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Abstract

In the apportionment problem, a fixed number of seats must be
distributed among parties in proportion to the number of voters
supporting each party. We study a generalization of this setting,
in which voters cast approval ballots over parties, such that
each voter can support multiple parties. This approval-based
apportionment setting generalizes traditional apportionment
and is a natural restriction of approval-based multiwinner elec-
tions, where approval ballots range over individual candidates.
Using techniques from both apportionment and multiwinner
elections, we are able to provide representation guarantees
that are currently out of reach in the general setting of multi-
winner elections: First, we show that core-stable committees
are guaranteed to exist and can be found in polynomial time.
Second, we demonstrate that extended justified representation
is compatible with committee monotonicity.

1 Introduction

The fundamental fairness principle of proportional represen-
tation is relevant in a variety of applications ranging from
recommender systems to digital democracy (Skowron et al.
2017). It features most explicitly in the context of political
elections, which is the language we adopt for this paper. In
this context, proportional representation prescribes that the
number of representatives championing a particular opinion
in a legislature be proportional to the number of voters who
favor that opinion.

In most democratic institutions, proportional represen-
tation is implemented via party-list elections: Candidates
are members of political parties and voters are asked to
indicate their favorite party; each party is then allocated
a number of seats that is (approximately) proportional to
the number of votes it received. The problem of transform-
ing a voting outcome into a distribution of seats is known
as apportionment. Analyzing the advantages and disadvan-
tages of different apportionment methods has a long and
illustrious political history and has given rise to a deep
and elegant mathematical theory (Balinski and Young 1982;
Pukelsheim 2014).

Unfortunately, forcing voters to choose a single party pre-
vents them from communicating any preferences beyond
their most preferred alternative. For example, if a voter feels
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equally well represented by several political parties, there is
no way to express this preference within the voting system.

In the context of single-winner elections, approval voting
has been put forward as a solution to this problem as it strikes
an attractive compromise between simplicity and expressiv-
ity (Brams and Fishburn 2007; Laslier and Sanver 2010).
Under approval voting, each voter is asked to specify a set
of candidates she “approves of,” i.e., voters can arbitrarily
partition the set of candidates into approved candidates and
disapproved ones. Proponents of approval voting argue that
its introduction could increase voter turnout, “help elect the
strongest candidate,” and “add legitimacy to the outcome” of
an election (Brams and Fishburn 2007, pp. 4–8).

Due to the practical and theoretical appeal of approval vot-
ing in single-winner elections, a number of scholars have sug-
gested to also use approval voting for multiwinner elections,
in which a fixed number of candidates needs to be elected
(Kilgour and Marshall 2012). In contrast to the single-winner
setting, where the straightforward voting rule “choose the
candidate approved by the highest number of voters” enjoys
a strong axiomatic foundation (Fishburn 1978), several ways
of aggregating approval ballots have been proposed in the
multiwinner setting (e.g., Aziz et al. 2017; Janson 2016).

Most studies of approval-based multiwinner elections as-
sume that voters directly express their preference over individ-
ual candidates; we refer to this setting as candidate-approval
elections. This assumption runs counter to widespread demo-
cratic practice, in which candidates belong to political parties
and voters indicate preferences over these parties (which in-
duce implicit preferences over candidates). In this paper, we
therefore study party-approval elections, in which voters ex-
press approval votes over parties and a given number of seats
must be distributed among the parties. We refer to the process
of allocating these seats as approval-based apportionment.

We believe that party-approval elections are a promising
framework for legislative elections in the real world. Allow-
ing voters to express approval votes over parties enables the
aggregation mechanism to coordinate like-minded voters. For
example, two blocks of voters might currently vote for par-
ties that they mutually disapprove of. Using approval ballots
could reveal that the blocks jointly approve a party of more
general appeal; allocating more seats to this party leads to
mutual gain. This cooperation is particularly necessary for
small minority opinions that are not centrally coordinated. In
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such cases, finding a commonly approved party can make the
difference between being represented or votes being wasted
because the individual parties receive insufficient support.

In contrast to approval voting over individual candidates,
party-approval voting does not require a break with the cur-
rent role of political parties—it can be combined with both
“open list” and “closed list” approaches to filling the seats
allocated to a party.

1.1 Related Work

To the best of our knowledge, this paper is the first to for-
mally develop and systematically study approval-based ap-
portionment. That is not to say that the idea of expressing and
aggregating approval votes over parties has not been consid-
ered before. Indeed, several scholars have explored possible
generalizations of existing aggregation procedures.

For instance, Brams, Kilgour, and Potthoff (2019) study
multiwinner approval rules that are inspired by classical ap-
portionment methods. Besides the setting of candidate ap-
proval, they explicitly consider the case where voters cast
party-approval votes. They conclude that these rules could
“encourage coalitions across party or factional lines, thereby
diminishing gridlock and promoting consensus.”

Such desire for compromise is only one motivation for con-
sidering party-approval elections, as exemplified by recent
work by Speroni di Fenizio and Gewurz (2019). To allow for
more efficient governing, they aim to concentrate the power
of a legislature in the hands of few big parties, while nonethe-
less preserving the principle of proportional representation.
To this end, they let voters cast party-approval votes and trans-
form these votes into a party-list election by assigning each
voter to one of her approved parties. One method for doing
this (referred to as majoritarian portioning later in this paper)
assigns voters to parties in such a way that the strongest party
has as many votes as possible.

Several other papers consider extensions of approval-based
voting rules to accommodate party-approval elections (Brams
and Kilgour 2014; Mora and Oliver 2015; Janson 2016;
Janson and Öberg 2019). All of these papers have in common
that they study specific rules or classes of rules, rather than
exploring the party-approval setting in its own right.

1.2 Relation to Other Settings

Party-approval elections can be positioned between two well-
studied voting settings (see Figure 1).

First, approval-based apportionment generalizes standard
apportionment, which corresponds to party-approval elec-
tions in which all approval sets are singletons. This relation
(depicted as arrow (i) in Figure 1) provides a generic two-step
approach to define aggregation rules for approval-based ap-
portionment problems: transform a party-approval instance to
an apportionment instance, and then apply an apportionment
method. In Section 3, we employ this approach to construct
approval-based apportionment methods satisfying desirable
properties.

Second, our setting can be viewed as a special case of
approval-based multiwinner voting, in which voters cast
candidate-approval votes. A party-approval election can be

Candidate-approval elections
(Kilgour and Marshall 2012; Aziz et al. 2017)

Party-approval elections
[approval-based apportionment]

Party-list elections [apportionment]
(Balinski and Young 1982; Pukelsheim 2014)

(ii)

(i)

(iii)

Figure 1: Relations between the different settings of multi-
winner elections. An arrow from X to Y signifies that X is a
generalization of Y . The relationship corresponding to arrow
(iii) has been explored by Brill, Laslier, and Skowron (2018).
We establish and explore the relationship (i) in Section 3 and
the relationship (ii) in Section 4.

embedded in this setting by replacing each party by multi-
ple candidates belonging to this party, and by interpreting
a voter’s approval of a party as approval of all of its candi-
dates. This embedding establishes party-approval elections as
a subdomain of candidate-approval elections (see arrow (ii)
in Figure 1). In Section 4, we explore the axiomatic and
computational ramifications of this domain restriction.

1.3 Contributions

In this paper, we formally introduce the setting of approval-
based apportionment and explore different possibilities of
constructing axiomatically desirable aggregation methods for
this setting. Besides its conceptual appeal, this setting is also
interesting from a technical perspective.

Exploiting the relations described in Section 1.2, we re-
solve problems that remain open in the more general setting
of approval-based multiwinner voting. First, we prove that
committee monotonicity is compatible with extended justi-
fied representation (a representation axiom proposed by Aziz
et al. 2017) by providing a rule that satisfies both properties.
Second, we show that the core of an approval-based appor-
tionment problem is always nonempty and that core-stable
committees can be found in polynomial time.

Besides these positive results, we verify for a wide range of
multiwinner voting rules that their axiomatic guarantees do
not improve in the party-approval setting, and that some rules
remain NP-hard to evaluate. On the other hand, we show that
it becomes tractable to check whether a committee provides
extended justified representation or the weaker axiom of
proportional justified representation.

Omitted proofs as well as further definitions and results
can be found in the full version of the paper (Brill et al. 2019).

2 The Model

A party-approval election is a tuple (N,P,A, k) consisting
of a set of voters N = {1, . . . , n}, a finite set of parties P , a
ballot profile A = (A1, . . . , An) where each ballot Ai ⊆ P
is the set of parties approved by voter i, and the committee

1855



size k ∈ N. We assume that Ai �= ∅ for all i ∈ N . When
considering computational problems, we assume that k is
encoded in unary (see Footnote 5).

A committee in this setting is a multiset W : P → N over
parties, which determines the number of seats W (p) assigned
to each party p ∈ P . The size of a committee W is given by
|W | =

∑

p∈P W (p), and we denote multiset addition and

subtraction by + and −, respectively. A party-approval rule
is a function that takes a party-approval election (N,P,A, k)
as input and returns a committee W of valid size |W | = k.1

In our axiomatic study of party-approval rules, we focus on
two axioms capturing proportional representation: extended
justified representation and core stability (Aziz et al. 2017).2

Both axioms are derived from their analogs in multiwinner
elections (see Section 4.2) and can be defined in terms of
quota requirements.

For a party-approval election (N,P,A, k) and a subset
S ⊆ N of voters, define the quota of S as q(S) = ⌊k · |S|/n⌋.
Intuitively, q(S) corresponds to the number of seats that the
group S “deserves” to be represented by (rounded down).

Definition 1. A committee W : P → N provides extended
justified representation (EJR) for a party-approval election
(N,P,A, k) if there is no subset S ⊆ N of voters such that
⋂

i∈S Ai �= ∅ and
∑

p∈Ai
W (p) < q(S) for all i ∈ S.

In words, EJR requires that for every voter group S with
a commonly approved party, at least one voter of the group
should be represented by q(S) many candidates. A party-
approval rule is said to satisfy EJR if it only produces com-
mittees providing EJR.

We can obtain a stronger representation axiom by remov-
ing the requirement of a commonly approved party.

Definition 2. A committee W : P → N is core stable for a
party-approval election (N,P,A, k) if there is no nonempty
subset S ⊆ N and committee T : P → N of size |T | � q(S)
such that

∑

p∈Ai
T (p) >

∑

p∈Ai
W (p) for all i ∈ S. The

core of a party-approval election is defined as the set of all
core-stable committees.

Core stability requires adequate representation even for
voter groups that cannot agree on a common party, by ruling
out the possibility that the group can deviate to a smaller
committee that represents all voters in the group strictly better.
It follows from the definitions that core stability is a stronger
requirement than EJR: If a committee violates EJR, there is a
group S that would prefer any committee of size q(S) that
assigns all seats to the commonly approved party.

A final, non-representational axiom that we will discuss
is committee monotonicity. A party-approval rule f satisfies
this axiom if, for all party-approval elections (N,P,A, k),

1This definition implies that rules are resolute, that is, only a
single committee is returned. In the case of a tie between multiple
committees, a tiebreaking mechanism is necessary. Our results hold
independently of the choice of a specific tiebreaking mechanism.

2Some results in the full version refer to the weaker represen-
tation axioms of justified representation (JR) (Aziz et al. 2017)
and proportional justified representation (PJR) (Sánchez-Fernández
et al. 2017). It is well known that EJR implies PJR and that PJR
implies JR.

it holds that f(N,P,A, k) ⊆ f(N,P,A, k + 1). Committee
monotonic rules avoid the so-called Alabama paradox, in
which a party loses a seat when the committee size increases.
Besides, committee monotonic rules can be used to construct
proportional rankings (Skowron et al. 2017).

3 Constructing Party-Approval Rules via

Portioning and Apportionment

Party-approval elections are a generalization of party-list
elections, which can be thought of as party-approval elec-
tions in which all approval sets are singletons. Since there
is a rich body of research on apportionment methods, it is
natural to examine whether we can employ these methods
for our setting as well. To use them, we will need to translate
party-approval elections into the party-list domain on which
apportionment methods operate. This translation thus needs
to transform a collection of approval votes over parties into
vote shares for each party. Motivated by time sharing, Bogo-
molnaia, Moulin, and Stong (2005) have developed a theory
of such transformation rules, further studied by Duddy (2015)
and Aziz, Bogomolnaia, and Moulin (2019). We will refer to
this framework as portioning.

The approach explored in this section, then, divides the
construction of a party-approval rule into two independent
steps: (1) portioning, which maps a party-approval election
to a vector of parties’ shares; followed by (2) apportionment,
which transforms the shares into a seat distribution.

Both the portioning and the apportionment literature have
discussed representation axioms similar in spirit to EJR and
core stability. For both settings, several rules have been found
to satisfy these properties. One might hope that by composing
two rules that are each representative, we obtain a party-
approval rule that is also representative (and satisfies, say,
EJR). If we succeed in finding such a combination, it is
likely that the resulting voting rule will automatically satisfy
committee monotonicity since most apportionment methods
satisfy this property. In the general candidate-approval setting
(considered in Section 4), the existence of a rule satisfying
both EJR and committee monotonicity is an open problem.

3.1 Preliminaries

We start by introducing relevant notions from the litera-
ture of portioning (Bogomolnaia, Moulin, and Stong 2005;
Aziz, Bogomolnaia, and Moulin 2019) and apportionment
(Balinski and Young 1982; Pukelsheim 2014), with notations
and interpretations suitably adjusted to our setting.

Portioning A portioning problem is a triple (N,P,A), just
as in party-approval voting but without a committee size. A
portioning is a function r : P → [0, 1] with

∑

p∈P r(p) = 1.

We interpret r(p) as the vote share of party p. A portioning
method maps each triple (N,P,A) to a portioning.

Our minimum requirement on portioning methods will
be that they uphold proportionality if all approval sets are
singletons, i.e., if we are already in the party-list domain.
Formally, we say that a portioning method is faithful if for
all (N,P,A) with |Ai| = 1 for all i ∈ N , the resulting
portioning r satisfies r(p) = |{i ∈ N | Ai = {p}}|/n for all
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p ∈ P . Among the portioning methods considered by Aziz,
Bogomolnaia, and Moulin (2019), only three are faithful.
They are defined as follows.

Conditional utilitarian portioning selects, for each voter
i, pi as a party in Ai approved by the highest number of
voters. Then, r(p) = |{i ∈ N | pi = p}|/n for all p ∈ P .

Random priority computes n! portionings, one for each per-
mutation σ of N , and returns their average. The portioning
for σ = (i1, . . . , in) maximizes

∑

p∈Ai1

r(p), breaking

ties by maximizing
∑

p∈Ai2

r(p), and so forth.

Nash portioning selects the portioning r maximizing the
Nash welfare

∏

i∈N

(
∑

p∈Ai
r(p)

)

.

The last method seems particularly promising because it
satisfies portioning versions of core stability and EJR (Aziz,
Bogomolnaia, and Moulin 2019).

We will also make use of a more recent portioning ap-
proach, which was proposed by Speroni di Fenizio and
Gewurz (2019) in the context of party-approval voting.

Majoritarian portioning proceeds in rounds j = 1, 2, . . . .
Initially, all parties and voters are active. In iteration j, we
select the active party pj that is approved by the highest
number of active voters. Let Nj be the set of active voters
who approve pj . Then, set r(pj) to |Nj |/n, and mark pj
and all voters in Nj as inactive. If active voters remain, the
next iteration is started; else, r is returned.

Under majoritarian portioning, the approval preferences of
voters who have been assigned to a party are ignored in
further iterations. Note that conditional utilitarian portioning
can similarly be seen as a sequential method, in which the
preferences of inactive voters are not ignored.

Apportionment An apportionment problem is a tuple
(P, r, k), which consists of a finite set of parties P , a por-
tioning r : P → [0, 1] specifying the vote shares of parties,
and a committee size k ∈ N. Committees are defined as for
party-approval elections, and an apportionment method maps
apportionment problems to committees W of size k.

An apportionment method satisfies lower quota if each
party p is always allocated at least ⌊k · r(p)⌋ seats in the
committee. Furthermore, an apportionment method f is com-
mittee monotonic if f(P, r, k) ⊆ f(P, r, k + 1) for every
apportionment problem (P, r, k).

Among the standard apportionment methods, only one
satisfies both lower quota and committee monotonicity: the
D’Hondt method (aka Jefferson method).3 The method as-
signs the k seats iteratively, each time giving the next seat to
the party p with the largest quotient r(p)/(s(p) + 1), where
s(p) denotes the number of seats already assigned to p. An-
other apportionment method satisfying lower quota and com-
mittee monotonicity is the quota method, due to Balinski
and Young (1975). It is identical to the D’Hondt method,
except that, in the jth iteration, only parties p satisfying
s(p)/j < r(p) are eligible for the allocation of the next seat.

3All other divisor methods fail lower quota, and the Hamilton
method is not committee monotonic (Balinski and Young 1982).

Composition If we take any portioning method and any
apportionment method, we can compose them to obtain a
party-approval rule. Note that if the apportionment method is
committee monotonic then so is the composed rule, since the
portioning is independent of k.

3.2 Composed Rules That Fail EJR

Perhaps surprisingly, many pairs of portioning and apportion-
ment methods fail EJR. This is certainly true if the individual
parts are not representative themselves. For example, if an
apportionment method M properly fails lower quota (in the
sense that there is a rational-valued input r on which lower
quota is violated), then one can construct an example profile
on which any composed rule using M fails EJR: Construct a
party-approval election with singleton approval sets in which
the voter counts are proportional to the shares in the counter-
example r. Then any faithful portioning method, applied to
this election, must return r. Since M fails lower quota on
r, the resulting committee will violate EJR. By a similar
argument, an apportionment method that violates commit-
tee monotonicity on some rational portioning will, when
composed with a faithful portioning method, give rise to a
party-approval rule that fails committee monotonicity.

To our knowledge, among the named and studied appor-
tionment methods, only two satisfy both lower quota and
committee monotonicity: D’Hondt and the quota method.
However, it turns out that the composition of either option
with the conditional-utilitarian, random-priority, or Nash por-
tioning methods fails EJR, as the following examples show.

Example 1. Let n = k = 6, P = {p0, p1, p2, p3}, A =
({p0}, {p0}, {p0, p1, p2}, {p0, p1, p2}, {p1, p3}, {p2, p3}).

Then, the conditional utilitarian solution sets r(p0) = 4/6,
r(p1) = r(p2) = 1/6, and r(p3) = 0. Any apportionment
method satisfying lower quota allocates four seats to p0, one
each to p1 and p2, and none to p3. The resulting committee
does not provide EJR since the last two voters, who jointly
approve p3, have a quota of q({5, 6}) = 2 that is not met.

Example 2. Let n = k = 6, P = {p0, p1, p2, p3}, and A =
({p0}, {p0}, {p0, p1, p2}, {p0, p1, p3}, {p1}, {p2, p3}).

Random priority chooses the portioning r(p0) = 23/45,
r(p1) = 23/90, and r(p2) = r(p3) = 7/60. Both D’Hondt
and the quota method allocate four seats to p0, two seats to
p1, and none to the other two parties. This clearly violates the
claim to representation of the sixth voter (with q({6}) = 1).

Nash portioning produces a fairly similar portioning, with
r(p0) ≈ 0.5302, r(p1) ≈ 0.2651, and r(p2) = r(p3) ≈
0.1023. D’Hondt and the quota method produce the same
committee as above, leading to the same EJR violation.

At first glance, it might be surprising that Nash portioning
combined with a lower-quota apportionment method violates
EJR (and even the weaker axiom JR). Indeed, Nash portion-
ing satisfies core stability in the portioning setting, which is a
strong notion of proportionality, and the lower-quota property
limits the rounding losses when moving from the portioning
to a committee. As expected, in the election of Example 2,
the Nash solution itself gives sufficient representation to the
sixth voter since r(p2) + r(p3) ≈ 0.2047 > 1/6. However,
since both r(p2) and r(p3) are below 1/6 on their own, lower
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quota does not apply to either of the two parties, and the sixth
voter loses all representation in the apportionment step.

3.3 Composed Rules That Satisfy EJR

As we have seen, several initially promising portioning meth-
ods fail to compose to a rule that satisfies EJR. One reason
is that these portioning methods are happy to assign small
shares to several parties. The apportionment method may
round several of those small shares down to zero seats. This
can lead to a failure of EJR when not enough parties obtain a
seat. It is difficult for an apportionment method to avoid this
behavior since the portioning step obscures the relationships
between different parties that are apparent from the approval
ballots of the voters.

Majoritarian portioning is designed to maximize the seat
allocations to the largest parties. Thus, it tends to avoid the
problem we have identified. While it fails the strong repre-
sentation axioms that Nash portioning satisfies, this turns out
not to be crucial: Composing majoritarian portioning with
any apportionment method satisfying lower quota yields an
EJR rule. If we use an apportionment method that is also
committee monotonic, such as D’Hondt or the quota method,
we obtain a party-approval rule that satisfies both EJR and
committee monotonicity.4

Theorem 1. Let M be a committee monotonic apportion-
ment method satisfying lower quota. Then, the party-approval
rule composing majoritarian portioning and M satisfies EJR
and committee monotonicity.

Proof. Consider a party-approval election (N,P,A, k) and
let r be the outcome of majoritarian portioning applied
to (N,P,A). Let N1, N2, . . . and p1, p2, . . . be the voter
groups and parties in the construction of majoritarian portion-
ing, so that r(pj) = |Nj |/n for all j.

Consider the committee W = M(P, r, k) and suppose
that EJR is violated, i.e., that there exists a group S ⊆ N
with

⋂

i∈S Ai �= ∅ and
∑

p∈Ai
W (p) < q(S) for all i ∈ S.

Let j be minimal such that S ∩Nj �= ∅. We now show that
|S| � |Nj |. By the definition of j, no voter in S approves
of any of the parties p1, p2, . . . pj−1; thus, all those voters
remain active in round j. Consider a party p∗ ∈

⋂

i∈S Ai. In
the jth iteration of majoritarian portioning, this party had an
approval score of at least |S|. Therefore, the party pj that is
chosen in the jth iteration has an approval score that is at
least |S| (of course, p∗ = pj is possible). The approval score
of party pj equals |Nj |. Therefore, |Nj | � |S|.

Since |Nj | � |S|, we have q(Nj) � q(S). Since M
satisfies lower quota, it assigns at least ⌊k · r(pj)⌋ =
⌊k(|Nj |/n)⌋ = q(Nj) seats to party pj . Now consider a
voter i ∈ S ∩Nj . Since this voter approves party pj , we have
∑

p∈Ai
W (p) � W (pj) � q(Nj) � q(S), a contradiction.

This shows that EJR is indeed satisfied; committee mono-
tonicity follows from the committee monotonicity of M .

4As long as the apportionment method is computable in polyno-
mial time (which is the case for D’Hondt and the quota method),
the same holds for the resulting party-approval rule.

While the party-approval rules identified by Theorem 1
satisfy EJR and committee monotonicity, they do not quite
reach our gold standard of representation, i.e., core stability.

Example 3. Let n = k = 16, let P = {p0, . . . , p4}, with the
following approval sets: 4 times {p0, p1}, 3 times {p1, p2},
once {p2}, 4 times {p0, p3}, 3 times {p3, p4}, and once {p4}.
Note the symmetry between p1 and p3, and between p2 and p4.
Majoritarian portioning allocates 1/2 to p0 and 1/4 each
to p2 and p4. Any lower-quota apportionment method must
translate this into 8 seats for p0 and 4 seats each for p2 and
p4. This committee is not in the core: Let S be the coalition of
all 14 voters who approve multiple parties, and let T allocate
4 seats to p0 and 5 seats each to p1 and p3. This gives strictly
higher representation to all members of the coalition.

The example makes it obvious why majoritarian portion-
ing cannot satisfy the core: All voters approving of p0 get
deactivated after the first round, which makes p2 seem uni-
versally preferable to p1. However, p1 is a useful vehicle for
cooperation between the group approving {p0, p1} and the
group approving {p1, p2}. Since majoritarian portioning is
blind to this opportunity, it cannot guarantee core stability.

The example also illustrates the power of core stability:
The deviating coalition does not agree on any single party
they support, but would nonetheless benefit from the devi-
ation. There is room for collaboration, and core stability is
sensitive to this demand for better representation.

4 Constructing Party-Approval Rules via

Multiwinner Voting Rules

In the previous section, we applied tools from apportionment,
a more restrictive setting, to our party-approval setting. Now,
we go in the other direction, and apply tools from a more gen-
eral setting: As mentioned in Section 1.2, party-approval elec-
tions can be viewed as a special case of candidate-approval
elections, i.e., multiwinner elections in which approvals are
expressed over individual candidates rather than parties. Af-
ter introducing relevant candidate-approval notions, we show
how party-approval elections can be translated into candidate-
approval elections. This embedding allows us to apply estab-
lished candidate-approval rules to our setting. Exploiting this
fact, we will prove the existence of core-stable committees
for party-approval elections.

4.1 Preliminaries

A candidate-approval election is a tuple (N,C,A, k). Just
as for party-approval elections, N = {1, . . . , n} is a set of
voters, C is a finite set, A is an n-tuple of nonempty subsets
of C, and k ∈ N is the committee size. The conceptual
difference is that C is a set of individual candidates rather
than parties. This difference manifests itself in the definition
of a committee because a single candidate cannot receive
multiple seats. That is, a candidate committee W is now
simply a subset of C with cardinality k. (Therefore, it is
usually assumed that |C| � k.) A candidate-approval rule is
a function that maps each candidate-approval election to a
candidate committee.

A diverse set of such voting rules has been proposed
since the late 19th century (Kilgour and Marshall 2012;
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Janson 2016; Aziz et al. 2017), out of which we will only in-
troduce the one which we use for our main positive result. Let

Hj denote the jth harmonic number, i.e., Hj =
∑j

t=1 1/t.
Given (N,C,A, k), the candidate-approval rule propor-
tional approval voting (PAV), introduced by Thiele (1895),
chooses a candidate committee W maximizing the PAV score
PAV(W ) =

∑

i∈N H|W∩Ai|.

We now describe EJR and core stability in the candidate-
approval setting, from which our versions of these axioms
are derived. Recall that q(S) = ⌊k |S|/n⌋. A candidate com-
mittee W provides EJR if there is no subset S ⊆ N and
no integer ℓ > 0 such that q(S) � ℓ, |

⋂

i∈S Ai| � ℓ, and

|Ai∩W | < ℓ for all i ∈ S. (The requirement |
⋂

i∈S Ai| � ℓ
is often referred to as cohesiveness.) A candidate-approval
rule satisfies EJR if it always produces EJR committees.

The definition of core stability is even closer to the version
in party-approval: A candidate committee W is core stable
if there is no nonempty group S ⊆ N and no set T ⊆ C of
size |T | � q(S) such that |Ai ∩ T | > |Ai ∩W | for all i ∈ S.
The core consists of all core-stable candidate committees.

4.2 Embedding Party-Approval Elections

We have informally argued in Section 1.2 that party-approval
elections constitute a subdomain of candidate-approval elec-
tions. We formalize this notion by providing an embedding of
party-approval elections into the candidate-approval domain.
For a given party-approval election (N,P,A, k), we define
a corresponding candidate-approval election with the same
set of voters N and the same committee size k. The set of
candidates contains k many “clone” candidates p(1), . . . , p(k)

for each party p ∈ P , and a voter approves a candidate p(j)

in the candidate-approval election iff she approves the cor-
responding party p in the party-approval election. This em-
bedding establishes party-approval elections as a subdomain
of candidate-approval elections. As a consequence, we can
apply rules and axioms from the more general candidate-
approval setting also in the party-approval setting.

In particular, the generic way to apply a candidate-approval
rule for a party-approval election consists in (1) translating
the party-approval election into a candidate-approval election,
(2) applying the candidate-approval rule, and (3) counting
the number of chosen clones per party to construct a commit-
tee over parties. Note that, since k is encoded in unary, the
running time is blown up by at most a polynomial factor.5

Having established party-approval elections as a subdo-
main of candidate-approval elections, our variants of EJR and
core stability (Definitions 1 and 2) are immediately induced
by their candidate-approval counterparts. In particular, any
candidate-approval rule satisfying an axiom in the candidate-

5For candidate-approval elections, it does not make sense to have
more seats than candidates, whereas for party-approval elections
it is natural to have more seats than parties. If k was encoded in
binary, even greedy candidate-approval algorithms would suddenly
have exponential running time. This would complicate running-time
comparisons between the candidate-approval and party-approval
setting and would blur the intuitive distinction between simple and
complex algorithms. Encoding k in unary sidesteps this technical
complication.

approval setting will satisfy the corresponding axiom in the
party-approval setting as well. Note that, by restricting our
view to party approval, the cohesiveness requirement of EJR
is reduced to requiring a single commonly approved party.

4.3 PAV Guarantees Core Stability

A powerful stability concept in economics, core stability is a
natural extension of EJR. It is particularly attractive because
blocking coalitions are not required to be coherent at all,
just to be able to coordinate for mutual gain. Our earlier
Example 3 illustrates how a coalition might deviate in spite
of not agreeing on any approved party.

Unfortunately, it is still unknown whether core-stable can-
didate committees exist for all candidate-approval elections.
Fain, Munagala, and Shah (2018) give positive approximate
results for a variant of core stability in which blocking coali-
tions S ⊆ N get to provide sets of candidates T of size k but
have to increase their utilities by at least a factor of n/|S| to
be counterexamples to their notion of core stability. They pro-
vide a nonconstant approximation to the core in our sense, but
nonemptyness remains open. Recently, Cheng et al. (2019)
showed that there always exist randomized committees pro-
viding core stability (over expected representation), but it is
not clear how their approach based on two-player zero-sum
game duality would extend to deterministic committees.

All standard candidate-approval rules either already fail
weaker representation axioms such as EJR or fail core sta-
bility. In particular, Aziz et al. (2017) have shown that PAV
satisfies EJR, but may produce non-core-stable candidate
committees even for candidate-approval elections for which
core-stable candidate committees are known to exist.

By contrast, we show that PAV guarantees core stability
in the party-approval setting. We follow the structure of the
aforementioned proof showing that PAV satisfies EJR for
candidate-approval elections (Aziz et al. 2017).

Theorem 2. For every party-approval election, PAV chooses
a core-stable committee.

Proof. Consider a party-approval election (N,P,A, k) and
let W : P → N be the committee selected by PAV. Assume
for contradiction that W is not core stable. Then, there is a
nonempty coalition S and a committee T : P → N such that
|T | � k |S|/n and

∑

p∈Ai
T (p) >

∑

p∈Ai
W (p) for every

voter i ∈ S.
Let ui(W ) denote the number of seats in W that are

allocated to parties approved by voter i, i.e., ui(W ) =
∑

p∈Ai
W (p). Furthermore, for a party p with W (p) > 0,

we let MC (p,W ) denote the marginal contribution to the
PAV score of allocating a seat to p, i.e., MC (p,W ) =
PAV(W ) − PAV(W − {p}). Observe that MC (p,W ) =
∑

i∈Np
1/ui(W ), where Np = {i ∈ N | p ∈ Ai}. The sum

of all marginal contributions satisfies

∑

p∈P

W (p)MC (p,W ) =
∑

p∈P

∑

i∈Np

W (p)

ui(W )

=
∑

i∈N

∑

p∈Ai

W (p)

ui(W )
= |{i ∈ N | ui(W ) > 0}| � n.
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Note that terms MC (p,W ) for W (p) = 0 and quotients
1/ui(W ) for ui(W ) = 0 are undefined in the calculation
above, but that they only appear with factor 0.

It follows that the average marginal contribution of all k
seats in W is at most n/k, and consequently, that there has to
be a party p1 with a seat in W such that MC (p1,W ) � n/k.
Using a similar argument, we show that there is also a party p2
with T (p2) > 0 which would increase the PAV score by at
least n/k if it received an additional seat in W :

∑

p∈P

T (p)MC (p,W + {p}) =
∑

i∈N

∑

p∈Ai

T (p)

ui(W + {p})

�
∑

i∈S

∑

p∈Ai

T (p)

ui(W + {p})
=

∑

i∈S

∑

p∈Ai

T (p)

ui(W ) + 1

�
∑

i∈S

∑

p∈Ai

T (p)

ui(T )
= |{i ∈ S | ui(T ) > 0}| = |S|.

The second inequality holds because every voter in S strictly
increases their utility when deviating from W to T ; the last
equality holds because every voter in S must get some rep-
resentation in T to deviate. As desired, it follows that there
has to be a party p2 in the support of T with MC (p2,W +
{p2}) � |S|/|T | � n/k.

If any of these inequalities would be strict, that is, if
MC (p1,W ) < n/k or MC (p2,W + {p2}) > n/k, then
the committee W − {p1}+ {p2} would have a PAV-score of

PAV(W )−MC (p1,W ) +MC (p2,W−{p1}+{p2})

� PAV(W )−MC (p1,W ) +MC (p2,W + {p2}) (1)

> PAV(W ),

which would contradict the choice of W .

Else, suppose that MC (p,W ) = n/k for all parties p in
the support of W and MC (p,W +{p}) = n/k for all parties
p in the support of T . If there is a party p1 in W that is ap-
proved by some voter i ∈ S, we can choose an arbitrary party
p2 from the support of T that i approves as well. Then, for
voter i, the marginal contribution of p2 in W − {p1}+ {p2}
is 1

ui(W−{p1}+{p2})
= 1

ui(W ) , but the marginal contribution

of p2 in W+{p2} for i is only 1
ui(W+{p2})

= 1
ui(W )+1 . This

implies MC (p2,W −{p1}+ {p2}) > MC (p2,W + {p2}),
which makes inequality (1) strict and again contradicts the
optimality of W .

Thus, one has to assume that no voter in S approves any
party in the support of W . Pick an arbitrary p in the support
of T , and recall that MC (p′,W + {p′}) = n/k for all p′ in
the support of T . Thus, all inequalities in the derivation of
∑

p∈P T (p)MC (p,W + {p}) � |S| above must be equali-

ties, which implies that this increase in PAV score must solely
come from voters in S. Thus, there are at least n/k voters in
S who are not represented at all in W , but commonly approve
p. This would be a violation of EJR, contradicting the fact
that PAV satisfies this axiom.

Corollary 3. The core of a party-approval election is
nonempty.

An immediate follow-up question is whether core-stable
committees can be computed efficiently. PAV committees are
known to be NP-hard to compute in the candidate-approval
setting, and we confirm in the full version of the paper that
hardness still holds in the party-approval subdomain.

Equally confronted with the computational complexity of
PAV, Aziz et al. (2018) proposed a local-search variant of
PAV, which runs in polynomial time and guarantees EJR in
the candidate-approval setting. Using the same approach, we
can find a core-stable committee in the party-approval setting.
We defer the proof to the full version of the paper.

Theorem 4. Given a party-approval election, a core-stable
committee can be computed in polynomial time.

Theorem 2 motivates the question of whether other
candidate-approval rules satisfy stronger representation ax-
ioms when restricted to the party-approval subdomain. We
have studied this question for various rules besides PAV, and
the answer was always negative.6

While the party-approval setting does not reduce the com-
plexity of computing PAV, it allows us to efficiently check
whether a given committee provides EJR or PJR; both prob-
lems are coNP-hard in the candidate-approval setting (Aziz
et al. 2017; 2018). For EJR, this follows from coherence be-
coming simpler for party-approval elections. Our algorithm
for checking PJR employs submodular minimization. Again,
details can be found in the full version.

5 Discussion

In this paper, we have initiated the axiomatic analysis of
approval-based apportionment. On a technical level, it would
be interesting to see whether the party-approval domain al-
lows us to satisfy other combinations of axioms that are not
known to be attainable in candidate-approval elections. For
instance, the compatibility between strong representation ax-
ioms and certain notions of support monotonicity is an open
problem (Sánchez-Fernández and Fisteus 2019).

We have presented our setting guided by the application
of apportioning parliamentary seats to political parties. We
believe that this is an attractive application worthy of practi-
cal experimentation. Our formal setting has other interesting
applications. An example would be participatory budgeting
settings in which the provision of items of equal cost is de-
cided, where the items come in different types. For instance,
a university department could decide how to allocate Ph.D.
scholarships across different research projects, in a way that
respects the preferences of funding organizations.

As another example, the literature on multiwinner elec-
tions suggests many applications to recommendation prob-
lems (Skowron, Faliszewski, and Lang 2016). For instance,
one might want to display a limited number of news arti-
cles, movies, or advertisements in a way that fairly represents

6We consider the candidate-approval rules SeqPAV, RevSeqPAV,
Approval Voting (AV), SatisfactionAV, MinimaxAV, SeqPhragmén,
MaxPhragmén, VarPhragmén, Phragmén-STV, MonroeAV, Greedy-
MonroeAV, GreedyAV, HareAV, and Chamberlin–CourantAV. Be-
sides EJR and core stability, we consider JR and PJR (see Foot-
note 2). Definitions and results can be found in the full version of
the paper.
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the preferences of the audience. These preferences might be
expressed not over individual pieces of content, but over con-
tent producers (such as newspapers, studios, or advertising
companies), in which case our setting provides rules that
decide how many items should be contributed by each source.
Expressing preferences on the level of content producers is
natural in repeated settings, where the relevant pieces of con-
tent change too frequently to elicit voter preferences on each
occasion. Besides, content producers might reserve the right
to choose which of their content should be displayed.

In the general candidate-approval setting, the search con-
tinues for rules that satisfy EJR and committee monotonicity,
or core stability. But for the applications mentioned above,
these guarantees are already achievable today.
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