
Geoinformatica
DOI 10.1007/s10707-010-0121-4

Approximate and exact hybrid algorithms for private
nearest-neighbor queries with database protection

Gabriel Ghinita · Panos Kalnis · Murat Kantarcioglu ·

Elisa Bertino

Received: 2 April 2010 / Revised: 16 August 2010 /
Accepted: 23 November 2010
© Springer Science+Business Media, LLC 2010

Abstract Mobile devices with global positioning capabilities allow users to retrieve
points of interest (POI) in their proximity. To protect user privacy, it is important not
to disclose exact user coordinates to un-trusted entities that provide location-based
services. Currently, there are two main approaches to protect the location privacy of
users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location
data using private information retrieval (PIR) protocols. Previous work focused
on finding good trade-offs between privacy and performance of user protection
techniques, but disregarded the important issue of protecting the POI dataset D. For
instance, location cloaking requires large-sized CRs, leading to excessive disclosure
of POIs (O(|D|) in the worst case). PIR, on the other hand, reduces this bound
to O(

√
|D|), but at the expense of high processing and communication overhead.

We propose hybrid, two-step approaches for private location-based queries which
provide protection for both the users and the database. In the first step, user locations
are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR
protocol is applied with respect to the obtained query CR. To protect against
excessive disclosure of POI locations, we devise two cryptographic protocols that
privately evaluate whether a point is enclosed inside a rectangular region or a convex
polygon. We also introduce algorithms to efficiently support PIR on dynamic POI

G. Ghinita (B) · E. Bertino
Purdue University, West Lafayette, IN 47907, USA
e-mail: gghinita@cs.purdue.edu

E. Bertino
e-mail: bertino@cs.purdue.edu

P. Kalnis
King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
e-mail: panos.kalnis@kaust.edu.sa

M. Kantarcioglu
University of Texas at Dallas, Richardson, TX 75080, USA
e-mail: muratk@utdallas.edu



Geoinformatica

sub-sets. We provide solutions for both approximate and exact NN queries. In the
approximate case, our method discloses O(1) POI, orders of magnitude fewer than
CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of
a single POI, although with slightly higher computational overhead. Experimental
results show that the hybrid approaches are scalable in practice, and outperform the
pure-PIR approach in terms of computational and communication overhead.

Keywords Location privacy · Private information retrieval ·
Homomorphic encryption

1 Introduction

Mobile devices with positioning capabilities (e.g., GPS) facilitate access to location-
based services that provide information relevant to the users’ geo-spatial context.
Typically, users are interested in finding nearby points of interest (POI), and send
nearest-neighbor (NN) queries to location servers (LS) that own databases of POI.
However, users are reluctant to disclose their exact locations to the un-trusted LS,
since sensitive details about lifestyle, political or religious affiliation, etc., can be
revealed by a person’s whereabouts.

To address this threat, user locations are perturbed before being reported to the
LS. On the other hand, replacing exact locations with coarse regions requires the
disclosure of a large number of POIs to the user, such that result correctness is
preserved. However, the LS wishes to protect its data against excessive disclosure,
since the POI dataset represents a valuable asset to the service provider. For instance,
consider that Bob asks the query “find the nearest restaurant to my current location”.
The LS may reward Bob with certain discounts, in the form of electronic coupons
(e.g., digital gift card codes) that are associated with each POI. If the user is billed
on a “per-retrieved-POI” basis, then a large number of results will increase the cost
of using the service. On the other hand, if the LS offers the service with no charge to
the user (e.g., advertisement-generated income), then users could abuse the system
by redeeming a large number of coupons. This causes the LS to lose its competitive
edge, and to cease providing the service.

Existing solutions for private location queries focus on user protection only, and
can be broadly classified into two categories:

1. Location Cloaking techniques replace the exact location of a user with a cloaking

region (CR), typically of rectangular shape. To ensure result correctness, the CR
must enclose the actual user location. Furthermore, CRs must satisfy certain con-
straints dictated by a privacy paradigm, which expresses the privacy requirements
of the user (e.g., spatial k-anonymity (SKA) [1–4] requires each CR to contain at
least k distinct users). Regardless of the method used to generate the CR, query
processing at the LS side is performed with respect to a rectangular region, as
opposed to an exact user location. In consequence, the result returned by the LS
is a super-set of the actual query result.

2. Private Information Retrieval (PIR) techniques rely on a cryptographic protocol
to achieve query privacy [5]. In a pre-processing phase, the LS organizes the
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POI database into a data structure relevant to the supported type of query,1 and
maps it to an ordered array D[1 . . . n]. At runtime, a query is transformed from
a context-based (i.e., spatial) query to a query-by-index (i.e., return the ith item),
according to the pre-defined data organization which is known by the users.
When a user wishes to retrieve D[i], s/he creates an encrypted query object q(i).
Using a mathematical transformation, the LS computes privately (i.e., without
learning the value of i) the result r(D, q(i)) and sends it back to the user. PIR
protocols ensure that it is computationally hard for the LS to recover the value i

from q(i), but at the same time the user can easily re-construct D[i] from r.

Previous work [3–5] evaluates location privacy techniques based on two criteria:
privacy and performance. With respect to privacy, PIR offers strong guarantees for
both one-time, as well as repetitive (i.e., continuous) queries. Furthermore, PIR
does not require trusted components, such as anonymizer services or other trusted
users. On the other hand, CR methods operate under a more restrictive set of trust
assumptions, but are considerably more efficient in terms of computational and
communication overhead. The cryptographic elements incorporated in PIR require
powerful computational resources (e.g., parallel machines), and high-bandwidth
communication channels.

However, there is a third, equally-important dimension in evaluating techniques
for private location queries: the amount of protection provided to the database. To
the best of our knowledge, this aspect has not been addressed before.2 Nevertheless,
as illustrated by the earlier customer-reward example, it is important to control
tightly the amount of POI disclosure.

To illustrate the limitations of existing approaches, consider the example of Fig. 1,
where the location server stores a database D of 15 POI (marked as full dots).
User u asks a query for the nearest POI. If location cloaking is used (Fig. 1a), the
user will retrieve all the seven POI enclosed3 by query CR Q. As CRs grow large,
location cloaking methods may disclose a large fraction of the database (possibly
linear to |D|). On the other hand, the NN protocol from [5] does not use CRs (a
detailed protocol description is given in Section 2). Instead, the dataset is partitioned
into rectangular tiles A . . . D, containing at most ⌈

√
15⌉ = 4 POI each (Fig. 1b). The

boundaries of the tiles are sent in plain text to u, who determines that his/her location
is enclosed by tile C. Only the POIs in tile C are revealed to u through a PIR request.
This method discloses O(

√
|D|) exact POI locations. However, revealing the tile

boundaries may result in additional disclosure of POI locations, especially if the tiles
have small spatial extent.

We propose hybrid approaches to both approximate and exact NN queries.
Figure 1c provides a brief illustration of how the hybrid two-step method works (we
focus only on approximate queries in this example, the exact case is discussed in
Section 6). The CR Q is sent to the LS, which determines a set of fine-grained tiles
{a, b , c} that cover the query area. We impose a constraint that each tile encloses at

1For instance, to answer NN queries, [5] uses a Voronoi diagram mapped to a regular grid.
2Previous work considered result set size only in the context of communication cost. However, this
indirect approach is not effective due to other factors that influence bandwidth consumption (e.g.,
POI size may be negligible in comparison with other traffic components).
3The example considers an approximate query, where candidate NNs outside Q are ignored.
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Fig. 1 Benefit of the hybrid approach

most a constant number F of POI (a system parameter). The boundaries of the tiles
are not sent to the user. Instead, the user and the LS engage in a novel cryptographic
protocol that privately determines which one of the tiles encloses the location of u.
At the end of the protocol, the LS learns nothing about the user location (except that
u is inside Q), whereas the user only learns the identifier of the tile that encloses u

(but not the boundaries of any of the tiles). Finally, the user requests through PIR the
contents of the enclosing tile4 (in this case, b). The hybrid approach has two benefits:
first, it controls strictly the amount of POI disclosed, which is bounded by a constant.
This improvement is clearly superior to location cloaking and pure-PIR approaches,
which disclose O(|D|) and O(

√
|D|) POI, respectively. Second, the hybrid approach

incurs considerably less overhead than the pure PIR method, since the cryptographic
protocol is applied only on a partition of the database.

Our specific contributions are:

(i) We propose a cryptographic protocol that relies on homomorphic encryption
and allows private evaluation of point-in-rectangle enclosure. This protocol
makes use of the homomorphic computation of the addition operation, and
forms the basis for our private approximate NN queries solution.

(ii) We extend the point-in-rectangle enclosure protocol to a more general case
that allows private evaluation of point-in-convex-polygon enclosure. The lat-
ter protocol relies on the homomorphic computation of both addition and
multiplication-with-a-constant operations, and forms the basis for our private
exact NN solution. Private evaluation of point-in-convex-polygon enclosure
provides the means to determine to which Voronoi cell of a dataset of POI
a user’s location belongs to.

(iii) We develop a hybrid approach that efficiently supports PIR processing with
respect to a user-generated cloaked region Q. The proposed method can han-
dle CRs with large extents, and controls tightly the amount of disclosed POI.
Furthermore, we show experimentally that it is considerably more efficient
than its PIR-only counterpart.

4The indexing scheme we employ (Section 5) guarantees that the retrieved tile is not empty.
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The rest of the paper is organized as follows: Section 2 surveys related work.
Section 3 outlines the system architecture and the privacy assumptions. Section 4
introduces the proposed protocol for private evaluation of point-rectangle enclosure,
whereas Section 5 presents the hybrid technique for processing private approximate
NN queries based on dynamic cloaking regions.5 Section 6 introduces the protocol
for private evaluation of point-in-convex-polygon inclusion, and shows how exact NN
queries can be answered with the help of Voronoi diagrams. We present the results
of our experimental evaluation in Section 7, and conclude with directions for future
research in Section 8.

2 Related work

Several approaches to private location queries have been proposed. In [6], the query-
ing user sends to the server k − 1 fake locations to reduce the likelihood of identifying
the actual user position. SpaceTwist [7] performs a multiple-round incremental range
query protocol, based on a fake anchor location that hides the user coordinates. In
[8], a random cloaking region that encloses the user is generated. However, neither of
these techniques is suitable if an adversary possesses background knowledge about
user locations. Most CR-based solutions [1–4] implement the spatial k-anonymity
(SKA) paradigm, and rely on a three-tier architecture: a trusted anonymizer service
intermediates all interaction between users and LS, and generates CRs that contain
at least k real user locations.

If the resulting CRs are reciprocal [4], SKA guarantees privacy for snapshots of
user locations. However, supporting continuous queries [9] requires generating large-
sized CRs. In [10, 11], the objective is to prevent the association between users and
sensitive locations. Users define privacy profiles [11] that specify their sensitivity with
respect to certain feature types (e.g., hospitals, bars, etc.), and every CR must cover a
diverse set of sensitive and non-sensitive features.

A common limitation of CR-based techniques is that they disclose an excessive
number of POIs.

In [12], the set of POI is first encoded according to a secret transformation by
a trusted entity. A Hilbert-curve mapping (with secret parameters) transforms 2-D
points to 1-D. Users (who know the transformation key) map their queries to 1D, and
the processing is performed in the 1-D space. However, the mapping can decrease the
result accuracy, and the transformation may be vulnerable to reverse-engineering.

Private Information Retrieval (PIR) protocols allow users to retrieve an object
Xi from a set X = {X1 . . . Xn} stored by a server, without the server learning the
value of i. The PIR concept was first formulated in [13], where it is shown that in
the information theoretic setting, any single-server solution requires �(n) commu-
nication cost. In practice, this bound can be reduced by employing Computational

PIR (cPIR), which offers protection against an attacker with polynomially-bounded

5Note that, we choose to present first the approximate NN solution, and then the exact one. While
this may not seem intuitive at first glance, the rationale behind this presentation order is that the
approximate NN method maps in a more natural manner to the PIR technique and associated
data structures (i.e., PIR matrix). Therefore, presenting the approximate method first improves the
readability of the paper.
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computational capabilities. The PIR protocol in [14] relies on the Quadratic Resid-

uosity Assumption (QRA), which states that it is computationally hard to find the
quadratic residues (in modulo arithmetic) of a large composite number N = q1 · q2

(q1, q2 are large primes). Specifically, given a number y ∈ Z
+1
N (Z+1

N is the sub-set
of ZN for which the Jacobi symbol [15] is +1) it is computationally hard (without
knowing the factorisation of N) to determine whether y is a quadratic residue (QR)
(i.e., ∃x ∈ ZN|y = x2 mod N) or a non-residue (QNR). Assume that all objects in X

are bits. The client sends the server an ordered array of n numbers Y = [y1 · · · yn],
such that yi is QNR, whereas all the others are QR. The server performs a masked

multiplication of values in Y, i.e., it multiples together only the y j values for which
X j = 1. The client, who knows the factorisation of N, can determine that if the result
of the multiplication is QNR, then Xi = 1, otherwise Xi = 0. The protocol can be
applied bit-by-bit to support more complex objects.

The work in [5] extends the above-mentioned protocol for binary data to the LBS
domain, and proposes approximate (ApproxNN) and exact (ExactNN) protocols for
nearest-neighbor queries. Our work proposes hybrid alternatives to answer both
approximative and exact queries. Since we use the solutions in [5] as a baseline in
our experimental evaluation, we provide an overview of their functionality.

ApproxNN organizes the POI set such that spatial queries (e.g., NN) can be
translated to queries “by-index”, which are then answered using the QRA-based
protocol. In an off-line phase, the server performs a partitioning of the POI set D

using an R∗-tree index, which is constrained to have exactly two levels. Therefore,
each leaf node holds at most

√
|D| POI, and the root node contains at most

√
|D|

minimum bounding rectangles (MBR). Figure 2 shows the obtained index for the
partitioned dataset in Fig. 1b. At query time, the user u first retrieves the root
node in plaintext, and determines which leaf node encloses, or is nearest to, u’s
location. Next, u retrieves privately the contents of the selected leaf node. There
are three limitations of this approach: (i) a large number (O(

√
|D|)) of POI are

directly disclosed, (ii) sending MBRs of leaf nodes to the user can indirectly disclose
additional POI locations and (iii) the computational complexity of the PIR phase is
O(|D|), as all data elements are considered, and bandwidth consumption is high.

The functionality of ExactNN is illustrated in Fig. 3. The server determines the
Voronoi tessellation of the POI dataset, and super-imposes a 2D grid on top of
it. Both the client and the server know the granularity of the grid, and the PIR
retrieval is performed with respect to grid cells. The PIR object associated to a grid
cell contains all data points whose corresponding Voronoi cells intersect the grid
cell. In the example, grid cell A1 contains p1 and p3, whereas A3 contains only p2.
However, to prevent the server from learning the query based on the size of the
returned result, all PIR objects must have the same length, therefore each grid cell

Fig. 2 Approximate NN PIR protocol from [5]
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Fig. 3 Mapping Voronoi cells
to grid in the exact NN PIR
protocol from [5]

is padded with dummy POI (these are filtered out by the user). Therefore, each grid
cell contains a number of POI equal to the maximum number of real POI hashed in
an individual grid cell. For skewed datasets, this can be problematic: in addition to
increasing computational and communication costs, collisions of a large number of
POI in a single cell leads to high disclosure, since all POI in the grid cell that encloses
the user’s location are sent as results. In Section 6 we devise a hybrid technique that
achieves optimal POI disclosure.

Several protocols that support secure multi-party computational geometry have
been proposed. For instance, in [16] it is shown how to compute privately point-
rectangle inclusion using secure scalar products, whereas [17] introduces a protocol
for private point-circle inclusion evaluation. However, these protocols rely on SMC
[18] primitives, and as a result they are very expensive and require multiple commu-
nication rounds. In contrast, our proposed point-in-rectangle and point-in-convex-
polygon evaluation protocols use homomorhpic encryption, and only require a single
communication round.

Closely related to our work are several methods [19–21] that use homomorphic
encryption to solve the millionaire’s problem [22]. In this setting, each of two
parties owns as private input a number, and the parties want to determine who
has the largest number without disclosing any of the inidividual inputs to the other
party. The work in [21] provides the best performance to date, improving upon the
methods in [19, 20]. However, it relies on bit-by-bit operations, which requires a
number of homomorphic encryption operations linear to the bit length of the input
numbers. Since in our setting we work with floating point numbers, with typical
representations, a number of operations between 32 and 64 must be performed for
each private comparison. In contrast, the method that we propose relaxes some of
the security requirements but necessitates only two homomorphic operations per
comparison.

3 System architecture and assumptions

3.1 Privacy Model

Many privacy models that rely on location cloaking have been proposed in literature
[1–4, 10, 11]. The proposed hybrid approach can be used in conjunction with any of
these methods. For instance, CRs can be built according to the spatial k-anonymity
paradigm [1–4], which requires that at least k distinct user locations must be enclosed
by the CR. Alternatively, CRs can be determined based on user-specified sensitivity
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Fig. 4 System architecture

thresholds with respect to a set of sensitive feature types [10, 11]. The particular
choice of privacy paradigm and CR generation technique is outside the scope of this
work. We consider the CR as an input to our method, and we focus on two aspects: (i)
how to efficiently perform PIR with respect to dynamically-generated CRs, and (ii)
how to control tightly the amount of disclosed POIs. We do, however, factor in our
system design provisions for CRs with large spatial extents, suitable to accommodate
highly-demanding privacy requirements.

Note that, it has been discussed previously [5] that location cloaking may not be
suitable for highly-mobile users issuing continuous queries. However, as shown in
[9], cloaked regions can be generated in a manner that accommodates continuous
queries. Furthermore, if the CR is large enough to cover an entire user trajectory,
private continuous queries can be supported with strong privacy guarantees. To
illustrate this claim, consider the example of user Jin, who often visits karaoke
lounges. Jin wishes to keep her passion for karaoke secret, so she does not want a
malicious attacker to learn that she was in the proximity of such an establishment. On
the other hand, Jin may be comfortable with disclosing the fact that she is currently in
Koreatown, which is a large area. In addition, while Jin remains within the perimeter
of Koreatown, her privacy is protected even if she issues continuous queries. In
Section 7, we experimentally evaluate our proposed method using CRs that cover
large portions of the dataspace.

3.2 System Overview

The proposed system architecture is shown in Fig. 4. The system model is flexible,
and can accommodate several distinct solutions for creating input CRs. For instance,
users can cloak their locations by themselves, as considered in [10, 11]. Alternatively,
users can send their queries to a trusted anonymizer service which creates the CRs
[1–4]. Or, users can build CRs in a collaborative fashion [23–25].

Given the query CR Q, the LS returns the NN POI of the user by executing a
two-round protocol, as shown in Fig. 4. In the first round (arrows labeled 1), the
user6 generates an encryption (E)/decryption (D) key pair, which are part of a

6Alternatively, the trusted anonymizer or a trusted peer can perform the described protocol on
behalf of the user.
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homomorphic encryption family, such as Paillier [26]. The user sends to the LS the
query CR Q, together with the encryption (i.e., public) key E and the encrypted user
coordinates E(xu) and E(yu).

The LS processes the range query with argument Q and partitions the result set
into a set of disjoint regions. In the case of approximate NN queries, these regions
are rectangular tiles. In the case of exact NN queries, the regions are convex polygons
representing all Voronoi cells in the POI dataset tessellation that intersect query Q.
For brevity, the example in Fig. 4 only shows the rectangular tiles for the approximate
queries, but the concept used for exact queries is similar. Each rectangular region
contains a number of POI bounded by constant F, which is a system parameter.7 For
the given query, the set of tiles {R1, R2, R3} is obtained. The LS evaluates privately,
using the properties of homomorphic encryption,8 the enclosure condition between
point (xu, yu) and the resulting tiles. The encrypted evaluation outcome is returned to
the user, who will decrypt and find which of the given rectangles encloses its location,
in this case R2. The private point-rectangle enclosure evaluation is necessary because
the query result tiles can be arbitrarily small. Sending these tiles in plain text to
the user (as it is done in [5], with the root of the two-level index) would give away
excessive information about the distribution of POI. Finally, in the second round of
the protocol, the user issues a private request for the contents of R2, and determines
which of the retrieved POI is closest to his/her location.

4 Private evaluation of point-rectangle enclosure

In this section, we introduce a two-party protocol between parties A and B, which
determines privately whether a given point p owned by A is enclosed in a rectangle R

owned by B. The protocol protects the privacy of both parties involved. Specifically,
A learns only if the point p is enclosed by R, but does not find any additional
information about the boundaries of R. In addition, B does not learn any information
about the point p of A.

Our protocol relies on the Paillier public-key homomorphic encryption scheme
introduced in [26]. Paillier encryption operates in the message space of integers ZN ,
where N is a large composite modulus. Similar to the PIR protocol in [14] (described
in Section 2), the security of Paillier encryption relies on the QRA assumption with
respect to modulus N. Denote by D and E the decryption and encryption functions,
respectively. Given the ciphertexts E(m1) and E(m2) of plaintexts m1 and m2, the
ciphertext of the sum m1 + m2 can be obtained by multiplying individual ciphertexts:

D(E(m1) · E(m2)) = (m1 + m2) mod N (1)

In addition, given ciphertext E(m) and plaintext r ∈ ZN , we can obtain the ciphertext
of the product r · m by exponentiation with r, as follows:

D(E(m)r) = r · m mod N (2)

7In the case of exact NN queries, each convex polygon (i.e., Voronoi cell) has exactly one POI.
8Details about the private evaluation of point-rectangle and point-in-convex-polygon enclosure are
given in Sections 4 and 6, respectively.
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Furthermore, Paillier encryption provides semantic security, meaning that en-
crypting the same plaintext with the same public key E twice will result in distinct
ciphertexts. Therefore, the scheme is secure against chosen plaintext attacks.

In our setting, the querying user wishes to find whether his/her location is enclosed
inside some rectangular region R stored by the server. This can be achieved by
privately evaluating the difference between the user coordinates and the boundary
coordinates of rectangle R. Furthermore, to prevent leakage of POI locations, only
the sign of the difference should be revealed to the user, and not the absolute value.

We introduce the protocol for private evaluation of point-rectangle enclosure in
an incremental fashion. Assume that parties A and B hold two numbers a and b ,
respectively. In Section 4.1 we show how to privately evaluate sign(b − a). Next, in
Section 4.2 we give the complete protocol for point-rectangle inclusion.

4.1 Private evaluation of sign(b − a)

We show how to evaluate privately sign(b − a) in two steps: first, we give an auxiliary
protocol that privately evaluates the difference (b − a). Then, we extend the auxiliary
protocol to disclose only the sign of the difference, but not its absolute value. Note
that, the difference protocol has no practical value by itself, since disclosing the value
of (b − a) to one of the parties (say A) automatically discloses the value held by the
other party (since A can determine the value of b based on b − a and a). However,
the private difference protocol introduces a construction that is later used in the
private evaluation of sign(b − a).

Paillier encryption allows the computation of the ciphertext of sums based on the
ciphertexts of individual terms. However, only the addition operation is supported,
and not subtraction. Furthermore, the message space ZN consists of positive inte-
gers only, hence the trivial solution of setting m1 = (−a), m2 = b and computing
E(m1) · E(m2) = E(b − a) is not suitable. We overcome this limitation imposed on
the message space by simulating complement arithmetic for N-bit integers.

Assume that a, b ∈ ZN′ , where N′ < N. Party A computes m1 = N − a and sends
E(m1) to B, who in turn sets m2 = b , and determines

E(m3) = E(m1) · E(m2) = E(m1 + m2) = E(N + (b − a)) (3)

Party B returns E(m3) to A who decrypts the message and learns the value of m3 =
N + (b − a). The difference b − a can be computed from m3 as shown in Fig. 5.

Let I1 = {0, 1, . . . , N′} and I2 = {N − N′, . . . , N − 1}. If (b − a) ≥ 0, then m3 ∈ I1,
otherwise m3 ∈ I2. To correctly interpret the result, it is necessary that I1 ∩ I2 = ∅. A
sufficient condition to ensure that the two intervals are disjoint is

[(N′ − 0 + 1)] + [(N − 1) − (N − N′) + 1] ≤ N ⇔ N′ ≤
⌊

N − 1

2

⌋

(4)

Fig. 5 Determining the value
of b − a
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Fig. 6 Private evaluation of (b − a)

Party A determines that

b − a =
{

m3, 0 ≤ m3 ≤ N′

−(N − m3), N − N′ ≤ m3 ≤ N − 1
(5)

The pseudocode in Fig. 6 details the protocol for private computation of (b − a).
The protocol requires only one round of communication. Note that, A can immedi-
ately learn from (b − a) the value of b . Next, we show how to protect against this
inference.

We modify the protocol for evaluating (b − a) to only disclose sign(b − a),
without revealing any additional information about b . The main idea is to multiply
m3 in the previous protocol by a random blinding factor,9 such that the absolute
value of (b − a) can no longer be reconstructed by A. Consider random integer ρ

uniformly distributed in the set {1, 2, · · · , M}, such that

M ≤
⌊

N − 1

2N′

⌋

(6)

(we will give the rationale for this condition shortly). Steps 1–4 of the protocol in
Fig. 6 remain unchanged. However, in step 5, instead of sending E(m3) back to A, B

sends E(m4) obtained through exponentiation with plaintext ρ:

E(m4) = E(m3)
ρ = E(ρ · m3) = E(ρ · (N + b − a)) (7)

The value of sign(b − a) can be computed from m4 as shown in Fig. 7. In a
similar manner to the protocol for difference, let I′

1 = {0, 1, . . . , M · N′} and I′
2 =

{N − M · N′, . . . , N − 1}. If (b − a) ≥ 0, then m4 ∈ I′
1, otherwise m4 ∈ I′

2. This time,
the condition I′

1 ∩ I′
2 = ∅ is equivalent to

[(M · N′ − 0 + 1)] + [(N − 1) − (N − M · N′) + 1] ≤ N ⇔ N′ ≤
⌊

N − 1

2M

⌋

(8)

9Random blinding is a frequently-used operation in cryptographic protocols [27].
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Fig. 7 Private evaluation of
sign(b − a)

hence the requirement in Eq. 6. Party A determines that

sign(b − a) =
{

+1, 0 ≤ m4 ≤ M · N′

−1, N − M · N′ ≤ m4 ≤ N − 1
(9)

The proof of Eq. 9 is immediate: if (a ≤ b), then 0 ≤ m3 ≤ N′, and therefore 0 ≤
ρ · m3 ≤ M · N′. On the other hand, if (a > b) we have N − N′ ≤ m3 < N, therefore

M(N − N′) mod N ≤ M · m3 < N ⇔ (N − M · N′) mod N ≤ M · m3 < N

Note that, in practice, the additional constraint imposed on the domain size N′

by Eq. 8 does not represent a limitation. For security considerations, the magnitude
of modulus N must be at least 768 bits large. Consider values of a and b that can
be represented on 64 bits, for instance. Such values are sufficiently large for many
applications. In this case, the random blinding factor domain will be bounded by

M = 2768

2
· 1

264 , which is in the order of 2700, sufficiently large to obtain a strong degree
of protection through random blinding.

Security discussion The proposed private sign evaluation protocol (and conse-
quently the point-rectangle enclosure evaluation protocol) inherits the security
strength provided by the random blinding. Note that, this level of security is
weaker than the information-theoretic security features offered by other security
primitives, such as secure multi-party computation (SMC) [18], for instance. It is
also weaker than computationally-secure solutions for the closely related solution
in [21] to the Yao millionaire’s problem. However, the above-mentioned protocols
are prohibitively expensive, as discussed in Section 2.

On the other hand, random blinding offers good security features given that the
blinding factors are large. As discussed above, the value of M is large. Denote by β

the random blinding factor that hides the value of (b − a). Within the space of 2700,
the random β value can have a large number of prime factors. An adversary that
attempts to reconstruct the value of (b − a) will factorize the product β × (b − a)

and obtain a large number of factors. Any such factor, as well as a combination
thereof, may represent a potential value for (b − a). For instance, if we choose β

to be the product of 10-bit numbers, (either primes or composite) then roughly
70 such numbers can be multiplied to obtain the blinding factor. Any of these
numbers, or any combination of six of them (in order not to exceed the 64-bit limit,
as ⌊64/10⌋ = 6) can represent a valid value for (b − a). This results in roughly 130

million candidate combinations, equally likely to represent the value of (b − a).

4.2 Private evaluation of point-rectangle enclosure

The protocol for private evaluation of point-rectangle enclosure builds upon the sign
evaluation protocol of Section 4.1. Denote the user location by coordinates (xu, yu),
and let the server-stored rectangle R be specified by its lowest-left (LLx, LLy) and
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Fig. 8 Arithmetic conditions to determine point-rectangle enclosure

upper-right (U Rx, U Ry) coordinates. We maintain the notations from the previous
sections, i.e., all coordinates x, y ∈ {0, 1, . . . , N′} and the random blinding factors in
the set {0, 1, . . . , M}, such that Eq. 8 is satisfied. Consider the example in Fig. 8a: the
user location is situated inside the rectangle if and only if the four inequalities hold
simultaneously. Conversely, if any of the inequalities does not hold (Fig. 8b), the user
is outside the rectangle (or on the boundary of R).

The enclosure condition can be privately evaluated by running the sign(b − a)

protocol for each of the four inequalities, as shown in the pseudocode of Fig. 9.
The user sends the server (lines 1 and 2) its public key E, as well as the encryption
of messages mx and my that encode the coordinates xu and yu as described in
Section 4.1. The server will compute the ciphertext of the four subtraction operations
(two for each of the x and y axes of coordinates), and blind them with random factors
(lines 4 and 5). Note that, the protocol incurs only one round of communication.
Furthermore, if the user wishes to evaluate enclosure with respect to more than one
rectangle, the server can repeat the steps 4 and 5 for all rectangles, but the number
of communication rounds does not increase (although the communication cost from
the server to the user increases linearly to the number of rectangles).

Fig. 9 Protocol for private evaluation of point-rectangle enclosure
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In practice, spatial coordinates are represented as floating point numbers, either
in single (32-bit) or double (64-bit) precision. On the other hand, Paillier encryption
requires the use of positive integers alone. Nevertheless, the message space ZN is
large enough to accommodate even the most demanding application requirements
with respect to coordinate precision. During the protocol execution, floating point
values are converted to fixed precision. For instance, assume that the spatial data
domain is [0, 106]2 and 6 decimal points are required. Then, 2 · ⌊log(106)⌋ = 34 bits
are sufficient for this representation, much lower than the magnitude of N. This
leaves a very large domain for the values of the random blinding factors.

5 Hybrid protocol for approximate nearest-neighbor query processing

We introduce a technique for processing PIR requests with respect to dynamically-
generated query CRs. This method overcomes the drawbacks of [5] (discussed in
Section 2), which performs PIR with respect to the entire POI dataset D. In the
hybrid approach, the server knows that the user is located inside query CR Q, and
therefore it can return a query result which discloses fewer POI and incurs less
overhead.

A naive approach to restrict the set of POI included in the PIR protocol would
work as follows: first, the server determines the set PQ of POI that are located inside
Q. Next, the points in PQ are bulk-loaded into a two-level spatial index. Finally,
the PIR retrieval is performed as in [5] with respect to the obtained index. There
are several drawbacks of this approach: first, the index must be built on-line, which
is time consuming. Second, although the number of disclosed POI is reduced from√

|D| to
√

|PQ|, the resulting POI count can still be quite large, and it depends on
the query Q (hence, it is not constant). Third, the root node of the index is sent in
plain-text to the user. This discloses excessive information about the distribution of
POI, since the minimum bounding rectangles (MBRs) of the leaf nodes may be small
in size (especially if Q is not very large). The proposed hybrid technique addresses
all these limitations.

The requirement of a two-level index restricts the flexibility in determining
customized results for dynamic query CRs. We employ a multi-level index structure
(computed off-line) that can efficiently find at run-time the leaf nodes that intersect
query Q. Furthermore, we choose an index structure that strictly bounds the leaf
node cardinality below a threshold F. Another important factor in developing
the index structure is the fact that the cryptographic protocol of Section 4 allows
private evaluation of point-rectangle inclusion, but not distance evaluation. This is a
direct consequence of protecting the location of the POI. In order to ensure query
correctness (i.e., that at least one of the leaf nodes includes the user location) we
employ a space-partitioning index, rather than a data-partitioning one. We provide
more details about the indexing structure used in Section 5.1.

Figure 10 gives an overview of the entire query processing protocol. In step (a),
the user sends to the server the CR Q, as well as the encrypted user coordinates
E(xu) and E(yu). The server processes a range query with parameter Q (step (b))
and identifies all leaf nodes (in this case, R1 and R2) that intersect Q. The server also
executes the private point-rectangle evaluation protocol (Section 4) and sends back
to the user (step (c)) tuples (id(Ri); E((xu, yu) ∈ Ri)), i.e., a rectangle identifier and
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(a) (b) (c)

(d) (e)

Fig. 10 Hybrid technique overview

the encrypted result of enclosure evaluation.10 Next, in step (d), the user decrypts
the enclosure evaluation results and determines the identifier of the leaf node11 that
encloses (xu, yu), in this case R2. Finally, the user and the server engage in a PIR
round to retrieve the contents of R2 (step (e)).

For clarity of presentation, we have highlighted each step individually. However,
there are only two communication rounds, as in the case of [5].

5.1 Indexing structure

The choice of POI indexing structure is very important to the objectives of mini-
mizing the POI disclosure and reducing query processing overhead. We consider a
structure reminiscent of k-d-trees [28], which recursively cuts the space based on the
number of data points in each partition. However, as opposed to k-d-trees, we do not
require partition cuts to intersect data points. Furthermore, we do not restrict the
axis of the cut at each step, and we use a more advanced split heuristic that factors
criteria such as the perimeter of resulting partitions.

Consider the example of Fig. 11a, where the data is split according to median cut
C1, resulting in two sub-sets of equal cardinality (four points each). Assume that the
node capacity is F = 3. Two additional splits are performed according to cuts C2

10Note that, if disclosing the number of leaf nodes that intersect Q represents a privacy concern for
the database, the server can include randomly generated rectangles (that do not intersect Q) in the
enclosure evaluation phase, without affecting correctness.
11Due to the non-overlapping indexing of POI, exactly one rectangle will enclose the user.
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(a) (b)

Fig. 11 Split heuristic

and C3, resulting in four leaf nodes of two points each. The median split has two
drawbacks: first, the number of POI retrieved by the user is less than the allowed
value 3, which may decrease the result accuracy. Second, there are a total of four leaf
nodes, although the original 8 points could be split into ⌊8/3⌋ = 3 nodes. A larger
number of leaf nodes increases the cost of the point-rectangle enclosure evaluation.

We employ a variation of the median split that controls tightly the cardinality of
leaf nodes. Given the cardinality c of the current partition, we ensure that at least
one of the resulting partitions is a multiple of F. If this requirement is met at each
cut, the amount of fragmentation (which is the reason why the median split under-
performed) is considerably reduced. Consider Fig. 11b: there are two candidate splits
across the x axis, Lef t and Right. Lef t places ⌊c/2/F⌋ · F points to the left of the cut
axis and c − ⌊c/2/F⌋ · F to the right, whereas Right places (⌊c/2/F⌋ + 1) · F points
to the left and c − (⌊c/2/F⌋ + 1) · F to the right. For each of these candidates, a

Fig. 12 Heuristic for index partitioning
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benef it metric is evaluated, which measures the sum of perimeters12 for the minimum
bounding rectangles of points in each partition. The candidate that minimizes the
sum of perimeters (in the example the Lef t split) is chosen.13 A similar evaluation
of candidate splits is performed for the y axis. Figure 12 shows the pseudocode of
the proposed NodeSplit technique for data partitioning. NodeSplit considers both
the x and y axes, and chooses the split with the largest benefit (i.e., minimum sum of
perimeters). Data points in the initial node U are sorted with respect to the selected
axis (line 1). Next, the costs of the candidate splits Costlef t and Costright are evaluated
as the sum of perimeters for the points in each region (lines 2–5). The split position
that yields the lowest cost is chosen (lines 6–9). The computational complexity of the
index creation is O(|D| log |D|), where |D| is the dataset cardinality.

6 Hybrid protocol for exact nearest-neighbor query processing

So far, we considered approximate queries, for which an inherent trade-off exists
between the amount of disclosed POI and accuracy of the results. The more disclosed
POI, chances increase that one of them is the actual NN, or the distance from the user
to the approximate NN is close to the distance to the actual NN. However, an ideal
private query technique should return a single POI that is the exact NN. In this case,
an optimal outcome is achieved from both the querying user’s point of view, who
receives his or her exact NN, as well as from the database point of view, since only a
single data point is disclosed per query. In this section, we will present a method that
achieves this optimal result.

The previous work in [5] has introduced a method (described in Section 2) for
private exact NN queries that employs Voronoi tessellations and PIR. The idea is to
use a regular 2D grid and to create a bucketing scheme where each cell in the 2D grid
is assigned all data points whose Voronoi cells intersect the grid cell. At query time,
the client performs a PIR query for the grid cell that encloses his or her location.
Although the method guarantees that the exact NN is part of the result received by
the user, the bucketization from Voronoi cells to grid cells involves an inherent loss
of precision, due to the infeasibility of having a grid fine-grained enough such that
only a single Voronoi cell is hashed in each grid cell. In fact, experimental results
from [5] with a real-life dataset show that the average number of data points hashed
in a grid cell (and hence disclosed in a single query) is 15. This number is far from
the optimal 1. Using a more fine-grained 2D grid cell could potentially lower this
number, but results into a rather large computational and communication overhead
since the computational complexity of PIR is linear to the number of grid cells.
Furthermore, if data are skewed, using a finer grid does not necessarily translates
into a decrease in disclosed POI.

There is another important disadvantage of the Voronoi cell bucketization solu-
tion: in addition to the total number of grid cells, the maximum number of Voronoi

12A similar benefit metric has been used for R-trees [28].
13Although the MBRs are used in the benefit evaluation, the resulting partition is not pruned to the
MBR, due to the requirement that the index must cover the entire data space.
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cells hashed in any one grid cell is also a factor with linear influence on the PIR
complexity, this time both in terms of computational and communication cost.
Specifically, this collision factor dictates the “depth” of the PIR matrix, in other
words the PIR protocol is executed separately for each such colliding point. Note
that, even if there is a single grid cell with a large number of collisions, this affects
all other grid cells as well, since the server must not be able to distinguish which grid
cell is retrieved based on the depth of that cell, hence all cells must be padded to the
depth of the grid cell with most collisions. To exacerbate the problem, this maximum
depth parameter depends on the dataset, and no upper bound can be determined: in
the worst case, the depth is linear to the database size, leading to excessive disclosure
of data points and high processing overhead.

All the above-mentioned limitations can be tracked down to a single factor:
within the PIR framework alone, the client and the server do not have the means
to perform any form of interactive, privacy-preserving filtering of results without
disclosure. Specifically, all that the client is able to do is to retrieve privately a
fraction of the database, but the retrieval is done based on data item index, and
not directly based on spatial information. The only time that spatial information is
factored in is in the bucketization phase, but as we have discussed, the precision of the
bucketization may be low. Furthermore the bucketization is done independent of the
query. Therefore, it may not be possible to find a bucketization that optimally serves
all queries. We propose a different approach, in which the query processing makes
use of the techniques developed in Section 4.1 for interactive evaluation of arithmetic
conditions using homomorphic encryption. In particular, we will show that the user
can privately identify the index of the Voronoi cell that the user belongs to without

need for bucketization.
Voronoi cells in two dimensions are convex polygons. Each side of the polygon

belongs to a line with equation ax + b y + c = 0. A well-known procedure from
computational geometry [28] states that it can be determined whether a point
P(xp, yp) is included in a convex polygon by replacing the variables in the line
equations of the polygon sides with the point coordinates. Specifically, denote by
ℓ the number of polygon sides (which is also the number of vertices) and denote by

a1x + b 1 y + c1 = 0

a2x + b 2 y + c2 = 0

. . .

aℓx + b ℓy + cℓ = 0

(10)

the set of equations corresponding to the polygon sides traversed in clockwise
direction along the polygon perimeter. If the sign of all expressions obtained by
replacing the coordinates of P in all equations in Eq. 10 is positive (or zero), then the
point P is inside (or on the edge) of the polygon. Figure 13a illustrates this concept.
For instance, by replacing the coordinates of the mass center M of the polygon in the
equations of the individual sides, a non-negative value is always obtained for each
expression.

Using this simple procedure in conjunction with homomorphic encryption allows
clients to learn the index of the particular Voronoi cell they belong to, without
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Fig. 13 Enclosure evaluation and filtering for Voronoi cells

learning neither the extent of that cell, nor the extent of any other Voronoi cell for
that matter. In fact, the only information that the user learns is how many Voronoi
cells are in the dataset (or in the window corresponding to the query CR). Note that,
the expressions that need to be evaluated have linear form, hence the algorithms for
private evaluation of the sign of sum/difference from Section 4 can be reused without
change. Similar to the hybrid model used for approximate NN queries, where only
intersecting rectangular tiles were included in the computation, the query CR Q is
used to filter the Voronoi cells that are candidates for the exact NN result, as shown
in Fig. 13b. Any existing spatial index structure can be used to efficiently determine
matching cells. In our implementation, we employ R∗-trees to index Voronoi cells. In
the remainder of this section, we focus on the privacy-preserving protocol for point-
in-convex-polygon enclosure that is performed after filtering.

Note that, Paillier homomorphic encryption operations [26] are rather expensive
in terms of computational cost. For the approximate NN algorithm of Section 4, only
four evaluations (one for each side of a rectangle) were needed, and the number
of rectangles was relatively small compared to the number of points. A Voronoi
cell can have a number of sides considerably larger than four. However, we make
the following observation, which indicates that determining polygon inclusion with
Paillier encryption may be a feasible approach, at least as long as the size of the query
range Q does not grow large: The most expensive Paillier operations are encryption
and decryption. On the other hand, operations with ciphertexts are relatively inex-
pensive. We have measured the relative performance of these operations, and found
that while addition and multiplication under the ciphertext for a 768-bit N amount
to roughly 0.01 and 0.18 ms, respectively, encryption amounts to 15 ms, two orders
of magnitude higher (experimental settings are described in Section 7). As we show
next, the server only needs to perform a single encryption operation per polygon side,
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for the free term c in the line equation. All other operations are ciphertext-ciphertext
multiplications or ciphertext-plaintext exponentiations.

Similar to the approximate NN protocol, we assume that real-valued point coordi-
nates are converted to integers (for a large-enough value of N the loss of precision is
negligible). The protocol executed by the client and server to privately answer exact
NN queries consists of the following steps:

1. The client, situated at location (xp, yp), generates a public key E and private key
D for Paillier encryption with modulus N. The client sends the server public key
E, the CR Q, as well as the ciphertexts E(xp), E(yp), E(N − xp), E(N − yp) (the
need for the latter pair of ciphertexts will become evident in Step 2)

2. For each Voronoi cell v j that intersects Q, denote by ℓ j the number of sides of
the polygon representing v j. For every side i, 1 ≤ i ≤ ℓ j, with corresponding line

equation a
j
i x + b

j
i y + c

j
i = 0 the server computes the value

M
j
i = E(xp)

a
j
i × E(yp)

b
j
i × E

(

c
j
i

)

The value M
j
i corresponds to the ciphertext of the value that indicates if the user

coordinates are inside the cell v j with respect to side i. Only the sign of the value
is required to evaluate enclosure, and to protect the spatial extent of the cell
from the client, the server blinds the value with a multiplicative random constant
r > 0:

M′ j
i =

(

M
j
i

)r

All values M′ j
i are returned to the client. Note that, if any of the constants a

j
i or

b
j
i are negative, then the above operations are done with respect to the absolute

value of these constants, and the ciphertexts E(N − xp), E(N − yp) are used
instead. This procedure solves the issue of Paillier encryption not supporting
directly subtraction (a similar mechanism was explained in detail in Section 4
for approximate NN). In addition, to prevent the client from inferring any infor-
mation about the geometry of adjacent cells based on the number of polygonal
sides in consecutive cells, the M′ values can be randomly permuted with respect
to their j coordinate. In other words, the client receives the ciphertexts of blinded
enclosure expressions of cells in random order (although the grouping of polygon
sides with respect to each cell is preserved intact).

3. The client decrypts the received ciphertexts, and checks to see which cell j0 has

all values D(M′ j0

i ) positive. Note that, as a performance optimization, if at least

one M′ j
i value for the currently considered cell j is negative, the rest of the

ciphertexts for that particular cell need not be decrypted, since it is clear that
the enclosure condition does not hold for that cell. Finally, after identifying the
enclosing Voronoi cell index, the client performs a PIR retrieval for the cell with
index j0. Note that, it is guaranteed that the PIR object associated to a Voronoi
cell contains a single data point, hence the PIR phase is much more efficient than
for either approximate NN or the exact NN protocol from [5], for which there are
a large number of data points associated with each PIR matrix item.

At the end of the protocol, the client learns the value of a single data point which
is the exact NN of the client’s location.
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7 Experiments

We evaluate experimentally the proposed hybrid methods for approximate and exact
nearest-neighbor queries with respect to the effectiveness in controlling the disclosed
POI and the incurred computational and communication overhead. We use a real
database with points of interest: the Seqouia set14 with 62,556 data points (Fig. 14).
We consider values of F, the threshold for disclosed POI, in the range 20–80, and
we randomly generate square-shaped cloaking regions Q with side between 1 and
10% of the dataspace side. Recall that, a larger CR provides stronger privacy for the
user. For each experimental run, we randomly generate 1,000 user queries. The size
of the modulus N used in the cryptographic protocols for PIR retrieval and private
enclosure evaluation is 768 bits. The experiments were run on an Intel P4 3.0 GHz
machine with 1GB of RAM. In Section 7.1 we evaluate the POI disclosure incurred
by approximate NN methods. Section 7.2 compares head-to-head the performance
of the pure-PIR versus hybrid methods for approximate NN queries, whereas
Section 7.3 compares pure-PIR versus hybrid methods for exact NN queries.

7.1 POI disclosure

We evaluate the amount of protection offered to the database by the hybrid
approximate NN method, in comparison with location cloaking (label CR-only) and
the pure-PIR approximate technique from [5] (label PIR-only), for varying CR size.
We consider only approximate NN queries, since the exact NN method presented
in Section 6 is optimal with respect to disclosure (i.e., exactly one POI is returned
to the user). For fairness of comparison, only candidate POI inside Q are returned
by the CR-only method (this decreases the number of disclosed POI compared to
the exact methods in [3, 4]). Figure 15 shows that the CR-only technique discloses
an excessive amount of POI, especially as the CR size grows larger. Therefore,
the privacy of the database is sacrificed for the sake of user privacy. The PIR-only
method does not use CRs, and always discloses approximately 250 POI (square root
of database cardinality). Note that, the hybrid method controls strictly the number
of disclosed POI in the narrow band 20–80, up to one order of magnitude superior
to PIR-only, and up to two orders of magnitude better than the CR-only method.
This improvement is obtained for the same level of privacy offered to the user by the
CR-only method (i.e., same CR sizes).

7.2 Performance comparison for approximate NN algorithms

In the following experiments, we compare the performance between the hybrid
and the PIR-only approximate NN methods with respect to computational and
communication overhead incurred by query processing. We do not include the CR-
only method any further in the head-to-head comparison, since it offers virtually no
amount of protection for the database. It is, however, well-understood [5] that CR-
only techniques are more efficient in terms of overhead, because they do not make

14http://www.rtreeportal.org

http://www.rtreeportal.org
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use of cryptographic elements. In general, the processing time is expected to take on
average around one second [4].

Similar to previous work [4, 5], we consider that the set of POIs fits in memory, and
that the processing time is dominated by CPU time. This is a reasonable assumption,
especially since the compared methods use heavily cryptographic transformations,
which are not I/O bound. Note that, in [5] optimizations based on parallel processing
are proposed to improve execution time. Such optimizations are directly applicable
for the hybrid methods as well. In our tests, we run both methods on a single-CPU
machine, and we report the hybrid method execution time as the percentage of the
time incurred by the PIR-only method.

Figure 16a shows the execution time when varying the POI disclosure bound F.
In the worst case, the hybrid method is twice as fast as the PIR-only method. On
the other hand, for all CR sizes with less than 10% of the dataspace side, the hybrid
method is at least five times faster. The decreasing trend with F can be explained as
follows: since the size of query Q is fixed, the number of POI included in the PIR step
does not vary with F. On the other hand, a smaller F results into more rectangles for
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Fig. 16 Execution time for approximate NN methods

which the private point-rectangle enclosure evaluation protocol must be performed,
leading to an increase in processing time. In absolute values, the execution time of
the hybrid method on a single CPU requires roughly 0.5 s for queries spanning 2% of
the dataspace, and between 1.2 and 1.9 s for queries spanning 5% of the dataspace.
Figure 16b shows the variation of execution time with query CR size. A larger query
window translates into more leaf nodes being included in the enclosure evaluation
protocol. Furthermore, a larger number of data points are considered in the PIR
retrieval phase. Hence the increase in processing time. In summary, the proposed
method improves on its non-hybrid counterpart by a factor between 2 and 20, and
in most cases the factor is larger than 5. Therefore, whereas the non-hybrid method
takes about one second to execute on a 8-CPU machine [5], the hybrid method offers
a competitive average of 0.2 s per query.

Figure 17 presents the result of communication overhead, also expressed as a
percentage of the overhead incurred by the PIR-only method. In the worst case, the
bandwidth consumption of the hybrid method is 30% that of PIR-only, whereas the
overall improvement can be as high as 20 times. The cost increases with F (Fig. 17a)
since more POI are retrieved from the server. For varying size of CR Q (Fig. 17b),
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Fig. 17 Communication cost for approximate NN methods
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the number of retrieved POIs remains unchanged as Q grows, but the number of
leaf nodes considered in the point-rectangle enclosure protocol increases, hence the
higher communication overhead. In absolute values, the communication cost of the
hybrid method is in the range 40–140 KB for queries spanning 2% of the dataspace,
and 100–280 KB for queries spanning 5% of the dataspace.

Finally, Table 1 shows the accuracy of NN results. Since both compared methods
are approximative, the closest POI reported to the user may differ from the actual
NN POI. Accuracy is measured as the average difference between the user-to-
reported-NN distance and the user-to-actual-NN distance. The value is then normal-
ized, and expressed as a percentage of dataspace side. Since the data points that are
returned to the user depend only on the leaf node that encloses the user location, the
accuracy of the hybrid method is independent of the query size. The only factor that
influences accuracy is the POI disclosure threshold F. The accuracy of the PIR-only
method is better, since it returns an excessive amount of POI to the user. On the other
hand, in absolute values, the hybrid method achieves good precision. For instance,
assume a city area of 50 × 50 km. An approximation error of 0.014% corresponds to
a distance of 28 m. This is a reasonable error, considering that in practice, positioning
devices report locations with accuracy of 10–20 m.

7.3 Performance comparison for exact NN algorithms

In this experiment, we compare head-to-head the computation time and communi-
cation cost of the hybrid exact NN method described in Section 6 with the pure-PIR
exact NN algorithm from [5]. Recall that, the hybrid algorithm is optimal with respect
to the POI disclosure, whereas the pure-PIR method discloses on average 15 POI per
query, as measured in [5]. The results are shown for the hybrid method, expressed
as a percentage of the values measured for the pure-PIR method (e.g., a 50% value
means that the execution time required by the hybrid method is half that of the pure-
PIR method).

Figure 18a shows the relative execution time of the hybrid method for variable
query CR range Q. As expected, for smaller CRs, the performance of the hybrid
method is net superior, between one and two orders of magnitude faster than the
pure-PIR method. There are two reasons for this gain: first, fewer Voronoi cells
are considered in the private convex polygon enclosure algorithm of Section 6, and
second, the depth of the PIR matrix (i.e., the number of actual data points enclosed
in a PIR item) is 1 for the hybrid method, whereas it is much larger for the pure-PIR
method. However, as the size of the query range grows, the overhead required by
the convex polygon enclosure computation increases, and for a query with side 5%
of the dataspace, the advantage of the hybrid method diminishes. This is due solely
to the expensive nature of the homomorhpic encryption operations. For the query

Table 1 Query result accuracy Threshold Hybrid PIR-only

F accuracy (%) accuracy (%)

20 0.014 0.003

40 0.011

60 0.007

80 0.005
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Fig. 18 Exact NN algorithms: computational and communication overhead

with side 10% of the dataspace, the execution time is three and a half times worse
than that of the pure-PIR method.

Figure 18b shows a similar trend with respect to query CR range. However,
the communication cost is always lower, by a large margin, compared to the pure-
PIR method. This can be explained by the fact that in the hybrid method, there is
only one data point per PIR matrix object, whereas in the pure method there are
a large number of “placeholder” points required to deal with the varying density
of data across grid cells in different parts of the dataspace. In the worst case, the
communication cost incurred by the hybrid method is 18% that of the pure-PIR
technique.

In summary, despite the more complex procedure for query evaluation and
the expensive nature of homomorphic encryption operations, the hybrid exact NN
method outperforms its pure-PIR counterpart by a large margin for the lower
end of the query CR range spectrum. On the other hand, as the query CR size
increases, the performance of the hybrid method deteriorates quickly. Nevertheless,
a query with side length that is 5% of the dataspace may be sufficient for many
application scenarios. Furthermore, the hybrid exact NN method provides optimal
POI disclosure.

8 Conclusions

This paper proposed hybrid techniques for approximate and exact private NN
queries which provide protection for both the users and the service provider. Our
solutions rely on cryptographic protocols for private evaluation of point-in-rectangle
and point-in-convex-polygon enclosure. The hybrid techniques achieve far lower
disclosure of POI compared to their CR-only and PIR-only counterparts. In fact,
the hybrid exact NN method is optimal with respect to POI disclosure.

The proposed techniques are also efficient in practice, and outperform pure-PIR
methods in most cases, with the sole exception of large-CR queries for the optimal-
disclosure exact NN solution. In future work, we plan to extend our work to support
private evaluation of more advanced spatial conditions and more complex types of
queries, e.g., kNN queries for k > 1 and skyline queries.
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