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A formalism is developed which results in simple analytic expressions for the electron energy
splittings and the wave functions in coupled quantum well structures of the type employed in new
laser and transistor configurations. The limits of validity of the formalism are explored.

The ability to fabricate single and multiple quantum
well devices has given rise to numerous new optical and elec-
tronic devices as well as to new physical phenomena. '~

An increasing amount of recent attention has been di-
rected to structures employing more than one quantum well
with interwell spacings and barriers sufficiently small so that
significant amounts of (tunneling) interaction takes place.**
We will refer to such structures as Coupled Quantum Wells
(CQW). Two important issues which arise here are those of
the effect of coupling on the (quantized) energies and on the
electron localization. These affect directly the performance
of optical (lasers) and electronic {e.g., field-effect transistor)
devices.

An approximate expression for the energy splitting
based on an exact solution of the two (identical} well Schrs-
dinger equations was obtained in Ref. 4 while numerical so-
lution of the effect of well asymmetry on the electron distri-
bution was considered in Ref. 5.

In the work reported below we will present a formalism
which leads to simple analytic expressions for the eigenfunc-
tions and eigenenergies of the coupled square quantum
wells. An additional feature of the theory is that it yields
convenient expressions for the effect of intentional and unin-
tentional deviations from structure symmetry on the eigen-
energies and the electron localization. It also suggests how
the electronic or optical properties of such devices might be
controlled by means of an external field.

The potential energy function ¥ (x) of our modei prob-
fem is plotted in Fig. 1{a}. The height asymmetry ¢ and the
well width difference (#,~¢,), both exaggerated in the figure,
are small and represent the slight intentional or accidental
departures from that of an ideal structure.

Drawing on a formalism employed successfully to de-
scribe optical directional couplers,® we express an eigenstate
¥(x) of an electron in the potential ¥'(x) of Fig. 1{b) as a linear
combination of well orbitals (LCWO) #, , {x) of the two sepa-
rate wells in the limit of infinite separation (a— ), i.€.,

Yx) = ayx) + bulx) (1)
where the Schrodinger equations obeyed by ¥, ,(x) are the
single-well equations

H1.2¢1.2 ’=E1.21//1.2 » (2)
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i 'lﬁ + Vialx), (3a)

and m* is the carrier effective mass. The single-well potential
energy functions ¥, , (x) are shown in Fig. 2(b).

We note that the CQW potential ¥ (x) can be expressed
as

Vix) = Vix)+ Volx) — Vo5 (3b)
the Schrédinger equation now takes the form
—#w o, V(%) + Vaix) — V, Jlag, + biy)
Zm. a xz 1 2 0 1 2
=Ef{ap, +bp], (4)
since ¢,(x} and ¢,{x) are presumed known [they involve a
solution of the standard one-dimensional square-weil Schro-
dinger Eq. (2}]. The solution of Eq. (4) reduces to a determin-
ation of the eigenfunction coefficients a and b and eigenener-
gies E.
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FIG. 1. (a) Energy V (x) of a double well structure; (b) the individual potential
energies ¥,(x) and V,(x) of the single-well structures whose eigenfunctions
are combined to obtain those of the double-well structure.
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FIG. 2. The exact and LCWO wave functions for different barrier widths: Vo = 0.15 eV, m* = 0.1m, ¢0, and #, = #, = 100 A except in 2(d where #, = 99 A,
1, =100 A.

Equation (4) simplifies to where E| and E, are the (known) single-well eigenenergies.
af(E, — E) + (Vylx) — Vo)l + b(E, — E) Next we multiply 5 by #% and integrate from — oo t0 oo
+ (Vi(x) — Vo), =0, (5)  and repeat the procedure using y%. The respective results are

al(Ey— E) + [(1{V, = Vo[D] + b [(E, — E)X1[2) + (U[V, — Fj2)] =0 (6)

al(E, — E)2ID] + [V, = V| )] + b [(E, — E) + (2|V;, — V[2)] =0.
It is convenient to introduce new energy parameters

5EE1;E2, E=E‘;E2, e=E—E, )

which transforms Eq. (6) to

(€ +8) + 1]V, = ¥o|1) (e~ 8)1[2) + (1|, = Vo[2)| |af _ @)
(e +8)(2{1) + 2V, —Vol1) (e =8) + 2|V, — V,|2) b '
f
The explicit determination of all the matrix elements in- m*
volved in Eq. (8) has been carried out by using the normal- K= —%-(V o—E).

ized single-well solutions i ,{x) and ¢,(x). The general results ) ‘
are rather complicated. In the case of V,»E, , and of weak ~ Inall cases of interest here exp( — Ka)<1, 5, e<Esothattoa
coupling (Ka» 1) considered here, we have for the symmetric high degree of accuracy we may replace Eq. {8) with

case
€e+8 « a o, (10)
<1i2>~8(£ L oxe w2 -8k
T\V,) Kt ’ whose determinantal equation gives
(1P = Vo D= @V, — P2y L=k () )= £V6 + K, (1)
where
E x=(1{V\{x) — ¥o|2),
WV, — VL2 =V, — V1) =4 ——e K=, ‘
( t 1 2! > ( l 2 0[ ) Kt 4 KZE(2§V2(X)—V0“>, {12)
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are the coupling constants. The eigenenergies are thus given
by

EC=E+ eV =YE, + E) + V6 + xx5
ET=E+4+é)=|E, +E,) -6+ xi,, (13)
and the corresponding normalized eigenfunctions obtained

after substituting €'*’ and €™, one at a time, in Eq. (10) to
solve for a/b, are

Woaa _ W& + k* — 8)
(Energy E*) [ + W& T, — 6P ]

¥

LY

- v, (14)

[+ W&+ —82)2

Yoaa _ K, "

(Energy E©) [+ (‘]m — 8] !
(V& + 17 — 8) . (15)

[ + W&+ —687)
where K°=K,K;.

In the symmetric case, §=0, x,=k, and
dP =g =b = — b = 1,2 as expected, i.e., the ei-
genfunctions possess even or odd parity. In the weak cou-
pling limit which we are considering the coupling constants
«; and k, are given by

1/2
Ky = _(Vo__¢)(_f._) ﬂ‘z_&__*_”__K_le*Kﬂ, (16)
n,/ KK, Ki
172
K= — Vo(_i_) Kk, K, + K, +2K2e""“, (17)
bt KK, K;
2m*E, — 2m*(V,—E
b= [T k= [
2m*E. 2m*V, - E
R N (18)

In the case of small asymmetry considered here ¢<£V,
and K, = K,, E, = E,, k, = k,, the expression for the coupling
constant simplifies to

x,:x2=x=4( VO“E) E_,-xa, (19)

e
Vo 1+ Kt

An important parameter is the energy splitting between
the two states of the TCQW structure. It is given, according

to Eq. {13) by

AE=E"—E7 =2/ FkK, , (20)
which in the symmetric case {§ = 0) reduces to
Vo—E) E

V, 14Kt '

The last result agrees with that obtained by Kroemer and
Okamoto® from a solution of the boundary value problem of
a symmetric two coupled quantum well structures. A com-
parison with an exact numerical solution of the eigenvalue
problem of Eq. (4) is shown in Table I. We find that in our
example the error between the exact energy splitting and the
LCWO result of Eq. (21) is less than 2% for barriers exceed-
ing 75 A in width. The condition for validity of the LCWO
result is exp( — ka)<] (i.e., small tunneling probability). We
can thus extend the range of validity of the LCWO to even
narrower barriers by increasing the barrier height (V,,), or the
well width (t) or using an electron with a larger m* (our
example uses a conservative value of m* = 0.1 m.

The basic physical parameter determining the electron
localization is the ratio § /. When 5 <« the wave functions
according to Eq. (14) are distributed essentially equally
between the wells while for >« we have from Eq. {14) that

AE:ZK:

(21)

N Kk/26 _ 1
N
st = b=t (22)
while
Yeven 1 /26
) )
~h+ ot (23)

and the wave functions become highly localized in one of the
two wells. We can thus control the degree of localization of
an electron in a TCQW structure by controlling the ratio
8 /x. A comparison between the LCWO wave functions Egs.
(14), (15) and the exact functions obtained by a numerical
solution of the Schrodinger equation is shown in Fig. 2. In
Figs. 2(a) and 2(b) we show, respectively, the symmetric and
antisymmetric wave functions in a symmetric well with a
barrier width of 75 A. The exact and approximate (LCWQ)
eigenenergies differ by less than 0.6% so that in this figure

TABLE I. A comparison of the exact value of the energy and that calculated from the LCWO result Eq, (21).

ald) 150 100 75 50 25
E (eV) 0.0276892 same same same
exp{ — Ka) ~0  0.0035 0.014 0.059 0.25
AE,... (eV) ~0  9376x10™* 3.860¢ 1074 1.578 x 103 6.174 1072
AEicwo = A e, ~0 055 1.85 10.6 64
AEw
(percent)
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the corresponding eigenfunctions appear identical. An ap-
preciable deviation of the approximate solution from the ex-
act solution appears when the barrier width is reduced to 50
A as can be seen in Fig. 2(c). We note that, according to Table
1, the error in the energy splitting in this case is only ~ 10%.
A comparison of the exact and approximate wave functions
in an asymmetric structure is shown in Fig. 2(d). The dis-
crepancy between the exact and the LCWO functions is not
visible in this drawing. We note also that the very strong
localization, 89% of [¢|* in the right well, is brought about
by a mere 1 A { = 1%) difference between the well widths.
The mismatch parameter § is given in the weak-coupling,
fexp { — ka)«1] near-symmetric case by

6:—‘?-—-’?2—7—2-&1 — 1),
2 m%3

t=1{t,+1). (24)

We can thus compensate for a geometric mismatch when
(t,#1,) by using an asymmetric potential field, # #0so thata
symmetric (§ = 0) quantum well structure does not consist
necessarily of identical wells. The control of ¢ can be accom-
plished by an applied bias field across the structure. Applica-
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tions to field-controlied field-effect transistors and lasers
suggest themselves.

In summary, we have presented an analytic approach
(LCWO)] for solving the Schrddinger equation of coupled
quantum well structures. Two parameters, « and &, charac-
terize the electronic energy splitting and the electron local-
ization. The LCWO formalism should apply equally well to
the case of coupled wells which are not square, where the
exact solution will prove impractical, as well as to the multi-
quantum-well case.
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