
Soc Choice Welf (2015) 44:519–532
DOI 10.1007/s00355-014-0847-2

Approval voting and Arrow’s impossibility theorem

François Maniquet · Philippe Mongin

Received: 8 April 2013 / Accepted: 10 September 2014 / Published online: 23 September 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Approval voting has attracted considerable attention in voting theory, but it
has rarely been investigated in an Arrovian framework of collective preference (”social
welfare”) functions and never been connected with Arrow’s impossibility theorem.
The article explores these two directions. Assuming that voters have dichotomous
preferences, it first characterizes approval voting in terms of its collective preference
properties and then shows that these properties become incompatible if the collective
preference is also taken to be dichotomous. As approval voting and majority voting
happen to share the same collective preference function on the dichotomous domain,
the positive result also bears on majority voting, and is seen to extend May’s and
Inada’s early findings on this rule. The negative result is a novel and perhaps surprising
version of Arrow’s impossibility theorem, because the axiomatic inconsistency here
stems from the collective preference range, not the individual preference domain.
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1 Introduction

Approval voting is the rule by which voters can cast votes for as many candidates as
they wish, giving no more than one vote to each of them, and those candidates with the
greatest vote total are elected. For the purpose of theoretical investigations, approval
voting has been defined to be a social choice function, i.e., a mapping that associates
a nonempty subset of candidates—the social choice—to every profile of individual
characteristics—the individuals’ preferences among candidates in one version, and
their choices among them in another version. When it comes to voting generally,
this choice-theoretic formalism has good descriptive value and it has the conceptual
advantage of connecting well with strategic inquiries, including the landmark Gibbard–
Satterthwaite theorem. Since Brams and Fishburn (1978) and Fishburn (1978a, b), it
has been applied very effectively to approval voting.1

The present article departs from this tradition by defining approval voting as a
social welfare function, or as we will rather call it to avoid irrelevant welfaristic
suggestions, a collective preference function, that is to say, a mapping that associates
a collective preference among candidates to every profile of individual preferences
among these candidates. This formalism makes sense for a voting rule if the latter
can be reinterpreted as an evaluation procedure, which is the case for approval voting.
Here, the individuals would be asked to rank candidates into, say, “satisfactory” and
“unsatisfactory”, with their answers being pooled, but not necessarily followed by any
actual collective decision (think of an opinion poll as against a real vote). To redescribe
voting rules in this way is in fact an old idea of social choice theory, dating back to
Arrow himself. He thought his original formalism to be applicable to them, and not
only to welfare criteria, and accordingly introduced a collective preference function for
majority voting (see 1963, ch. V). By taking the same step for approval voting, we shift
the focus of its analysis from strategy-proofness to the related, but distinct condition
of independence of irrelevant alternatives, as well as further Arrovian conditions such
as positive responsiveness and the Pareto principle. To the best of our knowledge, Ju
(2010) is the only scholar of approval voting who has already adopted a collective
preference framework.

When approval voting is redefined in this way, it is natural to impose the restriction
that individual preferences be dichotomous, i.e., have two indifference classes. Actu-
ally, since the early days, this restriction is also made in quite a few choice-theoretic
analyses.2 It will be upheld here, with two possibilities being investigated in turn: the

1 Fishburn (1978a, b) axiomatized approval voting in terms of a ballot aggregation function, which is an
anonymous social choice function taking profiles of individual choices as its arguments. This framework
is taken up in Sertel (1988), Alos-Ferrer (2006) and Sato (2014), and it inspires Baigent and Xu (1991)
and Xu’s (2010) related variants. The less formalistic, but pioneering paper by Brams and Fishburn (1978)
emphasized the strategic properties of approval voting, and this line is recovered by Vorsatz (2007; 2008)
in a framework where the social choice function is defined on profiles of individual preferences, as in the
Gibbard–Satterthwaite theorem. Some explicit body of game-theoretic analysis now exists (see Laslier and
Sanver 2010). All this theoretical work is scant compared with the many practical studies on approval voting
(see Brams and Fishburn 2005, and the relevant chapters in Laslier and Sanver 2010).
2 Brams and Fishburn (1978) emphasize that this case makes approval voting strategyproof, and Vorsatz
(2007, 2008) assumes it throughout his analysis.
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Approval voting and Arrow’s impossibility theorem 521

simply dichotomous case, where only individual preferences are dichotomous, and
the twice dichotomous case, where collective preferences also are. We present a char-
acterization of approval voting in the former case, and one of dictatorship—thus an
impossibility theorem—in the latter case. We may interpret the two results together
as saying that the conditions for approval voting become inconsistent when the range
of the collective preference function is subjected to the same dichotomous restric-
tion as the domain. Our positive result relates to Ju’s (2010) characterization, which
also belongs to the simply dichotomous case; arguably, we go one step further into the
Arrovian foundations of approval voting. As to our negative result, it is unprecedented,
and it appears to be surprising compared with existing Arrovian impossibilities under
restricted domains, because the logical ingredients of these impossibilities are missing
here—in particular, the free triple property fails.

In the simply dichotomous case, the collective preference function of approval
voting coincides with that of majority voting, as Arrow and followers have defined
it. This observation connects our positive result with two classics, i.e., May’s (1952)
characterization of majority voting between two candidates, which we considerably
extend, and Inada’s (1964) proof that majority voting behaves well with dichotomous
individual preferences, which we also recover and deepen (by replacing Inada’s mere
claim of possibility with a proper characterization). On the permissive dichotomous
domain, majority voting can only be threatened by range restrictions, and this is what
the negative result of the paper illustrates.

2 Definitions and aggregative conditions

As usual, a weak preference ordering R on a set X means a binary relation that
is transitive, reflexive and complete; equivalently R has an asymmetric part P and a
symmetric part I , which satisfy the PP, PI, IP, II variants of transitivity. The statements
xPy, xIy, xRy have their standard readings, i.e., “x is strictly preferred to y”, “x is
indifferent to y”, “x is strictly preferred or indifferent to y”. An indifference class for
R is one of the equivalence classes generated by I , i.e., a set of the form {x ∈ X : x I x0}
for some fixed x0 ∈ X .

As a particular case of R on X , a dichotomous weak preference ordering has one or
two non-empty indifference classes. It satisfies the P P variant of transitivity vacuously
and (for a sufficient number of elements) the PI, IP and II variants non-vacuously. It can
also be described in terms of its indifference classes directly. If R has two indifference
classes, we denote by H and L the higher and lower one, respectively, and if R has
only one indifference class, a case of complete indifference, we denote this class by
CI. The obvious translation rules are:

x Py ⇔ x ∈ H, y ∈ L

x I y ⇔ either x, y ∈ H or x, y ∈ L or x, y ∈ C I .

Define O to be the set of all weak preference orderings on X , and D ⊂ O to be the
set of dichotomous weak preference orderings on X .
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The technical literature sometimes defines dichotomous preferences to have exactly
two non-empty indifference classes, thus excluding complete indifference (e.g., Brams
and Fishburn 1978). We show below that our results extends to this stronger definition
at a modest cost.

Given a set of candidates X with cardinality | X |≥ 3 and a finite set of voters
N = {1, . . . , n} with n ≥ 2, we define a collective preference function (CPF) to be a
mapping

F : (R1, . . . , Rn) �−→ R.

Throughout, the domain of F will be dichotomous, with two cases considered in
succession, i.e., F : Dn → O and F : Dn → D; we call them the simply dichotomous
and twice dichotomous case, respectively.

Correspondingly, the CPF associated with approval voting can be stated in two
different ways.

Notation 1 For any profile (R1, . . . , Rn) in On or Dn , we put N (x Pi y) = {i : x Pi y}
and n(x Pi y) = |{i : x Pi y}| (similarly for Ri , Ii ), and N (x ∈ Hi ) = {i : x ∈ Hi } and
n(x ∈ Hi ) = |{i : x ∈ Hi }| (similarly for Li , C Ii ), and we put

Max(R1, . . . , Rn) = {x ∈ X : n(x ∈ Hi ) ≥ n(y ∈ Hi ),∀y ∈ X} .

Definition 1 F is approval voting* if, for all (R1, . . . , Rn) ∈ Dn , x Py ⇔ n(x ∈
Hi ) > n(y ∈ Hi ).

Approval voting* trivially defines an ordering for any profile, and it has range O,
not D, if | X |≥ 3. However, we may force the D range in redefining the CPF thus.

Definition 2 F is approval voting** if, for every (R1, . . . , Rn) ∈ Dn ,

• if Max(R1, . . . , Rn) 	= X , then

H = Max(R1, . . . , Rn) and L = X\Max(R1, . . . , Rn);

• if Max(R1, . . . , Rn) = X , then R = C I .

Under dichotomous individual preferences, majority voting has the same CPF as
approval voting*. Arrow (1963, p. 58) defined the CPF of majority voting by the
condition that, for all (R1, . . . , Rn) in the domain, x Ry if

n(x Ri y) ≥ n(y Ri x), or equivalently n(x Pi y) ≥ n(y Pi x),

and this definition has been endorsed by social choice theory. If the domain is Dn

rather than On , it collapses into that just given above—we skip the trivial argument.
Since approval voting* always defines an ordering, we have by the same token proven
Inada’s (1964) classic observation that majority voting defines a transitive CPF on the
dichotomous domain.

Now to the properties that CPF may satisfy. We begin by listing those which Arrow
(1963) famously declared to be mutually inconsistent.

123



Approval voting and Arrow’s impossibility theorem 523

Notation 2 For all (R1, . . . , Rn), (R′
1, . . . , R′

n) in On or Dn, and all x, y, z, w ∈ X,
we write x Ri y ≈ z R′

iw instead of (x Ri y ⇔ z R′
iw and y Ri x ⇔ wR′

i z).

Condition 1 Independence of irrelevant alternatives (IIA): For all (R1, . . . , Rn),
(R′

1, . . . , R′
n) ∈ Dn and all x, y ∈ X, if x Ri y ≈ x R′

i y for all i ∈ N, then x Ry ⇔
x R′y.

Condition 2 Weak Pareto (WP): For all (R1, . . . , Rn) ∈ Dn and all x, y ∈ X, if x Pi y
for all i ∈ N, then x Py.

Condition 3 Non-dictatorship (ND): There is no j ∈ N such that for all
(R1, . . . , Rn) ∈ Dn and all x, y ∈ X, if x Pj y, then x Py.

Both approval voting* and approval voting** satisfy WP. However, only the former,
not the latter, satisfies IIA. The following 3-candidate, 2-individual profiles (R1, R2),
(R′

1, R′
2) illustrates the failure: x P1 y I1z, z P2 y I2x and x I ′

1z P ′
1 y, z P ′

2 y I ′
2x ; by approval

voting**, x, z ∈ H, y ∈ L , so x Py, and z ∈ H ′, x, y ∈ L ′, so x I ′y, contradicting
IIA. Since approval voting* also satisfies ND, and then all of Arrow’s conditions, his
theorem indicates that the domain makes a difference, i.e., Dn does not behave like
On (this is in effect Inada’s observation). Arrow’s theorem does not teach anything on
approval voting** since this CPF does not satisfy IIA.3 The last section of the paper
shows that this violation is forced by the range restriction.

3 The collective preference function of approval voting (or majority voting)

Here we characterize approval voting* (or equivalently majority voting) in terms of
variant Arrovian conditions. First, this function obviously satisfies a vast strengthening
of ND:

Condition 4 Anonymity (A): For all (R1, . . . , Rn) ∈ Dn and all permutations σ of
{1, . . . , n}, F(R1, . . . , Rn) = F(Rσ(1), . . . , Rσ(n)).

Second, approval voting* satisfies Pareto conditions besides WP:

Condition 5 Pareto indifference (PI): For all (R1, . . . , Rn) ∈ Dn and all x, y ∈ X,
if x Ii y for all i ∈ N, then x I y.

Condition 6 Strict Pareto (SP): For all (R1, . . . , Rn) ∈ Dn and all x, y ∈ X, if x Ri y
for all i ∈ N and x Pi y for some i, then x Py.

It turns out that approval voting* can be characterized by adding IIA to these three
conditions, or rather to the first two and WP, because this set will be shown to entail
SP.

3 Approval voting does satisfy a weaker form of I I A, to wit: for all (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈ Dn

and all x, y ∈ X , if x Ri y ≈ x R′
i y for all i ∈ N , then x Py �⇒ x R′y. As Campbell and Kelly (2000)

demonstrate after Baigent (1987), this W eak I I A delivers a variant of Arrow’s impossibility theorem in
which N D is replaced by a no-vetoer condition.
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Theorem 1 A collective preference function F : Dn → O is approval voting* if and
only if it satisfies IIA, A, PI, and WP.

The sufficiency part relies on three lemmas. The first derives a classic condition
that strengthens IIA and is sometimes taken to be primitive by CPF theory.

Condition 7 Neutrality (N): For all (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈ Dn and all
x, y, z, w ∈ X, if x Ri y ≈ z R′

iw for all i ∈ N, then x Ry ⇔ z R′w.

Lemma 1 If F : Dn → O satisfies IIA and PI, it satisfies N.

Proof Consider first the case of four distinct x, y, z, w ∈ X . By assumption,
(R1, . . . , Rn) and (R′

1, . . . , R′
n) ∈ Dn are s.t. x Ri y ≈ z R′

iw for all i ∈ N . Take
(R1, . . . , Rn) ∈ Dn s.t. x Ri y ≈ x Ri y for all i ∈ N , and s.t. x I i z and y I iw for all
i ∈ N . Thus, by construction, z Riw ≈ z R′

iw for all i ∈ N . Suppose that x Ry. Then,
x Ry follows from IIA, z Rw from PI, and finally z R′w from IIA.

Related proofs take care of the two cases in which there are three distinct elements
among x, y, z, w ∈ X , x 	= y, and the position of the common element is the same in
the two pairs, i.e., x = z or y = w. Now, suppose that the common element changes
position, i.e., x = w or y = z. We give a proof for the former case. By assumption,
(R1, . . . , Rn) and (R′

1, . . . , R′
n) ∈ Dn are s.t. x Ri y ≈ z R′

i x for all i ∈ N . Take
(R1, . . . , Rn) ∈ Dn s.t. x Ri y ≈ z Ri y for all i ∈ N . From one of the cases with
unchanged positions, x Ry ⇔ z Ry. By construction, z R′

i x ≈ z Ri y for all i ∈ N , so
from the other case, z R′x ⇔ z Ry, and finally x Ry ⇔ z R′x .

If there are three distinct elements among x, y, z, w ∈ X , and x = y, or z = w, N
reduces to PI.

If there are two distinct elements, say x and y, which do not exchange positions, N
reduces to IIA. Otherwise, suppose that (R1, . . . , Rn) and (R′

1, . . . , R′
n) ∈ Dn are s.t.

x Ri y ≈ y R′
i x for all i ∈ N . Take z 	= x, y and (R1, . . . , Rn) ∈ Dn s.t. x Ri y ≈ x Ri z

for all i ∈ N . It follows that x Ry ⇔ x Rz. Take (R1, . . . , Rn) ∈ Dn s.t. y R′
i x ≈ y Ri z

for all i ∈ N . It follows that y R′x ⇔ y Rz. Now, by construction, x Ri z ≈ y Ri z for

all i ∈ N , whence x Rz ⇔ y Rz. Combining the equivalences, one gets x Ry ⇔ y R′x ,
as desired. ��

The second lemma derives another condition that is sometimes also taken to be
primitive. In preparation for the next section, we give it in two variants, the former
being weaker than the latter. They are distinguished only by their consequent clauses.

Condition 8 Positive responsiveness 1 (PR1): For all (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈
Dn and all x, y ∈ X, if x Pi y ⇒ x P ′

i y and x Ii y ⇒ x R′
i y for all i ∈ N, and y Pj x

and x R′
j y, or x I j y and x P ′

j y, for some j ∈ N, then x Py ⇒ x P ′y.

Condition 9 Positive responsiveness 2 (PR2): For all (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈
Dn and all x, y ∈ X, if x Pi y ⇒ x P ′

i y and x Ii y ⇒ x R′
i y for all i ∈ N, and y Pj x

and x R′
j y, or x I j y and x P ′

j y, for some j ∈ N, then x Ry ⇒ x P ′y.

Lemma 2 If F : Dn → O satisfies N and SP, it satisfies PR2.
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Approval voting and Arrow’s impossibility theorem 525

Proof To derive PR2, we first assume that (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈ Dn and
x, y ∈ X meet the antecedent condition without any full reversal of strict preference,
i.e., without any j s.t. y Pj x and x P ′

j y.

Take z 	= x, y and (R1, . . . , Rn) ∈ Dn so defined: for all i ∈ N ,

• if x Pi y and x P ′
i y, then x Pi y I i z; if y Pi x and y P ′

i x , then z I i y Pi x ; if x Ii y and
x I ′

i y, then x I i y I i z;
• if y Pi x and x I ′

i y, then z Pi x I i y; if x Ii y and x P ′
i y, then z I i x Pi y.

Thus, for all i ∈ N , x Ri y ≈ x Ri z, z Ri y, and x R′
i y ≈ x Ri y. We also note by

inspecting the possibilities that for some i , z Pi y. Now, suppose that x Ry. Then, x Rz
by N, and because SP entails that z P y, it follows that x P y, hence x P ′y by IIA. This
completes the proof of PR2 in the case just considered.

If (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈ Dn and x, y ∈ X meet the antecedent of PR2 in
full generality, take (R′′

1 , . . . , R′′
n ) ∈ Dn s.t., for all i ∈ X , x I ′′

i y if y Pi x and x P ′
i y,

and x R′′
i y ≈ x R′

i y otherwise. Suppose that x Ry. By the case just proved, x P ′′y, and
again by this case, x P ′y. ��

The third lemma shows that SP can be replaced by WP in the characterization of
approval voting*.

Lemma 3 If F : Dn → O satisfies N, WP and A, it satisfies SP.

Proof Fix x, y and a sequence of profiles (Rk
1, . . . , Rk

n) ∈ Dn , k ∈ {1, . . . , n}, s.t.

x Pk
i y, 1 ≤ i ≤ k and x I k

i y, k + 1 ≤ i ≤ n.

In view of N and A, it is sufficient to show that SP holds for this pair and this sequence
(note that k = n corresponds to WP). The proof goes by induction on k.

• k = 1. Suppose that y R1x ; we reach a contradiction with WP by showing that
y Rl x holds for all l ∈ {1, . . . , n}, hence in particular for l = n. The initial
supposition covers the case l = 1 ; now suppose we have proved that y Rl x for
some l ∈ {1, . . . , n − 1}. Let us take the profiles (Rl+1

1 , . . . , Rl+1
n ) ∈ Dn , and for

some z 	= x, y, (R
l+1
1 , . . . , R

l+1
n ) ∈ Dn s.t.

x R
l+1
i y ≈ x Rl+1

i y for all i ∈ N ,

z I
l+1
i y for all i 	= l + 1 and z I

l+1
l+1x P

l+1
l+1 y.

Then, we apply N in a comparison with (Rl
1, . . . , Rl

n), and N and A in a comparison

with (R1
1, . . . , R1

n), to get z R
l+1

x and y R
l+1

z, hence y R
l+1

x . So we have proved
by induction that y Rl x holds for all l ∈ {1, . . . , n}, as desired.

• Suppose SP holds for (Rk
1, . . . , Rk

n) and consider (Rk+1
1 , . . . , Rk+1

n ). In the

previous definition of (R
l+1
1 , . . . , R

l+1
n ), replace l by k; this defines a profile

(R
k+1
1 , . . . , R

k+1
n ) which, by comparison with (R

k
1, . . . , R

k
n), satisfies x P

k+1
z by

SP, and by comparison with (R
1
1, . . . , R

1
n), satisfies z P

k+1
y by A and SP. Hence

x P
k+1

y, as was to be proved. ��
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Proof (Theorem 1) Suppose that there is some F : Dn → O that is not approval
voting*. Then, there are (R1, . . . , Rn) ∈ Dn and x, y ∈ X s.t. either (i) n(x ∈ Hi ) =
n(y ∈ Hi ) and x Py, or (ii) n(x ∈ Hi ) > n(y ∈ Hi ) and y Rx .

In case (i), there are three groups of individuals, i.e., N (x Pi y), N (y Pi x), N (x Ii y)

with n(x Pi y) = n(y Pi x). The first two groups are non-empty by PI. We may take
a permutation σ that interchanges them and leaves the third group unchanged; by
A, the resulting profile (Rσ(1), . . . , Rσ(n)) has the collective preference x Pσ y. Now,
observing that for all i ∈ N , x Ri y ≈ y Rσ(i)x , we apply N to the profile to get the
contradiction that y Pσ x .

In case (ii), the three groups of individuals N (x Pi y), N (y Pi x), N (x Ii y) are s.t.
n1 = n(x Pi y) > n2 = n(y Pi x). The second group is non-empty by SP, and from the
inequality, the first group also is. Take a permutation σ that interchanges n2 individuals
in N (x Pi y) with those in N (y Pi x) and leaves the position of any others unchanged;
by A, the resulting profile (Rσ(1), . . . , Rσ(n)) has the collective preference y Rσ x .
Now, modify this profile into (R′

1, . . . , R′
n) by putting y P ′

i x if i = σ(i) is any of
the remaining n1 − n2 individuals of N (x Pi y) and leaving any other individual’s
preference the same. Given this reinforcement of strict preference for y, PR2 entails
that y P ′x . However, (R′

1, . . . , R′
n) also modifies (R1, . . . , Rn) in such a way that N

entails that x R′y, a contradiction. ��
Let us briefly check the logical independence of each condition in Theorem 1. That

PI is independent of the others can be seen by revising the CPF of approval voting*
so as to break ties between x and y when n(x ∈ Hi ) = n(y ∈ Hi ); such a function
will satisfy all conditions of approval voting* except for PI. For example, one may
single out x, y ∈ X and decide that any tie between either x or y and z 	= x, y is
broken in favour of z, while ties between x and y are broken thus: x prevails if the
equal number of supporters is even, and y prevails if it is odd; any other tie occurring
in X is left unbroken. Not every CPF that satisfies all conditions but PI reduces to
a tie-breaking revision of approval voting*.4 Fix a function w from X to [0, n − 1],
with the w(x) not all equal, and replace approval voting* by the following CPF: for
all (R1, . . . , Rn) ∈ Dn ,

x Py ⇔ n(x ∈ Hi ) + w(x) > n(y ∈ Hi ) + w(y).

This CPF obviously satisfies IIA and A, and obviously violates PI; it satisfies WP
by the range condition on w. It differs from the previous class of examples because,
for suitable numerical values, it can violate even the strict preference part of approval
voting* and it can create ties that this CPF does not have. The conceptual dissimi-
larity between the two classes suggests that very little structure is left when the only
conditions are IIA, A and WP. We eschew the problematic characterization task in this
paper.

Similarly, that IIA is independent of the other conditions follows from considering
the CPF that corresponds to equal cumulative voting, which is another refinement of
approval voting: each voter has one vote and divides it evenly among the candidates

4 The following example adapts a suggestion made by Bill Zwicker.
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he approves of; candidates with the greatest total of fractional votes are elected. The
independence of A results from considering dictatorial CPF.

Inspection of the proofs shows that the complete indifference ordering C I ∈ D
does not occur as an auxiliary profile unless | X |= 3 (see the relevant step in the
proof of Lemma 2). Thus, denoting D− = D\ {C I }, we have the following extension
of the theorem.

Remark 1 If | X |≥ 4, the theorem also holds for F : (D−)n → D.

With this extension at hand, we can redefine dichotomous preferences to have
exactly two indifference classes, as in some of the other work on approval voting.

To the best of our knowledge, only Ju (2010) has characterized approval voting in
terms of CPF.5 Assuming the simply dichotomous framework, he shows that plurality
voting, hence implicitly approval voting*, is that CPF which satisfies A, N , plus a
positive responsiveness and a non-trivality condition, here denoted as PR3 and NT,
which we now define.

Condition 10 Positive responsiveness 3 (PR3): For all (R1, . . . , Rn), (R′
1, . . . , R′

n) ∈
Dn and all x, y ∈ X, if x Pi y ⇒ x P ′

i y and x Ii y ⇒ x R′
i y for all i ∈ N, and y Pi x

and x R′
i y, or x Ii y and x P ′

i y, for some i , then x Ry ⇒ x R′y.

Condition 11 Non-triviality (NT): F does not have the constant value C I .

PR3 is weaker than PR2 and by itself incomparable with PR1. However, we can
obtain Ju’s characterization from ours by an added step of reasoning. Since N entails
IIA and PI , it is sufficient to show that N, PR3, and NT entail WP, and we will have
achieved the desired logical connection.

Corollary 1 (Ju 2010) A collective preference function F : Dn → O is approval
voting* if and only if it satisfies N, A, PR3 and NT.

Proof To be shown that WP holds. Given (R1, . . . , Rn) ∈ Dn and x, y ∈ X satis-
fying x Pi y, i ∈ N , take z 	= x, y, (R′

1, . . . , R′
n) ∈ Dn s.t. z I ′

i x P ′
i y, i ∈ N , and

(R′′
1 , . . . , R′′

n ) ∈ Dn s.t. z P ′′
i x I ′′

i y, i ∈ N . N (or PI) leads to x I ′′y, PR3 to x R′y,
and IIA to x Ry. It remains to exclude that x I y. If this indifference holds, we can
interchange x and y in (R1, . . . , Rn) and obtain (R1, . . . , Rn) ∈ Dn with y Pi x ,
i ∈ N , and thus y I x by N . Now, take any profile whatever: by an application of PR3
based on either (R1, . . . , Rn) or (R1, . . . , Rn), it follows that x and y are collectively
indifferent. This would hold for any choice of x, y ∈ X , hence violate NT. ��

Conversely, one may recover our characterization from Ju’s once Lemmas 1 and 2
have been established—his theorem then playing the role of Lemma 3 and the End
of Proof. As this further comparison suggests, the two equivalent sets of conditions
for approval voting* are not quite at the same axiomatic level. In essence, by adding
Lemmas 1 and 2, we replace N by the more Arrovian IIA condition, plus PI, and we
reformulate PR the way it should be when this change it made.

5 Essentially the same paper appears as Ju (2011).
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As already said, the other available characterizations of approval voting are choice-
theoretic, hence not directly comparable with ours. However, Vorsatz (2007) defines
social choice functions on profiles of dichotomous individual preferences—our simply
dichotomous case—and characterizes the social choice function of approval voting*
in terms of four conditions, i.e., Anonymity, Neutrality, Strategyproofness and Strict
monotonicity, which are reminiscent of ours. Neutrality is like a much weaker form
of N, Strict monotonicity suggests PR3, and IIA holds in effect, as Vorsatz derives its
choice-theoretic version from Neutrality and Strategyproofness. By contrast, following
Fishburn (1978a, b), Sato (2014) defines social choice functions on profiles individual
choices rather than of dichotomous preferences. Thus, his characterization in terms
of Anonymity, Neutrality and Faithfulness (another monotonicity condition) is more
remote.6

If we interpret our CPF in terms of majority voting, as the domain permits, we
have a further connection with May’s (1952) classic result on majority voting between
two candidates. Expanding on Arrow’s theorem for this special case, May character-
ized the CPF of majority voting by three conditions, which are N, A and PR2 when
translated into the present framework. This is but a modest corollary to Theorem 1.
As the latter makes clear, the relevant cardinality restriction bears on the voters’ sets
of equivalence classes, and not on the set of candidates. Concerning Inada’s (1964)
observation, we have extended it by fully characterizing the CPF of majority voting
on the dichotomous domain, instead of simply noting that it satisfies Arrow’s ordering
condition on this domain.

4 From approval voting to dictatorship

In this section, we shift to the twice dichotomous case and demonstrate that the condi-
tions characterizing approval voting* in the simply dichotomous case now characterize
dictatorship. We actually prove the more powerful result that Arrow’s theorem with
its initial conditions holds in the twice dichotomous case.

Theorem 2 No collective preference function F : Dn → D satisfies IIA, WP and
ND.

The proof goes through four lemmas.

Condition 12 Pareto Preference (PP): For all (R1, . . . , Rn) ∈ Dn and all x, y ∈ X,
if x Ri y for all i ∈ N, then x Ry.

Lemma 4 If a collective preference function F : Dn → D satisfies IIA and WP, it
satisfies PI and PP.

Proof Consider (R1, . . . , Rn) ∈ Dn and x, y ∈ X s.t. x Ri y for all i ∈ N . Take
z 	= x, y and (R′

1, . . . , R′
n) ∈ Dn s.t. x P ′

i z and x Ri y ≈ x R′
i y. (If x Pi y, y ∈ L ′

i and if

6 Both Vorsatz (2007) and Sato (2014) actually have more conditions. They allow for a varying set of
candidates X and—following Fishburn (1978a, b)—for a variable finite set of individuals N . This leads
them to introduce consistency conditions to connect the social choice functions obtained for these diverse
sets.
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x Ii y, y ∈ H ′
i ). If x Ii y for all i ∈ N , then x I ′

i y for all i ∈ N . In this case, WP entails
that x P ′z and y P ′z, so x I ′y since F has range D , and x I y by IIA. This completes
the derivation of PI. In the general case where x Ri y for all i ∈ N , WP entails that
x P ′z, and the D range that x R′y, whence x Ry by IIA. This completes the derivation
of PP. ��
Lemma 5 If a collective preference function F : Dn → D satisfies IIA and PI, it
satisfies N.

Proof Same as for Lemma 1. (The D range plays no role in this proof). ��
Lemma 6 If a collective preference function F : Dn → D satisfies N and WP, it
satisfies PR1.

Proof As in the proof of Lemma 2, we begin by assuming that (R1, . . . , Rn),
(R′

1, . . . , R′
n) ∈ Dn and x, y ∈ X meet the antecedent condition without any full

reversal of strict preference. With z 	= x, y and (R1, . . . , Rn) ∈ Dn as defined in this
proof, we have again that, for all i ∈ N , x Ri y ≈ x Ri z, z Ri y, and x R′

i y ≈ x Ri y.
Since N implies IIA, PP holds by Lemma 4, hence z Ry. Now if x Py, then x Pz by N,
and from the last fact, x P y, whence x P ′y by IIA. The end of the proof parallels that
of Lemma 2. ��

A group M ⊆ N is said to be decisive if for all pairs (x, y) ∈ X2 and all profiles
(R1, . . . , Rn) ∈ Dn ,

x Pi y, i ∈ M �⇒ x Py,

and it is said to be semi-decisive on the pair (x, y) ∈ X2 in the profile (R1, . . . , Rn) ∈
Dn if

x Pi y, i ∈ M , y Ri x, i ∈ N\M , and x Py.

Lemma 7 If a collective preference function F : Dn → D satisfies N and PR1, any
group M ⊆ N that is semi-decisive on a pair (x, y) ∈ X2 in a profile (R1, . . . , Rn) ∈
Dn is decisive.

Proof Take M as specified, partition N\M into G1 = {i | y Pi x} and G2 = {i | y Ii x},
and consider the profiles (R′

1, . . . , R′
n) ∈ Dn s.t.

x P ′
i y, i ∈ M , y P ′

i x, i ∈ G1, and y P ′
i x for at least one i ∈ G2.

If we show that M is semi-decisive on the given (x, y) for all such profiles
(R′

1, . . . , R′
n), the conclusion that M is decisive will follow by PR1 and N.

To establish the desired property that x P ′y, take z 	= x, y and (R′′
1 , . . . , R′′

n ) s.t.
for all i ∈ N , z R′′

i y ≈ x Ri y and x R′′
i y ≈ x R′

i y. N entails that z P ′′y and would entail
y P ′′x if y P ′x held, but this is prohibited by the D range. Hence x R′y. It remains to
show that x I ′y is impossible.
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If x I ′y, then x I ′′y by N, and z P ′′x follows. From IIA, any profile (R′′′
1 , . . . , R′′′

n ) ∈
Dn s.t. for all i ∈ N , z R′′′

i x ≈ z R′′
i x satisfies z P ′′′x . The Dn domain contains such a

profile with x R′′′
i y ≈ x Ri y for all i ∈ N . (For a proof, see the construction:

• x, z ∈ H ′′′
i and y ∈ L ′′′

i if i ∈ M ;
• y ∈ H ′′′

i and x, z ∈ L ′′′
i if i ∈ G1;

• x I ′′′
i y I ′′′

i z if i ∈ G2 and x I ′
i y;

• z ∈ H ′′′
i and x, y ∈ L ′′′

i if i ∈ G2 and y P ′
i x .

Now, IIA entails x P ′′′y, which is impossible given the D range. This completes the
proof that x P ′y. ��

Define V ⊆ 2N to be the set of all decisive groups. To contradict ND is tantamount to
showing that V contains a singleton, and we proceed to this last stage of the argument.

Proof (Theorem 2) The set V is non-empty because N ∈ V in virtue of WP. Since N
is finite, there exists in V a group of smallest cardinality M∗, which cannot be ∅ in
virtue of the PP property secured by Lemma 4. With Lemmas 5 and 6 at hand, the
conclusion of Lemma 7 follows. We use it to show that M∗ is a singleton.

Suppose by way of contradiction that | M∗ |≥ 2, so that M∗ can be partitioned into
two non-empty groups M∗

1 , M∗
2 . We take x, y, z ∈ X and a profile (R1, . . . , Rn) ∈ Dn

with the following properties:

• for all i ∈ M∗
1 , x Pi y Ii z;

• for all i ∈ M∗
2 , z Ii x Pi y;

• for all i ∈ N\M∗, y Pi x Ii z.

It follows, first, that x Py because M∗ = M∗
1 ∪ M∗

2 is decisive, and second, that y Rz
because z Py would mean that M∗

2 is semi-decisive on (z, y) in (R1, . . . , Rn), hence
decisive, and this would contradict the minimality of M∗. The two conclusions entail
that x Pz, but this would mean that M∗

1 is semi-decisive on (x, z) in (R1, . . . , Rn),
hence decisive, another contradiction with the minimality of M∗. ��

Like Arrow’s theorem for F : On → O, Theorem 2 says that F : Dn → D
satisfying IIA and WP is a dictatorship, i.e., there is j ∈ N—the dictator—such
that, for all (R1, . . . , Rn) in the respective domain and for all x, y ∈ X , if x Pj y,
then x Py. However, more is true with the present F than with Arrow’s. By the same
argument that proves PI in Lemma 4, j also dictates collective indifference, i.e., for
all (R1, . . . , Rn) ∈ Dn and all x, y ∈ X , x Pj y if and only if x Py. It follows that
SP cannot hold with the present F , this unusual restriction being due to its range.
Consistently, the proof of Lemma 3, which derives SP for F : Dn → O, made use of
at least three indifference classes.

Inspection of the present proof (see Lemmas 6 and 7) shows that Remark 1 also
applies to Theorem 2.

The formal argument has gone through the three stages of neutrality, positive respon-
siveness, and finally dictatorship, which are familiar from early proofs in social choice
theory, but dichotomous individual preferences do not support arguments that make
active use of PP-transitivity, so each stage needed a special proof based on either the
domain Dn or both this domain and the range D (in Lemmas 4 and 7). Relatedly,
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there is no use here for the free triple property, which is the main sufficient condition
on individual preference domains to derive an Arrovian impossibility. Social choice
theory rarely, if ever, considers restrictions put on both the domain and range of the
CPF; see the surveys by Gaertner (2002) and Breton and Weymark (2011).

At virtually each stage, we made flexible use of the voters’ indifference relation, i.e.,
we interpreted x Ii y as being sometimes x, y ∈ Hi , sometimes x, y ∈ Li , depending
on what was to be proved. The dictatorial conclusion would collapse without this con-
venience. To illustrate, consider the subset DS of those weak dichotomous orderings
the higher class of which is a singleton. There exist non-dictatorial F : (DS)n → D
satisfying both IIA and WP, e.g., the following CPF: for all (R1, . . . , Rn) ∈ DS , if
x Pi y for all i ∈ N , then x Py; otherwise,

F(R1, . . . , Rn) = C I.

However, dictatorhip would be reinstated if the conditions applied to F : (DS)n →
DS . We do not prove this further Arrovian variant here.

A final comment is in order. One may wonder how to place Theorem 2 vis-à-vis
the current analysis of approval voting in terms of social choice functions. The answer
is that it has no analogue in this framework. Superficially, dichotomous preferences
resemble choices, since both divide the set of candidates into a higher and a lower
subset. However, an expressed choice can result from preferences having more than
two indifference sets, so that indifference within the higher subset and within the lower
subset cannot be presumed in the case of choice, whereas the H and L of a dichotomous
preference are indifference sets by construction. Thus, the formalism of Theorem 2
is much more assertive than a choice-theoretic one could ever be. This holds even
when the social choice function is defined on dichotomous individual preferences,
since the gap between preference and choice remains at the collective level. In sum,
although the choice-theoretic and the preference-theoretic formalisms are both suited
for positive characterizations of approval voting, only the former can reach the critical
level of Theorem 2.
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