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Abstract
A common goal in environmental epidemiologic studies is to undertake logistic regression
modeling to associate a continuous measure of exposure with binary disease status, adjusting for
covariates. A frequent complication is that exposure may only be measurable indirectly, through a
collection of subject-specific variables assumed associated with it. Motivated by a specific study
to investigate the association between lung function and exposure to metal working fluids, we
focus on a multiplicative-lognormal structural measurement error scenario and approaches to
address it when external validation data are available. Conceptually, we emphasize the case in
which true untransformed exposure is of interest in modeling disease status, but measurement
error is additive on the log scale and thus multiplicative on the raw scale. Methodologically, we
favor a pseudo-likelihood (PL) approach that exhibits fewer computational problems than direct
full maximum likelihood (ML) yet maintains consistency under the assumed models without
necessitating small exposure effects and/or small measurement error assumptions. Such
assumptions are required by computationally convenient alternative methods like regression
calibration (RC) and ML based on probit approximations. We summarize simulations
demonstrating considerable potential for bias in the latter two approaches, while supporting the
use of PL across a variety of scenarios. We also provide accessible strategies for obtaining
adjusted standard errors to accompany RC and PL estimates.
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1. MOTIVATION AND BACKGROUND
1.1. Motivating Example

Our motivating example arises from a study of the association between exposure to metal
working fluids (MWF) and lung function as measured by the presence or absence of wheeze,
leading to methodological challenges as discussed by Weller et al. (2007). Data were
collected on 1040 subjects from a prior epidemiological study (Greaves et al. 1997; Eisen et
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al. 1997, 2001), including the binary response variable wheeze (Y), vectors of covariates C
capturing information on workplace, age, race, and smoking status, and vectors D capturing
machine types used by workers and whether they were exposed to straight or synthetic
MWF. The main objective is to relate Y to a quantitative risk factor (X, thoracic aerosol
fraction in mg/m3) induced by MWF exposure, while controlling for the vector C.

The primary challenge in this analysis is the fact that data on the true exposure X was not
collected on any of the 1040 main study subjects. Fortunately, an independent sample of 83
subjects was available as an external validation study (Woskie et al. 1994), consisting of
data on X and Z = (C, D) collected on each subject. Thus, the problem posed by the
motivating example is readily viewed as one of exposure measurement error.

The approach taken by Weller et al. (2007) was to first fit a measurement error model
(MEM) to the external validation data that relates X to the variables in Z. They then applied
a new variant on the popular regression calibration (RC) method that utilized the parameter
estimates from the first model to estimate the coefficients of a logistic regression model
relating Y to (X, C) among the main study subjects. The following section provides some
relevant background on RC and other measurement error correction approaches, along with
introductory material and specifics about the objectives of the current paper.

1.2. Background and Objectives
The handling of one or more mismeasured continuous predictors in logistic regression
figures is prominent in the broad literature on exposure measurement error (e.g., Schafer
1987; Rosner, Willett, and Spiegelman 1989; Rosner, Spiegelman, and Willett 1990;
Stefanski and Carroll 1990; Liang and Liu 1991; Kuha 1994; Thoresen and Laake 2000;
Spiegelman, Carroll, and Kipnis 2001; Thurston, Spiegelman, and Ruppert 2003). As
reflected in these and other references, the nature of this problem has led researchers to
approach it from several different angles. In part, these various treatments arise from options
related to philosophical views on measurement error modeling. For example, measurement
error can be viewed as structural or functional (Carroll et al. 2006). The former term implies
that the true unknown predictor X is viewed as a random variable following some specified
distribution f(X); the modern view of the latter suggests that X may be fixed or random, but
if random, then few or no assumptions are made about f(X).

Variety in approaches to address measurement error in logistic regression also arises due to
practical issues inherent in epidemiological research. These include study design
considerations critical to the estimation of measurement error parameters, for which the two
primary strategies involve collection of repeated or “replication” data on mismeasured
exposure, or the use of validation data (e.g., Thomas, Stram, and Dwyer 1993). The
validation approach has the drawback of requiring a gold standard method for measuring
exposure, but arguably permits the most flexible and robust strategy to reveal the nature of
an underlying MEM.

Epidemiologists are adept at designing effective validation studies, while tending to favor
intuitively and computationally accessible statistical methods for practical use. This in part
underlies the popularity of the RC approach, which arose from two concurrent and
conceptually appealing schools of thought (Rosner, Willett, and Spiegelman 1989, 1990;
Carroll and Stefanski 1990; Stefanski and Carroll 1990). The Rosner et al. strategy
essentially applies correction factors to estimated coefficients from fitting the “naïve”
logistic model, in which an error-prone surrogate exposure variable is used in place of the
unknown X. The Carroll and Stefanski strategy instead “calibrates” by replacing X by its
conditional expectation given one or more surrogates. Under main/validation study designs
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with additive measurement error, the two strategies tend to yield equivalent estimators under
a broad class of generalized linear models (Thurston, Spiegelman, and Ruppert 2003).

For logistic regression, it is well known that the RC estimator is only approximately
unbiased asymptotically under certain conditions. Specifically, the approximation has been
justified when the outcome is rare and measurement error is normally distributed, and/or the
magnitudes of the exposure effect and measurement error are both “small” (e.g., Kuha
1994). Alternative structural approaches to develop a fully consistent estimator are generally
maximum likelihood (ML)-, pseudo-likelihood (PL)-, or quasi-likelihood (QL)-based
(Carroll et al. 2006). A full ML approach uses distributional assumptions about the MEM to
specify an overall joint likelihood in main/validation study settings, while PL (Gong and
Samaniego 1981) offers a scaled back alternative by inserting estimates of MEM parameters
into a main study-only likelihood. QL (e.g., Liang and Liu 1991) permits a similar approach
that engenders a set of estimating equations that rely in theory only on the first two
conditional moments of X given its surrogate(s) and other covariates. Practical use of the
ML, PL, and QL methods has remained rather limited to date, however, due to real and/or
perceived computational complexities.

Another feature that distinguishes approaches to exposure measurement error problems is
the nature and complexity of the MEM itself. While the typical additive-normal model is by
far the most common (e.g., Fuller 1987; Thoresen and Laake 2000), epidemiological studies
often motivate incorporation of covariates into the MEM. Further, environmental
epidemiology sometimes invites consideration of multiplicative measurement error (e.g.,
Hwang 1986; Carroll 1989; Pierce et al. 1992; Iturria, Carroll, and Firth 1999). Specifically,
several references (Rappaport 1991; Lyles and Kupper 1997; Rappaport and Kupper 2008)
suggest that environmental exposure on an untransformed scale is often appropriate as a
predictor of health outcomes, while additive-normal MEMs for exposure tend to be more
reasonable on the log scale. While the methods we discuss apply readily under additive error
models, this view directly motivates a multiplicative-lognormal MEM. Treatments of
multiplicative error have been relatively rare, particularly under logistic, as opposed to
linear, disease models.

The remainder of this paper proceeds as follows. In Section 2, we introduce the assumed
logistic regression model and the MEM stemming from the motivating example. Section 3
outlines the exposure measurement error adjustment methods to be studied. We focus on
RC, PL and an approximate full ML approach, with a view toward making the latter two
methods more accessible via sharable programs that invoke optimization routines from
standard statistical software. We also emphasize accessible proposals for computing
appropriate standard errors to accompany point estimates based on these methods. In Section
4, we present results from the analysis of the motivating data. Section 5 summarizes
simulation studies of the relative performances of the approaches considered. In particular,
we focus on the sensitivity of the RC and approximate full ML approaches to the
magnitudes of the exposure effect and the measurement error variance. We conclude with a
discussion in Section 6.

2. LOGISTIC MODEL AND MEM FOR MOTIVATING EXAMPLE
As discussed in Section 1.1, we revisit an example (Weller et al. 2007) based on a study of
the association between MWF exposure and lung function. The example uses nm = 1040
main study observations, together with nv = 83 observations from an external validation
sample. The objective is to relate the binary outcome Y to a true exposure X, while
controlling for a vector of covariates (C). Only Y and Z are measured on main study
subjects, where C is a subset of Z and Z = (C, D) is a vector of variables assumed associated
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with X. In contrast, validation study subjects only contribute data on X and Z, characteristics
of which are assumed “transportable” to the main study (Carroll et al. 2006). In this
example, all variables in Z happen to be binary.

Of primary interest is a logistic regression model, i.e.,

(2.1)

where i indexes subject. Model (2.1) is the “true disease model” (TDM) in the terminology
of Clayton (1992). We assume the following linear measurement error model (MEM):

(2.2)

where

Further details regarding the covariates in Z = (C, D) are reserved for Section 4. Note that
the homoscedasticity of errors associated with model (2.2) reflects an assumption of non-
differential (with respect to Y and Z) measurement error.

Weller et al. (2007) fitted model (2.2) to the untransformed exposure (X) data and presented
a new variant of RC modeled after the version due to Rosner, Willett, and Spiegelman
(1989, 1990), in which a subset of the variables in Z are designated as surrogates and
corrected estimates based on each surrogate are weighted to produce a final estimate of β.
As they acknowledge, this variation on RC is likewise only approximately unbiased
asymptotically for logistic regression and is expected to perform well under “small β” and
“small measurement error” conditions.

Upon fitting the MEM in (2.2) to the external validation sample both with and without the
log transformation, standard residual analysis reveals that the normality assumption is better
justified on the log scale (Shapiro-Wilk p-value = 0.25, vs. <0.001). This finding is
consistent with frequent evidence in the environmental sciences literature suggesting the
appropriateness of lognormal models for exposure. Thus, our treatment of this example
differs from Weller et al.’s in that we fit the MEM on the log scale while retaining the
untransformed X as the predictor of interest in model (2.1). This effectively induces a
multiplicative measurement error model, as seen in the following section. A more important
difference is that in what follows, we primarily focus on likelihood-based methods that
provide asymptotically unbiased estimators of logistic regression coefficients under models
(2.1) and (2.2).

3. METHODS
3.1. RC and Likelihood-Based Methods

As a regression calibration alternative for comparison, we utilize the version of RC proposed
by Carroll and Stefanski (1990). In this approach, we first fit the MEM in (2.2) to the

validation data to produce the estimates ( , ) via ordinary least squares (OLS). Then,
model (2.1) is fit to the main study subjects after replacing Xi by its estimated conditional
expectation, i.e.,
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(3.1)

where the form of  stems from the underlying multiplicative-lognormal MEM that relates
X to Z upon exponentiating both sides of Equation (2.2). Note that prior literature (Lyles
and Kupper 1997; Carroll et al. 2006) suggests that Carroll and Stefanski’s version of RC is
preferred to that of Rosner, Willett, and Spiegelman (1989, 1990) and its variants when
measurement error is multiplicative, in contrast to the similarity of the two versions under
additive error models (Thurston, Spiegelman, and Ruppert 2003).

As opposed to RC, a full ML approach must be based upon a likelihood proportional to the
product (Lm × Lv) of the main and external validation likelihoods, where we write

(3.2)

and

with Pr(Yi = yi|Li, Ci) = eηiyi (1+eηi)−1 based on (2.1), and the normal density f (Li|Zi)
following from (2.2). While full ML is arguably an ideal solution to this structural
measurement error problem, application has typically been hampered by numerical
challenges posed by the integral in (3.2) despite attempts to facilitate its computation (e.g.,
Crouch and Spiegelman 1990). Messer and Natarajan (2008) offered further hope in this
regard in the case of additive-normal measurement error, by showing how modern statistical
software can be adapted to the problem.

As suggested by prior authors, one option to lessen computational difficulties associated
with full ML is to consider a pseudo-likelihood (PL) alternative. To apply PL here, we insert

the OLS-based estimates ( , ) from the fit of the MEM (2.2) into the expression for Lm in
(3.2). We then maximize Lm only with respect to the model (2.1) primary parameters (α, β,
δ). Note that the integral in (3.2) remains to be dealt with, however. Also, relatively complex
sandwich estimators (e.g., Gong and Samaniego 1981) have historically been required for
calculating standard errors to accompany PL estimates in order to account for uncertainty in

( , ). In Section 3.2, we suggest a computational shortcut to circumvent the need for the
sandwich estimator.

An alternative approach designed to get around the numerical integration problem is based
on the idea of approximating the logistic function via the probit, i.e., , where k

is a constant, , and Φ(·) denotes the standard normal c.d.f. Such a single-
probit approximation tends to hold closely for values of k in the neighborhood of 1.6–1.8
(e.g., Carroll et al. 1984; Savalei 2006), and implies the following:

(3.3)
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The derivation of (3.3) is explicitly based on the assumption that the X|Z distribution is
normal. However, (3.3) has been shown to remain accurate, at least in some cases, when X|Z
is far from normal (Carroll et al. 2006, pp. 91–92). While Monahan and Stefanski (1991)
and Demidenko (2004) proposed potentially more accurate approximations to H(t) using
linear combinations of probits, in the current study we evaluate the use of (3.3) with k = 1.7
and k = 1.749. These two values of k stem from invoking minimax and Kullback–Leibler
criteria, respectively (Savalei 2006).

We use the probit approximation to facilitate optimizing approximate versions of the full
likelihood (Lm × Lv) by inserting (3.3) into the expression for Lm in (3.2), thus eliminating

the integral. This approach jointly estimates all parameters (γ, , α, β, δ), as opposed to

inserting external estimates ( , ) into an approximate main study likelihood as in a PL
strategy. The form of E(Xi|Zi) is given in (3.1), while the multiplicative-lognormal MEM
also implies that

(3.4)

While one could undertake a quasi-likelihood (QL) approach that would hinge upon these
same two conditional moments (Liang and Liu 1991; Lyles and Kupper 1997), we focus
here upon investigating the relative performances of RC, PL, full ML, and approximate full
ML methods.

3.2. Computational Issues and Standard Error Estimation
With respect to point estimation, RC is clearly the simplest of the methods to apply. For the
ML and PL methods, we favor the use of numerical optimization, integration, and Hessian
approximation functions directly available in modern software, with a view toward assessing
their reliability for the current problem. Specifically, we utilize the dual quasi-Newton
function NLPQN for optimization, the finite differences second derivative approximation
function NLPFDD, and the QUAD function for adaptive numerical integration available in
SAS IML (SAS Institute, Inc. 2004). Similar functions are featured in other software (e.g.,
the R package). Given convergence of such algorithms, the full and approximate ML
methods enjoy the advantage of direct applicability of the numerically-derived Hessian to
estimate standard errors.

In contrast, RC and PL pose additional challenges for standard error estimation. Options to

account for uncertainty in the  values used in RC include sandwich variance
adaptations (e.g., Liang and Liu 1991; Lyles and Kupper 1997; Carroll et al. 2006), or
bootstrapping (Thoresen and Laake 2000). Sandwich estimators (Gong and Samaniego
1981; Spall 1989) are an option for PL as well, but bootstrapping is less attractive due to
computing time and risk of instabilities with the required numerical integration and
optimization.

In this study, we propose and evaluate practical approaches designed to facilitate estimation
of standard errors to accompany the RC and PL methods. For PL, our idea is simple. We
apply a second derivative approximation function (NLPFDD in SAS IML) to the full
likelihood (Lm × Lv) [see (3.2)], evaluating the full Hessian at the final PL estimates of (α,

β, δ) and the externally-derived OLS estimates of (γ, ). The resulting standard error

estimates adjust for uncertainty in ( , ), with the advantage that only a single call to the
second derivative function is required subsequent to convergence of a PL (rather than full
ML) estimation process.
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For RC, we borrow ideas originally proposed by Rubin (1987) in conjunction with multiple
imputation. Based on the original OLS fit to the external validation sample, we generate M

replicates  (m = 1, …, M) using standard methods involving draws from chi-square
and multivariate normal distributions dictated by model (2.2), the OLS estimates, and their
variance-covariance matrix (see Schafer 1999). For each of these, we calculate a
corresponding replicate of the RC estimate by inserting the m-th set of ’s [see (3.1)] in
place of the Xi’s in the logistic regression model fit to the main study data. We then use
Rubin’s well-known approach to combine the latter replicates and estimate the variance of
each component of the vector of RC parameter estimates, accounting for within- and
between-replication sources of variability. While no actual imputation of data is involved,
we use the acronym ‘MI’ in subsequent tables to refer to the resulting standard error
estimates due to connections with the multiple imputation paradigm. An advantage over
other computational approaches (e.g., bootstrapping) is that we require only a few replicates;
we take M = 5 in the example and simulations to follow.

4. RESULTS
We return to the motivating example drawn from Weller et al. (2007), for which the
covariates (C) in model (2.1) include the following binary variables measured on automobile
industry workers: workplace (i.e., plant number, 2 vs. 1), three indicators for age group
(30-39, 40-49, and 50+ years, with <30 as reference), race (Caucasian vs. non-Caucasian),
and current smoker status (yes vs. no). The vector D consists of three other indicators:
machine type (grinding vs. non-grinding), exposure to straight metal working fluid (MWF;
yes vs. no), and exposure to synthetic MWF (yes vs. no). For reasons explained by Weller et
al. (2007), workers exposed to soluble MWF were excluded. The vectors Z = (C, D) for
each subject are utilized in the MEM (2.2).

Table 1 summarizes the fit of the MEM in model (2.2) to the external validation study data
(nv = 83). For comparison, we present results based on OLS, in addition to those based on
the single-probit-based approximate full ML approach [see (3.3)]. The point estimates are
quite similar in each case, while estimated standard errors are slightly smaller based on the
latter method. This is somewhat expected due to the reduced estimate for the residual

variance ( ) obtained by approximate ML, but may also reflect that a full ML approach
captures limited information about the MEM parameters in the main study data. Certain
variables (plant, age 30-39, smoking status) became significant or marginally so when fitting
model (2.2) to the logged exposure data, but were non-significant in the identical MEM
without transforming X (Weller et al. 2007).

Table 2 presents measurement error adjusted analyses for model (2.1) using RC, PL, and
approximate full ML based on (3.3). These three analyses agree well with respect to all
coefficient and standard error estimates, and all point to the conclusion that thoracic aerosol
fraction (X) is positively associated with the prevalence of wheeze (Y) after adjusting for the
covariates (C). It is important to appreciate that the similarity in the point estimates across
the three methods is predictable here given the very small OLS-based estimate of the

measurement error variance (  = 0.139) obtained when fitting the MEM. We were also able
to adapt SAS NLMIXED code provided for the additive-normal error case by Messer and
Natarajan (2008), to obtain a full ML solution for the example data set. The results were
identical to those obtained via the approximate ML approach in the rightmost column of
Table 2.

For RC and PL, note that we report two standard error estimates in Table 2. The first (top)
estimate ignores uncertainty due to MEM parameter estimation, while the second (bottom)
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adjusts for this uncertainty using the approaches proposed for each method in Section 3.2. In
this example, there is relatively little underestimation in the former case. For comparison,
we also note that the estimated exposure effects and standard errors obtained via RC, PL,
and approximate full ML agree quite well with the values [1.06 (0.38)] reported in Weller et
al. (2007), despite the difference in scales used when fitting the MEM to the exposure (X)
data. Again, this similarity in results stems in large part from the small measurement error

( ) operating in this example, regardless of the scale for X (log or untransformed) that one
chooses. In the following section, we explore the effects of variations in this parameter on
the log scale.

5. SIMULATION STUDIES
5.1. Multiplicative-Lognormal MEM

Theory suggests that the RC estimator could deteriorate statistically with increases in the

magnitude of the exposure effect (β) and/or the measurement error variance ( ) under
models (2.1) and (2.2). Likewise, it stands to reason that the performance of approximate

ML based on (3.3) may vary with  as a result of its influence upon the extent to which the
lognormal X|Z distribution departs from normality. On the other hand, practical experience
suggests that PL- and other ML-based methods may pose greater numerical challenges with
increases in these parameters. To explore these possibilities, we conducted simulations

under 9 separate conditions distinguished by the assumed (β, ) combinations.

Specifically, we considered three values for β (0.50, 1.10, 1.50; designated as “small,”

“moderate,” and “large”), and three values for  (0.139, 0.50, 1.50; “small,” “moderate,”

“large”). The smallest  value equates to the estimate obtained in the motivating example.
Otherwise, the simulations closely mimicked the example conditions. Each simulated data
set included nm = 1040 “main” and nv = 83 external “validation” observations. A total of 9
variables were generated independently for each simulation to comprise Z, each as Bernoulli
variates with prevalences identical to those observed for the 9 covariates in the actual main
study data. The true parameters generating the main model (2.1) of interest and the MEM
(2.2) for each simulation were identical to the OLS and RC estimates presented in Tables 1
and 2, respectively. Because we observed little difference in results by taking k = 1.7 as
opposed to k = 1.749 in approximation (3.3) when evaluating approximate full ML, we
report results based on k = 1.7 throughout.

In Table 3, we summarize simulations evaluating point and interval estimates of β under 8
of the 9 conditions; the ninth scenario will be considered in detail in Table 4. The table
summarizes mean β coefficient estimates across simulations and compares mean standard
errors with the empirical (across-simulations) standard deviations of the coefficient
estimates. A total of 250 runs were generated under each of the 8 conditions. Note that

Scenario 2 (β = 1.10,  = 0.139) mimics the actual conditions of the motivating example
extremely closely. It is also important to note that we were unable to comprehensively
evaluate direct full ML via our own SAS IML-based programming, or by adapting the SAS
NLMIXED implementation of Messer and Natarajan (2008). This was due to a high
prevalence of numerical problems in obtaining convergence for all of the “large
measurement error” scenarios depicted in Table 3.

A key indication in Table 3 is the fact that the RC method displayed bias toward the null and
poor confidence interval coverage in all but the “small beta, small measurement error” case

(Scenario 1), and especially as β and  increase. The bias in standard RC is noticeable,
albeit small, under the conditions of the motivating example (Scenario 2). On the other hand,
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the approximate full ML approach performed acceptably in most cases, with the notable
exception of the two “large measurement error” settings (Scenarios 7 and 8). Most
importantly, although confidence interval (CI) coverages are somewhat below nominal in
the higher measurement error cases given the small validation study sample size, only the
PL method maintained an acceptable point estimate of β under all conditions. However, PL
did exhibit occasional numerical problems when obtaining the adjusted standard error
estimate (see footnote to Table 3).

Table 3 also points out the strong tendency for the unadjusted standard errors accompanying
RC and PL to underestimate the true standard errors, as the former fail to correct for
uncertainty in the estimation of the MEM parameters. At the same time, it highlights the
utility of the two practical approaches discussed in Section 3.2 for making such corrections.
In particular, the proposed adjusted standard errors match the empirical standard deviation
of the estimates relatively well on average. The corresponding adjusted standard errors were
used to compute all CIs studied in conjunction with RC and PL.

Table 4 provides a more detailed summary based on 500 simulations for Scenario 9 (“large
β, large measurement error”), including information regarding all parameters in model (2.1).
In this simulation, we set nm = 1000 and increased nv to 250, to produce comparisons less
susceptible to fluctuations due to the validation sample size. Under these conditions, the bias
in the RC estimate for β is extreme and its corresponding CI coverage is close to 0 %. We
also see attenuation in the RC estimates and poor CI coverage for some other model (2.1)
coefficients (in particular, those reflecting effects of the variables generated to mimic
“plant” and “smoking status”). The approximate full ML method also produces a highly
attenuated estimate for β (though less so than for RC), but performs well with respect to all
other regression parameters. As in Table 3, we find that PL performs best overall, with little
bias in any of the estimates.

5.2. Additive-Normal MEM
Despite our primary focus upon the multiplicative-lognormal measurement error problem
dictated by models (2.1) and (2.2), it is of interest to assess the RC, PL and approximate full
ML methods in the more traditional additive-normal setting. In this direction, we repeated
our simulation study for some of the cases summarized in Table 3, but with ln(X) rather than
X treated as the exposure of interest in model (2.1). With regard to RC and approximate full
ML, note that this change implies simplifications to expressions (3.1) and (3.4). That is, we

now utilize μxi = E(Xi|Zi) = τi and , where Xi here denotes log-transformed
exposure.

In Table 5, we summarize the results of 500 simulations under this additive-normal MEM

setting, for the “moderate β, large  ” scenario. The overall conclusions are similar to those
reached in Table 4, with bias toward the null noted with respect to β and certain other
coefficients when using the RC approach. While this attenuation is not as severe as it was in
the multiplicative MEM case, it is still noteworthy. Approximate ML also displays bias of a
similar magnitude (this time away from the null, producing correspondingly larger standard
errors) under the assumed additive-normal MEM when estimating β and some other
coefficients. This bias may stem from some inaccuracy in the probit approximation to the
logistic function under these relatively extreme conditions. As in Table 4, the essential
finding is that PL once again performed the best overall with respect to both point and CI
estimation.
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6. DISCUSSION
We have evaluated several approaches for handling a structural measurement error problem
involving a logistic regression model with a single continuous exposure variable (X) that is
imperfectly measured in the main study, by means of a set of variables assumed associated
with it via a second regression equation. The true value of X is observed only for subjects
comprising an external validation sample. The motivating example revisits that of Weller et
al. (2007), but our primary focus is upon a pseudo-likelihood (PL)-based method geared to
maintain consistency for true parameters given the assumptions associated with the two
underlying regression models, rather than upon more popular RC methods that lack general
consistency but may work well under certain conditions. We address a multiplicative, rather
than additive, measurement error problem, by applying a log transformation in model (2.2).
Such a lognormal model for exposure is supported by the motivating exposure data, and may
often be indicated in environmental epidemiologic studies (e.g., Rappaport 1991; Rappaport
and Kupper 2008).

We are unable to recommend standard regression calibration (RC) for general use in the
multiplicative error context, due to evidence of substantial bias when estimating β and other
model (2.1) regression coefficients except under “small β, small measurement error”
conditions. A direct full ML approach offers an attractive solution, and a SAS NLMIXED
implementation of Messer and Natarajan (2008) for the additive-normal case was readily
adapted to our setting. However, we found numerical stability to be a barrier under

simulation conditions in which we assumed a large measurement error variance ( ). A full
ML approach utilizing probit-based approximations (Carroll et al. 2006; Demidenko 2004)
solved this stability problem, performed much better than RC, and matched direct full ML

for smaller ; however, we observed substantial bias in the approximate ML estimate of β
for large values of  (see Tables 3-4). Because both RC and approximate ML are
predictably fallible in such cases (Kuha 1994; Carroll et al. 2006), and because direct full
ML posed more numerical difficulties, our study favors the PL method overall. It remains
fully supported by theory under the assumptions attending models (2.1) and (2.2), and was
the only approach to yield an ostensibly valid estimate of β over the complete range of
conditions studied.

Our findings differ from those of Thoresen and Laake (2000), who recommended RC over
direct and approximate full ML methods based on simulation findings. However, several
aspects of the conditions that they assumed differed from ours. They considered the standard
additive-normal measurement error model with a single surrogate for X, used replicates
(rather than validation data) to estimate the measurement error variance, and studied smaller
magnitudes of the exposure effect. Nevertheless, we also found clear bias in RC estimates
under some of our simulation conditions, when ln(X) rather than X was taken to be the true
exposure of interest (e.g., Table 5). Thus, as predicted by the known lack of consistency of
RC under a logistic link, the deficiencies we observed with its use do not stem only from the
fact that our measurement error problem is multiplicative in nature. We expect the
approximate ML and/or direct full ML approaches to be generally viable and defensible in
the additive-normal case, though we note that PL still outperformed approximate ML under

the “large ” case considered in Table 5.

An important objective here was to assess the feasibility of likelihood-based methods for
practical use, based on accessible routines for optimization, Hessian approximation, and (in
the case of PL) numerical integration that are available in commercial statistical software.
With a view toward accessibility, we also proposed computationally straightforward
approaches designed to correct standard errors associated with RC and PL for uncertainty in
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MEM parameters (Section 3.2). These proposals fared well in our simulation studies in
terms of matching mean standard errors with empirical standard deviations of the estimates.
The “MI-based” approach suggested for computing standard errors of RC estimates could
also be used in conjunction with PL, as well as to avoid the need for sandwich estimators in
other contexts (e.g., the quasi-likelihood setting of Liang and Liu 1991).

SAS IML (SAS Institute, Inc. 2004) programs are available from the authors for
implementing all methods discussed in this paper. By providing this sharable resource, we
hope to encourage broader use of the recommended techniques (particularly PL) for those
conducting logistic regression with an error-prone exposure variable under a structural
MEM.
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Table 1

MEM in Model (2.2) fit to External Validation Data.
a,b

Variable
OLS

γ̂ (std. error)

Approximate full ML

γ̂ (std. error)
c p-value

d

Intercept −1.94 (0.17) −1.96 (0.15) <0.001

Grinding 0.27 (0.16) 0.22 (0.14) 0.09

Straight MWF 1.53 (0.11) 1.53 (0.10) <0.001

Synthetic MWF 1.46 (0.14) 1.47 (0.13) <0.001

Plant 2 −0.47 (0.18) −0.46 (0.16) 0.01

Age (30–39) −0.32 (0.14) −0.30 (0.13) 0.03

Age (40–49) −0.17 (0.17) −0.14 (0.16) 0.33

Age (50+) −0.11 (0.16) −0.08 (0.15) 0.49

Caucasian Race 0.04 (0.11) 0.04 (0.10) 0.70

Current smoker 0.17 (0.09) 0.16 (0.08) 0.06

a
Data from Weller et al. (2007); nv = 83 workers included in validation sample.

b
Residual variance ( ) estimates: OLS, 0.139; Approximate ML, 0.122.

c
Using probit approximation for Pr(Yi= 1|Zi) with k = 1.7; see (3.3).

d
Standard t tests based on OLS.
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Table 3

Simulations to evaluate corrected estimates for β using RC, PL and approximate full ML methods under

multiplicative-lognormal measurement error.
a,b

RC:
Mean estimate (Empirical SD)

Mean std. error [unadjusted, adjusted]
c

{95 % CI coverage}

PL:
Mean estimate (Empirical SD)

Mean std. error [unadjusted, adjusted]
d

{95 % CI coverage}

Approximate full ML
e
:

Mean estimate (Empirical SD)
[Mean std. error]

{95 % CI coverage}

Scenario 1: β = 0.50, σe
2

 = 0.139 (“SMALL BETA, SMALL MEASUREMENT ERROR”)

0.48 (0.12)
[0.11, 0.13]
{92.8 %}

0.48 (0.13)
[0.11, 0.12]
{92.6 %}

0.49 (0.13)
[0.12]

{92.4 %}

Scenario 2: β = 1.10, σe
2

 = 0.139 (“MODERATE BETA, SMALL MEASUREMENT ERROR”)

1.01 (0.17)
[0.12, 0.17]
{84.8 %}

1.10 (0.20)
[0.14, 0.19]
{93.5 %}

1.10 (0.20)
[0.18]

{92.4 %}

Scenario 3: β = 1.50, σe
2

 = 0.139 (“LARGE BETA, SMALL MEASUREMENT ERROR”)

1.32 (0.20)
[0.13, 0.21]
{80.8 %}

1.51 (0.24)
[0.18, 0.24]
{96.3 %}

1.52 (0.25)
[0.24]

{95.2 %}

Scenario 4: β = 0.50, σe
2

 = 0.50 (“SMALL BETA, MODERATE MEASUREMENT ERROR”)

0.46 (0.14)
[0.09, 0.14]
{85.2 %}

0.50 (0.16)
[0.11, 0.15]
{90.5 %}

0.50 (0.16)
[0.14]

{89.6 %}

Scenario 5: β = 1.10, σe
2

 = 0.50 (“MODERATE BETA, MODERATE MEASUREMENT ERROR”)

0.78 (0.21)
[0.09, 0.20]
{52.0 %}

1.07 (0.29)
[0.17, 0.27]
{90.2 %}

1.08 (0.28)
[0.26]

{87.6 %}

Scenario 6: β = 1.50, σe
2

 = 0.50 (“LARGE BETA, MODERATE MEASUREMENT ERROR”)

0.97 (0.25)
[0.11, 0.22]
{34.0 %}

1.45 (0.36) 1.46
[0.22, 0.34]
{90.5 %}

(0.34)
[0.31]

{88.8 %}

Scenario 7: β = 0.50, σe
2

 = 1.50 (“SMALL BETA, LARGE MEASUREMENT ERROR”)

0.28 (0.13)
[0.05, 0.12]
{42.0 %}

0.48 (0.21)
[0.13, 0.22]
{90.4 %}

0.40 (0.16)
[0.16]

{80.0 %}

Scenario 8: β = 1.10, σe
2

 = 1.50 (“MODERATE BETA, LARGE MEASUREMENT ERROR”)

0.38 (0.18)
[0.05, 0.16]
{11.2 %}

1.04 (0.53)
[0.23, 0.45]
{83.7 %}

0.80 (0.30)
[0.26]

{61.2 %}

a
True disease model (TDM) given in Equation (2.1); Measurement error model (MEM) given in Equation (2.2).

b
250 replications in each case; Main study sample size = 1040; External validation sample size = 83; True coefficients and individual binary

predictor distributions match those observed in real data example except for variations in β and  .

c
Adjusted std. error based on RC obtained using adaptation of MI-type methods (M = 5; Section 3.2).
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d
Adjusted std. error based on pseudo-likelihood (PL) obtained by numerical approximation to Hessian for full likelihood after inserting OLS

estimates of MEM parameters and PL estimates of model (2.1) parameters (Section 3.2); 2–7 % of runs failed to produce adjusted std. errors due to
numerical problems.

e
Using probit approximation for Pr(Yi = 1|Zi) with k = 1.7; see Equation (3.3).

J Agric Biol Environ Stat. Author manuscript; available in PMC 2013 September 09.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

LYLES and KUPPER Page 18

Table 4

Simulation evaluating corrected estimates using RC, PL and approximate full ML methods under

multiplicative-lognormal measurement error.
a,b

Variable
(true coefficient)

RC:
Mean estimate (Empirical SD)

Mean std. error:

[unadjusted, adjusted]
c

{95 % CI coverage}

Pseudo-Likelihood:
Mean estimate (Empirical SD)

Mean std. error:

[unadjusted, adjusted]
d

{95 % CI coverage}

Approximate full ML
e
:

Mean estimate (Empirical SD)
[Mean std. error]

{95 % CI coverage}

Scenario 9: β = 1.50, σe
2

 = 1.50 (“LARGE BETA, LARGE MEASUREMENT ERROR”)

Intercept
(−2.73)

−1.93 (0.20)
[0.19, 0.21]

{5.0 %}

−2.75 (0.41)
[0.33, 0.39]
{91.3 %}

−2.58 (0.32)
[0.32]

{90.2 %}

Exposure (X)
(1.50)

0.48 (0.13)
[0.06, 0.12]

{0.2 %}

1.50 (0.49)
[0.31, 0.43]
{90.1 %}

0.96 (0.24)
[0.23]

{37.0 %}

Plant 2
(0.90)

0.64 (0.16)
[0.15, 0.17]
{66.4 %}

0.92 (0.25)
[0.21, 0.25]
{94.5 %}

0.89 (0.23)
[0.23]

{95.2 %}

Age (30–39)
(−0.02)

−0.08 (0.19)
[0.17, 0.19]
{93.8 %}

−0.04 (0.25)
[0.20, 0.24]
{94.1 %}

−0.06 (0.24)
[0.23]

{95.4 %}

Age (40–49)
(−0.10)

−0.10 (0.18)
[0.17, 0.19]
{95.2 %}

−0.10 (0.24)
[0.20, 0.24]
{95.3 %}

−0.10 (0.23)
[0.23]

{96.0 %}

Age (50+)
(−0.06)

−0.07 (0.17)
[0.16, 0.18]
{96.2 %}

−0.07 (0.23)
[0.20, 0.23]
{93.6 %}

−0.07 (0.22)
[0.23]

{94.8 %}

Race
(0.15)

0.12 (0.16)
[0.15, 0.17]
{95.4 %}

0.15 (0.21)
[0.18, 0.21]
{94.5 %}

0.15 (0.21)
[0.21]

{94.8 %}

Current smoker
(1.04)

0.83 (0.17)
[0.15, 0.17]
{77.8 %}

1.03 (0.24)
[0.19, 0.22]
{93.8 %}

1.03 (0.22)
[0.21]

{94.4 %}

a
True disease model (TDM) given in Equation (2.1); Measurement error model (MEM) given in Equation (2.2).

b
500 simulations; Main study sample size = 1000; External validation sample size = 250; True coefficients and individual binary predictor

distributions match those observed in real data example.

c
Adjusted std. error for  based on RC obtained using adaptation of MI-type methods (M = 5 replications; see Section 3.2).

d
Adjusted std. error for  based on pseudo-likelihood (PL) obtained by numerically approximating Hessian for full likelihood after inserting OLS

estimates of MEM parameters and PL estimates of model (2.1) parameters (see Section 3.2); 23 of 500 runs (4.6 %) failed to produce adjusted std.
errors due to numerical problems.

e
Using probit approximation for Pr(Yi = 1|Zi) with k = 1.7; see (3.3).
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Table 5

Simulation to evaluate corrected estimates using RC, PL and approximate full ML methods under additive-

normal measurement error.
a,b

Variable
(true coefficient)

RC:
Mean estimate (Empirical SD)

Mean std. error:

[unadjusted, adjusted]
c

{95 % CI coverage}

Pseudo-Likelihood:
Mean estimate (Empirical SD)

Mean std. error:

[unadjusted, adjusted]
d

{95 % CI coverage}

Approximate full ML
e
:

Mean estimate (Empirical SD)
[Mean std. error]

{95 % CI coverage}

β = 1.10, σe
2

 = 1.50 (“MODERATE BETA, LARGE MEASUREMENT ERROR”)

Intercept
(−2.73)

−2.19 (0.31)
[0.27, 0.33]
{63.8 %}

−2.85 (0.46)
[0.40, 0.47]
{96.8 %}

−3.03 (0.82)
[0.78]

{98.4 %}

Exposure
(1.10) [ln(X)]

0.91 (0.14)
[0.11, 0.14]
{67.8 %}

1.16 (0.32)
[0.24, 0.30]
{93.6 %}

1.32 (0.56)
[0.52]

{97.2 %}

Plant 2
(0.90)

0.74 (0.28)
[0.24, 0.29]
{90.8 %}

0.93 (0.38)
[0.33, 0.39]
{95.6 %}

1.05 (0.51)
[0.54]

{96.0 %}

Age (30–39)
(−0.02)

−0.02 (0.31)
[0.27, 0.32]
{96.2 %}

−0.02 (0.40)
[0.34, 0.40]
{97.0 %}

−0.01 (0.46)
[0.48]

{97.4 %}

Age (40–49)
(−0.10)

−0.07 (0.33)
[0.27, 0.32]
{94.6 %}

−0.08 (0.42)
[0.34, 0.40]
{95.2 %}

−0.08 (0.53)
[0.50]

{96.2 %}

Age (50+)
(−0.06)

−0.05 (0.31)
[0.25, 0.31]
{95.0 %}

−0.06 (0.39)
[0.32, 0.38]
{96.2 %}

−0.06 (0.48)
[0.46]

{96.4 %}

Race
(0.15)

0.12 (0.28)
[0.23, 0.28]
{95.0 %}

0.15 (0.35)
[0.29, 0.35]
{96.0 %}

0.15 (0.40)
[0.40]

{96.2 %}

Current smoker
(1.04)

0.88 (0.29)
[0.23, 0.28]
{89.6 %}

1.10 (0.39)
[0.31, 0.37]
{95.0 %}

1.23 (0.56)
[0.53]

{96.4 %}

a
True disease model (TDM) given in Equation (2.1), except with ln(X) replacing X as the exposure variable of interest; Measurement error model

(MEM) given in Equation (2.2).

b
500 simulations; Main study sample size = 1000; External validation sample size = 250; True coefficients and individual binary predictor

distributions match those observed in real data example.

c
Adjusted std. error for  based on RC obtained using adaptation of MI-type methods (M = 5 replications; see Section 3.2).

d
Adjusted std. error for  based on pseudo-likelihood (PL) obtained by numerically approximating Hessian for full likelihood after inserting OLS

estimates of MEM parameters and PL estimates of model (2.1) parameters (see Section 3.2); 1 of 500 runs (0.2%) failed to produce adjusted std.
errors due to numerical problems.

e
Using probit approximation for Pr(Yi = 1|Zi) with k = 1.7; see (3.3).
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