

misfolded proteins collect as misfolded aggregates within the ER.275,276 These protein 

aggregates are cross-linked by inter-chain disulfide bonds, and are irreversibly bound by 

the chaperone folding protein BiP.276-278 Evidence suggests, binding of aggregates to 

GRP78 is necessary for maintaining proteins in a retrotranslocation competent state and 

recognition of unfolded proteins by ER associated degradation (ERAD) proteins.279,280 In 

the instance of misfolded glycoproteins, targeting and recognition of ERAD substrates is 

instead mediated by cleavage of α1,2-linked mannose via α1,2 exomannosidase.281,282 

Targeted ERAD substrates are then retrotranslocated into the cytosol, via the Sec61 

translocon complex.283,284 Specifically, the ubiquitin-conjugating enzyme Ubc7p 

ubiquitinates ERAD substrates, which are then targeted for cytosolic proteosomal 

degradation via the 26S proteasome.285 Typically, compensatory-targeted protein 

degradation is sufficient to prevent cytotoxic protein aggregation and cellular distress.  

Though, in the event of increased protein synthesis, dysregulation of calcium, etc. ERAD 

may not be adequate to relieve ER stress and the ER stress response (ERSR), also 

known as the unfolded protein response (UPR) is activated to restore ER homeostasis 

and avoid cell death.     

Activation of the Unfolded Protein Response 

The ERSR is comprised of three distinct molecular networks that function 

harmoniously to deplete unfolded proteins from the ER lumen to regain homeostasis. With 

the accumulation of unfolded proteins, the chaperone protein GRP78 is released from 

three transmembrane receptors, inositol-requiring kinase 1 alpha (IRE1α), protein kinase 

RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6), to aid in proper 

folding.  Upon release of GRP78, IRE1α, PERK, and ATF6 are activated; initiating signal 
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transduction pathways collectively termed the UPR. 

Glucose Regulated Protein 78 

It has been well established that GRP78 dissociates from IRE1α, PERK and ATF6 

in the presence of unfolded proteins.286 The active form of GRP78, a monomeric 

structure, contains a C-terminal peptide binding domain and an N-terminal ATPase.287 

The C-terminal domain is capable of binding a variety of synthetic peptide sequences that 

exhibit vast sequence diversity.288 However, GRP78 does show preferential interaction 

for hydrophobic nascent peptide sequences that activate the N-terminal ATPase upon 

binding.289,290  As a chaperone folding protein, GRP78 does not contribute to the 

enzymatic action necessary for the folding of protein substrates; it instead assists by 

binding to exposed intramolecular hydrophobic regions on unfolded proteins, 

subsequently maintaining the substrate in a folding-competent state.252 Upon substrate 

binding, the bound N-terminal ATP is hydrolyzed to ADP and substrate affinity is 

significantly increased.290 In order for GRP78 to then release its substrate, the co-

chaperone glucose related protein E must catalyze an ADP/ATP exchange to return 

GRP78 to its low affinity ATP-bound confirmation.291 The shuttling of unfolded proteins 

through the ATP/ADP GRP78 cycle and folding pathways is the major mechanism in 

which GRP78 assists in the depletion of unfolded proteins within the ER. It is also capable 

of transporting permanently unfolded proteins to the translocon for retrograde 

translocation and further ubiquitin/proteasomal mediated degradation.280 By facilitating 

activation of ER stress signaling transducers, and assisting in protein folding and protein 

degradation GRP78 acts as a multifaceted protein to aid in the restoration of ER luminal 

homeostasis in the event of stress. 
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Inositol Required Kinase 1α 

IRE1α is an ER stress sensitive, kinase/endoribonuclease type I transmembrane 

glycoprotein receptor, which contains functional luminal and cytoplasmic domains. During 

times of ER homeostasis, IRE1α is locked in a monomeric inactive state through N-

terminal luminal binding of GRP78.286 Upon the accumulation of unfolded proteins and 

subsequent dissociation of GRP78, luminal domains of IRE1α form disulfide-linked 

heterodimers.292 While this suggests relief of GRP78 mediated inhibition of a luminal 

dimerization motif may be responsible for IRE1α dimerization, additional studies have 

demonstrated dimerization of IRE1α through direct binding of unfolded proteins to the 

luminal domain.292,293 Therefore, further studies are necessary to elucidate the exact 

mechanism of IRE1α dimerization. Following heterodimerization, oligomerization-

dependent conformational changes in the cytosolic tyrosine kinase domain induce trans-

autophosphorylation of IRE1α.294,295 Unlike traditional kinase signaling cascades, 

phosphorylation of IRE1α leads to the activation of its own endoribonuclease 

activity.296,297 Currently, the only known substrate of IRE1α RNase is mRNA encoding the 

transcription factor X-box binding protein 1 (XBP1) in humans or homologous to 

ATF/CREB1 (Hac1) in yeast.298,299 The alternative splicing of XBP1 mRNA results in the 

excision of an intronic region and leads to a frame shift during translation. In contrast to 

the naïve splice product, which represses UPR target genes, the alternative splice 

product is subsequently more stable and a strong activator of UPR gene targets.300 XBP1 

was originally discovered as a bZIP protein that bound the major histocompatibility 

complex two gene promoter in the cis-acting X-box region.301 More recently it has been 

demonstrated XBP1 is also capable of binding the endoplasmic reticulum stress response 

element (ERSE) in the presence of nuclear factor Y (NF-Y), the unfolded protein response 
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element (UPRE) and the endoplasmic reticulum stress response element II (ERSE 

II).298,302 XBP1 binding to ERSE, in conjunction with ATF6 and NF-Y, enhances the 

transcription of ER-localized molecular chaperone proteins e.g. GRP78 which act to 

reduce the accumulation of unfolded proteins and restore ER homeostasis.303 Similarly, 

XBP1 binding to the UPRE induces the transcription of ER degradation-enhancing alpha-

mannosidase-like protein (EDEM), an important mediator of the ERAD processes.304 

Furthermore, XPB1-ERSE II binding was recently shown to increase the expression of 

the homo-cysteine-induced endoplasmic reticulum protein (Herp), an ubiquitin-domain 

containing protein that also participates in ERAD.302,305 Upon diminished ER stress, 

IRE1α endoribonuclease activity is repressed, there is decline in XBP1 alternative splicing 

and increased un-spliced XBP1 acts as a negative feedback regulator of sXBP1.306 

Therefore, UPR-dependent transcription levels are reestablished to a basal state upon 

restoration of ER homeostasis. 

Activating Transcription Factor 6 

ATF6 is a type II transmembrane protein that acts separately from IRE1α as a 

signal transducer of the ERSR. Similarly, in a state of ER homeostasis, the luminal 

domain of ATF6 is bound by GRP78.307 Unlike IRE1α and PERK, the dissociation of 

GRP78 does not induce oligomerization, but instead unmasks a Golgi localization 

sequence in the luminal domain.307 Exposure of the Golgi localization sequence to the 

ER lumen subsequently induces translocation of ATF6 to the Golgi complex. Within the 

Golgi complex, ATF6 is further processed from a 90kD protein to an active 50kD bZIP 

transcription factor through the cleavage of the N-terminal domain by site-1 and site-2 

proteases (S1P and S2P, respectively).308 Following processing, ATF6 is translocated to 

the nucleus where it augments the expression of multiple UPR regulated genes. Similar 
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to XBP1, ATF6 is capable of binding three response elements 1) the ATF/cAMP response 

element (CRE) 2) the ERSE I and 3) the ERSEII.298,302,309 In concert with NF-Y, the 

binding of ATF6 to ERSE I and ERSE II acts to upregulate ERAD gene products, as well 

as increase the expression of chaperone folding proteins, particularly GRP78.302,310,311 

Furthermore, ATF6, in collaboration with XBP1, also binds the XBP1 promoter to increase 

expression of XBP1.298 Therefore, through both indirect and direct mechanisms of action, 

ATF6 reduces the unfolded protein load within the ER lumen in the event of ER stress. 

Protein Kinase RNA-like ER Kinase 

Protein kinase RNA-like ER kinase is a type I transmembrane receptor that 

constitutes the last of three unfolded protein response mediated signal transducers. The 

luminal portion of the receptor contains an ER stress-regulated oligomerization domain.312 

As previously mentioned, the exact mechanism of PERK receptor oligomerization is yet 

to be determined. However, with the release of GRP78 from PERK an oligomerization 

domain is exposed and the receptor forms an oligomer structure.313 Oligomerization of 

the receptor induces trans-autophophorylation of the cytoplasmic tyrosine kinase domain. 

Phosphorylation dependent activation of the cytoplasmic kinase then leads to further 

phosphorylation of the α-subunit of eukaryotic translation initiation factor-2 (eIF2α) and 

nuclear factor erythroid 2-related factor 2 (Nrf2).314 Subsequently, the phosphorylation of 

eIF2α functionally inhibits GTP/GDP cycling, which significantly reduces the rate of global 

cellular translation. In return, the load of newly synthesized proteins in the ER is 

concomitantly decreased, helping to relieve the accumulation of unfolded proteins. Not 

surprisingly, the whole cell knockout of PERK increases cellular sensitivity to ER stress. 

This phenotype was then partially relieved with the addition of protein synthesis inhibitors 

such as cycloheximide, reiterating the importance of PERK-mediated translational 
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inhibition in the event of ER stress.315 The inhibition of eIF2α provides the opportunity for 

active translation of mRNAs that contain short upstream open reading frames (uORFs).316 

In particular, ER stress mediated translational repression enhances the expression of 

activating transcription factor 4 (ATF4).317 Within two hours of being exposed to stress, 

the upregulation of ATF4 can further induce an increase in the expression of the basic-

region leucine zipper (bZIP) protein activating transcription factor 3 (ATF3). When the cell 

is unable to restore ER homeostasis due to prolonged or severe ER stress, ATF3 can 

activate the apoptosis-inducing protein GADD153, which has been demonstrated to 

trigger cell death through caspase 3 (CASP3) mediated apoptosis.318 

Extracellular Functions of the Unfolded Protein Response 

Beyond the ER, components of the UPR, such as GRP78, are expressed on the 

extracellular surface of many cell types and in the extracellular space in addition to the 

ER.319,320 GRP78 has also been found in the serum, synovial fluid, saliva and oviductal 

fluid.320-323 The mechanism whereby components of the UPR signaling cascade traffics 

from the ER to the cell surface and the extracellular space is not fully resolved. It has 

been confirmed however that extracellular GRP78, does not arise from apoptotic cell 

death mediated protein leakage during ER stress, as GRP78 release into the extracellular 

space precedes any evidence of apoptotic cell death.324 Moreover, in cells exposed to 

Brefeldin A, which inhibits ER to Golgi protein transport, extracellular levels of GRP78 

were significantly decreased while intracellularly they continued to increase, suggesting 

that extracellular GRP78 is actively trafficked.324 In addition, it has been observed in vitro 

that the relative amount of GRP78 versus non-secreted proteins, is increased within the 

media when compared to whole cell lysates.324,325 More recently the extracellular 

trafficking of UPR proteins was confirmed by the finding that prostate apoptosis response-
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4 (Par4) was identified as a partner for GRP78 that was necessary for its translocation to 

the cell surface during periods of ER stress in normal and cancer cells, underscoring the 

regulated nature of GRP78 translocation to the cell surface.326 In this study TM-treated 

telomerase immortalized human myometrial cells (hTERT-HM) were all found to be viable 

at the time of media collection, adding to the observation that GRP78 is actively secreted 

due to activation of the UPR and not leaked out of the cell in an apoptotic manner (Figure 

15). However, as the GRP78 amino acid sequence contains the classical ER retention 

signal (KDEL) in its C-terminal it is not entirely resolved how GRP78 is actively secreted. 

The KDEL sequence should dictate that GRP78 is a lumen bound, ER resident protein, 

which cannot traffic to the surface of cell or be secreted extracellularly. It is thought that 

an oversaturation of the specific KDEL receptors in the ER during periods of ER stress, 

may allow for GRP78 to escape the KDEL retention system and accumulate in the plasma 

membrane and the extracellular space.325,327-329 The severity of ER stress needed to 

facilitate GRP78 secretion into the extracellular space however, remains ambiguous and 

further studies are needed to characterize cell-type and stimulus specific thresholds. 

Extracellular GRP78 has been demonstrated to play a critical role in the transmission of 

biochemical stress signals from one cell to another. Specifically, this form of paracrine 

and potentially endocrine signaling allows for amplification and expansion of a local tissue 

response to a systemic alarm or danger signal. GRP78 mediated transmission of ER 

stress has been observed when conditioned media isolated from stressed tumor cells 

was exposed to naïve macrophages and resulted in UPR induction in the naïve cells.330 

Cell free GRP78 has also been demonstrated to confer an anti-inflammatory pro-survival 

phenotype by binding to target cell surface receptors such as Cripto-1, which allows for 

the attenuation of transforming growth factor beta tumor suppressor functions.331 Further, 
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extracellular GRP78 has been demonstrated to block p53 action and thereby inhibit its 

pro-apoptotic targets, BOK and NOXA.319 Taken together these data suggest that 

activation of the UPR intracellularly and secretion of the UPR into the extracellular space 

has the capacity to confer an anti-inflammatory, pro-survival phenotype. 

CASP3-Dependent Apoptosis 

As previously mentioned, if the UPR is unable to restore cellular homeostasis 

PERK/ATF4/ATF3-dependent activation of GADD153 induces CASP3-mediated 

apoptosis. Overall, the activation of CASP3 is the final step in three cellular signaling 

pathways that result in apoptotic cell death: the extrinsic pathway, the intrinsic pathway 

or the UPR.332,333 In the extrinsic pathway, ligand-induced activation of a well 

characterized subset of death receptors, such as tumor necrosis factor receptor 1, fatty 

acid synthetase receptor or death receptor 3 leads to the formation of the death-inducing 

signaling complex, the autocatalytic activation of initiator caspase 8 and subsequent 

activation of CASP3.334 In the intrinsic pathway, damaging cellular stimuli cause 

dysregulation of mitochondrial homeostasis that results in the opening of the 

mitochondrial permeability transition pore.335 Increased mitochondrial membrane 

permeability facilitates the construction a multi-protein complex called the apoptosome, 

containing the active initiator caspase 9, which proceeds to activate CASP3.336 As 

previously mentioned, ERSR-mediated activation of CASP3 occurs through the signaling 

cascade of ATF4, ATF3 and GADD153 resulting in the activation of initiator caspase 12, 

which activates the terminal caspase, CASP3.337 Following activation, CASP3 acts in a 

multi-factorial manner to induce cellular apoptosis. Specifically, within the nucleus CASP3 

will 1) degrade inhibitor of caspase activated DNAse (ICAD) resulting in chromosomal 

degradation and chromatin condensation via active DNAse, 2) further target and degrade 
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DNA repair molecules, such as PARP and 3) disrupt cytoskeleton organization and intra-

nuclear transport through the degradation of gelsolin, an actin binding protein necessary 

for actin polymerization.338-340 We know cellular apoptosis is extremely important process 

in the maintenance of cellular homeostasis and many normal physiological functions, as 

the CASP3 knockout in mice reduces the rate of live births and results in premature death 

of the live pups.341-343 Subsequently, CASP3 apoptotic action has been found to be critical 

for the development of the nervous and immune system; wound healing and overall 

remodeling in adult tissues.344-346 In contrast, the dysregulation of normal apoptotic 

processes can lead to various pathophysiological states. In cancer a resistance to 

apoptosis, decreased cell death, cell cycle dysfunction and abnormal proliferation leads 

to the formation of a tumor.347 Additionally, CASP3-mediated apoptosis in tumors 

undergoing radiation has been demonstrated to increase growth and proliferation in the 

surviving tumor cell population further promoting tumorigenesis.348 In other disease like 

autoimmune deficiency syndrome, increased apoptosis of the T-cell population causes 

extreme immunodeficiency and in some cases death.349 

Non-Apoptotic CASP3 Function 

While CASP3 activity is typically a hallmark of cellular apoptosis or programmed 

cell death, non-apoptotic CASP3 function has been described in many physiological 

processes such as muscle tocolysis, cellular differentiation and synaptic plasticity.350-352 

As a protease with over 34,000 identified protein targets containing a cleavage motif 

(DXXD) within the human genome, it is not entirely surprising that emerging evidence 

supports critical non-apoptotic functions of CASP3.353 Our laboratory, as well as others, 

have previously demonstrated the capacity of non-apoptotic CASP3 to selectively target 

and degrade actin isoforms (e.g.  and ).354 In the context of myometrial smooth muscle, 
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selective actin degradation inhibits contraction from occurring. Further, in catabolic 

conditions such as diabetes, skeletal muscle CASP3 activity has been observed to 

degrade actomycin and actin, resulting in muscle atrophy.355 Beyond regulating 

contraction and muscle proteolysis, non-apoptotic CASP3 activity is also involved in 

skeletal muscle differentiation.356 In the CASP3 knockout mouse, myoblasts displayed 

deficiency of myofiber and myotube formation, presumably due to loss of Mammalian 

Sterile Twenty-like kinase activity.357 Non-apoptotic and incomplete apoptotic CASP3 

action has similarly been shown to facilitate differentiation lens epithelial cells, monocytes, 

erythrocytes, keratinocyte, megakaryocytes and potentially neurons.358-363 Interestingly, 

increased non-apoptotic CASP3 expression in hippocampal CA1 neurons is also thought 

to facilitate neuroplasticity through propagation of long-term potentiation.352 Multiple 

neuronal CASP3 targets are thought to aid in CASP3-dependent neuroplasticity (e.g. 

GluR1, IP3R and PKC), but the exact mechanism responsible for long-term potentiation 

is still unresolved.353 Taken together, these studies and more suggest CASP3, acting in 

both an apoptotic and non-apoptotic manner, is important for both normal and 

pathophysiological conditions and warrants further inquiry. 

The UPR and Inflammation 

Inflammation and the ERSR are two distinct signaling cascades that are highly 

interconnected during periods of cellular distress through various mechanisms. Briefly, 

activation and nuclear translocation of the inflammatory transcription factor NFB has 

been achieved through both the IRE1and PERK signaling pathways.364 With the 

autophosphorylation of IRE1, a cytosolic conformational change of the receptor leads to 

the recruitment of tumor-necrosis factor- receptor-associated factor 2 and subsequent 

activation of IB kinase resulting in degradation of IB and nuclear translocation of 
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NFB.365 Separately, as the half-life of IB is significantly shorter than that of NFB, 

PERK-dependent phosphorylation of eIF2 and the inhibition of protein translation have 

been shown to free NFB from IB-dependent cytosolic localization and thus allow for 

nuclear translocation.366 Lastly, within the mouse liver it has been demonstrated that ER 

stress initiates the translocation of CREBH from the ER to the Golgi, where it is processed 

and activated in a similar manner to ATF6.367 Typically, CREBH is induced by 

inflammatory cytokines, e.g. TNF and IL-1and mediates an acute phase response that 

activates serum amyloid P component and C-reactive protein.367 However, CREBH does 

not increase the expression of UPR regulated genes, and further studies are necessary 

to delineate the functional role of CREBH in this ER stress-mediated inflammatory 

response.367 

Preconditioning 

A broad definition of preconditioning is the act of preparing for a subsequent action. 

The process of preconditioning biological systems against pathophysiological events can 

be observed in multiple forms, one example is vaccination. In 1796, Dr. Edward Jenner 

demonstrated that the inoculation of a small titer of smallpox virus into a young boy 

thereafter provided him with life-time immunity against the deadly disease.368 It has since 

been shown, that presentation of a non-lethal dose of bacterial or viral infection into the 

body acts paradoxically to increase the production of neutralizing antibodies within the 

immune system.369,370 Increased antibody production will 1) eliminate the acute infection 

and 2) boost the immune response in the event of future exposure to that same infection, 

increasing one’s chances of overcoming the disease and its effects.369 Recent evidence 

suggests novel-preconditioning paradigms may prepare patients and limit damage from 

other lethal events such as heart attacks, strokes, or liver failure.371-373  
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Ischemia/reperfusion preconditioning has become an increasingly active area of interest 

over the last three decades.374 In the event of acute ischemia, i.e. myocardial infarction 

(MI), transient brain ischemia or liver transplant, persistent hypoxia induces both cellular 

necrosis, and apoptosis in the area of infarct, as well as apoptosis in the bordering tissue 

zone.371-373 Studies examining the effects of ischemia/reperfusion preconditioning in 

these tissues have demonstrated that multiple applications of brief ischemic events prior 

to prolonged ischemia reduces subsequent tissue damage.373,375,376 Murry and 

colleagues demonstrated the application of brief ischemic events prior to a prolonged 

myocardial infarction reduced the infarct size by approximately 25 percent compared to 

control animals that did not receive ischemic preconditioning.375 While the methods and 

modalities conditioning are continuously evolving, many preconditioning-mediated cardio-

protective effects have been linked to mitochondria stabilization via G-protein coupled 

receptor activation and canonical downstream events, release of circulating humoral 

factors and neurogenic activation of protein kinase C and the ERSR.374,377-381 As ongoing 

studies continue to examine the molecular mechanisms responsible for 

ischemia/reperfusion preconditioning effects in the various tissue paradigms, it has 

become abundantly clear that low dose stress facilitated pre-induction of cellular 

readiness has paradoxical effects against further cellular damages. 

Preconditioning of the Endoplasmic Reticulum Stress Response 

The benefits of preconditioning are not isolated to ischemia/reperfusion injury 

alone.  There is a growing body of evidence demonstrating that preconditioning of the 

cellular ERSR with minor stresses enhances cell viability upon exposure to a subsequent 

more damaging stress. Various cellular stressors such as hypoxia, inflammation and 

glucose deprivation activate the ERSR.382,383 Importantly, it has been demonstrated that 
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the pre-activation of adaptive ER stress signaling pathways provide cytoprotection and 

enhance cell viability against exposure to various cellular insults such as oxidative stress, 

inflammation, and hypoxia.384-388 

Oxidative Stress- In 2003, Hung and colleagues examined the effect of ER stress 

preconditioning against oxidative injury in LLC-PK1 renal epithelial cells, utilizing both TM 

and Thaps. In this study, cells were pretreated with TM and Thaps (1.5µg/ml and 0.3µg/ml 

respectively) for 12-16 hours prior to the exposure of 0.5-1mM H2O2. As determined by 

LDH release, increased concentrations of intracellular Ca2+, cell injury was significantly 

reduced in cells preconditioned with either TM and Thaps, compared to non-

preconditioned controls. The preconditioning effects against oxidative injury however, 

were negated in LLC-PK1 cells expressing a GRP78 antisense RNA. Therefore, the 

authors suggested the expression of GRP78 is necessary for successful ER stress 

preconditioning against H2O2 induced oxidative injury. These results corroborated other 

preconditioning models of ischemia/reperfusion, which demonstrate that increased 

expression of ER chaperones is positively correlated with cell survival.389 In addition, 

increased phosphorylation of extracellular signaling-kinase regulated protein (ERK) was 

found to be necessary for ER stress mediated resistance against oxidative stress and 

was associated to increased GRP78 expression following TM and Thaps 

preconditioning.386 A later study, utilizing three additional renal cell lines (NRK-52E, 

HEK293 and MDCK), similarly examined the effect of 24hr pretreatment with TM, Thaps 

or oxidized DTT, which alters protein folding by augmenting the ER redox state, against 

subsequent oxidative insults.385,390 In agreement with previous studies, ER stress 

preconditioning significantly increased cell viability. However, they found both the cell type 

and the method of ER stress induction affected the quality of cytoprotection. Originally, 
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the authors speculated the variation in cytoprotective effects to be linked to the cell type 

specific dose-dependent induction of GRP78 protein levels, but no relationship was found 

between the extent of GRP78 induction and the afforded cytoprotection. Consequently, it 

is important to note that these results suggest the cytoprotective effects mediated by ER 

stress preconditioning are cell type specific and are influenced by the mechanism of ER 

stress induction. Moreover, because GRP78 expression levels in this study did not 

directly correlate to the amount of cytoprotection provided, it is likely supplementary 

factors are responsible for modifying ER stress preconditioning effects.   

Inflammation- In an additional study characterizing the effect of ERSR 

preconditioning against retinal endothelial inflammation, XBP1 was described to play a 

critical role in blunting pathophysiological responses to the inflammatory cytokine tumor 

necrosis factor-alpha (TNFα).384 Specifically, the upregulation of spliced XBP1, afforded 

by low dose treatment of TM, inhibited both TNFα mediated IB kinase/NFB activity and 

prevented the expression of downstream inflammatory markers (e.g. soluble intercellular 

adhesion molecule-1 and vascular adhesion molecule). These cytoprotective effects 

could be mimicked in cells overexpressing spliced XBP1 with the transfection of 

adenovirus encoding spliced XBP1 and annulled using an XBP1 silencing RNA. In 

agreement with previous studies, increased IRE1α expression induced by TNFα 

treatment was buffered to basal levels in cells overexpressing XBP1.365,391 The authors 

proposed the buffering capacity of XBP1 might be due to an XBP1-dependent increase 

in GRP78 that ameliorates ER stress and IRE1α activation. Additional studies however, 

have demonstrated ERSR preconditioning-dependent cytoprotection against 

inflammation independent of increased GRP78.392 Thus, further studies are necessary to 

delineate the exact mechanism of ER stress induced XBP1-dependent inhibition of 
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inflammatory responses to TNFα treatment.   

Hypoxia- Like ER stress preconditioning facilitated cellular protection against 

inflammatory processes, IRE1α-dependent XBP1 activation is required for cellular 

protection against hypoxic insults. While it is understood that ERSR pathways respond to 

hypoxia, the mechanism of ERSR regulated hypoxic sensitivity was relatively unknown 

until recently.393 Utilizing loss of function mutant alleles in various UPR genes, Mao and 

Crowder demonstrated the necessity of functioning IRE1α, XBP1 and ATF6 for 

appropriate ERSR mediated preconditioning against lethal hypoxic insults. In this study, 

null mutations for two GRP78 homologs had no effect, positive or negative, on TM 

preconditioning. Taken together, ER stress preconditioning mediated cytoprotection is a 

multifactorial process. The direct molecular signaling pathways responsible for priming 

cells seems to be dependent of the modality of applied ER stress and specific to the cell 

type undergoing preconditioning. While it has been shown to be highly beneficial in 

protecting cells against various forms of injury, future studies are required for the 

optimization of the technique prior to utilize as a therapeutic approach. 

Remote Preconditioning of the Endoplasmic Reticulum Stress Response 

Interestingly, the beneficial adaptations of prophylactic stress-mediated UPR-

preconditioning is not restricted to the tissue being conditioned. Remote preconditioning 

is defined by brief episodes of stress applied to a discrete tissue or organ that result in 

global cytoprotection against future lethal stresses.394 Similar to preconditioning, many of 

the first important studies characterizing the positive cytoprotective effects of remote 

preconditioning were performed in the context of myocardial ischemia/reperfusion 

injury.395,396  It has since been demonstrated that remote preconditioning is not limited to 

ischemia/reperfusion injury or cytoprotection of myocardial tissue alone. In the context of 
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the kidney, remote UPR preconditioning, via systemically administered pretreatments of 

TM or Thaps, ameliorated the consequences of a chemically induced form of 

glomerulonephritis in rats.397 In addition, remote systemic ER stress preconditioning has 

been shown to suppress translation of UPR apoptotic effector proteins ATF4 and 

GADD153, inhibiting TM-mediated apoptosis in splenic macrophages, renal tubule cells 

and hepatocytes, preventing hepatosteatosis and renal dysfunction.398 Based on these 

data, it is important to note for future studies that the UPR is a dynamic signaling network 

capable of exhibiting cell- and stimulus-specific responses.  

Thesis Aims 

This thesis consists of three primary aims. Our laboratory has previously 

demonstrated that the pregnant uterus facilitates uterine quiescence through UPR 

mediated activation of non-apoptotic myometrial CASP3.350 It is unknown however, how 

CASP3 is maintained in a non-apoptotic state to maintain myometrial quiescence. In Aim 

1 we looked to characterize the capacity of in vitro preconditioning of the ERSR to 

facilitate the maintenance of non-apoptotic CASP3. We hypothesize preconditioning the 

ERSR in uterine myocytes increases the ability of the myometrium to adapt to apoptotic 

stimuli through modulation of pro-survival and inflammatory responses, thus allowing for 

the maintenance of non-apoptotic CASP3. In Aim 2, we utilized our pregnant mouse 

model of ERSR induced preterm birth, previously described by Kyathnahalli and 

colleagues, to examine the in vivo effects of endogenous ERSR preconditioning on the 

regulation of myometrial adaptation to gestationally-induced uterine stressors.350 We 

hypothesize that an inappropriately preconditioned uterus or a uterus that is unable to 

host an adaptive preconditioning response is more likely to undergo premature uterine 

contraction and subsequently preterm birth. In Aim 3 we tested the hypothesis that 
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circulating factors, secreted from uterine myocyte in an ER-stress dependent manner, 

facilitate the transmission and activation of a potentially adaptive/preconditioning-like 

extracellular ERSR in a paracrine and endocrine manner. We further speculate that these 

secreted factors may act as potential biomarkers for uterine myocyte refractoriness. 
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CHAPTER 2 

Introduction 

In the context of the pregnant uterine myocyte, our laboratory has demonstrated 

active CASP3 is highly abundant across gestation and is critical for the regulation of 

uterine myocyte quiescence.350,399 Specifically, we have shown that active CASP3 within 

the uterine compartment targets and degrades multiple components of the contractile 

architecture, such as  actin,  actin and connexin 43 rendering the myocyte quiescent.350 

Classically, CASP3 activity has been linked to the execution of cellular apoptosis through 

proteolytic cleavage of DNA repair moles, such as poly (ADP-ribose) polymerase (PARP), 

resulting in intra-nucleosomal cleavage and fragmentation of DNA.400 Interestingly, at no 

point during gestation does the myometrium succumb to apoptosis, suggesting CASP3 is 

maintained in a non-apoptotic state within the pregnant uterus while fulfilling its tocolytic 

action. Subsequently, it is known that non-apoptotic CASP3 action is essential for 

inhibiting myometrial contractility, however the mechanisms necessary for the 

maintenance of CASP3 in a non-apoptotic state within the pregnant myometrium remain 

completely elusive. It has been demonstrated in previous studies that stress-dependent 

preconditioning can maintain CASP3 in a functioning non-apoptotic state. Subsequently, 

we hypothesize that preconditioning the uterine myocyte UPR with minor prophylactic 

stress events will facilitate the maintenance of non-apoptotic CASP3 following a 

damaging bolus. 

CASP3 can be activated through 1 of 3 signaling cascades: the extrinsic pathway, 

the intrinsic pathway or the UPR, as referred to in Chapter 1 Apoptosis.401,402 In the 

pregnant mouse myometrium, there is UPR-dependent activation of GADD153 and 

CASP12 around E6-8, with concomitant increases in XBP1s.403 As a result of 
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GADD153/CASP12 signaling, there is a robust activation of CASP3, as seen by a surge 

in its active cleavage fragments (14 and 17kD) at approximately E8-10.403 Active CASP3 

is then observed in high levels throughout early and mid-gestation, declining at 

approximately E17 prior to the onset of labor.403 Intriguingly, PARP cleavage, an indicator 

of CASP3 mediated apoptosis, is minimal in the myometrium at the time heightened 

CASP3 activity.404 Furthermore, there is no DNA fragmentation or positive TUNEL 

staining within the myometrium at any point in gestation, validating that active CASP3 is 

maintained in a non-apoptotic state during pregnancy. In other muscle systems such as 

the bladder, heart and diaphragm, non-apoptotic CASP3 has been described to have anti-

contractile function.405-407 While CASP3 targets were not identified in the smooth muscle 

of the bladder, CASP3 was found to target structural proteins in both the heart and 

diaphragm. In cardiac tissue specifically, both -actin and -actinin, components of the 

cardiac contractile architecture were directly cleaved by CASP3 and then further 

degraded. Similarly, we showed in the absence of apoptotic consequences non-apoptotic 

uterine CASP3 protease activity inhibits myometrial contraction in a tocolytic manner 

through the targeted cleavage and degradation of multiple components of the contractile 

architecture, i.e. connexin 43, α-actin and γ-actin.350,399 While the tocolytic function of 

CASP3 is imminently important and has been highly characterized, it remains widely 

unknown how the uterus capacitates active CASP3 in a non-apoptotic state during 

pregnancy. 

A growing body of evidence now suggests that non-apoptotic CASP3 action can 

be maintained through the process of cellular preconditioning.408-410 The process of 

preconditioning biological systems against pathophysiological events can be observed in 

multiple forms is strongly conserved in evolution, as discussed in Chapter 1 
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Preconditioning.411 In the context of neuronal ischemic preconditioning, active CASP3 

expression has been reportedly high in neuronal cells that do not undergo delayed 

neuronal cell death following ischemic injury.410 In this case, ischemic preconditioning 

was found to increase the expression and effectiveness of pro-survival inhibit-of-

apoptosis family members, cIAP. In a separate study examining the effects of 

preconditioning with minor periods of oxidative stress and low ATP on neuronal 

excitotoxicity, McLaughlin and colleagues demonstrated a sharp increase in non-

apoptotic CASP3 activity during the period of neuronal preconditioning. Further, when 

pan-caspase inhibitors were employed during the period of preconditioning the previously 

observed cytoprotective effects of KNC-dependent ROS generation were abrogated and 

cells exhibited increased apoptosis like that of the non-preconditioned neuronal 

population. In both of these studies, the preconditioning stimuli (hypoxia, oxidative stress 

and low ATP) that preserve non-apoptotic CASP3 activity have each been demonstrated 

to in turn activate the cellular UPR.412 Subsequently, we propose directly preconditioning 

the UPR within the uterine myocyte may be a potential mechanism whereby active 

CASP3 can be kept in a non-apoptotic state. 

In this current study we thus examined the cytoprotective effects of preconditioning 

the UPR in uterine myocytes, utilizing hTERT-HM cells. To test the hypothesis that UPR 

preconditioning facilitates the maintenance of non-apoptotic CASP3 and promotes cell 

viability, minor concentrations of TM and Thaps were applied prior to the exposure of a 

known cytotoxic dose in hTERT-HM cells. Herein we have identified preconditioning of 

the uterine UPR as the protective mechanism that facilitates the maintenance of non-

apoptotic CASP3 within the pregnant uterine myocyte. These studies clearly 

demonstrated in vitro UPR preconditioning facilitates augmented uterine myocyte cell 
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viability preventing apoptotic consequences of CASP3 action in the presence of elevated 

levels of CASP3 activation. Additionally, we have demonstrated UPR preconditioning 

decreases stress-dependent inflammatory responses in the human uterine myocyte.  

Materials and Methods 

Cell Culture 

For the in vitro cell culture model system, we utilized hTERT-HM cells.413 In detail, 

human myometrial cells were collected from the anterior wall of the uterine fundus in 

women of reproductive age undergoing a hysterectomy. The catalytic subunit of 

telomerase was then expressed in the myometrial cells via retroviral infection. In these 

studies, hTERT-HM cells were cultured in Dulbecco modified Eagle/F12 low glucose 

media (DMEM-F12) (Invitrogen Carlsbad, CA), supplemented with 10% fetal bovine 

serum (vol/vol) (Invitrogen) and antibiotic/antimycotic (10,000 U/ml; Invitrogen), and 

incubated at 37°C with 95% air and 5% CO2. 

Tunicamycin and Thapsigargin Treatments 

For all in vitro experiments, TM was suspended in 20μl 10M sodium hydroxide and 

brought to a final concentration of either 0.1μg/ml or 1.0μg/ml in DMEM-12 media with 

10% FBS and antibiotic/antimycotic. Thaps (Sigma-Aldrich, St. Louis, MO; Cat#T9033) 

was dissolved directly in cell culture media and brought to a final concentration of 10nM 

or 250nM. For TM preconditioned (P) and non-preconditioned (NP) treatments hTERT-

HM were given a 24hr treatment of 0.1μg/ml TM or vehicle, respectively, 0-48hrs prior to 

a secondary treatment of 5.0μg/ml TM.  Similarly, for Thaps preconditioned (P) and non-

preconditioned (NP) treatments hTERT-HM cells were given a 24hr treatment of 10nM 

TH or vehicle, respectively, 48hrs prior to a secondary treatment of 250nM Thaps. In both 

conditions, media was replaced 1hr after the secondary treatment was given and cells 
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and media were collected 47hrs later. 

Cytosol and Nuclear Protein Fractionation from Cells 

Cytoplasmic and nuclear protein fractions from hTERT-HM cells were prepared as 

previously mentioned. Initially, cells were rinsed in ice-cold PBS and centrifuged at 956 X 

g. The pellet was re-suspended and evenly homogenized in ice-cold NE1 buffer (10mM 

Hepes pH 7.5, 10mM MgCl2, 5mM KCl, 0.1% Triton X-100 with 1X EDTA-free 

protease/phosphatase inhibitor mini tablet). The homogenate was then centrifuged at 

2655 X g, the supernatant was retained as the cytoplasmic protein fraction and the pellet 

was washed in NE1 buffer and suspended in ice-cold NE2 buffer [20mM Hepes pH 7.9, 

500mM NaCl, 1.5mM MgCl2, 0.2mM EDTA pH 8.0, 25% (vol/vol) glycerol with 1X EDTA-

free protease/phosphatase inhibitor mini tablet]. The homogenate was vortexed for 30sec 

every 5min and after 1hr, centrifuged at 10,621 X g. The supernatant was then retained 

as the nuclear fraction. Protein estimation was performed using a bicinchoninic acid 

(BCA) assay, equal amounts of protein were loaded for immunoblotting, PDI and NCOA3 

were utilized as loading controls for the cytoplasmic and nuclear fractions, respectively. 

Immunoblotting and Densitometric Analysis 

Equal amounts of protein were separated via electrophoresis on NuPAGE 4-12% 

gradient precast polyacrylamide gels (Life Technologies, Carlsbad, CA). Proteins were 

transferred onto Hybond-P PVDF membranes (Millipore, Billerica, MA) and blocked for 

1hr at room temperature in 5% non-fat milk prepared in Tris Buffered Saline with 

0.1%Tween-20 (vol/vol). Membranes were incubated with primary antibodies overnight 

at 4°C. Primary antibody concentrations were as follows: GRP78 (1:1000; Cat#3177), Cl 

CASP3 (1:250; Cat#9664), GADD153 (1:500; Cat#5554), Cl PARP (1:1000; Cat#9541), 

AFT4 (1:500; Cat#11815), p-eIF2α (1:500; Cat#3398), NFB (1:1000; Cat#8242), XIAP 
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(1:250; Cat#2042) and PDI (1:5000; Cat#3501) were obtained from Cell Signaling 

Technologies; XBP1s (1:500; Cat#37152) was obtained from Abcam; ATF6 (1:500; 

Cat#24169-1-AP) was obtained from Proteintech; MCL-1 (1:1000; Cat#sc-819) was 

obtained from Santa Cruz Biotechnology, and NCOA3 (1:5000; Cat#PA1-845) was 

obtained from ThermoScientific. Following primary incubation, immunoreactivity was 

detected using horseradish peroxidase-conjugated secondary antibodies and visualized 

using an enhanced-chemiluminescence detection system (ThermoScientific, Rockford, 

IL). Immunoreactive band density was then quantified using ImageJ software. 

Enzyme-Linked Immunosorbent Assay (ELISA) 

Media samples were loaded into Amicon Ultra Centrifugal Filters (Millipore, 

cat#UFC500396) and centrifuged for 30 minutes at 14,000 x g to concentrate media 

approximately 10X. The level of human tumor necrosis factor-alpha (TNFα) was then 

measured in 10X concentrated media using an ELISA. Specifically, the MSD Multi-Spot 

TNFα ELISA (Meso Scale Diagnostics, Rockville, MD, Cat#K151QWD) was performed 

according to the manufacturer’s instructions and results were read via the Meso Scale 

Discovery 1300 microplate reader. Each sample measurement was read in duplicate and 

the computed averages were taken based on the calculated standard curve. 

Statistical Analysis 

All data represent at least three individual experiments performed in triplicate. For 

the direct comparison of three or more conditions a one-way analysis of variance was 

performed, with multiple comparisons analyzed via Newmans-Keuls multiple 

comparisons test. When directly comparing two conditions a two-tailed student-t test was 

performed. All comparisons were considered significant with p-values less than 0.05. 
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Results 

Appropriate In Vitro UPR-Preconditioning Renders CASP3 Non-Apoptotic in Human 
Uterine Myocytes 

Activation of the UPR, CASP3 and apoptotic indices were examined by 

immunoblotting in control, preconditioned (0.1g/ml, 24hrs TM) and non-preconditioned 

(vehicle, 24hrs) hTERT-HM cells, given a 0, 4, 24 and 48hr recovery period prior to a 

subsequent known cytotoxic dose of TM (5.0g/ml, 1hr) (Figure 1).385 A robust activation 

of the UPR was observed in the levels of GRP78 and CASP3 in both the TM 

preconditioned and non-preconditioned cells compared to the vehicle control (Figure 1A, 

B and C) for each recovery period. Examination of apoptotic indices, as quantified by 

cleavage of the nuclear DNA repair molecule Poly ADP ribose polymerase (Cl PARP), 

demonstrated that CASP3 activation and PARP cleavage levels were equivalent at all 

recovery time points examined except at the 48hr recovery time frame. With an allotted 

48hr recovery period, the uterine myocytes of the preconditioned and non-preconditioned 

cells displayed equal levels of CASP3 cleavage, however remarkably the preconditioned 

cells had a 4 fold decrease in PARP cleavage compared to non-preconditioned cells 

suggesting that preconditioned cells given a 48hr recovery period between the 

preconditioning and cytotoxic stimuli have significantly reduced levels of apoptosis and 

that the observed active CASP3 is non-apoptotic in nature. Decreased cell viability of the 

non-preconditioned cells (NP) in comparison to control (C) and preconditioned (P) 

myocytes was further validated using a trypan blue assay (Figure. 2).   These   results   

demonstrate that 1) preconditioning the UPR provides 
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Figure 1. UPR preconditioning renders the hTERT-HM uterine myocyte CASP3 non-apoptotic. (A) 

Elevated levels of cytoplasmic GRP78 and Cl CASP3, and nuclear Cl PARP are observed in 

preconditioned (P) and non-preconditioned (NP) uterine myocytes as compared to controls (C) (n=3 per 

condition), when exposed to a cytotoxic dose of TM 0, 4, 24 and 48 hrs post TM preconditioning. At 48hrs 

to recovery there is equal activation of GRP78 (B) and Cl CASP3 (C) in both P and NP uterine myocytes. 

In contrast, Cl PARP (D) is significantly decreased in the P versus NP cells. PDIA2 and NCOA3 are utilized 

as cytoplasmic and nuclear protein loading controls. A representative blot from this experiment is shown. 

Statistical comparisons were performed using one-way ANOVA, and subsequent Newman-Keuls multiple-

comparison tests. Data labeled with different letters are significantly different from each other (p<0.05). 

Figure 2. UPR preconditioning increases cell viability of 

the hTERT-HM uterine myocyte in the presence of 

active non-apoptotic CASP3. Decreased cell viability 

was observed in non-preconditioned (NP) uterine 

myocytes as compared to controls (C) and 

preconditioned myocytes (P) (n=3 per condition), when 

exposed to a cytotoxic dose of TM 48 hrs post TM 

preconditioning as measured using a trypan blue 

assay. Statistical comparisons were performed using a 

one-way ANOVA, and subsequent Newman-Keuls 

multiple-comparison tests. *p≤0.05 and **p≤0.01 
compared with controls. 
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resistance to the apoptotic consequences of 

CASP3 activation (Figures 1D) and 2) UPR 

preconditioning-mediated cytoprotection is 

dependent on the amount of recovery time 

between the preconditioning stimuli (0.1g/ml, 

24hrs) and the subsequent damaging/lethal stress  

(5.0g/ml, 1hr) TM stimulus. Additionally, the 

preconditioning dose of TM used was tested and 

found to activate the UPR, as seen by increased 

levels of GRP78, without inducing apoptosis 

shown by lack of GADD153 and CASP3 

activation, or PARP cleavage (Figure 3). 

 

 

 

 

  

Figure 3. Preconditioning dose of TM has negligible 
impact on UPR, inflammatory, pro and anti-apoptotic 
indices in the hTERT-HM uterine myocyte. GRP78, 

ATF4, NFB, CASP3, XIAP, and GADD135 levels were 
measured in vehicle treated (C) uterine myocytes and 
preconditioned (P) myocytes exposed to a minor UPR 
stress (TM, 0.1𝜇g/ml, 24hrs).  GRP78 levels were 
modified significantly whereas all others remained 
unchanged, indicating the lack of downstream 
consequences of the preconditioning stress alone in 
vitro. A representative blot from each experiment is 
shown. PDIA2 and NCOA3 are utilized as our 
cytoplasmic and nuclear protein loading controls. 
Statistical comparisons were done using a two-tailed 
student t-tests. Data labeled with different letters are 
significantly different from each other (p<0.05). 
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Cytoprotection Afforded by In Vitro UPR-Preconditioning in Human Uterine Myocytes is 
Independent of the Preconditioning Modality Employed 

To validate that the observed anti-apoptotic effects of preconditioning were not 

modality-dependent, we repeated our preconditioning protocol using Thaps. 

Subsequently, hTERT-HM cells were preconditioned (10nM, 24hrs Thaps), given a 48hr 

recovery and compared to non-preconditioned (vehicle) cells following the administration 

of a known cytotoxic dose of Thaps (250nM, 1hr) (Figure 4). Again, we observed 

activation of the UPR as increased levels of 

GRP78 and CASP3 in both the Thaps 

preconditioned and non-preconditioned cells 

compared to the vehicle control (Figure 4A, B and 

C). Importantly, in a manner similar to the TM 

protocol, Thaps-preconditioning reduced PARP 

cleavage by 2 fold (Figure 4D) in the presence of 

a 25-fold increase in CASP3 activation (Figure 4C) 

at the 48hr recovery time point post 

Figure 4. Thaps mediated UPR preconditioning renders 
the hTERT-HM uterine myocyte CASP3 non-apoptotic. (A) 
Elevated levels of cytoplasmic GRP78, nuclear CL CASP3 
and CL PARP are observed in preconditioned (P) and non-
preconditioned (NP) uterine myocytes as compared to 
controls (C) (n=3 per condition), when exposed to a known 
cytotoxic dose of Thaps (250nM, 1hr), 48 hrs post Thaps 
preconditioning (10nM, 24hrs). (B) At 48hrs to recovery 
there is equal activation of GRP78 and (C) Cl CASP3 in 
both P and NP uterine myocytes. (D) In contrast, Cl PARP 
is significantly decreased in the P versus NP cells. PDIA2 
and NCOA3 are utilized as our cytoplasmic and nuclear 
protein loading controls. A representative blot from this 
experiment is shown. Statistical comparisons were 
performed using a one-way ANOVA, and subsequent 
Newman-Keuls multiple-comparison tests. Data labeled 
with different letters are significantly different from each 
other (p<0.05). 
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preconditioning, suggesting the cytoprotective effect of preconditioning the UPR is not 

modality-dependent. 

Preconditioning the UPR Inhibits Inflammation in the Human Uterine Myocyte In Vitro 

To define the mediators facilitating resistance to the apoptotic consequences of 

CASP3, NFκB activation in the nuclear compartment of the uterine myocyte was 

examined in control (C), preconditioned (P) and non-preconditioned (NP) cells exposed 

to TM or Thaps or vehicle treatment. Cells were collected 0.25, 2, 4 and 24hrs post 

administration of the cytotoxic bolus and compared to vehicle-treated controls. As seen 

in Figure 5A and B, non-preconditioned cells display a robust 5.5 fold activation of NFB 

2hrs post administration of the subsequent damaging stress whereas NFB activation 

remains barely detectable in non-preconditioned cells at all time points examined post the 

lethal stress (0.25, 2, 4, 24hrs). Enzyme linked immunosorbent assays (ELISA) performed 

on control preconditioned and non-preconditioned hTERT-HM cells collected 48hrs post 

TM bolus revealed TNF secretion was suppressed 0.5 fold in the preconditioned cells 

whereas, non-preconditioned cells (Figure 5C) demonstrated a 0.5 fold increase in levels 

compared to non-treated controls. Similar results were found when cells were 

preconditioned and stressed with Thaps (Figure 5D). NFB activation and TNF secretion 

was increased 19 fold 2hrs post and 4 fold 48hrs post exposure to the cytotoxic stress 

(Figure 5E and F) respectively, within non-preconditioned cells and remained inactive 

within the preconditioned cells. 
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Figure 5. UPR preconditioning ablates NFB activation in the hTERT-HM uterine myocyte. (A, B, D, E) 
Activation of NFκB was significantly increased in both TM and Thaps non-preconditioned (NP) cells and 
reduced to barely detectable levels in preconditioned (P) cells 2hrs post administration of a cytotoxic dose 
of TM/Thaps. (C, F) TNFα secretion was also reduced in P versus NP cells. A representative blot from each 
experiment is shown. NCOA3 is utilized as nuclear protein loading control. Statistical comparisons were 
performed using one-way ANOVA, and subsequent Newman-Keuls multiple-comparison tests. Data 
labeled with different letters are significantly different from each other (p<0.05). 
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Preconditioning Downregulates UPR Activated Apoptotic Signaling In Vitro 

We quantified stress-mediated activation of the UPR pro-survival (spliced XBP1 

(XBP1s) and phospho-elongation initiation factor 2 (p-eIF2α)) and pro-apoptotic 

(activating transcription factor 4 (ATF4) and dna damage inducible transcript 3 

(GADD153)) signaling pathways by immunoblotting immediately following the application 

of the TM or Thaps bolus (0.25, 2, 4, or 24hrs post bolus) in control, preconditioned and 

non-preconditioned hTERT-HM cells (Figure 6A and F). p-eIF2 α levels remain 

unchanged between preconditioned and non-preconditioned cells, TM or Thaps (Figure 

6B and G). XBP-1s levels were suppressed 4hrs post bolus in TM-preconditioned cells 

(Figure 6C), whereas no change in expression is observed between Thaps-

preconditioned and non-preconditioned cells (Figure 6H). Pro-apoptotic signaling 

pathways in contrast, were significantly downregulated in both TM and Thaps 

preconditioned versus non-preconditioned cells.  A 2 fold decrease in ATF4 at 24hrs 

(Figure 6D) and a 7 and 5 fold reduction of GADD153 at 4 and 24hrs respectively (Figure 

6E) was observed in TM preconditioned cells. Similarly, a 0.5 fold reduction in ATF4 at 

24hrs (Figure 6I) and a 2 fold reduction in GADD153 at 2, 4 and 24hrs (Fig. 6J) was 

observed in Thaps-preconditioned compared to non-preconditioned hTERT-HM cells. 

Anti-apoptotic factors XIAP and MCL1 were preferentially maintained in TM 

preconditioned cells (Figure 7). 
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Figure 6. UPR 
preconditioning differentially 
regulates activation of the pro 
and anti apoptotic arms of the 
UPR in the hTERT-HM 
uterine myocyte (A-J).  TM 
(A) or Thaps (F) mediated 
preconditioning blocked 
activation of the pro-apoptotic 
arms of the UPR with ATF4 
(D, I) and GADD153 (E, J) 
and TM preconditioning 
maintained activation of the 
anti-apoptotic arm of the UPR 
with XBP1s (C) significantly 
upregulated in preconditioned 
(P) versus non-
preconditioned (NP) cells 
post administration of a 
cytotoxic dose of TM/Thaps. 
No changes in XBP1s  (H) 
upon Thaps treatment, and p-

eIF2 (B, G) upon TM and 
Thaps treatment. PDIA2 and 
NCOA3 are utilized as 
cytoplasmic and nuclear 
protein loading controls. A 
representative blot from each 
experiment is shown. 
Statistical comparisons were 
performed using one-way 
ANOVA, and subsequent 
Newman-Keuls multiple-
comparison tests. *p<0.05, 
**p<0.01 and ***p<0.001 
compared with controls. 
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Figure 7. Increased maintenance of pro-survival molecules with TM mediated UPR preconditioning in the 
human uterine myocyte. (A) Pro-survival molecules XIAP and Mcl-1 were analyzed 48hrs post TM-bolus in 
non-preconditioned (NP), TM-preconditioned cells given a 48hr recovery period (P) and vehicle treated 
controls (C). (B) and (C) Both Mcl-1 and XIAP were significantly elevated in TM-preconditioned cells when 
compared to non-preconditioned myocytes. (D) The experiment was repeated using Thaps as a 
preconditioning and bolus stimuli. (E) and (F) Neither Mcl-1 or XIAP were significantly different between 
Thaps-preconditioned and non-preconditioned myocytes. A representative blot from this experiment is 
shown. PDIA2 is utilized as our cytoplasmic loading control. Statistical comparisons were done using a one-
tailed student t-tests. Data labeled with different letters are significantly different from each other (p<0.05). 

Discussion 

We have previously demonstrated the critical role that the UPR plays in CASP3 

activation within the uterine compartment during pregnancy.350 As recent studies have 

demonstrated preconditioning events, such as ischemia, that lead to the activation of the 

UPR can maintain active CASP3 in a non-apoptotic state following subsequent damaging 

stress, we hypothesis that the act of preconditioning the uterine UPR during pregnancy 

is essential in protecting the pregnant myometrium against a CASP3 mediated apoptotic 

fate. This is important because the loss of non-apoptotic CASP3 tocolytic action within 

the pregnant mouse myometrium initiates the onset of preterm birth.350 Here we utilized 

a preconditioning protocol in which minor amounts of ER stress were given to hTERT-HM 

cells prior to the exposure of a large damaging stress to test the hypothesis UPR 

preconditioning facilitates the maintenance of non-apoptotic CASP3 in myometrial cells. 
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We report for the first time that preconditioning the UPR inhibits uterine myocyte 

apoptosis in the presence of highly abundant levels of active CASP3. To note, UPR 

preconditioning afforded cytoprotection that was independent of the stress modality 

employed and acted to suppress downstream stress-dependent apoptotic pathways 

(ATF4 and GADD153) and inflammatory responses (NFB and TNF release) with a 

dependency on the recovery time given between the preconditioning stress and the 

subsequent cytotoxic bolus. 

In many studies the activation of CASP3 is used as a cellular marker for the 

induction of apoptosis (see Chapter 1 Apoptosis for more detail). In the context of the 

pregnant uterus, we have previously demonstrated that active CASP3 is not participating 

in the initiation of apoptosis and that instead it is functioning in a non-apoptotic state to 

inhibit muscle contractility, as demonstrated in other tissue types such as the heart, 

diaphragm and bladder. In this study, we argue that preconditioning the UPR is one 

mechanism in which the myocyte can capacitate CASP3 activity in the absence of cellular 

apoptosis, allowing for the maintenance of uterine quiescence in a non-apoptotic CASP3 

dependent manner. Prolonged or severe ER stress can mediate both mitochondrial-

dependent and independent apoptosis, and consequently ERSR signaling is implicated 

in many diseases associated with cellular dysfunction and cytotoxicity.414,415 The initial 

signaling responses however, via PERK/eIF2α, IRE1 and ATF6 do not induce cell death 

and instead activate a subset of genes that aid in the restoration of cellular homeostasis, 

as described in Chapter 1 Activation of the Unfolded Protein Response.  To do so, UPR-

activated genes increase chaperone protein expression e.g. GRP78, attenuate protein 

translation and increase ER associated degradation of unfolded proteins.310,314,416 

Multiple in vitro studies have proven that preconditioning the endoplasmic reticulum stress 
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response with minor insults of stress stimulates a protective adaptive UPR promoting 

resistance to the apoptotic processes associated with subsequent, more damaging 

stresses.385,388,417 Many and varied perturbations such as stress mediated inflammation, 

hypoxia and cytotoxins have been demonstrated to successfully induce a preconditioning 

afforded cytoprotection.382,385,418 The most basic of these approaches is to activate the 

UPR by chemically inducing an accumulation of unfolded proteins within the ER.  Two 

small molecules commonly used are Thaps and TM.  Thaps, originally identified as a 

tumor promoting sequiterpene lactone, dysregulates calcium (Ca2+) homeostasis by 

binding and inhibiting the ATP-sensitive Ca2+ pump within the endoplasmic reticulum, 

causing an increase in free cytosolic Ca2+.419 Because Ca2+ binding is an important 

function of multiple ER resident chaperone proteins, decreased ER Ca2+ stores cause an 

accumulation of unfolded proteins in the ER and reduced protein synthesis.420-422 In 

contrast, Tm inhibits N-linked glycosylation that is necessary for the recognition of 

unfolded proteins by ER chaperones, such as GRP78 and calnexin.423 Our in vitro data 

reveals preconditioning of the uterine myocyte UPR with stress (TM or Thaps) promoted 

non-apoptotic CASP3 activation during periods of cellular stress (Figures1 and 4). As can 

be observed in Figure 1, despite equally elevated levels of CASP3 activation (Figure 1C) 

in preconditioned and non-preconditioned cells 48hrs post receiving a bolus (Figure 1), 

the preconditioned cells demonstrated a newly acquired resistance to CASP3 mediated 

apoptotic cell death as indicated by decreased PARP cleavage (Figure 1.D). These data 

show preconditioning the UPR in the uterine myocyte maintains non-apoptotic CASP3, 

suggesting in vivo preconditioning may be the mechanism in which myometrial CASP3 is 

maintained in a non-apoptotic state to fulfill its tocolytic action, inhibiting labor. 

Increased resistance to apoptotic cell death in the preconditioned myocytes was 



65 

 

most likely due to the presence of elevated levels of cellular GRP78 prior to delivery of 

the bolus. As seen in Figure 3, the adaptive arms of the ERSR were activated from the 

preconditioning stimuli, whereas pro-apoptotic indices remained the same as controls. In 

the event of ER stress and increased accumulation of unfolded proteins, prophylactic 

increases in the concentration of GRP78 are advantageous for maintaining ER 

homeostasis. In studies examining the cardioprotective effects of stress preconditioning, 

pre-induction of GRP78 has been identified as a key mechanism for affording 

cytoprotection. In support of this claim, Yuan and colleagues demonstrated inhibition of 

GRP78 expression using anti-sense oligonucleotides ablated cardioprotection afforded 

by late hypoxic preconditioning.424 In our preconditioning paradigm, cytoprotection was 

not afforded unless the cells were given a 48hr recovery period between the initial 

stimulus and the bolus. This is like other preconditioning paradigms where a recovery 

period is required for facilitating cytoprotection, such as in ischemic preconditioning. This 

suggests prophylactic GRP78 is not the sole mechanism of afforded cell viability as 

GRP78 levels are substantially increased 24hrs prior to the initial preconditioning 

stimulus.374 Other studies have implicated GRP78 as being only partially responsible for 

preconditioning-mediated cytoprotection. One study by Harama and colleagues 

demonstrated ER stress preconditioning prevented lipopolysaccharide/TNFα induced 

inflammatory responses while decreasing full length GRP78 expression in a time 

dependent manner.392 

In addition to an increase in prophylactic GRP78, we also witnessed suppressed 

activation of the UPR-mediated apoptotic-signaling pathway, ATF4-GADD153 (Figure 6). 

As previously mentioned, the first response to stress through UPR signaling is to initiate 

pro-survival processes, such as p-eIF2 mediated transcriptional inhibition, to promote 
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the return to luminal homeostasis. In case of severe or prolonged stress however, internal 

ribosomal entry site-dependent transcription of ATF4 occurs and the secondary apoptotic 

UPR signaling pathway is activated.425 One of the main mechanisms preconditioning has 

been demonstrated to increase cell viability is through the depression of apoptotic UPR 

signaling.398,426 While testing the effectiveness of LPS-preconditioning in the prevention 

of renal dysfunction and hepatosteatosis, Woo and colleagues demonstrated pre-

activation of toll-like receptors 3 and 4 prior to TM-induced ER stress inhibited GADD153 

expression and reduced apoptosis in splenic macrophage, renal tubule cells and 

hepatocytes. Importantly, pre-activation of the toll-like receptors did not alter the pro-

survival pathways. In our study, we similarly found TM and Thaps-preconditioning 

reduced expression levels of ATF4 and GADD153 without altering pro-survival signaling 

transducers (p-eIF2 and XBP1s) (Figure 6), suggesting one mechanism in which 

preconditioning may be preventing CASP3-dependent apoptosis is through inhibition of 

pro-apoptotic signaling pathways. 

Another pathway significantly linked to UPR-dependent apoptosis is NFB-

mediated inflammatory signaling, as discussed in Chapter 1 The UPR and Inflammation. 

Growing evidence suggests, that the coupling of the ERSR and inflammation is important 

in the pathogenesis of multiple diseases.  In atherosclerosis, the development of plaque 

lesions on the endothelial lining of blood vessels has been linked to activation of the UPR 

and inflammation. With the loading of free cholesterol into ER membranes in circulating 

macrophages, UPR signaling is thought, in part to mediate activation of inflammatory 

transcription factors NFB and janus kinase.427 Further, it has been demonstrated that 

the induction of GADD153, ATF4 and XBP1s is necessary to produce IL-6 and potentially 

other chemokines such as IL-8, CXC-chemokine ligand 2 and 3.428 Similar to 
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atherosclerosis, the cross talk between the ERSR and inflammation is prominent in 

human inflammatory bowel disease. Interestingly, Blumberg and colleagues 

demonstrated the stress of rapid proliferation in paneth cells is sufficient to instigate a 

pro-inflammatory response and that in these same cells the absence of appropriate UPR 

signaling there is a significant induction in apoptotic cell death.391 Interestingly, it has been 

demonstrated that preconditioning the UPR can mitigate UPR-mediated activation of 

inflammatory signaling pathways and subsequent apoptosis, please see Chapter 1 

Preconditioning for more details.  For example, a study by Rao and colleagues recently 

showed preconditioning mice with low-doses of LPS prior to ischemia/reperfusion injury 

in the liver 1) inhibited NFB and downstream inflammatory signaling proteins TNF and 

IL-6, 2) blocked GADD153/CASP3 dependent apoptosis and 3) promoted anti-

inflammatory signaling of IL-10.426 In our studies we also observe that preconditioning the 

UPR in uterine myocytes blocked the activation of NFB and consequently decreased the 

secretion of its downstream target the inflammatory mediator TNF following the delivery 

of the TM bolus (Figure 2B and C).  In the context of pregnancy, the inhibition of premature 

NFB signaling and the resulting downstream inflammatory mediators within the 

myometrium is extremely important as heightened inflammation initiates many processes 

necessary for the induction of labor, as discussed in Chapter 1 Parturition. 

Taken together these data demonstrate that preconditioning the UPR plays a 

critical role in maintaining the uterine myocyte in a CAPS3 positive, non-apoptotic, anti-

inflammatory, pro-survival state in vitro. These findings highlight a potential mechanism 

whereby CASP3 can fulfill its tocolytic function, while avoiding apoptosis in the uterine 

myocyte. Further, they suggest in vivo preconditioning may also be important in 

maintaining quiescence through the inhibition of contractile associated inflammatory 
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signaling pathways, e.g. NFB and TNF. From these studies, it would next be important 

to examine the function of preconditioning in vivo in the pregnant uterus and its potential 

role in the regulation of myometrial quiescence. 
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CHAPTER 3 

Introduction 

In this chapter we will discuss the functional relevance of in vivo preconditioning in 

the maintenance of uterine quiescence. As previously mentioned, our laboratory has 

established that the preservation of non-apoptotic CASP3 activity in the myometrium is 

an integral part of the maintenance of uterine quiescence. Further, I have shown in vitro 

that CASP3 activity in the uterine myocyte can be maintained in a non-apoptotic state 

through preconditioning of the UPR. Current literature has established that throughout a 

normal gestation the uterine compartment is exposed to and must tolerate a variety of 

cellular stresses, i.e. hypoxia, hyperplasia, hypertrophy, hormone fluctuation and 

mechanical stretch, to reach term. Therefore, we hypothesize that in vivo transient 

incremental ER stress insults experienced by the uterus during gestation act to capacitate 

the myometrium to withstand additional subsequent stressors while maintaining the 

tocolytic action of non-apoptotic CASP3, thus preventing premature uterine contractility. 

Beginning with implantation and continuing until labor, the myometrium 

experiences various modalities of stress that have been demonstrated in other organ 

systems to illicit an ERSR.  One of the simplest forms of ER stress that may be 

contributing to this process is a gestationally regulated increase in uterine myocyte protein 

synthesis. In the pregnant rat, immunoblotting for proliferating cell nuclear antigen in 

conjunction with bromodeoxyuridine incorporation assays have shown that significant 

myometrial hyperplasia occurs between gestation days 6-14 and tapers off by E15-16 to 

accommodate the growing fetus.429 While there is no direct evidence linking myometrial 

proliferation to activation of the ERSR, increased protein synthesis leading to an 

accumulation of unfolded protein has been repeatedly demonstrated to upregulate the 
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ERSR.430 During mid-gestation uterine myocytes transition into a hypertrophic state and 

begin to stretch and increase in size, to further accommodate the growing fetus.429 

Unrelated studies, examining hypertrophic zones of the epiphyseal plate in models of 

metaphyseal chondrodysplasia, have demonstrated hypertrophy-dependent activation of 

each canonical ER stress sensors (IRE1α, PERK, and ATF6) further lending evidence 

that myometrial hypertrophy throughout early and mid-gestation causes activation of the 

UPR.431 With increased fetal growth, the myometrium also experiences elevated 

mechanical stretch and subsequent bouts of transient hypoxia.432 Both of which have the 

potential to initiate the ERSR. Finally, prior to the onset of labor the uterine compartment 

experiences a surge in reactive oxygen species and inflammation, which have also been 

demonstrated to activate an ERSR. While it is remains elusive which stress insults 

contribute to the activation of the UPR in utero, it is clear that the myometrium is 

experiencing stress as the ERSR markers XBP1, GADD153, GRP78, and CASP3 are all 

upregulated at different time points of gestation.403 

Herein we tested the hypothesis that appropriate in vivo preconditioning of the 

uterine UPR during pregnancy facilitates the maintenance of non-apoptotic CASP3-

dependent tocolysis and thus is essential for the regulation of gestational length. To do 

so, we utilized a novel pregnant mouse model where downstream stress-mediated UPR 

preconditioning effects were ablated by heightening tolerance to the gestational stresses 

through the administration of the chemical chaperone phenyl butyric acid (PBA). We 

observed increased apoptotic CASP3 action in the stressed-sub-preconditioned uterine 

compartment, resulting in the onset of preterm birth in over 50% of the mice, whereas 

83% of endogenously preconditioned mice delivered at term when exposed to the same 

exogenous stress. Importantly we have discovered the downstream consequences of 
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apoptotic CASP3 action in the uterine compartment to be activation of the inflammatory 

and prostaglandin-signaling cascades normally associated with the onset of term labor. 

Overall these studies these findings represent a paradigm shift in our understanding of 

the regulation of the timing of labor, revealing the critical role endogenous uterine 

preconditioning plays in promoting the maintenance of uterine quiescence to term by 

preventing the premature activation of apoptotic CASP3 within the endometrium, 

inflammatory signaling and thus the onset of luteolysis.  

Materials and Methods 

Animals 

The Institutional Animal Care and Use Committee of Wayne State University 

approved all animal studies. Timed pregnant female CD-1 mice (6-8wks; gestation day 9) 

(Charles River Laboratories, Wilmington, MA) were housed in AALAC-accredited facilities 

according to IACUC guidelines. Accordingly, mice were given a standard pellet diet and 

water ad libitum. 

Tunicamycin and Phenyl Butyric Acid Treatments 

PBA was directly dissolved into phosphate buffered saline (PBS) at pH 8.0 (Santa 

Cruz Biotechnology, Dallas, TX; sc-200652). TM (Calbiochem, San Diego, CA; 

Cat#654380) was initially dissolved in 20μl 10M sodium hydroxide and then suspended 

in PBS, pH 8.0. Sub-preconditioned pregnant CD-1 female mice (E10-15) were 

administered twice-daily intraperitoneal injections (i.p) of 50mg/kg PBA, while 

preconditioned controls were administered PBS. At E16, stressed mice were 

administered 0.2mg/kg TM i.p, while controls were given volume matched PBS. Following 

TM injections, the length of gestation was then monitored and compared between a 



72 

 

subset of sub-preconditioned and endogenously preconditioned mice. Uteri, ovaries and 

serum were harvested at E17 in the additional mice. 

Cytosol and Nuclear Protein Fractionation from Tissues 

Cytoplasmic and nuclear protein extracts were prepared from frozen mouse 

tissues by pulverizing the tissues in liquid nitrogen and homogenizing them in ice-cold 

NE1 buffer (10mM Hepes pH 7.5, 10mM MgCl2, 5mM KCl, 0.1% Triton X-100 with 1X 

EDTA-free protease/phosphatase inhibitor mini tablet). The homogenate was then 

centrifuged at 2655 X g, the supernatant was retained as the cytoplasmic protein fraction 

and the pellet was washed in NE1 buffer and suspended in ice-cold NE2 buffer [20mM 

Hepes pH 7.9, 500mM NaCl, 1.5mM MgCl2, 0.2mM EDTA pH 8.0, 25% (vol/vol) glycerol 

with 1X EDTA-free protease/phosphatase inhibitor mini tablet]. The homogenate was 

vortexed for 30sec every 5min and after 1hr, centrifuged at 10,621 X g. The supernatant 

was then retained as the nuclear fraction. Protein estimation was performed using a BCA 

assay, equal amounts of protein were loaded for immunoblotting and PDI and NCOA3 

were utilized as loading controls for the cytoplasmic and nuclear fractions, respectively. 

Immunoblotting and Densitometric Analysis 

Equal amounts of protein were separated via electrophoresis on NuPAGE 4-12% 

gradient precast polyacrylamide gels (Life Technologies, Carlsbad, CA). Proteins were 

transferred onto Hybond-P PVDF membranes (Millipore, Billerica, MA) and blocked for 

1hr at room temperature in 5% non-fat milk prepared in Tris Buffered Saline with 

0.1%Tween-20 (vol/vol). Membranes were incubated with primary antibodies overnight 

at 4°C. Primary antibody concentrations were as follows: GRP78 (1:1000; Cat#3177), Cl 

CASP3 (1:250; Cat#9664), Cl PARP (1:1000; Cat#9541), pNFB (1:500; Cat#3033), 

COX-1 (1:1000; Cat#4841), PDI (1:5000; Cat#3501) and GAPDH (1:1000; Cat#5174) 
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were obtained from Cell Signaling Technologies; iPLA2 (1:1000; Cat#07-169-1) was 

obtained from Millipore; HSD3B2 (1:1000; Cat#80500) was obtained from Abcam; and 

NCOA3 (1:5000; Cat#PA1-845) was obtained from ThermoScientific. Following primary 

incubation, immunoreactivity was detected using horseradish peroxidase-conjugated 

secondary antibodies and visualized using an enhanced-chemiluminescence detection 

system (ThermoScientific, Rockford, IL). Immunoreactive band density was then 

quantified using ImageJ software. 

Enzyme-Linked Immunosorbent Assay (ELISA) 

The level of progesterone (P4) was then measured in pregnant mouse serum using 

an ELISA. Specifically, the P4 ELISA Kit (Alpha Diagnostic International, San Antonio, 

TX, Cat#1955) was performed according to the manufacturer’s instructions and results 

were read via the Molecular Devices, SpectraMax M2 microplate reader. Each sample 

measurement was read in duplicate and the computed averages were taken based on 

the calculated standard curve. 

Terminal Deoxynucleotidyl Transferase dUTP Nicked-End Labeling Assay 

Tissues collected at E17, imbedded in optimal cutting temperature compound 

(Sakura Finetek USA Inc, Torrance, CA) were sectioned (10μm thick), mounted onto 

Superfrost Plus Micro Slides, and stored at -20°C. Sections were removed from storage 

and fixed in 4% paraformaldehyde for 15 minutes. Additionally, sectioned paraffin wax 

imbedded tissues were de-paraffinized and rehydrated and treated with 10g/ml 

Proteinase K for 15min at 37°C. Analysis of apoptosis in all tissues was quantified using 

the In Situ Cell Death Detection Kit, AP (Roche, Indianapolis, IN, Cat#11684809910) 

according to the manufacturer’s instructions. 
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Small Molecule Liquid Chromatography-Mass Spectrometry Analysis 

Dissected uterine tissues separated into endometrial and myometrial 

compartments, flash frozen in liquid nitrogen, were removed from -80°C storage and 

tissue weights were immediately recorded. Samples were then suspended in 1ml cold 

PBS pH 7.4, homogenized via bead homogenization, and centrifuged at 10,621 x g for 

10 minutes. Supernatants were removed, and protein concentrations were determined 

using a BCA assay. Equal volume of protein (850μl) was then spiked with 5ng of internal 

standards suspended in 15% methanol dissolved in water (150μl), mixed thoroughly and 

purified using a C18 solid-phase cartridges. Prior to applying the sample, the cartridges 

were first washed with 1ml of 100% methanol followed by 1ml of 15% methanol. After the 

addition of the sample, tubes were rinsed twice with 1ml of PBS and the rinse was passed 

through the cartridges. Subsequently, the cartridges were rinsed with 2ml of hexane, 

vacuum dried for 30sec and proteins were eluted with 1ml of methanol containing 0.1% 

formic acid. All samples were evaporated to dryness with a gentle stream of nitrogen at 

40°C, residues were re-suspended in 30μl methanol and stored at -20°C until LC-MS 

analysis. Prior to analysis, each sample was further diluted with 30μl 25mM aqueous 

ammonium acetate. Specific methods utilized for liquid chromatography mass 

spectrometry can be referenced in Yoon Park et al. 2014. 

Immunofluorescence 

Tissues collected at E17, embedded in optimal cutting temperature compound 

(OCT) (Sakura Finetek USA Inc, Torrance, CA) were sectioned (10μm thick), mounted 

onto Superfrost Plus Micro Slides, and stored at -20°C. Sections removed from storage 

were fixed in 4% paraformaldehyde for 2 minutes. Fixed sections were incubated with 

primary antibody overnight at 4°C and examined for primary immunoreactivity using a 
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conjugated secondary antibody. The primary and secondary antibody concentrations 

were as follows: F4/80+ (1:250, Abcam, Cat#ab6640) diluted in PBS and detected by 

secondary goat anti-rat antibody conjugated to Alexa Fluor 488 (1:500, Abcam, 

Cat#150157), NFB (1:400, Cell Signaling Technologies, Cat#8242) diluted in PBS and 

detected by secondary donkey anti-rabbit antibody conjugated to Cy3 (1:500, Jackson 

Immunoresearch, Cat#711-165-152). 

Statistical Analysis 

All data represent at least three individual experiments performed in triplicate. For 

the direct comparison of three or more conditions a one-way analysis of variance was 

performed, with multiple comparisons analyzed via Newmans-Keuls multiple 

comparisons test. When directly comparing two conditions a student-t test was 

performed. All comparisons were considered significant with p-values less than 0.05. 

Results 

Pregnant Mice Display Increased Incidence of Preterm Birth when Exposed to a Minor 
Exogenous Stress 

We examined the timing of labor following a minor stress (0.2mg/kg TM) on 

gestation day 16 in a sub-preconditioned (TM+PBA) and an endogenously preconditioned 

(TM) population of timed pregnant mice (n=7 and n=6, respectively). The effects of PBA 

and vehicle (Con) alone were also examined (n=3 for both groups). Using live-video 

recording, we observed that 57% of TM+PBA mice (4/7) delivered preterm, with an 

average delivery time of 30hrs post TM administration (Table 1). In contrast, the mice that 

experienced normal endogenous gestational stressors prior to the delivery of a minor 

stress (TM) had a preterm birth rate of 17% (Table 1). No effects were observed in the 
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timing of birth from the mice administered PBA alone (3/3), similar to Con mice (3/3) which 

delivered at term on E19 (Table 1). All animals that delivered at term resulted in live pups. 

Table 1. The Effects of In Vivo Preconditioning on Uterine Quiescence 

 Term Birth Preterm Birth Percent Preterm 

Control 3 0 0% 

PBA 3 0 0% 

TM+PBA 4 3 57% 

TM 1 5 17% 

 

Preconditioning Suppresses Pregnant Uterine Inflammatory Signaling In Vivo 

We examined components of the inflammatory signaling cascade in the uteri 

collected from Con, PBA, TM+PBA and TM treated pregnant mice at E17 prior to the 

onset of term and preterm birth. Uterine NFB activation, macrophage infiltration, COX-1 

and COX-2 levels were examined (Figure 8). Premature uterine activation of NFB occurs 

in the stressed-sub-preconditioned (TM+PBA) mice prior to the onset of labor; a 2.7 fold 

increase in p65 nuclear translocation was observed when compared to control animals 

(Figure 8A). Immunohistochemistry validated the observed increased NFB activation in 

stressed-sub-preconditioned mice and revealed the increase in activity occurred within 

both the myometrial and endometrial compartments (Figure 9A and B, respectively). This 

is demonstrated by enhanced nuclear translocation of NFB within the stressed-sub-

preconditioned mice compared to controls. While COX-2 levels remained undetectable, 

COX-1 levels significantly increased over 3 fold in the stressed-sub-preconditioned uteri 

(TM+PBA) (Figure 8B) in comparison to Con uteri.  Macrophage infiltration of the uterine 

tissue of the Con, PBA, TM+PBA and TM treated mice was examined by F4/80 

immunofluorescence analysis and a greater than 10 fold increase in the number of 
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macrophages was observed in the TM+PBA uteri that consequently undergo preterm 

birth in comparison to endogenously preconditioned uteri (TM and Con) and PBA controls 

(Figure 8C).  

 
Figure 8. Endogenous preconditioning prevents premature activation of uterine inflammation in the 
pregnant mouse. Uteri collected from vehicle treated (Con), sub-preconditioned (PBA), exogenously 
stressed sub-preconditioned (TM+PBA) and exogenously stressed preconditioned (TM) mice on E17 prior 

to the onset of preterm or term birth were examined for (A) NFB, (B) COX and (C) macrophage infiltration. 
Increased NFκB activation, COX1 expression and elevated levels of macrophage infiltration were isolated 
to the TM+PBA uteri. PDIA2 and GAPDH are utilized as cytoplasmic loading controls. A representative blot 
or immunohistochemical image from each experiment is shown. Statistical comparisons were performed 
using one-way ANOVA, and subsequent Newman-Keuls multiple-comparison tests. Data labeled with 
different letters are significantly different from each other (p<0.05). 
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Figure 9. Endogenous preconditioning prevents premature activation of NFκB in the myometrial and 
endometrial compartments of the pregnant mouse. Uteri collected from vehicle treated (Con), sub-
preconditioned (PBA), exogenously stressed sub-preconditioned (TM+PBA) and exogenously stressed 
preconditioned (TM) mice on E17 prior to the onset of preterm or term birth were examined for activation 

of NFB in the (A) myometrium and (B) endometrial compartments via immunohistochemistry. Heightened 
NFκB activation was observed in both the (A) myometrium and (B) endometrium of the TM+PBA uteri. 

 
Preconditioning Suppresses Apoptotic CASP3 Activity in the Pregnant Uterus In Vivo 

Uteri isolated from Con, PBA, TM+PBA and TM mice were examined prior to the 

onset of term or preterm labor at E17 by immunoblotting for CASP3 activation. Levels of 

CASP3 activation were not significantly changed between the 4 groups examined (Figure 

10A). However, the stressed-sub-preconditioned uteri (TM+PBA) demonstrate increased 

incidence of apoptotic CASP3 activation as indicated by a 4.6 fold increase in the levels 

of uterine PARP cleavage (Figure 10B) when compared to endogenously preconditioned 
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(TM and Con) and PBA controls uteri. Positive terminal deoxynucleotidyl transferase 

dUTP nicked-end labeling (TUNEL) staining in the sub-preconditioned uteri isolated from 

the endometrial compartment, but not endogenously preconditioned (TM and Con) and 

PBA controls uteri validated these results (Figure 10C). 

 
Figure 10. Endogenous preconditioning facilitates the maintenance of non-apoptotic CASP3 and 
suppresses iPLA2 activation in the pregnant mouse uterus. Uteri collected from vehicle treated (Con), sub-
preconditioned (PBA), exogenously stressed sub-preconditioned (TM+PBA) and exogenously stressed 
preconditioned (TM) mice on E17 prior to the onset of preterm and term birth were examined for (A) active 
Cl CASP3. (B) Cl PARP and (C) TUNEL staining were used as a measure of apoptotic cell death. iPLA2t 
levels as an indirect measure of iPLA2 activation (D).  Cl CASP3 levels remained unchanged across all 4 
groups examined however increased Cl PARP and TUNEL activity and decreased levels of the inactive 
iPLA2t were isolated to the TM+PBA treated mice.  (E) In the hTERT-HM cells the cleaved active 
monomeric form of iPLA2 (iPLA2cm) was elevated in a relative manner to the levels of apoptotic CASP3 
present in the preconditioned and non-preconditioned cells (Fig. 1A). A representative blot or image from 
each experiment is shown. PDIA2 and NCOA3 are utilized as cytoplasmic and nuclear protein loading 
controls. Statistical comparisons were performed using one-way ANOVA, and subsequent Newman-Keuls 
multiple-comparison tests. Data labeled with different letters are significantly different from each other 
(p<0.05). 
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As CASP3 has been demonstrated to activate calcium-independent 

phospholipase A2 (iPLA2), we further examined iPLA2 expression in the presence or 

absence of preconditioning in vivo and in vitro via immunoblotting (Figure 10). We 

observed a 2 fold decline in the homotetromeric non-active form of iPLA2 (Figure 10D) in 

the apoptotic CASP3 positive (Figure 10A and B) TM+PBA uteri in comparison to the Con 

and PBA treated uteri. In the hTERT-HM we were able to detect the cleaved active form 

of iPLA2 and observed a 2 fold increase (Figure 10E) isolated to the non-preconditioned 

cells which also display elevated levels of apoptotic CASP3 as indicated by the pattern of 

PARP cleavage in Figure 1A. 

Preconditioning Prevents Premature Prostaglandin (PG) Production 

Uteri isolated from endogenously preconditioned (Con), sub-preconditioned 

(PBA), stressed-sub-preconditioned (TM+PBA) and stressed-endogenously 

preconditioned (TM) containing both the endometrial and myometrial compartment were 

mice examined at E17 for prostaglandin production utilizing targeted-small molecule liquid 

chromatography and tandem mass spectrometry. Significantly elevated levels of PGE2, 

PGE1 and PGD3 were isolated to the sub-preconditioned mice exposed to a minor 

exogenous stress (TM+PBA) (Figure 11A, B and D). Furthermore, downstream by-

products of arachidonic acid metabolism, e.g. 11-HETE and 13-HODE, were also 

significantly elevated in sub-preconditioned mice compared to preconditioned controls 

(Figure 12). As apoptotic CASP3, as measured by TUNEL, and presumably iPLA2 

activity, is contained within the endometrial compartment, we next further examined 

prostaglandin production specifically within endometrial and myometrial tissue collected 

from TM+PBA and Con mice on E17. Results demonstrated elevated prostaglandin 

synthesis (i.e. PGE2, PGD3 and PGA2) within the endometrium of sub-preconditioned 
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stressed mice (TM+PBA) compared to the myometrial compartment (Figure 13). These 

differences do not appear between the control mice, suggesting CASP3 must be in an 

apoptotic state to induce iPLA2-dependent increases in prostaglandin production. 

 
Figure 11. Preconditioning facilitates the suppression of prostaglandin synthesis thereby preventing 
premature luteolysis and P4 withdrawal. Uteri collected from vehicle treated (Con), sub-preconditioned 
(PBA), exogenously stressed sub-preconditioned (TM+PBA) and exogenously stressed preconditioned 
(TM) mice on E17 prior to the onset of preterm and term birth were examined for prostaglandin production. 
Significantly elevated levels of (A) PGE1, (B) PGE2 and (D) PGD3 were isolated to TM+PBA uteri. (E) 
Ovarian HSD3B2 and (F) serum P4 levels were significantly decreased in the TM+PBA treated mice. A 
representative blot from each experiment is shown. PDIA2 is utilized as cytoplasmic protein loading control. 
Statistical comparisons were performed using one-way ANOVA, subsequent Newman-Keuls multiple-
comparison tests and student-t test. *p≤0.05 and **p≤0.01 compared with controls. 
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Figure 12. UPR Preconditioning in vivo suppresses local uterine prostaglandin production. Uteri collected 
from vehicle treated (Con), sub-preconditioned (PBA), exogenously stressed sub-preconditioned 
(TM+PBA) and vehicle treated (TM) mice on E17 prior to the onset of preterm and term birth, were examined 
for prostaglandin levels. Significantly elevated levels of PGE1, PGE2, PGD3 were isolated to the sub-
preconditioned mice exposed to a minor exogenous stress (TM+PBA). Further, downstream products of 
arachidonic acid metabolism were also elevated in stressed-sub-preconditioned mice compared to 
preconditioned control. 

 

 
Figure 13. Premature apoptotic CASP3 in the endometrium increases prostaglandin synthesis. Myometrial 
(Myo) and endometrial (Endo) tissue collected separately from exogenously stressed sub-preconditioned 
(TM+PBA) and control (Con) mice on E17 prior to the onset of preterm and term birth were examined for 
prostaglandin production. Concentrations of PGE2 and PGD3 were significantly elevated in the Endo 
isolated from TM+PBA uteri. Statistical comparisons were performed between Myo and Endo samples 
using a student-t test. *p≤0.05 and **p≤0.01 compared with controls. 
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Preconditioning Prevents Premature Luteolysis and P4 Withdrawal 

Ovaries collected from Con, PBA, TM+PBA and TM treated pregnant mice on E17 

were analyzed for HSD3B2, which declines with the onset of luteolysis, as discussed in 

Chapter 1 Luteolysis and Progesterone Decline in Lower Mammalian Species. As seen 

in Figure 11E, there was a significant reduction (2.2 fold) in HSD3B2 expression in the 

ovaries of the TM+PBA mice in comparison to Con, PBA and TM ovaries. To validate pre-

mature luteolysis in TM+PBA pregnant mice, serum collected on E17 from each cohort of 

mice was analyzed with ELISA for circulating P4 levels. As observed in the TM+PBA mice 

that undergo preterm delivery (Table 1), there was a significant decline (2.4 fold) in 

circulating P4 levels in comparison to Con, PBA and TM treated mice (Figure 11F). 

Discussion 

Our laboratory, as well as others has proven biological preconditioning to be viable 

mechanism for the maintenance of non-apoptotic CASP3. As CASP3 tocolysis plays an 

integral role in inhibiting myometrial contractility in the absence of apoptosis, we 

hypothesize that endogenous cellular stress throughout the course of a normal pregnancy 

is acting in a preconditioning-like manner to support its non-apoptotic action. In this aim 

we demonstrate that appropriate preconditioning of the uterine UPR during pregnancy 

promotes prolonged uterine myocyte quiescence through the suppression of 

inflammation and apoptotic CASP3. In turn, we demonstrate that apoptotic CASP3 

activation in the sub-preconditioned stressed mice mediates activation of two 

interdependent signaling pathways, the inflammatory and iPLA2-prostaglandin signaling 

cascade leading to a significant increase in the proportion of mice that delivered preterm. 

Overall this work shows that appropriate UPR preconditioning within the pregnant uterus 

prevents early onset activation of the normal signaling cascades associated with normal 
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term labor, e.g. apoptotic CASP3-inducted iPLA2/prostaglandin signaling, to inhibit 

premature luteolysis and preterm labor. Thus, we propose pregnant women may be 

placed at increased risk for precocious apoptotic CASP3 activation and a heightened 

incidence of preterm birth in the absence of appropriate preconditioning. 

Our previous in vitro studies revealed UPR preconditioning facilitates the 

maintenance of non-apoptotic CASP3 in uterine myocytes. To test whether stress across 

gestation preconditions the uterine myocyte to capacitate the tocolytic function of CASP3 

in its non-apoptotic state, we removed the downstream action of endogenous 

preconditioning stimuli by alleviating the ER protein load with reoccurring treatments the 

chemical chaperone PBA. Herein we found the absence of appropriate UPR 

preconditioning across gestation placed stressed-sub-preconditioned pregnant mice 

(TM+PBA) at an increased risk of preterm birth (57%) in comparison to mice that 

experienced normal endogenous preconditioning prior to the delivery of a minor 

exogenous stress (TM), which displayed a preterm birth rate of only 17% (Table 1). As 

anticipated, these results suggest the preconditioning-action of endogenous pregnancy 

related stress regulates gestational length and is necessary for the maintenance of 

uterine quiescence. As non-apoptotic CASP3 action has previously been demonstrated 

to maintain quiescence, we looked to characterize the state of CASP3 in our sub-

preconditioned (TM+PBA) and preconditioned (TM) stressed mice. Analysis of CASP3-

dependent apoptosis and activity in the pregnant uterus reveal preconditioning protects 

the endogenously stressed uterine compartment from undergoing a precocious apoptotic 

CASP3 mediated cell death. While uterine CASP3 activation remained unmodified across 

treatments (Figure 10A), the stressed-sub-preconditioned mice (TM+PBA) displayed 

increased uterine apoptotic CASP3 as indicated by both increased PARP cleavage 
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(Figure 10B) and elevated TUNEL staining, like that observed in laboring tissue on E19. 

Importantly, apoptotic CASP3 action was observed primarily within the endometrial 

compartment (Figure 10C), similar to our previous studies demonstrating complete 

avoidance of myometrial apoptosis prior to labor and post-partum.433 

As the endometrial compartment is non-apoptotic prior to the induction of labor, as 

seen in Con, PBA and TM stressed mice we next looked to identify the role of apoptotic 

CASP3 found within the endometrium of stressed-sub-preconditioned mice. It has 

previously been established that CASP3 activity is a critical upstream component in 

prostaglandin production through cleavage and activation of iPLA2 allowing the release 

of free arachidonic acid to be converted into prostaglandins in a COX1/2 and NFB 

dependent manner, as discussed previously in Chapter 1 Luteolysis and Progesterone 

Decline in Lower Mammalian Species and observed in Figure 10.434,435 Specifically, iPLA2 

exists in three separate states 1) an inactive tetrameric form that is approximately 350kD, 

2) an active 72kD monomeric form and 2) a highly active truncated form weighing roughly 

25kD.436 Within the active monomeric form there are multiple putative CASP3 cleave 

motifs, in which CASP3 targets and cleaves, resulting in truncated iPLA2 that has 

increased activity compared to monomeric iPLA2.436 Interestingly, a study by Huang and 

colleagues in breast cancer cells (4T1) demonstrated that only apoptotic CASP3 action 

was sufficient for the activation of iPLA2-induced prostaglandin production.348 If cells were 

not actively undergoing apoptosis or lacking iPLA2 no changes were observed in 

prostaglandin signaling.  The production of uterine prostaglandins is an extremely 

important process in the induction of labor, as prostaglandin signaling 1) stimulates 

luteolysis resulting in the decline in circulating progesterone and 2) increases intracellular 

calcium levels in the myocyte necessary for uterine contraction, as described in Chapter 
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1 Smooth Muscle Contraction. Interestingly, this study reveals that apoptotic CASP3 

activity is required for appropriate initiation of prostaglandin synthesis while non-apoptotic 

CASP3 though active is unable to do so. Upon apoptotic CASP3 activation (TM+PBA) we 

observed decreased levels of the inactive uterine iPLA2 in vivo (Figure 10C, D).  In vitro 

the cleaved active form of iPLA2 was readily detectable (Figure 10E) and found to be 

significantly upregulated in the presence of apoptotic CASP3 and reduced in the presence 

of non-apoptotic CASP3 (48hr P versus NP Figure 1A). As iPLA2 functions to increase 

the concentration of free arachidonic acid, these data suggest activation of apoptotic 

CASP3 should increase prostaglandin synthesis. Subsequently, we observed 

concomitant to increased apoptotic CASP3 action within the endometrium of stress-sub-

preconditioned mice, increased prostaglandin signaling within the endometrial 

compartment compared to the non-apoptotic CASP3 positive myometrial compartment 

(Figure 13). 

Typically, increased uterine inflammatory and prostaglandin signaling herald the 

end of gestation and are normally associated with the onset of labor in both human and 

mouse.437 Specifically, NFB-dependent activation of COX1/2 leads to increased 

prostaglandin synthesis and thus enhanced uterotonic sensitivity. In preterm and term 

pregnancies alike, activation of NFB is observed prior to the onset of labor.438 Our 

previous in vitro data suggest that the lack of UPR preconditioning allows for precious 

activation of inflammatory signaling (Figure 5). Further, multiple studies examining 

inflammation-derived diseases have demonstrated that preconditioning can abrogate 

stress-induced inflammatory signaling. In a study analyzing the use of heat 

preconditioning for the protection of kidney tubules against ischemia /reperfusion injury in 

mice, preconditioning was found to significantly blunt the activation of NFB through the 
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inhibition of IB kinase and inhibit tubular cell apoptosis.439 Similarly, Zhang and 

colleagues demonstrate ER stress preconditioning reduces TNF-dependent vascular 

leakage in the mouse retina. Based on in vitro studies, they postulate the mechanism of 

TNF inhibition is likely inhibition of NFB activation. In this study we observed that 

appropriate endogenous preconditioning helps maintain the uterus’ capacity to suppress 

inflammatory signaling cascades late in gestation. Specifically, in Figure 8A both the 

myometrium and endometrium of the TM+PBA mice demonstrated significantly elevated 

levels of NFB activation compared to the uteri of preconditioned controls (Figures 8A 

and 9). As the result of increased NFB activation, uteri from sub-preconditioned stressed 

mice were also found to have increased COX1 expression and macrophage infiltration, 

demonstrating an overall heightened inflammation (Figure 8B and C). Subsequently, 

heightened inflammation and augmented NFB-dependent increases in COX1 

expression resulted in increased prostaglandin production, allowing for the conversion of 

free arachidonic acid into PGG2 and subsequently PGH2 in stressed-sub-preconditioned 

mice (TM+PBA mice) (Figure 12). Importantly, precocious prostaglandin production 

(Figure 11) within the TM+PBA mice was found to trigger premature luteolysis as 

evidenced by decreased ovarian HSD3B2 (Figure 11E).440 Consequently, luteolysis 

decreased circulating P4 levels (Figure 11F), which lead to the onset of preterm birth 

within the stressed-sub-preconditioned (TM+PBA) mice (Table 1). 

Overall these data demonstrate that normal endogenous uterine preconditioning, 

acting to suppress premature apoptotic CASP3 activation and inflammation, is for the first 

time placed upstream of regulating the timing of normal parturition by actively preventing 

the well-established endogenous uterotonic signaling cascades such as prostaglandin 

synthesis, luteolysis and consequently P4 withdrawal that herald the onset of normal term 
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labor in the pregnant mouse. These findings are critical for the future advancement of 

tocolytic therapies, as they provide a solid foundation for the mechanism in which non-

apoptotic CASP3 can fulfill its tocolytic function in the uterine myocyte in the absence of 

myometrial apoptosis and how apoptotic CASP3 is associated with the onset of normal 

signaling cascades that result in term labor, which may be being altered in the context of 

preterm birth. 
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CHAPTER 4 

Introduction  

One mechanism in which effective remote preconditioning occurs is through the 

dissemination of a protective signal with the secretion of a unique paracrine or endocrine 

secretome from cells experiencing the original prophylactic stress.396 It is well 

characterized that cells of many varieties respond to stress by the secretion of a unique 

secretome.441-443 In the pregnant mouse model, we have demonstrated that 

preconditioning-like stress events that activate the UPR and are experienced by the 

pregnant uterus across gestation are critical for maintaining non-apoptotic CASP3-

dependent tocolysis and inhibition of local uterine inflammation. Separate studies 

examining the function of the UPR-generated secretome have found secretory factors 

such as GRP78 can inhibit systemic inflammation though the modulation of circulating 

peripheral mononuclear cells. Thus, we propose preconditioning-like events result in the 

generation of a novel preconditioned uterine secretome, which acts to propagate the 

tocolytic phenotype in an endocrine and paracrine manner. In this aim we looked to 1) 

characterize the stress-mediated myometrial secretome and 2) elucidate the 

physiological function of UPR-mediated protein secretion during normal and pathological 

pregnancies. 

Preeclampsia is a common cardiovascular disease distinguished by the onset 

gestational hypertension that affects approximately 3-8% of pregnancies and remains one 

of the leading cause of maternal death in the United States.444 Women affected by 

preeclampsia are at risk for intracerebral hemorrhage, placental abruption, and 

intrauterine death.445 Additionally, babies born from preeclamptic pregnancies have an 

increased chance of intrauterine growth retardation.445 Clinically, the major diagnostic 
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symptom associated with preeclampsia in humans is an increased mean arterial pressure 

(MAP) greater than 140/90mmHg, as seen with high peripheral vascular resistance and 

decreased cardiac output.446 Along with increased MAP, women with preeclampsia also 

frequently present with increased proteinuria, peripheral edema and liver 

dysfunction.446,447 It has been long speculated that preeclampsia is initiated by placental 

stress-mediated inflammation leading to endothelial dysfunctional, which further results 

in improper spiral artery invasion into the uterus, increased maternal peripheral resistance 

and a further decline in perfusion pressure of the placenta.448,449 More specifically, 

placental ischemia in preeclamptic pregnancies increases the activation of the UPR within 

the placenta of preeclamptic compared to normal pregnancies.450,451 In conjunction with 

increased levels of oxidative stress, also found in the placenta during preeclampsia 

pregnancies, ER stress augments the production and secretion of placental inflammatory 

cytokines, such as TNFα, IL-1,IL-6 and IL-10, 2).452 Placental cytokines subsequently 

increase 1) systemic activation of granulocytes and monocytes, 3) circulating reactive 

oxygen species 3) and diminished concentrations of circulating vascular endothelial 

growth factor which is all thought to contribute to maternal endothelial damage.449 

Moreover, an overall shift in the inflammatory cytokines within the extracellular milieu 

drives polarization of decidual macrophages into an M1 or inflammatory state further 

promoting trophoblast cell death and endothelial dysfunction.453 While there are limited 

studies examining the role of ER stress in endothelial damage in the context of 

preeclampsia, it has been extensively studied and identify as an important component in 

atherogenesis.454,455 In turn endothelial dysfunction results in inappropriate spiral artery 

remodeling and thus poor placentation during the first half of pregnancy and manifests as 

the outward clinical symptoms listed above during the second half of the pregnancy.456,457 
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Additionally, the proteomic profile of urine from women with preeclampsia identified 

differential secretion of many proteins associated with UPR protein compared to normal 

controls.458 Interestingly, women who smoke prior to and during their pregnancies 1) have 

a decreased risk of developing preeclampsia and 2) tend to have less severe symptoms 

when developing preeclampsia.472 As smoking acts as a transient hypoxic stress, 

primarily to the lungs, we suspect smoking may be acting in a remote preconditioning-like 

manner to increase the tolerance of the maternal vasculature and potentially the placenta 

to increased ER stress, as seen with preeclampsia. Overall, preeclampsia can be 

characterized by precocious activation of the ERSR within placenta that result in 

heightened systemic inflammation and subsequently the onset of endothelial dysfunction 

and reduced placental perfusion. 

The secretion of a signature set of proteins following cellular insults, such as 

inflammatory cytokines or ER stress, is a primitive form of cell-to-cell communication that 

has been demonstrated to provide prophylactic cellular adaption in a paracrine and 

endocrine manner. Defining discrete clusters of proteins secreted from cells during 

specific normal and physiological states has become a useful for the discovery of 

circulating biomarkers, as well as the development of novel therapeutics.441,459 A simple 

was to characterize a novel secretome for the first time is to utilize in vitro cell culture 

together with high-throughput protein quantification methods like liquid chromatography 

tandem mass spectrometry (LC/MS/MS).  One caveat with this method however, is that 

fetal bovine serum which is typically necessary to sustain cell viability in culture, contains 

an abundant level of innate proteins that can act to mask the unknown secretome or 

inhibit the identification of proteins being secreted from the cell type of interest. To resolve 

this issue protein labeling techniques such as stable isotope amino acid labeling in culture 
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(SILAC), allow for selective targeted protein identification.460 As many amino acids have 

more than one isotope present, it is possible when using SILAC to directly quantify and 

compare differences in secreted protein concentrations between two or more distinct 

protein sets.461 Utilizing SILAC techniques, Gronburg and colleague distinguished a 

unique set of 145 proteins secreted from cancerous pancreatic ductal cells, including 

several that had never been associated with pancreatic cancer, that may be effective as 

potential biomarkers for clinicians and early pancreatic cancer screens.442 Of interest, a 

similar study defining the stress-generated secretome in pancreatic islet cells, found the 

secretion of multiple proteins that aid in sustaining adaptive UPR-signaling responses.443 

The propagation of systemic adaptive signaling responses during the process of 

remote preconditioning provides protective cellular responses to a secondary remote 

tissue.394,396 While the mechanisms of remote preconditioning have not been fully 

elucidated, multiple studies suggest the secretion of humoral factors (i.e. proteins, 

peptides, ssRNA or DNA) from the cells being directly conditioned can interact with and 

mount intracellular signaling responses in secondary cells/tissues.330,462 Importantly, 

many times the activation of intracellular signaling responses in remote tissues has been 

proven to be cytoprotective against subsequent stresses. One of the earliest studies 

demonstrated this, by Przyklenk and colleagues found effluent taken from ischemic 

myocardial tissues was effective in remotely preconditioning naïve myocardial against 

subsequent damaging ischemic events.463 The use of remote ischemic preconditioning 

has since been greatly expanded upon, proving to be effective in protecting additional 

parenchymal tissues as well, including but not limited to the kidneys, lungs and ovaries.464 

In addition to remote ischemic preconditioning, recent studies show targeted UPR 

preconditioning is also effective in affording cytoprotection to remote secondary tissues, 
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as previously discussed in Chapter 1 Remote Preconditioning of the Endoplasmic 

Reticulum Stress Response. Overall, these studies strongly suggest that low dose stress 

can successfully propagate a circulatory signal that induces systemic cellular adaptation. 

In this aim we examined the ability of myometrial cells undergoing active ER stress 

to transmit a distinct UPR-derived secretome and test whether the propagation of the 

secretome has any paracrine and/or endocrine function, particularly in modulating remote 

cellular UPR and systemic inflammation. Initially, the secretome from TM-treated hTERT-

HM cells that were labeled with stable isotope amino acid labeling in culture (SILAC), was 

examined via liquid chromatography tandem mass spectrometry and compared to the 

secretome of non-stressed cells. LC/MS/MS identified over 90 validated secreted 

proteins, which were bone-fide components of the UPR activated uterine myocyte 

secretome. Of interest, the secretion of GRP78 was substantially increased by stress and 

this was validated using ELISA. For preliminary analysis of the bioactivity of the stress-

generated secretome, conditioned media (stress and vehicle conditioned) was incubated 

with a secondary set of naïve hTERT-HM cells and activation of the UPR in the naïve 

hTERT-HM cells was quantified. Results revealed that the UPR mediated secretome 

actively propagated activation of the UPR in the naïve untreated uterine myocytes, as 

observed by increased GRP78, GADD153 and active CASP3. Conclusively, as the 

pathology of preeclampsia has been tightly linked to systemic inflammation stemming 

from exaggerated ER stress within the placenta, we examined UPR proteins within the 

serum of women with and without preeclampsia. As cigarette smoking prior to and during 

pregnancy has been identified as protective against developing preeclampsia, we further 

analyzed differences between serum from women that participated in or refrained from 

cigarette smoking, with or without preeclampsia. Preliminary results suggest serum 



94 

 

GRP78 and GADD153 levels are altered in a stress-dependent manner and that 

increased circulating GRP78 may promote maternal anti-inflammatory signaling to 

decrease the risk of preeclampsia. Consequently, we propose that endocrine and/or 

paracrine transmission and propagation of the uterine myocyte UPR allows for local 

uterine myocyte tissue type fidelity and systemic conditioning of the vasculature and 

immune response during pregnancy. 

Methods 

Cell Culture 

For the in vitro cell culture model system we utilized hTERT-HM cells.413 hTERT-

HM cells were cultured in Dulbecco modified Eagle/F12 low glucose media (DMEM-F12) 

(Invitrogen Carlsbad, CA), supplemented with 10% fetal bovine serum (vol/vol) 

(Invitrogen) and antibiotic/antimycotic (10,000 U/ml; Invitrogen), and incubated at 37°C 

with 95% air and 5% CO2. 

Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) 

hTERT-HM cells were grown in DMEM/F12 (Invitrogen) media with 10% (vol/vol) 

dialyzed fetal bovine serum (Invitrogen) in preparation for SILAC and supplemented with 

antibiotic/antimycotic (10,000U/ml; Invitrogen) at 37°C in a 5% CO2 incubator.  Cells were 

then passaged every three days, after reaching 70-80% confluency, for a total of 6 

passages in the SILAC media with heavy labeled arginine and lysine or SILAC media with 

light labeled arginine and lysine (Thermo Scientific, Cat# 1862636). Specifically, heavy 

SILAC media was prepared by combining 500mls DMEM/F12 media with 10% dialyzed 

FBS, antibiotic/antimycotic (10,000U/ml), 50mg of 13C6 L-Lysine-2HCl and 50mg of 13C6 

L-Arginine-HCl. Whereas, light SILAC media was prepared by combining 500mls 

DMEM/F12 media with 10% dialyzed FBS, antibiotic/antimycotic (10,000U/ml), 50mg of 



95 

 

L-Lysine-2HCl and 50mg of L-Arginine-HCl. Following 6 passages in SILAC media, it is 

assumed that incorporation of heavy L-lysine and heavy L-arginine should be greater than 

95%.465 Subsequently, the incorporation of the heavy amino acids into newly synthesized 

peptides leads to 6Da mass shift compared to non-labeled peptides, easily picked up with 

LC/MS/MS proteomic analysis.460 

Tunicamycin Treatments and Media Conditioning 

For all in vitro experiments, TM was suspended in 20μl 10M sodium hydroxide and 

brought to a final concentration of 1.0μg/ml in DMEM-12 media with 10% FBS and 

antibiotic/antimycotic. To analyze the UPR-generated secretome, heavy-labeled and 

light-labeled SILAC treated hTERT-HM cells, were treated with 5.0μg/ml TM for 24hrs, 

washed three times and incubated with fresh media. After 24hrs of conditioning, the fresh 

media (TM-CM) containing SILAC-labeled proteins was removed and analyzed via 

LC/MS/MS. Additionally, control media collected after 24hr incubations with heavy-

labeled and light-labeled SILAC treated hTERT-HM cells, was analyzed via LC/MS/MS. 

To analyze the function of the UPR-generated secretome, hTERT-HM cells were 

treated with 5.0μg/ml TM or vehicle (volume matched sodium hydroxide media) for 24hrs, 

washed three times and incubated with fresh media. After 24hrs of conditioning, the fresh 

media (TM-CM or vehicle conditioned control media) was collected for analysis or placed 

on second set of naïve hTERT-HM cells. The second set of naïve hTERT-HM cells were 

collected after 48hrs of incubation with the TM-CM or vehicle conditioned control media. 

To validate UPR propagation was not induced by TM-contamination, hTERT-HM 

cells were treated with 5.0μg/ml TM for 0, 24 or 48hrs. However, in this experiment the 

TM was prepared in media containing 0, 5 or 10% FBS. After TM treatment, hTERT-HM 

were washed three times like normal and incubated with fresh media. After 24hrs of 
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conditioning, the fresh media was placed on a second set of naïve hTERT-HM cells. The 

second set of naïve hTERT-HM cells were collected after 48hrs of incubation with the 0, 

1 or 24hr TM-CM. 

Cytosol and Nuclear Protein Fractionation from Cells 

Cytoplasmic and nuclear protein fractions from hTERT-HM cells were prepared as 

previously mentioned. Initially, cells were rinsed in ice-cold PBS and centrifuged at 956 X 

g. The pellet was re-suspended and evenly homogenized in ice-cold NE1 buffer (10mM 

Hepes pH 7.5, 10mM MgCl2, 5mM KCl, 0.1% Triton X-100 with 1X EDTA-free 

protease/phosphatase inhibitor mini tablet). The homogenate was then centrifuged at 

2655 X g, the supernatant was retained as the cytoplasmic protein fraction and the pellet 

was washed in NE1 buffer and suspended in ice-cold NE2 buffer [20mM Hepes pH 7.9, 

500mM NaCl, 1.5mM MgCl2, 0.2mM EDTA pH 8.0, 25% (vol/vol) glycerol with 1X EDTA-

free protease/phosphatase inhibitor mini tablet]. The homogenate was vortexed for 30sec 

every 5min and after 1hr, centrifuged at 10,621 X g. The supernatant was then retained 

as the nuclear fraction. Protein estimation was performed using a BCA assay, equal 

amounts of protein were loaded for immunoblotting and PDI and NCOA3 were utilized as 

loading controls for the cytoplasmic and nuclear fractions, respectively. 

Immunoblotting and Densitometric Analysis 

Equal amounts of protein were separated via electrophoresis on NuPAGE 4-12% 

gradient precast polyacrylamide gels (Life Technologies, Carlsbad, CA). Proteins were 

transferred onto Hybond-P PVDF membranes (Millipore, Billerica, MA) and blocked for 

1hr at room temperature in 5% non-fat milk prepared in Tris Buffered Saline with 

0.1%Tween-20 (vol/vol). Membranes were incubated with primary antibodies overnight 

at 4°C. Primary antibody concentrations were as follows: GRP78 (1:1000; Cat#3177), Cl 
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CASP3 (1:250; Cat#9664), GADD153 (1:500; Cat#5554), Cl PARP (1:1000; Cat#9541), 

AFT4 (1:500; Cat#11815), p-eIF2α (1:500; Cat#3398), p65 (1:1000; Cat#8242), XIAP 

(1:250; Cat#2042), PDI (1:5000; Cat#3501) and GAPDH (1:1000; Cat#5174) were 

obtained from Cell Signaling Technologies; XBP1s (1:500; Cat#37152) was obtained from 

Abcam; ATF6 (1:500; Cat#24169-1-AP) was obtained from Proteintech; MCL-1 (1:1000; 

Cat#sc-819) was obtained from Santa Cruz Biotechnology, and NCOA3 (1:5000; 

Cat#PA1-845) was obtained from ThermoScientific. Following primary incubation, 

immunoreactivity was detected using horseradish peroxidase-conjugated secondary 

antibodies and visualized using an enhanced-chemiluminescence detection system 

(ThermoScientific, Rockford, IL). Immunoreactive band density was then quantified using 

ImageJ software. 

Liquid Chromatography Tandem Mass Spectrometry 

All SILAC labeled media samples underwent 40% ethanol precipitation for 2hrs, 

followed by 10,000g centrifugation to remove albumin. The heavy and light SILAC labeled 

precipitates were then washed, resuspended in 2% lithium dodecasulfate and subjected 

to high-energy sonification. Protein concentrations were determined utilizing the 

bicinchoninic acid method. Equal amounts of protein from SILAC heavy and light lysates 

were combined, reduced with dithiothreitol and then alkylated with iodoacetamide. SILAC 

samples were initially separated with SDS-PAGE on 10% polyacrylamide gels. Each 

sample lane was divided into 21 fractions and excised from the gel. The protein gels were 

trypsin digested overnight, proteins were eluted from the gel and then solubilized in 0.1% 

formic acid. Subsequent samples underwent reverse phase liquid chromatography using 

an Easy nLC ultra-high-pressure liquid chromatography system (Thermo). Collected 

effluent fractions were then ionized with an ADVANCED Ion Source (Michrom) and 
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introduced into an LTQ-XL linear ion trap mass spectrometer. Peptide concentrations 

were analyzed with Proteome Discover using the Mascot search algorithm and further 

analyzed using MaxQuant. 

Enzyme-Linked Immunosorbent Assay (ELISA) 

The level of GRP78 and GADD153 were measured in serum taken from pregnant 

women who with or without clinically diagnosed preeclampsia, who did or did not 

participate smoke cigarettes while pregnant using an ELISA. Specifically, the GRP78/BiP 

ELISA Kit (Enzo Life Sciences Inc., Farmingdale, NY, Cat# ADI-900-214) and the Human 

DDIT3 ELISA Kit (LifeSpan Biosciences Inc., Seattle, WA, Cat#LS-F11284) were 

performed according to the manufacturer’s instructions and results were read via the 

Molecular Devices, SpectraMax M2 microplate reader. Each sample measurement was 

read in duplicate and the computed averages were taken based on the calculated 

standard curve. 

Statistical Analysis 

All data represent at least three individual experiments performed in triplicate. For 

the direct comparison of three or more conditions a one-way analysis of variance was 

performed, with multiple comparisons analyzed via Newmans-Keuls multiple 

comparisons test. When directly comparing two conditions a student-t test was 

performed. All comparisons were considered significant with p-values less than 0.05. 

Results 

hTERT-HM Cells Generate a Unique Secretome in Response to TM-Dependent 
Activation of the UPR 

To define the myometrial secretome generated by the activation of the UPR, 

hTERT-HM cells first that underwent 6 passages of SILAC treatment to incorporate 

heavy-labeled and light-labeled amino acids (Lysine and Arginine), allowing for targeted 
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detection of heavy-labeled peptides with LC/MS/MS proteomic analysis, in proteins 

exclusively secreted from the cell and not innate to the FBS used for the maintenance of 

cell growth within the media (Figure 14A). SILAC heavy-labeled and light-labeled hTERT- 

HM cells were then exposed to TM (5.0g/ml) for one hour, washed thoroughly with fresh 

media to remove TM contamination and then incubated with fresh media for an additional 

24hrs. The media that had been incubated with TM-treated cells for 24hrs was then 

removed, labeled as TM stressed-conditioned media (TM-CM) and analyzed via 

LC/MS/MS for cell-secreted SILAC-labeled proteins. Additionally, control media collected 

after a 24hr incubation with either naïve SILAC heavy-labeled and light-labeled hTERT-

Figure 14. SILAC-dependent identification and quantification of TM-induced protein secretion in hTERT-

HM cells. (A) Quantitative mass spectrometry workflow in which 24hr TM-CM was collected from heavy-

labeled hTERT-HM cells and 0hr TM-CM (control media) was collected from light-labeled hTERT-HM 

cells, mixed at a 1 to 1 ratio and analyzed using LC/MS/MS. (B) Heat map comparisons of differential 

protein expression in 24hr TM-CM treated hTERT-HM cells and 0hr TM-CM treated hTERT-HM cells. 

Green is representative of higher relative protein expression, whereas red indicates lower relative 

protein expression. 
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HM cells, that had not been previously exposed to TM, was also analyzed via LC/MS/MS 

for cell-secreted SILAC-labeled proteins. LC/MS/MS identified 96 heavy-labeled secreted 

proteins validated in from both TM-CM media and control media, 53 of which were found 

to be upregulated or downregulated by a fold of two or more with TM-treatment (Figure 

14B). UPR activation up-regulated secreted proteins that are largely associated with 

adaptation to pregnancy, anti-inflammatory action and smooth muscle tocolysis (Table 

2). The most upregulated protein is GRP78 (27 fold), has the ability in a cell-free capacity 

to be an act in a pro-survival anti-inflammatory manner, as previously discussed in section 

Extracellular Functions of the Unfolded Protein Response. Stress-dependent secretion of 

GRP78 from the uterine myocyte was further validated in cell culture, utilizing an ELISA 

(Figure 15). Accordingly, UPR action also down-regulates secreted proteins that are 

largely associated with pro-apoptotic signaling and pro-inflammatory response (Table 3). 

For example, biglycan, fibronectin and versican core protein were all down-regulated by 

at least 9 fold and have been identified as pro-inflammatory mediators, which will be 

discussed in more detail in Chapter 2 Discussion. Cell viability assays performed on TM-

treated hTERT-HM cells using Trypan Blue staining revealed negligible membrane 

permeability at the time in which the TM-CM was collected, demonstrating the secretome 

analyzed was not due to TM-mediated cell lysis (Figure 16). 
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Table 2. Proteins with Increased Stress-Induced Secretion 

Swiss-Prot 
accession no. 

Description Control TM treated 
Fold 

change 

P11021 78 kDa glucose-regulated protein  5.47E+07 2.19E+06 24.95 

P04899 
Guanine nucleotide-binding protein G(i) 

subunit -2  
1.63E+06 2.13E+05 7.67 

P23396 40S ribosomal protein 1.91E+06 4.77E+05 3.99 

P29966 Myristoylated alanine-rich C-kinase substrate  6.14E+06 1.61E+06 3.81 

P62081 40S ribosomal protein S7  4.70E+05 1.30E+05 3.61 

O00560 Syntenin-1 1.08E+06 3.07E+05 3.52 

P20594 Atrial natriuretic peptide receptor  2.46E+07 7.70E+06 3.20 

P62987 Ubiquitin-60S ribosomal protein 1.41E+07 4.45E+06 3.16 

Q99880 Histone H2B type 1-L 9.29E+06 3.09E+06 3.01 

Q562R1 -actin-like protein 2  1.24E+07 4.23E+06 2.94 

P09382 Galectin-1  1.46E+07 5.17E+06 2.83 

Q15758 Neutral amino acid transporter B(0)  3.04E+06 1.10E+06 2.75 

P51149 Ras-related protein 8.03E+05 3.52E+05 2.28 

Q9Y696 Chloride intracellular channel protein 4  7.05E+05 3.21E+05 2.20 

Q14019 Coactosin-like protein  6.13E+05 2.94E+05 2.09 

P35579 Myosin-9  9.43E+05 4.75E+05 1.98 

P60033 CD81 antigen  7.54E+06 3.93E+06 1.92 

P68363 Tubulin -1B chain 7.31E+06 4.39E+06 1.67 

P62805 Histone H4  6.25E+06 3.88E+06 1.61 

P61923 Coatomer subunit -1 2.19E+05 1.38E+05 1.59 

 

 

Figure 15. GRP78 is actively secreted from 
uterine myocytes in a stress-dependent 
manner. hTERT-HM cells were treated with 

0, 0.1 or 5.0g/ml TM for 24hrs, washed 
three times and then incubated with fresh 
media for 24hrs (TM-CM). GRP78 
concentrations were then analyzed in 0, 0.1 

and 5.0g/ml TM-CM with an ELISA and 
found to increase in a stress-dependent 
manner. Statistical comparisons were 
performed using one-way ANOVA, 
subsequent Newman-Keuls multiple-
comparison tests and student-t test. *p≤0.05 
and **p≤0.01 compared with controls.  
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Table 3. Proteins with Decreased Stress-Induced Secretion 

Swiss-Prot 
accession no. 

Description Control TM treated Fold change 

Q9Y613 FH1/FH2 domain-containing protein 5.55E+05 4.25E+07 76.58 

P07996 Thrombospondin-1 9.37E+06 6.15E+08 65.64 

P35442 Thrombospondin-2 6.54E+06 4.20E+08 64.22 

P02452 Collagen alpha-1(I) chain  1.77E+07 1.04E+09 58.76 

P02751 Fibronectin  8.45E+07 3.04E+09 35.98 

P21810 Biglycan 7.12E+06 2.45E+08 34.41 

P12110 Collagen alpha-2(VI) chain 2.83E+06 5.98E+07 21.13 

Q76M96 Coiled-coil domain-containing protein 80 7.61E+05 1.39E+07 18.27 

P07093 Glia-derived nexin 2.36E+06 3.37E+07 14.28 

P08123 Collagen -2(I) chain  1.86E+07 2.42E+08 13.01 

P20908 Collagen -1(V) chain  2.82E+06 3.55E+07 12.59 

P12109 Collagen -1(VI) chain 6.99E+06 8.01E+07 11.46 

P24593 Insulin-like growth factor-binding protein 1.08E+06 1.19E+07 11.02 

P13611 Versican core protein 1.36E+06 1.29E+07 9.49 

P05121 Plasminogen activator inhibitor 1 4.27E+07 3.62E+08 8.48 

Q15113 Procollagen C-endopeptidase enhancer 1 5.94E+06 5.03E+07 8.47 

P13639 Elongation factor 2  6.12E+05 4.72E+06 7.71 

P23284 Peptidyl-prolyl cis-trans isomerase B 4.16E+05 2.76E+06 6.63 

P05388 60S acidic ribosomal protein 1.01E+06 5.18E+06 5.13 

Q9Y6C2 EMILIN-1 4.84E+06 2.37E+07 4.90 

 
 
 
 

 
Figure 16. hTERT-HM cell plasma membranes are intact at the time of media collection. No significant 
differences in cell viability were observed between 0hr (control) and 24hr TM-treated normal, light and 
heavy-labeled hTERT-HM cells at the time of TM-CM collection. Statistical comparisons were performed 
using a one-way ANOVA, and subsequent Newman-Keuls multiple-comparison tests. *p≤0.05 and **p≤0.01 
compared with controls. 
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Naïve hTERT-HM Cells Mount an UPR When Exposed to TM Stress-Conditioned Media 

We next examined the ability of the stress-generated secretome to propagate the 

UPR by exposing naïve hTERT-HM cells to TM-CM for 48hrs and immunoblotting for 

activation of the UPR, CASP3 and apoptotic indices. Specifically, conditioned media was 

incubated for 24hrs with hTERT-HM cells that had been directly treated with TM 

(5.0g/ml) for 0, 1, 4 or 24hrs and washed three times, collected and further incubated 

with naïve hTERT-HM cells that had never experienced stress. Our results demonstrate 

that naïve uterine myocytes exposed to 1, 4 and 24hr TM-CM mount an UPR, as seen by 

increased expression of GRP78, GADD153 and CASP3 in cells compared to TM-CM 

controls (Figure 17A). To validate that activation of the UPR is in fact driven by the

  

Figure 17. TM-dependent activation of the 
myometrial UPR generates a unique 
stress-specific secretome. (A) The 
induction of the UPR, CASP3 and 
apoptotic indices were analyzed in hTERT-

HM cells directly treated with 5.0g/ml TM 
for 0, 1, 4 or 24hrs (TM), naïve hTERT-HM 
cells (NT) or naïve hTERT-HM cells 
incubated with TM-CM (0, 1, 4, and 24hr). 
Activation of UPR markers GRP78 and 
GADD153, CASP3 and Cl PARP was 
significantly increased in all TM and TM-
CM treated myocytes compared to 0hr TM 
and NT controls. Further, augmentation of 
UPR, Cl CASP3 and Cl PARP in TM-CM 
treated hTERTs positively correlated to the 
initial exposer time of TM. (B) No Cl PARP 
expression was observed in hTERT-HM 

cells treated with 0 or 0.05g/ml TM for 
234hrs. (C) PARP cleavage in hTERT-HM 

cells treated with 5.0g/ml TM for 0, 1 or 
24hrs in the presence of 0, 5 or 10% FBS 
was positively correlated to the exposer 
time of TM and further increased with the 
depletion of FBS, in a dose-dependent 
manner. PDIA2 and NCOA3 are utilized as 
cytoplasmic and nuclear protein loading 
controls. A representative blot from each 
experiment is shown. 
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stress-generated secretome and not TM contamination, we next analyzed the TM 

concentration in 1 and 24hr TM-CM via liquid chromatography tandem mass spectrometry 

(LC/MS/MS) and found an average of approximately 0.05g/ml of TM per ml of CM. 

Subsequently, naïve hTERT-HM cells were directly treated with 0.05g/ml TM for 48hrs 

and examined for apoptotic indices. The absence of Cl PARP in TM treated hTERT-HM 

cells (Figure 17B), suggests the previously observed transmission of the UPR in naïve 

hTERT-HM cells was secretome mediated and not due to TM contamination. To further 

validate this, we added an additional chemical-free stress (FBS depletion) during the 

same period of TM treatment prior to TM-CM media conditioning. Subsequently, any 

changes observed in the activation of the UPR in naïve hTERT-HM cells would be due to 

increased stress in the TM treated cells and not TM contamination. We observed 

chemical free stress-dependent increases in Cl PARP in naïve hTERT-HM cells treated 

with TM-CM from hTERT-HM cells treated 5.0g/ml TM for 1 or 24hrs with media depleted 

of FBS in various concentrations (0, 5 and 10% FBS) (Figure 17C). As no chemicals were 

used to increase the stress in TM treated hTERT-HM cells used to condition the TM-CM, 

we are confident the induction in the UPR in TM-CM treated naïve cells is derived from 

the stress-generated secretome. 

Smoking Promotes a Systemic Anti-Inflammatory Profile in Pregnant Women and Without 
Preeclampsia 

To characterize the effects of a “preconditioning-like” transient stress stimulus 

during pregnancy on markers of the UPR in the circulation, we analyzed serum GRP78 

and GADD153 concentrations in women with normal and preeclamptic pregnancies that 

participated or refrained from cigarette smoking while pregnant. As previously identified, 

we found GRP78 levels to be higher in women without preeclampsia versus women with 
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preeclampsia (Figure 18A). Interestingly, we found a trend of increased serum GRP78 in 

women who smoked cigarettes compared to non-smokers, in both preeclamptic and 

normal pregnancies.  Further, serum GADD153 was decreased with smoking in normal 

and preeclamptic pregnancies, with overall normal pregnancies showing reduced serum 

GADD153 compared to women with preeclampsia (Figure 18B). In each cohort, GRP78 

concentrations were inversely proportional to serum GADD153.  

 
Figure 18. Serum GRP78 and GADD153 concentrations from normal and preeclamptic pregnancies in 
women who participated or refrained from cigarette smoking. Serum samples collected from non-laboring 
smoking (NLS), non-laboring non-smoking (NLNL), preeclamptic smoking (PES) and preeclamptic non-
smoking (PENS) during the 3rd trimester, were analyzed with GRP78 and GADD153 ELISAs. (A) GRP78 
was reduced in preeclamptic pregnancies with a further smoking-dependent decrease, (B) while GADD153 
augmented in preeclamptic pregnancies with a further smoking-dependent increase. 

 
Discussion 

In this study we 1) characterized the stress-dependent secretome generated by 

the uterine myocyte and 2) examined its physiological function within the uterine 

compartment and circulation. With SILAC labeled hTERT-HM cells we were able to 

confidently define the UPR-mediated secretome, which consisted of over 90 validated 

proteins using LC/MS/MS.  Further, we described novel signal transduction of the UPR 

from the stress cells to the naïve cells as a result of extracellular factors secreted into TM-

CM. Importantly, while examining the role of the UPR secretome in pregnant women we 

found the secretion of GRP78 was decreased with clinically diagnosed preeclampsia but 
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was partially restored with the introduction of cigarette smoking, which is thought to 

generate transient remote preconditioning-like systemic stress. Taken together these 

data confirm our hypothesis that the generation and transmission of the uterine secretome 

is in part a UPR regulated process that has the potential to propagate UPR-derived 

tocolysis and abrogate systemic inflammatory processes, which can result in preterm 

labor. 

Initially, we proposed local uterine myocyte UPR stressors act to stimulate the 

secretion of a uterine secretome throughout the course of gestation. Here we were able 

to identify for the first time, a discrete set of proteins secreted from the uterine myocyte in 

stress-dependent manner (Figure 13). As expected many of the proteins identified have 

been demonstrated to modify the ER stress and inflammatory responses (Tables 2 and 

3).466,467 Numerous proteins with TM-dependent decreased secretion, e.g. versican core 

protein, fibronectin and biglycan were found to participate in the propagation of 

inflammation.468-470 During pregnancy, abrogation of these circulating pro-inflammatory 

proteins would be critical in the maintenance of uterine quiescence. As previously 

discussed in Chapter 1 Initiation of Uterine Activation, heightened inflammation in the 

pregnant uterus and maternal circulation contributes to the positive feedback pathway in 

which active NFB increases expression of CAPs necessary for the induction of labor. In 

this case, the inability of stress to abrogate the secretion of pro-inflammatory proteins 

such as versican core protein or fibronectin may prematurely increase maternal 

inflammatory signaling, resulting in preterm labor. In contrast, atrial natriuretic peptide 

(ANP) receptor 2, galectin-1 and GRP78 each had increased secretion in response to 

TM-induced stress. Importantly, ANP acting through the ANP receptor 2 can act as a 

tocolytic agent, while galectin-1 and GRP78 have both been demonstrated to possess 
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anti-inflammatory properties.471 ANP/ANP receptor 2-dependent increases in cyclic 

guanine monophosphate is important for inhibiting MLCK and inducing muscle relaxation 

in smooth muscle tissues, such as the aorta.472 While the importance of ANP/ANP 

receptor 2 activity has not been studied in the context of myometrial relaxation, it has 

been shown that ANP receptors are present in relatively high abundance within the 

pregnant human myometrium and decidua.473 Together these data suggest, stress-

dependent increases in ANP receptor 2 from the myometrium may be important in 

modulating uterine quiescence. Of additional interest, galectin-1 and GRP78 both play a 

role in regulating the ER stress and inflammatory responses. Specifically, the knockout 

of galectin-1 impaired appropriate ERSR signaling, while appropriate galectin-1 signaling 

inhibits NFB-mediated inflammation and promotes immune tolerance during 

pregnancy.466,474 Conclusively, we propose that enhanced GRP78 secretion upon 

activation of the UPR (Figure 14) plays a significant role inhibiting myometrial contractility 

to maintain quiescence as it has previously been shown to promote anti-inflammatory 

signaling responses.  Please refer to Chapter 1 Extracellular Functions of the Unfolded 

Protein Response for more detail. 

After confirming the presence of a novel UPR-generated secretome from the 

uterine myocyte, we speculated that these specific secreted factors might have the 

capacity to transmit and propagate the tocolytic-preconditioned phenotype to adjacent 

naive cells. In other studies, it has been demonstrated that mice injected with conditioned 

media isolated from stressed tumor cells, mounted an ER stress response within the liver 

which did occur when media was conditioned with unstressed cells.330  In our 

experiments, these results were recapitulated when we demonstrated stressed 

conditioned media (TM-CM) but not unstressed control media activated the UPR in naïve 
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hTERT-HM cells (Figure 16).  Similarly, cell-cell interactions mediated by soluble secreted 

factors have frequently been defined in the extracellular matrix of tumors, where this 

phenomenon has been implicated in modulating tumor cell progression.475 Cancer 

associated fibroblasts have been demonstrated to secrete factors that promote the 

multipotent mesenchymal stem cells to differentiate into cancer associated fibroblast 

contributing further to tumor development. Size fractionation and mass spectrometry 

analysis identified conclusively that GRP78 was the factor promoting the transition from 

mesenchymal stem cell to cancer-associated fibroblast.476 Further the active 

translocation of GRP78 to the membrane and release into the extracellular space in 

tumors is directly correlated to tumor resistance and decreased apoptosis following the 

application of chemotherapeutic agents.477,478 This is primarily thought to due to the 

activated plasma proteinase inhibitor 2-macroglobulin binding to GRP78 and inducing 

cell proliferation and survival via RAS-MAPK, PI 3-kinase/AKT, cAMP-dependent and 

UPR signaling.479-481 These data clearly indicate an exciting potential mechanism 

whereby the stressed pregnant uterus gives rise to a uterine secretome which is secreted 

into the circulation to provide a systemic alert or update to circulating immune cells, other 

somatic cell types or remote organs of the need to adapt, accommodate or protect 

themselves against a possible stress events. 

In other words, we propose that a uterine myocyte derived UPR secretome, in the 

circulation of pregnant women is necessary for systemic remote preconditioning of other 

maternal tissues during pregnancy, such as macrophages and vascular endothelial cells, 

to allow for improved resistance to and increased tolerance of normal gestational stresses 

every pregnancy experiences and promote the maintenance of quiescence. 

Subsequently, a wide range of normal gestational stressors that affect the uterine 
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myocyte, e.g. hypoxia, hyperplasia, mechanical stretch would be critical in promoting 

preconditioning-mediated systemic adaptations and thus the propagation of tocolysis. 

While there is no direct evidence for this, studies have found pregnancy-dependent 

attenuation of pathophysiological cardiac function, which may be in part the result of 

remote UPR preconditioning experienced explicitly during pregnancy.482 Specifically, in a 

mouse model of left ventricular pressure overload, pregnancy was found to mitigate 

pathological LV remodeling, pulmonary congestion and transverse aortic constriction-

dependent gene expression.482 It is also speculated that the hemodynamic changes 

experienced during pregnancy may reduce a women’s risk of cardiovascular disease 

later, which suggests pregnancy-dependent uterine UPR positively influences maternal 

systemic vascular function. Interestingly, having been pregnant also significantly reduces 

your risk of developing certain types of cancer.483 For instance, an increase in the 

cumulative months of being pregnant correlates to a decrease in the risk of a woman 

developing epithelial ovarian cancer.484 Overall, these data lend evidence to the idea that 

systemic UPR signaling from the myometrium are important in facilitating systemic 

adaptations that contribute to the maintenance of uterine quiescence. 

One mechanism whereby the UPR secretome may modulate systemic 

conditioning is through the propagation of anti-inflammatory signaling. Extracellular 

GRP78 specifically, has been demonstrated in multiple studies, both in vitro and in vivo, 

to play an anti-inflammatory immunomodulatory role. Upon UPR activation GRP78 levels 

increase in the stressed cell and translocate to the surface with high amounts being 

released into the culture media.319,324 Cells that secrete GRP78 into their extracellular 

environment were found to gain the ability to promote a pro-survival and anti-apoptotic 

phenotype displaying resistance to anti-angiogenic chemotherapeutic agents such as 
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Bortezomib.319 In vivo, elevated extracellular cell-free GRP78 is found in the synovial fluid 

of patients with rheumatoid arthritis, saliva, serum and oviductal fluid.320-323 It was 

determined in this context that GRP78 also performed anti-inflammatory and 

immunomodulatory functions. When exposed to cell free GRP78, human peripheral blood 

mononuclear cells displayed a dose dependent increase in the anti-inflammatory 

cytokines TNFα and IL-10 secretion. In stimulated PBMCs, the presence of extracellular 

GRP78 lowered the levels of IL-1 beta and increased the levels of interleukin 1 receptor 

antagonist. The concentration of soluble TNFRII levels, which act to suppress the pro-

inflammatory activities of TNFα also increased, confirming the role of extracellular GRP78 

as a propagator of an anti-inflammatory signaling cascade.321 It has become apparent 

that extracellular GRP78 has remarkable anti-inflammatory and immunomodulatory 

properties. In animal models of collagen-induced arthritis, prophylactic administration of 

recombinant GRP78 one week before the initiation collagen immunization was sufficient 

to prevent the induction of collagen induced arthritis.485 Administration of GRP78 at the 

onset of collagen-induced arthritis was also successful in suppressing the development 

of arthritis.459 Further, suppression of collagen-induced arthritis was achieved by 

parenteral (gavage) administration of lentiviral vectors expressing GRP78. A single dose 

of exogenous GRP78 was sufficient to induce permanent remission of inflammation in 

collagen induced arthritis, suggesting not only does GRP78 mediate anti-inflammatory 

actions, but is also capable of driving resolution of inflammation, likely through immune 

cell differentiation.459 The effects of serum GRP78 have been found to be at least partially 

dependent of IL-4, as the suppressive effects of GRP78 are abrogated in the IL4-/- 

mouse. These analyses suggest, that administration of exogenous extracellular GRP78 

can allow for increased resistance to and active resolution of inflammatory challenges. In 
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a similar manner, in our recent PNAS paper, we administered 4-phenyl butyric acid, a 

chemical chaperone that mimics GRP78 action, and found we could reverse ER stress 

induced preterm birth.350 

While the protective effects of cigarette smoking do not outweigh its harmful 

consequences, women who participate in cigarette smoking compared to non-smokers 

have a reduced risk of developing preeclampsia.486 It has been well established that 

smoking a cigarette is a transient stress that decreases the level of tissue oxygen for a 

short period of time following inhalation of nicotine.487 Interestingly, smoking has been 

demonstrated to promote an anti-inflammatory milieu with the suppression of M1 

polarized macrophage related inflammatory genes and the upregulation of M2 

polarization programs.488  In this study, we have identified that 1) transient stress 

promotes the active secretion of GRP78 from uterine myocytes (Table. 2 and Figure 14) 

and 2) women with preeclampsia tend to have lower levels of serum GRP78 compared 

to women who do not, but that GRP78 levels are restored to approximately normal levels 

in women that smoke (Figure 17), which suggests the transitory systemic hypoxic stress 

from smoking in pregnant women increases the secretion of GRP78. Subsequently, we 

propose smoking may act to remotely precondition the vascular endothelium through 

GRP78-mediated anti-inflammatory signaling, allowing pregnant smoking women who 

become preeclamptic to avoid endothelial dysfunction. Additionally, these data suggest 

the serum GRP78 may be a novel therapeutic approach for promoting endothelial 

sufficiency and/or a proficient biomarker for myometrial viability and disease severity in 

women with preeclampsia.  

Conclusively, these data demonstrate that activation of the myometrial UPR 

generates and propagates a unique secretome that has the potential to transmit uterine 
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tocolysis and suppress systemic inflammation, which can result in pregnancy disorders 

such as preeclampsia or preterm labor. Importantly, these data set the stage for the 

development of novel tocolytic strategies and potentially new biomarkers for advanced 

identification of women who are at risk for undergoing multiple pregnancy disorders. 
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CHAPTER 5 

Conclusion and Synthesis 

This collection of studies focuses on how active CASP3 is maintained within the 

pregnant uterine myocyte in a non-apoptotic state to fulfill its tocolytic function of inhibiting 

myometrial contractility for the preservation of uterine quiescence. Subsequently, we 

hypothesized that preconditioning the myometrial UPR would allow for the maintenance 

of non-apoptotic CASP3 activity and thus sustain uterine quiescence. To test this 

hypothesis all experiments were performed utilizing an immortalized human myometrial 

cell line in vitro, a timed-pregnant CD-1 mouse model or serum from pregnant women 

with or without preeclampsia who participated in or refrained from cigarette smoking. The 

main findings of this work are that appropriate uterine UPR preconditioning 1) maintains 

non-apoptotic CASP3 by mitigating apoptotic stress pathways and inflammation, 2) 

reduces the risk of preterm birth 3) inhibits the precocious transition of CASP3 into an 

apoptotic state within the endometrium where it participates in iPLA2/prostaglandin-

dependent initiation of luteolysis, 4) produces and transmits a unique stress-dependent 

secretome and 5) promotes systemic adaptive signaling. From this data we suggest 

endogenous pregnant-dependent stress stimuli experienced across gestation act in a 

preconditioning-like manner to sustain the tocolytic action of non-apoptotic CASP3 within 

the pregnant uterus in the presence of ensuing stresses and promote an all-around 

adaptive environment through paracrine and endocrine propagation of a myometrial 

stress-derived secretome. Furthermore, from these results we speculate that women who 

are unable to host an appropriate preconditioning response to gestational stresses are at 

a significantly increased risk of undergoing spontaneous preterm. 
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If a woman walked into the emergency room today undergoing premature uterine 

contractions, there are absolutely no drugs available that could be administered to 

prevent premature birth from occurring. With three limited treatments:  progesterone; 

cervical cerclage; and possibly cervical pessary, the ability to accurately predict and 

prevent preterm labor remains one of the most critical challenges facing modern 

obstetrics.23,26,30 Cervical length measurement and a previous preterm birth are currently 

the strongest predictors for a subsequent preterm birth, however nulliparous women with 

no past obstetrical history remain at a heightened risk.16 With such a large subset of 

women unidentifiable or unresponsive to the currently available treatments, two major 

questions remain 1) what cellular mechanisms lead to the initiation of premature uterine 

contractility and 2) what therapies can be developed to predict and inhibit spontaneous 

preterm labor in all women? Previous studies from our laboratory have demonstrated that 

the uterine UPR plays a large role in modulating myometrial quiescence and that 

exogenous progesterone, the most successful of preventative treatments, and 

progesterone receptor inhibitors modify the local uterine UPR drastically in favor of 

quiescence or labor, respectively. Specifically, we demonstrated using a CD-1 pregnant 

mouse model, that the balance between adaptive GRP78 and tocolytic non-apoptotic 

CASP3 is crucial for the maintenance of quiescence. Throughout early and mid-gestation 

we observed sufficient ER stress-dependent GADD153/CASP3 activity is needed to 

degrade and disable the myometrial contractile architecture ( and  actin, CX43) to inhibit 

contraction.399 Equally important, at the end of gestation increases in gestationally 

generated stress stimuli that upregulate adaptive UPR signaling causes GRP78-

dependent resolution of ER stress and thus a decline in GADD153/CASP3 tocolytic 

action.403 This was abundantly evident in previous studies from our lab where precocious 
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doses of stress (TM, 1.0mg/kg, E15) administered to timed-pregnant mice prematurely 

augmented GRP78 action, which lead to diminished CASP3 tocolysis and subsequently 

preterm birth.350 Interestingly, in this same study a smaller dose of stress (TM, 0.2mg/kg) 

acted to increase both GADD153/CASP3 activity and GRP78. As the induction of GRP78 

was not large enough to completely resolve the corresponding ER stress, GADD153 and 

CASP3 activity remained intact decreasing the occurrence of preterm birth compared to 

animals injected with 1.0mg/kg TM. These data further highlight the importance of 

GADD153/CASP3 action in tocolysis and how the balance between GRP78 and CASP3 

maintains quiescence.  Subsequently, in the first chapter we hypothesized increasing the 

capacity of the uterine myocyte to tolerate extraneous stress may act as a buffer for 

maintaining the balance between active non-apoptotic CASP3 and adaptive GRP78 

signaling, which in vivo is important for preventing premature contractility to maintain an 

appropriate gestational length. Starting at the level of the individual uterine myocyte 

(hTERT-HM), we demonstrate that indeed UPR preconditioning may be a plausible 

mechanism by which CASP3 activity is maintained in a non-apoptotic state in the 

presence of precocious cellular stress-challenges.  As seen in Figure 1, hTERT-HM cells 

challenged with a cytotoxic dose of stress maintained active CASP3 in the absence of 

apoptosis and in the presence of abundant levels of GRP78.  Based on these studies it 

is reasonable to speculate that spontaneous preterm birth in women may in part be due 

to the mismanagement of stress that dysregulates tocolytic and adaptive signaling in a 

way that CASP3 activity is prematurely diminished due to precocious activation of 

adaptive GRP78. Indirect evidence supporting this hypothesis is the fact that exercising 

during pregnancy has been demonstrated to decrease the risk of preterm birth.489 

Exercise, while providing exponential benefits, has clearly been identified as a transient 
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stress to the body that challenges homeostasis at both a cellular and systemic level and 

may be acting in a preconditioning-like manner to reduce the risk of preterm birth.490,491 

While our in vitro data work did not directly examine the role of pregnancy-dependent 

stress stimuli in preconditioning the myocyte, it importantly provided a potential 

mechanism for how similar gestational stress-stimuli could be acting in vivo to maintain 

active non-apoptotic CASP3 and appropriately manages tocolytic and adaptive signaling 

responses. 

Approximately 45% of all preterm births currently are spontaneous occurring and 

idiopathic in nature, occurring in the absence of maternal or fetal infection or premature 

preterm rupture of the membranes (PPROM).17 Many of the discernable maternal risk 

factors associated with the onset of spontaneous preterm have been directly and 

indirectly associated with the onset of severe ER stress, i.e. increased mechanical stretch 

due to twin pregnancy or redox stress due to advanced maternal age.492-495 Having 

previously demonstrated in Aim 1 that UPR preconditioning enables the maintenance of 

non-apoptotic CASP3 in the presence of exaggerated ER stress, we hypothesized 

appropriate UPR preconditioning from endogenous pregnancy-generated stress stimuli, 

e.g. hypoxia, hyperplasia, hormone fluctuation, hypertrophy and mechanical stretch, may 

be critical for the preservation of the tocolytic action of CASP3.  When we tested this using 

our model of sub-preconditioned stressed mice (TM+PBA), inappropriate UPR 

preconditioning in the presence of even a minor stress was sufficient to increase the 

occurrence of preterm birth as predicted.  Subsequently, this data suggests pregnant 

women who do not efficiently or are unable to host a preconditioning response to 

gestational stresses due to innate maternal factors such as advanced age or preexisting 

chronic stress would be at a heightened risk of preterm delivery, as already clinically 
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observed. An example of this would be a pregnant woman with a preexisting chronic 

inflammatory disease such as diabetes or rheumatoid arthritis. In this context, we believe 

major chronic inflammation would act to disrupt appropriate uterine preconditioning, as it 

a continuous non-transient stress that would burden the myometrial ERSR instead of 

prompting it to facilitate adaptation. Accordingly, rheumatoid arthritis and diabetes 

milletus have been proven to increase the risk of preterm birth.496,497 Of note, premature 

induction of labor in each of these cases can occur in the absence of maternal/fetal 

infection and PPROM, as seen in our sub-preconditioned stressed mice. Interestingly, it 

has been demonstrated that a large portion of patients (approximately 26%) of women 

that present with preterm labor and intact fetal membranes have intra-amniotic 

inflammation in the absence of microbial-associated infection.498 In non-preconditioned 

cells and sub-preconditioned stressed mice, we similarly observed heightened levels of 

uterine and systemic inflammation, as seen by increased NFB signaling and enhanced 

TNF secretion, in the absence of appropriate preconditioning, like that of sterile 

inflammation in the amniotic fluid of some women that deliver preterm.  These data 

suggest that appropriate UPR preconditioning is not only important for the maintenance 

of non-apoptotic CASP3-mediated tocolysis but is also necessary for inhibiting premature 

precocious induction of inflammation which is associated with the onset of labor. 

Subsequently, there are multiple pharmaceutical agents, currently used for the treatment 

of UPR-dependent diseases that could be repurposed for preconditioning therapies like 

those currently being utilized in the field of liver and cardiovascular 

ischemia/reperfusion.499,500 TUDCA, in particular, has already been shown to alleviate 

extreme UPR stress in other pregnancy related disease and may be a promising agent 

for the restoring of a preconditioning-like uterine profile.501 Overall, this work offers a novel 
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mechanism, to explain why women undergo spontaneous preterm labor and what may 

increase a woman’s susceptibility to premature labor. Further, it suggests that drugs that 

aid in the management of the UPR may be effective in alleviating the occurrence of 

preterm birth. 

Prior to this work being done it was already well understood due to previous work 

from our group that non-apoptotic CASP3 was functioning in the uterus to inhibit 

myometrial contractility and with the addition of these studies we further understood that 

gestationally regulated UPR preconditioning contributes to the maintenance of non-

apoptotic CASP3 activity and thus regulates gestational length. In contrast, our laboratory 

had previously observed the activation of apoptotic CASP3 within the endometrial 

compartment associated with the onset of term labor without having resolved its function. 

Knowing that 1) the endometrial compartment primarily participates in prostaglandin 

synthesis, which is an important process for the induction of labor and that 2) apoptotic 

CASP3 action activates iPLA2 to enhance prostaglandin signaling in breast tissue we 

examined the role of apoptotic endometrial CASP3 in prostaglandin synthesis. Like in 

breast tissue, our in vitro data revealed enhanced iPLA2 activation in response to 

apoptotic CASP3 action, but not non-apoptotic CASP3. In vivo, we indirectly 

demonstrated increased iPLA2 activity resulting in heightened prostaglandin synthesis 

only in the preterm laboring endometrium where inappropriate preconditioning lead to the 

transition of endometrial CASP3 from a non-apoptotic to apoptotic state. In the context of 

pregnancy these data add credence to the importance of appropriate uterine UPR 

preconditioning in the inhibition of contraction and suggests a new mechanism in the 

regulation of prostaglandin production for both term and preterm pregnancies. Central to 

the importance of these studies, is the possibility of designing new therapeutic 
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interventions targeting this novel-signaling pathway. Compared to other PLA2 enzymes, 

the function of iPLA2 and its role in modulating disease has only recently been 

discovered. Subsequently, the development of iPLA2 inhibitors is relatively limited. There 

are however, a few trifluoromethyl ketones of fatty acids that act to reversibly inhibit Group 

VI iPLA2 enzymes, with the most important of these being bromoenol lactone (BEL).502 

In rat mesangial cells, BEL-dependent inhibition of iPLA2 significantly attenuated IL-1-

induced PGE2 production.503 Interestingly, it has further been demonstrated that the BEL 

treatment to vascular smooth muscle, significantly decreases basal concentration of free 

arachidonic acid and inhibits smooth muscle contraction.504 This study, however did not 

examine the subsequent effects of BEL on prostaglandin synthesis. Together, these 

preliminary studies characterizing the effects of iPLA2 inhibition on prostaglandin 

synthesis and muscle contractility are promising for the future development of myometrial 

tocolytic agents. 

In the absence of effective tocolytic agents, the use of predictive biomarkers would 

greatly improve our understanding and treatment of preterm birth. The discovery and 

validation of clinical biomarkers that can act in a predictive or prognostic manner is an 

important area of research today. In oncology specifically, many biomarkers are being 

used to diagnose cancer and also predict the efficacy of chemotheraputic agents in the 

treatment of cancer.505 Serum miR-21 for example is an onco-microRNA that is 

significantly elevated in patients with hormone-refractory prostate cancer.506 In addition 

to acting as a predictive biomarker for the presence of hormone-refractory prostate 

cancer, the serum levels of miR-21 have been found to correlated with the tumor 

resistance to docetaxel-based chemotherapy.507 Similarly, serum miR-200c was recently 

identified as a prognostic biomarker in patients with colorectal cancer that additionally 
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effective in predicting metastasis.508 Unfortunately, in the context of preterm birth there 

have been no biomarkers identified to date that effectively predict whether a woman will 

deliver preterm or not.  As previously mentioned is Chapter 1 Preterm Birth, mid-trimester 

cervical length is the only accurate predictor of determining the future occurrence of 

preterm birth. In a literature review examining research from the last four decades, one 

study states 116 distinct biomarkers have been analyzed in hopes of identifying a strong 

predictive biomarker for the onset of preterm labor without success.509 Within the 217 

studies included, these biomarkers were assayed approximately 758 times to no avail.509 

A more recent review utilizing multivariate adaptive regression splines generated model, 

found multiple biomarkers when data was stratified based on race.510 While stratification 

of biomarkers by race did highlight a limited number of proteins, such as TNF, TNFR1 

and TGF-1 within the serum, cord blood and amniotic fluid from African American and 

Caucasian women that were associated with preterm birth, no biomarkers were found to 

be predictive in nature. However, knowing that 1) many tissues respond to ER stress by 

propagating the secretion of a discrete collection of proteins unique to the stressed cell 

type and 2) gestationally-regulated myometrial ER stress stimuli are key for the 

maintenance of uterine quiescence and inhibition of preterm labor, we proposed targeting 

and characterizing the UPR-generated secretome from the uterine myocyte may lead to 

the discovery of a predictive biomarker of preterm birth. As seen in Aim 3 Figure 14, we 

successfully identified and quantified a novel UPR-generated secretome in hTERT-HM 

cells using a SILAC-targeted model of LC/MS/MS proteomic analysis. While many of the 

proteins identified were new in the scope of labor, some were known to be related to 

preterm birth and pregnancy. Plasminogen activating inhibitor 1, versican core protein, 

thrombospondin 1 and syntenin for example have all been demonstrated to participate in 
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various processes throughout the course of gestation, suggesting the collection of 

proteins we characterized as the uterine myocyte secretome is most likely an accurate 

depiction of the proteins secreted from pregnant myometrium in vivo in response to 

gestationally regulated stresses.511-514 Although, this analysis of the uterine myocyte 

UPR-derived secretome is preliminary, it is an incredibly important foundation for the 

future studies and the elucidation of a useful biomarker for the prediction and potential 

prognosis of preterm labor. 

In addition to providing important potential biomarkers for the recognition of 

preterm birth, we further predict the extracellular uterine secretome resulting from 

gestationally regulated stress stimuli within the myometrium, participates in the 

maintenance of uterine quiescence. In Aim 3, our data shows a stress-generated 

secretome from a uterine myocyte has the capacity to propagate the activation of UPR in 

a paracrine manner to non-stress naïve hTERT-HM cells (Figure 17A). Having also 

demonstrated in Aim 1 that the pre-induction of the UPR prior to a lethal stress affords 

significant cytoprotection, it is easy speculate that UPR activation in naïve hTERT-HM 

following incubation with TM-CM (Figure 17A) could also afford cytoprotection against a 

subsequent stress. As previously mentioned in Chapter 1 Remote Preconditioning of the 

Endoplasmic Reticulum Stress Response, in the process of remote preconditioning the 

application of stress to a discrete tissue/organ can provide systemic adaptations and 

global cytoprotection against additional stresses. While we did not further stress the naïve 

hTERT-HM cells that mounted an UPR following incubation with TM-CM media, I would 

hypothesize those cells might demonstrate an increased resistance to stress-mediated 

apoptosis. This hypothesis is indirectly supported by our in vivo data, which demonstrates 

increased concentrations of GRP78, which was found to be differentially secreted in a 
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stress-dependent manner, in the serum of pregnant women without preeclampsia 

compared to pregnant women with preeclampsia. These data suggest women unable to 

host an appropriate uterine response to stress resulting in reduced circulating GRP78, 

are at an increased risk of developing preeclampsia. Further, as preeclampsia has been 

identified as a pregnancy disorder associated with dysfunctional UPR signaling within the 

placenta and maternal endothelium we propose decreased signaling from the stressed 

uterus may disrupt normal remote preconditioning and peripheral adaptations necessary 

for the maintenance of a normal pregnancy. Subsequently, we hypothesize the 

dysregulation of balance between secretome-dependent maternal adaptation and uterine 

stress may play a role in the etiology of pregnancy-dependent complications, such as 

IUGR and tobacco smoke induced utero-placental hypoxia. In this context, we speculate 

the severity of stress evoked by these conditions and other uterine stressors correlated 

with preterm birth (e.g. twin pregnancy or preeclampsia) may alter the uterine-derived 

secretome and thus the prophylactic remote preconditioning it promotes, resulting in a 

maladaptive pro-labor phenotype. Interestingly, pregnant women that smoked had 

increased serum concentrations of GRP78 compared to those that did not, in both normal 

and preeclamptic pregnancies. As it is already known that pregnant women that smoke 

are at a reduced risk of developing preeclampsia, this data suggests UPR 

preconditioning, similar to that of smoking without the carcinogenic effects, may be a 

potential therapy for treating women who are at an increased risk of developing 

preeclampsia and other UPR-associated pregnancy disorders. 

Conclusively, my hypothesis represents a paradigm shift in how the UPR controls 

cellular homeostasis in an autocrine, paracrine and endocrine manner during pregnancy 

and how dysfunctional regulation of this system may lead to deleterious pregnancy 
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outcomes. Gaining a greater understanding of the mechanisms associated with the onset 

of preterm birth will ultimately allow for enhanced preterm birth diagnostics, novel tocolytic 

drug design and more accurate preventative intervention protocols. 
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ABSTRACT 
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Introduction: In this study, we are testing the overarching hypothesis that 

preconditioning the myometrial UPR allows for the maintenance of non-apoptotic CASP3 

activity and thus sustains uterine quiescence. We have previously demonstrated that the 

pregnant uterus facilitates uterine quiescence through UPR mediated activation of non-

apoptotic CASP3, yet the mechanism in which CASP3 utilizes to avoid its apoptotic cell 

fate is unresolved. There is a growing body of evidence including our own that 

demonstrates remote and direct preconditioning with minor stresses propagates 

cytoprotective mechanisms that allow for the avoidance of apoptotic cell death upon 

exposure to a subsequent more damaging stress, through modulation of the UPR. In this 

study we demonstrate endogenous pregnant-dependent stress stimuli experienced 

across gestation act in a preconditioning-like manner to sustain the tocolytic action of non-

apoptotic CASP3 within the pregnant uterus in the presence of ensuing stresses and 

promote an all-around adaptive environment through paracrine and endocrine 

propagation of a myometrial stress-derived secretome. 

Methods: In vitro preconditioning: utilizing the hTERT-HM cell line, uterine 

myocytes were preconditioned with a minor UPR stress (0.1g/ml TM) or vehicle and 
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exposed 48 hrs later to a lethal UPR stress (5g/ml TM) (n=3). In vivo sub-

preconditioning: we generated a sub-preconditioned pregnant mouse model (TM+PBA) 

by inhibiting the effect UPR mediated stress across gestation (50mg/kg PBA (i.p, E10-

15)) or vehicle. Endogenous preconditioned and sub-preconditioned mice were exposed 

to a mild exogenous stress at E16. Time of delivery was noted. From both the in vitro and 

in vivo models apoptotic and inflammatory indices were examined. In vitro secretome 

analysis: SILAC labeled hTERT-HM cells underwent UPR activation by exposure to TM, 

5.0g/ml, 1hr or vehicle. Additionally, SILAC labeled proteins transmitted from the UPR 

activated myocyte into the media were analyzed via LC/MS/MS to define the UPR 

generated secretome. In a separate experiment the conditioned media was incubated 

with a secondary set of naïve hTERT-HM cells, which were examined for UPR activation 

48hrs later. 

Results: Preconditioning the hTERT-HM cell activated CASP3 in the absence of 

apoptotic consequences. Reduced NFB activation and TNF secretion were also 

observed. In vivo, the sub-preconditioned mouse experienced CASP3 activation in the 

uterine compartment, which transitioned into an apoptotic state within the endometrial 

compartment upon exposure to a mild exogenous stress. Furthermore endometrial 

apoptotic CASP3-dependent iPLA2 activation, increased NFB activation and COX1 

expression upregulated prostaglandin synthesis, which resulted in a progesterone 

withdrawal and subsequently a 57% preterm birth rate in the preconditioned mice in 

comparison to 14% in the endogenously preconditioned animals. Further activation of the 

UPR in hTERT-HM cells generates a unique stress-generated secretome made up of 

roughly 90 bone-fide proteins, which propagate systemic adaptive signaling. 

Conclusion: We speculate that women who are unable to host an appropriate 
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preconditioning response to gestational stresses are at a significantly increased risk of 

undergoing spontaneous preterm. 
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