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Abstract  For the development of electric machines, 

particularly induction machines, temperature limit is a key 

factor affecting the efficiency of the overall design during 

transient state. Since conventional loading of induction 

motors is often expensive, the estimation of temperature rise 

by tools of mathematical modeling becomes increasingly 

important and as a result of which computational methods 

are widely used for estimation of temperature rise in 

electrical machines. This paper describes the problem of two 

dimensional transient state heat flow in the stator of 

induction motor during auto-transformer starting. The stator 

being static is prone to high temperature and the study of 

thermal behavior in the stator is useful to identify the causes 

of failure in induction machines. The temperature 

distribution is obtained using finite element formulation and 

employing arch shaped elements in the r-θ plane of the 
cylindrical co-ordinate system. This model is applied to one 

3-phase squirrel cage induction motor of 7.5 kW rating. 
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1. Introduction

Considering the extended use of squirrel cage induction 

machine in industrial or domestic applications both as motor 

and generator, the improvement of the energy efficiency of 

this electromechanical energy converter represents a 

continuous challenge for the design engineers. Any 

achievements in this area mean important energy savings for 

the world economy. Thus, to design a reliable and 

economical motor, accurate prediction of temperature 

distribution within the motor and effective use of the coolant 

for carrying away the heat generated in the iron and copper 

are important to designers [1]. Traditionally, thermal studies 

of electrical machines have been carried out by analytical 

techniques, or by thermal network method [2, 3]. These 

techniques are useful when approximations to thermal circuit 

parameters and geometry are accepted. Numerical 

techniques based on either finite difference method [4, 5] or 

finite element method [6-8, 9-13] are more suitable for 

analysis of complex system. Rajagopal et al. [14, 15] carried 

out two-dimensional steady state and transient thermal 

analysis of TEFC machines using FEM. Compared to the 

finite difference method, finite element method can easily 

handle complicated boundary configurations and 

discontinuities in material properties. The finite element 

method is first introduced for the steady state thermal 

analysis of the stator cores of large turbine-generators by 

Armor and Chari [16]. However, their works are restricted to 

core packages far from the ends and they do not consider the 

influence of the stator coil heat. Armor [17] employed 

arch-shaped finite elements to solve the transient heat flow in 

the rotor of large turbine-generators. Sarkar [18] also 

described a method based on arch-shaped finite elements 

with explicitly derived solution matrices for determining the 

thermal field of induction motors. 

Use of finite elements has seldom been attempted due to 

the complexity and high cost of computation and detailed 

2-dimensional transient thermal analysis is not known to be 

reported for auto-transformer starting of induction motors. 

In this paper, a finite element solution of the 

two-dimensional transient heat conduction in cylindrical 

co-ordinate system with explicitly derived solution matrices 

is introduced. In the r-θ plane arch shaped finite elements are 

introduced. The explicit nature of the solution matrices 

allows for optimal computer usage. The temperature 

distribution in the r-θ plane has been determined by taking 

only a strip of unit thickness in the stator bounded by planes 



28 Approximate Analysis of Transient Heat Conduction in the Stator of  

an Induction Motor during Auto-transformer Starting 

at mid-slot, mid-tooth divided into 24 arch shaped elements 

and thus provides a new approach of multi-time interval 

solution to a transient stator heating problem and this defines 

the scope of this technique. The requirements of computer 

storage for a large number of elements have been reduced by 

the use of half band- width of the symmetric matrix. 

The method is directly applicable to the study of 

temperature rise during auto-transformer starting that may 

arise following some intentional starting actions. The 

procedure is particularly suited to the study of transient 

heating of the stator coils due to I
2
R losses in the coil slots 

during auto-transformer starting. 

2. Finite Element Formulation 

The general form of the heat conduction equation can be 

described by the following relations 

             (1) 

Where, T is the potential function (temperature), V is the 

medium permeability (thermal conductivity), q is the flux 

(heat flux), Q is the forcing function (heat source), Pm and 

Cm are material density and specific heat respectively. 

In cylindrical polar co-ordinates, equation (2) can be 

expanded as 

 (2) 

Where, Vr, Vθ are thermal conductivities in the radial and 

circumferential directions respectively. 

2.1. Finite Element Analysis (Galerkin’s Method) 

The Galerkin’s criterion is used for obtaining 

approximate solutions to linear and non-linear partial 

differential equations. When only the governing differential 

equations and their boundary conditions are available, 

Galerkin’s method is convenient in a way that this approach 

surpasses the variational method in generality and further 

broadens the range of applicability of the finite element 

method. Though the element equations derived for those 

problems were explicitly evaluated only for the simplest 

type in each case, the equations are general and be applied 

for many element shapes and displacement models. The 

popularity of the method stems mainly from the case with 

which irregular geometries and implicit natural boundary 

conditions can be handled. Another important advantage is 

that the method allows development of general computer 

program that can solve variety of thermal problems simply 

by accepting different input data. The computer program 

illustrates how a real problem is actually solved by finite 

element method. It is envisaged that such programs would 

be useful for future studies of more complicated problems. 

The solution of equation (3) can be obtained by assuming 

the general functional behavior of the dependent field 

variable in some way so as to approximately satisfy the 

given differential equation and boundary conditions. 

Substitution of this approximation into the original 

differential equation and boundary condition then results in 

errors called a residual. This residual is required to vanish in 

some average sense over the entire solution domain. 

The approximate behavior of the potential function 

within each element is prescribed in terms of their nodal 

values and some weighting functions N1, N2 ... such that 

   
i=1, 2… m             (3) 

The weighting functions are strict functions of the 

geometry and are termed interpolation functions. These 

interpolation functions determine the order of the 

approximating polynomials for the heat conduction 

problem. 

The method of weighted residuals determine the ’m’ 

unknowns Ti in such a way that the error over the entire 

solution domain is small. This is accomplished by forming a 

weighted average of the error and specifying that this 

weighted average vanishes over the solution domain. 

The required equations governing the behavior of an 

element is given by the expression 

(4) 

Where, T0 is the temperature at the previous point in time 

and ∆t is the time interval 
Equation (4) expresses the desired averaging to the error 

or residual within the element boundaries, but it does not 

admit the influence of the boundary. Since we have made no 

attempt to choose the Ni so as to satisfy the boundary 

conditions, we must use integration by parts to introduce the 

influence of the natural boundary conditions. 

2.2. Arch Element Shape Functions 

Consider the arch-shaped element of Figure 1 formed by 

circle arcs radii a, b, radii inclined at an angle 2α. 

 

Figure 1.  2-D Arched shaped element suitable for discretization of 

induction motor stator 
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The shape functions can now be defined in terms of a set 

of non-dimensional coordinates with the help of cylindrical 

polar coordinates r, θ using the formula given below ρ =
r

a
 ,γ =

θ − π
2�α

The arch element with non-dimensional co-ordinates is 

shown in Figure 2. 

Figure 2.  The non-dimensional arch shaped element 

The temperature at any point within the element be given 

in terms of its nodal temperatures by 

T = TANA + TBNB + TCNC + TDND        (5) 

Where the N’s are shape functions chosen as follows: 
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It is seen that the shape functions satisfy the following 

conditions: 

(i) That at any given vertex ’A’, the corresponding shape 

function NA has a value of unity and other shape functions 

NB,NC have a zero value at this vertex. Thus, at node j, Nj = 

l but Ni =0, i≠j. 

(ii) The value of the potential varies linearly between any 

two adjacent nodes on the element edges. 

(iii) The value of the potential function in each element is 

determined by the order of the finite element. The order of 

the element is the order of polynomial of the spatial 

co-ordinates which describes the potential within the 

element. The potential varies as a quadratic function of the 

spatial co-ordinates on the faces and within the element. 

2.3. Boundary Conditions 

The temperature distribution is assumed symmetrical 

across two planes, with the heat flux normal to the two 

surfaces being zero. From the other two boundary surfaces, 

heat is transferred by convection to the surrounding gas. It is 
converted to the air gap gas from the teeth, to the back of core 

gas from the yoke iron. The boundary conditions may be 

written in terms of nT δδ / , the temperature gradient normal 

to the surface. 

Mid-slot surface 
0=

sn

T

δ
δ

Mid- tooth surface 

0=
tn

T

δ
δ

Air gap surface 
AG

δn
δT

 -V)h (T-T
rAG

=

Back-of-core surface, BC
rBC n

T
VTTh δ

δ
−=− )(

Where, T=Surface temperature, TAG= Air gap gas 

temperature and TBC = Back of core gas temperature 

2.4. Approximate Numeric Form 

The heat flow equation may be formulated in Galerkin’s 

form, the solution being obtained specialized the general 

functional form to a particular function, which then 

becomes the approximate solution sought. Focusing our 

attention on equation (4), we obtain through integration by 

parts. 
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      (7) 

Where nr is the r component of the unit normal to the boundary, and d∑ is a differential arc length along the boundary. 
Equation (6) takes the form 

    (8) 

There are four such equations as (7) for the four vertices of the element. These equations, when evaluated, lead to the 

matrix equation 

  (9) 

Where, [SR], [Sθ] are symmetric coefficient matrices 

(thermal stiffness matrices),[SH] is the heat convection 

matrix, [ST] is the heat capacity matrix, [T] is the column 

vector of unknown temperatures, [T0] is the column vector of 

unknown (previous point in time) temperatures, [R] is the 

forcing function (heat source vector), and [SC] is the column 

vector of heat convection. 

3. Discretized Model for FEM
Application

The stator of an induction motor being static is prone to 

high temperature and the temperature distribution of the 

stator only is computed here .The hottest spot is generally in 

the copper coils. Thermal conductivity of copper and 

insulation in the slot are taken together for calculation. As the 

temperature is the maximum at the central plane, the 

temperature distribution in the plane can be determined 

approximately by taking this as a two-dimensional r-θ 

problem with the following assumptions: 

(a) The temperature in the strip of unit thickness on the 

central axis is assumed to be fixed axially i.e. no axial 

flow of heat is assumed in the central plane. This 

assumption is permissible because in the central plane 

where the temperature distribution is the maximum, 

while the temperature gradient in the axial direction is 

zero. 

(b) The convection is taken care of only at the cylindrical 

surfaces neglecting the convection at the end surfaces. 

Because of this assumption, the temperatures calculated 

in the central plane will be slightly higher than the 

actual. 

In the case of transient stator heating caused by auto 

transformer starting, the transient analysis procedure is able 

to provide an estimate of the temperatures throughout the 

volume of the stator at an interval of time required to bring 

the motor from rest to rated speed by providing reduced 

voltage when auto transformer is connected in the circuit and 

rated voltage when auto transformer is disconnected from the 

circuit during starting action, 

Assuming that the machine is at rest with its stator 

winding at normal ambient temperature, respective voltage 

and current are injected to the stator winding of the machine. 

The temperatures within the volume of the stator are 

calculated at the nodal points for a period of the time required 

for starting action. 

Figure 3.  Slice of armature iron and winding bounded by planes at 

mid-slot and mid-tooth divided into arch-shaped finite elements. 

In this analysis because of symmetry, the two-dimensional 

domain in cylindrical polar co-ordinates of core iron and 

winding, chosen for modeling the problem and the geometry 

is bounded by planes passing through the mid-tooth and the 

mid-slot, which are divided into finite elements as shown in 

[ ] [ ] [ ] [ ] [ ] [ ][ ] [ ] [ ]0R T H T C
S S S S T S T R Sθ + + + = + + 
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Figure 3. Arch-shaped elements are used throughout the 

solution region. 

4. Calculation of Heat Losses [19] 

Heat losses in the stator tooth and core are determined on 

calculated magnetic flux densities (0.97wb/m
2
 and 

1.293wb/m
2
 respectively) in these regions, tooth flux lines 

are predominantly radial and yoke flux lines predominantly 

circumferential. The gain orientation of the core punching 

varies in these two directions and therefore influences the 

heating for a given flux density. Copper losses in the 

winding are determined from the length as well as the area 

required for the conductors in the slot. 

Iron loss of stator core per unit volume = 

3.88708×10
-5

W/mm
3
. 

Iron loss of stator teeth per unit 

volume=3.92352×10
-5

W/mm
3
. 

4.1. Stator Copper Loss 

These types of starters use an auto-transformer between 

the motor and the supply lines to reduce starting current of 

the motor. The auto-transformer may be single three phase 

type or three single phase type, for our case we will 

consider a single three phase type auto-transformer as 

shown in figure 4. Taps are provided on the 

auto-transformer to select 50%, 65%, and 80% of the line 

voltage of starting. 

For the purpose of the auto–transformer starting 

contactors, 1S, and 2S are closed, as a result the transformer 

is energized from the supply. Reduced voltage from taping 

A, B and C is available at the motor terminals. After the 

motor picks up sufficient speed contactor 1S is first 

de-energized. Auto-transformer’s neutral connection gets 

open circuited. The motor remains connected to supply 

through contacts of contactor 2S and the transformer acts as 

an impedance in the motor circuit. Next, the run contactor R 

is energized which bypasses the impedance and connects 

the motor directly to the supply. 

 

 

We are interested in auto-transformer starting of the 

induction motor, the equivalent circuit of which is shown in 

figure 5 to calculate the temperature distribution in the stator 

during the starting period. For the purpose of starting, we 

will take the starting voltage at 50% of full voltage to start 

with and calculations will be done on that voltage till the 

auto-transformer acts as impedance in the motor circuit. 

Finally, the temperature distribution within the stator due to 

reduced voltage auto-transformer starting are calculated by 

splitting the entire slip range (i.e. from s=1 to full load slip 

s=0.04) into small intervals. 

 

Figure 4.  Power circuit for a line auto-transformer reduced voltage starter 

 

Figure 5.  Equivalent Circuit of Induction Motor 

The stator currents, stator copper losses and the time 

required for starting action at different slips are calculated 

and tabulated below: 
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Table 1.  The different values of stator current, stator copper loss/slot/unit volume and time required for starting action at different slips in auto-transformer 
starting 

Auto-Transformer start period (slip s=1 to slip s=0.7) 

Slip (s) Stator Current(A) I1 
Stator Copper loss/slot/unit 

volume (W/mm
3
) 

Acceleration 

Time(s) 

1.0 22.37 0.00226084 
6.62 

0.9 22.06 0.00219861 

6.112 

0.8 21.67 0.00212156 

5.62 

0.7 21.16 0.00202288 

5.15 

0.6 20.48 0.00189495 

4.715 

0.5 19.52 0.00172146 

4.337 

0.4 18.15 0.00148830 

4.067 
0.3 16.08 0.00116818 

Auto-transformer act as impedance 
0.3 21.76 0.00213923 

2.218 
0.2 18.55 0.00155461 

D.O.L Run period 

0.2 25.63 0.00296779 
1.1975 

0.1 15.263 0.00105249 

1.222 
0.04 6.66 0.00020038 

 

4.2. Convective Heat Transfer Co-efficient [1, 2] 

Two separate values of convective heat transfer 

co-efficient have been taken for the cylindrical curved 

surface over the stator frame and the cylindrical air gap 

surface. The natural convection heat transfer co-efficient on 

cylindrical curved surface over the stator frame is taken as 

h=5.25W/m
2
°C.The heat transfer co-efficient on forced 

convection for turbulent flow in cylindrical air gap surface 

is taken as h=60.16W/m
2
°C. 

4.3. Thermal Constants [1] 

For the transient problem in two dimensions, the 

following properties are taken for each different element 

material. 

Table 2.  Typical Set of Material Properties for Induction Motor stator 

Magnetic Steel Wedge Copper &Insulation 

Vr 33.070 2.007 

Vθ 0.8260 1.062 

Pm 7.86120 8.9684 

Cm 523.589 385.361 

 

5. Results and Discussions 

Since the hottest spots are found to be in the stator copper 

as envisaged from the calculated temperatures for the 

two-dimensional structure during the auto-transformer 

starting period, the temperature variation with time in each 

node of copper is taken as an index to understand the 

temperature profile during the transient. It is to be noted that 

the temperature is found to be the maximum at the nodes 

pertaining to copper in the axis of symmetry. The 

temperature rise is steady at different stator currents under 

the auto-transformer starting region at different slips from s 

= 1 to s = 0.2. It is also to be noted that under DOL run the 

motor has reached a steady speed under full load condition 

and as such there is a slight decrease of hot spot temperatures 

persisting across the axis of symmetry after the motor is 

directly connected across the supply. 

As a consequence, the temperature variation with time at 

hottest spots has been depicted to investigate the magnitude 

of the temperature variation with time at different nodal 

points along the stator copper winding.The graphs as shown 

in Figures. 6–13 are drawn from the results obtained by 

theoretical analysis at each node of copper winding after 

computing temperatures at different time intervals from 

standstill (s=1) to reach full-load slip(s=0.2) during 

auto-transformer starting. 
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Figure 6.  Temperature vs. Acceleration time                           Figure 7.  Temperature vs. Acceleration time 

 

Figure 8.  Temperature vs. Acceleration time                             Figure 9.  Temperature vs. Acceleration time 

 

Figure 10.  Temperature vs. Acceleration time                      Figure 11.  Temperature vs. Acceleration time 
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Figure 12.  Temperature vs. Acceleration time                         Figure 13.  Temperature vs. Acceleration time 

6. Conclusions 

The two-dimensional transient finite element procedure 

for the thermal analysis of large induction-motor stator 

provides the opportunity for the in-depth studies of stator 

heating problems. By virtue of the new, explicitly derived 

arch shaped element, together with an efficient bandwidth 

and Gauss routine, extremely large problems can be 

efficiently solved. 

A new two-dimensional finite element procedure in 

cylindrical polar co-ordinates, with explicitly derived 

solution matrices, has been applied to the solution of the 

transient heat conduction equation during auto-transformer 

starting. Though the results are approximate, the method is 

fast, inexpensive and leads itself to immediate visual 

pictures of the temperature pattern in a two-dimensional 

slice of core and winding in the stator of an induction 

motor. 
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