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Abstract

Approximate Bayesian computation (ABC) or likelihooddrmference
algorithms are used to find approximations to posterioritligions without
making explicit use of the likelihood function, dependimgtead on simu-
lation of sample data sets from the model. In this paper wevshat under
the assumption of the existence of a uniform additive moatel ¢erm, ABC
algorithms give exact results when sufficient summariesuaegl. This in-
terpretation allows the approximation made in many previapplication
papers to be understood, and should guide the choice ofaveetd toler-

ance in future work. ABC algorithms can be generalized byapg the
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0-1 cut-off with an acceptance probability that varies vitie distance of

the simulated data from the observed data. The acceptanséydgives the

distribution of the error term, enabling the uniform errsually used to be

replaced by a general distribution. This generalizatiom @ao be applied

to approximate Markov chain Monte Carlo algorithms. In tighthis work,

ABC algorithms can be seen as calibration techniques foliégihptochas-

tic models, inferring parameter values in light of the comepunodel, data,

prior beliefs about the parameter values, and any measatemnanodel

errors.

Keywords: Approximate Bayesian computation; calibration; implioiter-

ence; likelihood-free inference.

1 Introd
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Approximate Bayesian computation (ABC) algorithms are augrof methods

for performing Bayesian inference without the need for Exipévaluation of the

model likelihood functio
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This popularity is primarily due to the fact that the likeditd function, which can
be difficult or impossible to compute for some models, is re@ded in order to
do inference. However, despite their popularity little rolwn about the quality
of the approximation they provide beyond results shownnmugtion studies.

In this paper we give a framework in which the accuracy of AB&mods can
be understood. The notation throughout this paper is asvisll Letf denote
the vector of unknown model parameters we wish to infer, ahg(-) denote the
computer simulator. We assumé) is stochastic, so that the simulator repeatedly
run at@ will give a range of possible outputs, and wre~ n(6) to denote that
X has the same distribution as the model ru@.afo distinguish the model output
from the observed data, IBXdenote the observations. The aim is to calibrate the
model to the data, in order to learn about the true value optrameter. The

Bayesian approach is to find the posterior distributiof givenD, given by

(D | 6)m(0)

me|b) === 5

Throughout this papery(-) is used to denote different probability densities, and
(- | -) conditional densities, with the context clear from the angats. Above,
(0) is the prior distribution,;(D | 6) is the likelihood of the data under the
model given parameted (the probability distribution of)(6)), (0 | D) is the
posterior distribution, and(D) is the evidence for the model.

It is usual in Bayesian inference to find that the normalizingstantr(D) is

intractable, and a wide range of Monte Carlo techniques baea developed to



deal with this cas , 2001). Doubly-intractable distitions are distributions

which have a likelihood functiom(D | 8) = q(D | 8)/c(6) which is known only

up to a normalizing constant(8), which is intractable. Standard Monte Carlo

techniques do not apply to these distributions, land Murt 2006) have de-
veloped algorithms which can be used in this case. ABC meathoelMonte Carlo
techniques developed for use with completely-intractdig&ibutions, where the
likelihood function (D | ) is not even known up to a normalizing constant.
ABC algorithms, sometimes called likelihood-free algamiis, enable inference
using only simulations generated from the model, and doewpiire any evalua-
tion of the likelihood. The most basic form of the ABC algbrit is based on the

rejection algorithm, and is as follows:
Algorithm A: approximate rejection algorithm
Al Draw 8 ~ 1(0)
A2 SimulateX from the simulatoX ~ n(8)
A3 Acceptf if p(X,D) < d.

Here, p(-,-) is a distance measure on the model output space,daisda tol-
erance determining the accuracy of the algorithm. Acceptddes of6 are
not from the true posterior distribution, but from an appneation to it, written
(6 | p(D,X) < ). Whend = 0 this algorithm is exact and gives draws from the
posterior distributiorrt(6 | D), whereas ad — o the algorithm gives draws from

the prior. While smaller values a¥ lead to samples which better approximate



the true posterior, they also lead to lower acceptance natstep A3 than larger
values, and so more computation must be done to get a giveplsaime. Con-
sequently, the toleranc@ can be considered as controlling a trade-off between
computability and accuracy.

Several extensions have been made to the approximateiogj@dtjorithm.
If the data are high dimensional, then a standard changeetaltforithm is to
summarize the model output and data, using a summary &t&{stto projectx

andD onto a lower dimensional space. Algorithm A is then changethat step

A3 reads
A3’ Acceptb if p(S(X),S(D)) < 0.

Ideally, S(-) should be chosen to be a sufficient statistic forHowever, if the
likelihood is unknown, then sufficient statistics cannotidentified. Summariz-
ing the data and model output using a non-sufficient sumntag another layer
of approximation on top of that added by the use of the diganeasure and tol-
erance, but again, it is not known what effect any given ahéoc S(-) has on the
approximation.

In this paper it is shown that the basic approximate rejacélgorithm can
be interpreted as performing exact inference in the presehaniform model or
measurement error. In other words, it is shown that ABC gexest inference for
the wrong model, and we give a distribution for the model=iean for whatever
choice of metric and tolerance are used. This interpretalmows us to show
the effect a given choice of metric, tolerance and weightiage had in previous

applications, and should provide guidance when choosirtgea@and weightings
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in future work. It is also shown that Algorithm A can be gerieed to give
inference under the assumption of a completely flexible ftmmhe model error.

We discuss how to model the model error, and show how some Imode be

rewritten to give exact inference. Ratmann etlal. (2007)aed a related idea,

and looked at using ABC algorithms to diagnose model inadeigs. The aim
here is not to diagnose errors, but to account for them inrifexence so as to
provide posteriors that take known inadequacies into atg@und to understand

the effect of using standard ABC approaches.

Finally, ABC has been extended by Marjoram et al. (2003) fittven rejec-

tion algorithm to approximate Markov chain Monte Carlo altons, and by

Sisson et al! (2007), Toni etlal. (2009), and Beaumont 4!;@_0;&) to approximate
sequential Monte Carlo algorithms. We extend the approtanvdarkov chain

Monte Carlo algorithm to give inference for a general forneobr, and suggest
methods for calculating Bayes factors and integrals forgetely-intractable dis-

tributions.

2 Interpreting ABC

In this section a framework is described which enables tfexie given metric
and weighting have in ABC algorithms to be understood. Thisthen allow
us to improve the inference by carefully choosing a metrit @weighting which
more closely represents our true beliefs. The key idea issorae that there

is a discrepancy between the best possible model prediatidrthe data. This



discrepancy represents either measurement error on tagatanodel error de-
scribing our statistical beliefs about where the model isngt George Box fa-
mously wrote that ‘all models are wrong, but some are usgdald in order to link
models to reality it is necessary to account for this moderevhen performing

inference. In the context of deterministic models, thischca is well established

Campbell] 2006, Goldstein and Rougier, 2009, Higdon e@), and should

also be undertaken when linking stochastic models to yedkspite the fact that
the variability in the model can seemingly explain the datéhay are.
The framework introduced here uses the best input appreaciiar to that

given inﬁgnnmand_o_’tlag\a (2001). We assume that the mesasmtD can

be considered as a realization of the model run at its best irgdue,8, plus an

independent error term

D=n(0)+e. (1)

The errore might represent measurement error @Bnor model error inn(-),

or both, in which case we write = €1 + &. Discussion about the validity of
Equation[(1), and what represents and how to model it are delayed until Section
3, and for the time being we simply consideto have densityz(-). The aim is

to describe our posterior beliefs about the best irgpirt light of the errore, the

dataD, and prior beliefs abou. Consider the following algorithm:
Algorithm B: probabilistic approximate rejection algorithm
B1 Draw6 ~ i(9)
B2 SimulateX from the modeX ~ n(8)
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B3 Accept6 with probability #2=%).

(o}

Here,c is a constant chosen to guarantee tigdD — X)/c defines a probability.
For most cases we will expeetto have a modal value of 0, and so taking-
e (0) will make the algorithm valid and also ensure efficiency byximézing the
acceptance rate. If summaries are involved, @ &dX live in non-comparable
spaces, so thdd — X does not make sense, we can instead use any distribution
relatingX to D, 1:(D|X) instead.

The main innovation in this paper is to show that Algorithm iBeg exact
inference for the statistical model described above by Egugll). This is essen-

tially saying that ABC gives exact inference, but for the mgaonodel.

Theorem 1 Algorithm B gives draws from the posterior distributimé | D) un-

der the assumption that B () + £ ande ~ 1(-) independently ofj (6).

Proof 1 Let

1if 8 is accepted
I p—
0 otherwise.

We then find that

pr(l =1 6) :/pr(l — 1| 1n(6) = x6)7(x | 8)dx

:/@n(ﬂ 0)dx.



This gives that the distribution of accepted value§ o

m(0) [ (D —x)m(x | 8)dx

MO =Y = 1) e (0 xjmix| &))"

To complete the proof we must find the posterior distributbbthe best model
input 6 given the data D under the assumption of model error. Noté 1B |
n(6) = x) = (D — x) which implies that the likelihood df is

(D | 6) :/n(D | n(8) = x, 8)7(x| 8)dx

:/rre(D—x)n(x| 6)dx.

Consequently, the posterior distribution®fs

s T(0) [1e(D—x)m(x| B)dx
MO D) = 178) 77 (D —x)m(x| 6)dxd0

which matches the distribution of accepted values from vtiyo B.

To illustrate the algorithm, we consider the toy exampledugseSisson et al.

2007) and again in_Beaumont ef al. (2009) where analyticessgions can be

calculated for the approximations.

Example 1 Assume the model is a mixture of two normal distribution$ it

uniform prior for the mean:

1 1 1
n(6) ~5.4(8,1)+ 54 (6, 755), 6 ~ %[-10,10.
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Further assume that we observe=D0, but that there is measurement ermon
this data. Ife ~ % [—9, ], which is the assumption made when using Algorithm

A withp(x,0) = |x

, then it is possible to show that the approximation is
noe|e~#%[-05,6],D=0)P (6—0)—P(—0—0)+P(10(6—0))—P(—10(0+0))

for 8 € [—10,10], where®(-) is the standard Gaussian cumulative distribution
function. An alternative to assuming uniform error, is tgpase that the error
has a normal distributios ~ .4 (0, 5%/3). It can then be shown that the posterior
distribution of@ is

52 1 2. 1 1 0

mo| e~ </V(07§>7D =00 é(p(e;oal-'_ §)+§(P(9J0,ﬁ)+ 3)

truncated ontd—10,10]. This is the approximation found when using Algorithm
B with a Gaussian acceptance kernel, whete 11, g?) is the probability density
function of a Gaussian distribution with meanand varianceg?. The value of
the variance62/3, is chosen to be equal to the variance o#%4—3&, 8] random
variable. For large values of the toleranc® the difference between the two
approximations can be significant (see Figlfe 1), but in ih@tlas d tends to

zero, the two approximations will be the same, correspantbreero error.
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Figure 1: The posterior distributions found when using Aitjon A (solid line)
and Algorithm B (dashed line) with a Gaussian acceptanaackerhe left plot is
for & =1 and the right plot fod = 0.1. The two curves are indistinguishable in
the second plot.

3 Model discrepancy

The interpretation of ABC given by Theorem 1 allows us to s@é\previous anal-
yses done using the ABC algorithm, and to understand theoappation in the

posterior in terms of the distribution implicitly assumext the error term. If the
approximate rejection algorithm (Algorithm A) was used tottle analysis, we

can see that this is equivalent to using the acceptance lpititypa

() |1lifp(r)<o

0 otherwise
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wherer is the distance between the simulated and observed data.s&@ys that
Algorithm A gives exact inference for the model which asssmaeiniform mea-

surement error on the region defined by the 0-1 cut-off, i.e.,

e~ U{X:p(x,D) < d}.

If p(-,-) is a Euclidean metricp(D,x) = (x— D)T(x— D), this is equivalent to
assuming uniform measurement error on a ball of radiusboutD. In most
situations, it is likely to be a poor choice for a model of theasurement error,
because the tails of the distribution are short, with zereswaitside of the interval
[—0,9].

There are two ways we can choose to view the error term; edbanea-
surement error or model error. Interpretiado represent measurement error is
relatively straight forward, as scientists usually holtidfe about the distribution
and magnitude of measurement error on their data. For mobtgms, assump-
tions of uniform measurement error will be inappropriated ao using Algorithm
A with a 0-1 cut-off will be inappropriate. But we have showawvhto replace this
uniform assumption with a distribution which more closedpiresents the beliefs
of the scientist. Although the distribution of the measueeterror will often be
completely specified by the scientist, for example zerom@aussian error with
known variance, it is possible to include unknown paransefi@rthe distribution
of € in 8 and infer them along with the model parameters. Care neduks taken

to choose the constaoto that the acceptance rate in step B3 is less than one for
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all values of the parameter, but other than this it is in thiesample to infer error
parameters along with the model parameters. So for exanfi@e, .4 (0,02),
wherea? is unknown, we could include? in 6.

Some models have sampling or measurement error built itacdmputer
code so that the model output includes a realization of thisen Rather than
coding the noise process into the model, it will sometimepdssible to rewrite
the model so that it outputs the latent underlying signathéf likelihood of the
data given the latent signal is computable (as it often l@ntit may be possible
to analytically account for the noise with the acceptanabability 7(-). ABC
methods have proven most popular in fields such as genepickermeiology, and
population biology, where a common occurrence is to hava daherated by
sampling a hidden underlying tree structure. In many cases,the partially
observed tree structure which causes the likelihood to tradtable, and given
the underlying tree the sampling process will have a knowgtridution. If this
is the case (and if computational constraints allow), weusethe probabilistic
ABC algorithm to do the sampling to give exact inference withany assumption
of model error. Note that if the sampling process gives cmatus data, then exact
inference using the rejection algorithm would not be pdesdnd so this approach

has the potential to give a significant improvement overenirmethods.

Example 2 To illustrate the idea of rewriting the model in order to doadytic

sampling, we describe a version of the problem consider&diagnol and Tava
2004) ancJMlKlns_QD_andlaAA 2009). Their aim was to use the primate fossil

record to date the divergence time of the primates. They asedhomogeneous
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branching process to model speciation, with trees rootedha t= 7, and simu-
lated forwards in time to time+ O, so that the depth of the treg, represents the
divergence time of interest. The branching process is patared byA, which
can either be estimated and fixed, or treated as unknown areh@ prior dis-
tribution. Time is split into geologic epochs< tx < --- < t; < 0, and the data
consist of counts of the number of primate species that hega fbund in each
epoch of the fossil record, B (Dy,...,Dy). Fossil finds are modelled by a dis-
crete marking process on the tree, with each species hayjoglerobability o

of being preserved as a fossil in the record. If we lebdlthe cumulative number
of branches that exist during any point of epoch i, then thelehased for the
fossil finds process can be written ag D BinomialN;, o). The distribution of
N = (N1,...,N14) cannot be calculated explicitly and so we cannot use a likeli

hood based approach to find the posterior distribution ofuhknown parameter

0= (A,1,a). The ABC approach usedmm 4) was to draw
a value off from its prior, simulate a sample tree and fossil finds, arehtbount
the number of simulated fossils in each epoch to find a simdilaalue of the
data X. They then acceptédif p(D,X) < & for some metrig(-,-) and toler-
anced. This gives an approximation to the posterior distributajrthe parameter
given the data and the model, where the approximation candwveed as model
or measurement error.

However, instead of approximating the posterior, it is plolesin theory to
rewrite the model and perform the sampling analyticallynalfihe exact posterior

distribution:
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1. Draw @ = (A, p,a) ~ 11(-)
2. Simulate a tre€Z using parameteA and count N
3. Accept with probability[1¥_, (g;)aDi (1—a)N-Di,

This algorithm gives exact draws from the posterior disitibn of8 given D, and
in theory there is no need for any assumption of measurennemnt dlote thatf
can include parametear for the sampling rate, to be inferred along with the other
model parameters. However, this makes finding a normalizamgtant in step 3
difficult. Without a normalizing constant to increase thegmance rate, applying
this algorithm directly will be slow for many values of D anttke choice of prior
distribution and number of parameters we choose to inclad&g¢an also have a
significant effect on the efficiency). A practical solutionwd be to add an error
term and assume the presence of measurement error on thévdaitzh is likely
to exist in this case), in order to increase the acceptanabdability in step 3.
Approaching the problem in this way, it is possible to calfgfnodel the error on

D and improve the estimate of the divergence time.

Usinge to represent measurement error is straight forward, wkergage to
model the model discrepancy (to account for the fact the mseeong) is harder
to conceptualize and not as commonly used. For deterndnisbidels, the idea

of using a model error term when doing calibration or datanaistion is well

established and described for a Bayesian framework in 'Hagan

2001). They assume that the model run at its ‘best’ innLQé), is sufficient

for the model when estimatiné. In other words, knowledge of the model run
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at its best input provides all the available information @ibilve system for the
purpose of prediction. If this is the case, then we can defiloebe the difference
between (6) andD, and assume is independent ofj (8). Note that the error
is the difference between the data and the model run at itsify@st, and does
not depend orf. If we do not include an error term, then the best input is the
value of@ that best explains the data, given the model. When we incduadsror

term which is carefully modelled and represents our beéibfsut the discrepancy
betweem (-) and reality, then it can be argued tréaltepresents the ‘true’ value of
6, and thatr(0 | D, & ~ 1(-)) should be our posterior distribution férin light

of the data and the model.

For deterministic models, Goldstein and Rougier (2009yigiea framework
to help think about the model discrepancy. To specify théritigion of &, it
can help to break the discrepancy down into various partgsipal processes not
modelled, errors in the specification of the model, impérii@plementation etc.
So for example, if)(-) represents a global climate model predicting average tem-
peratures, then common model errors could be not includinggsses such as
clouds, CQ emissions from vegetation etc., error in the specificatioghinbe
using an unduly simple model of economic activity, and infipetrimplementa-
tion would include using grid cells too large to accuratetyve the underlying
differential equations. In some cases it may be necessamgrsider model and
measurement errog,+ e say, and model each process separately. For stochastic
models, as far as we are aware, no guidance exists about hoadel the error,

and indeed it is not clear whatshould represent.
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To complicate matters further, for many models the dimensibD and X
will be large, making it likely that the acceptance ratgX — D) will be small.
As noted above, in this case it is necessary to summarize tielnoutput and
the data using a multidimensional summ&(y). Using a summary means that
rather than approximating(0 | D), the algorithms approximat& 6 | S(D)). The
interpretation ot as model or measurement error still holds, but now the esror i
on the measureme®&D) or the model predictios(X). If each element of(-)
has an interpretation in terms of a physical process, thig make it easier to
break the error down into independent components. For ebeasyppose that we
useS(X) = (X, Sxx), the sample mean and varianceXagfand that we then use the

following acceptance density

T(S(X) —S(D)) = m(X — D) ha(Sxx — So)-

This is equivalent to assuming that there are two sourcesooteherror. Firstly,
the mean prediction is assumed to be wrong, with the errdrilolised with den-
sity (). Secondly, it assumes that the model prediction of the ne€ids wrong,
with the error having distributioms(-). It also assumes that the error in the mean
prediction is independent of the error in the variance mtezh. This indepen-
dence is not necessary, but helps with visualization actation. For this reason

it can be helpful to choose the different componentSgfso that they are close to
independent (independence may also help increase thetaccepate). Another

possibility for choosindS(-) is to use principal component analysis (if di)
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is large) to find a smaller number of uncorrelated summarigbedata which

may have meaningful interpretations. In general howevas, mot known how

to choose good summaries. Joyce and Marjoram (2008) hagestggl a method
for selecting between different summaries and for decitimg many summaries
it is optimal to include. However, more work is required tadfsummaries which
are informative, interpretable and for which we can desctlite model error.
Finally, once we have specified a distribution fowe may find the acceptance
rate is too small to be practicable and that it is necessacpmapromise (as in
Example[2 above). A pragmatic way to increase the acceptaateds to use
a more disperse distribution fa This moves us from the realm of usimggo
model an error we believe exists, to using it to approximheettue posterior.
This is currently how most ABC methods are used. Howeven glgen making
a pragmatic compromise, the interpretation of the apprakion in terms of an
error will allow us to think more carefully about how to chedsetween different

compromise solutions.

Example 3 One of the first uses of an ABC algorithm was| by Pritchard et al.

1999), who used a simple stochastic model to study the daeytug history of
the Y chromosome, and used an approximate rejection algorio infer muta-
tion and demographic parameters for their model. Their dadasisted of 445 Y
chromosomes sampled at eight different loci from a mixt@ingopulations from
around the world, which they summarized by just three dtesisthe mean (across
loci) of the variance of repeat numbers V, the mean effettéterozygosity H,

and the number of distinct haplotypes N. The observed vdltieecsummaries
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for their sample was B= (V,H,N)T = (1.1490.6358 316)T. They elicited prior
distributions for the mutation rates from the literatureychused diffuse priors
for population parameters such as the growth rate and thecaffe number of
ancestral Y chromosomes. Population growth was modelled @ésstandard co-
alescent model growing at an exponential rate from a coriséacestral level,
and various different mutation models were used to simdataple values for
the three summaries measured in the data. They then applgedithm A using

the metric
2 Di—X
Di

p(D,X) = (2)

i=
where X is a triplet of simulated values for the three sumasastatistics. They
used a tolerance value of= 0.1, which for their choice of metric corresponds to
an error of 10% on each measurement. This gives results algmit/to assuming
that there is independent uniform measurement error ontleetdata summaries,

so that the true values of the three summaries have the fiokpaistributions

V ~%/[1.0341,1.2624, H ~ 72/[0.581220.71038, N ~ % [284,348.

Beaumont et all (2002) used the same model and data set tcacethe relative
performance of Algorithm A with an algorithm similar to Aligm B, using an
Epanechnikov density applied to the metric value (2) forateeptance probabil-
ity &(-). They set a value d¥ (the cut-off in Algorithm A and the range of the
support fore in Algorithm B) by using a quantilesfof the empirical distribution

function of simulated values pfD, X), i.e., R o1 means they accepted the 1% of
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model runs with values closest to D. They concluded thatralgo B gives more
accurate results than Algorithm A, meaning that the disttidin found using Al-
gorithm B is closer to the posterior found when assuming nasmement error
(6 =0).

The conclusion that Algorithm B is preferable to Algorithnfoh this model
is perhaps not surprising in light of what we now know, as iswat taken into
account that both algorithms used the same valué.ofFor Algorithm A this
corresponds to assuming a measurement error with vari@i¢s, whereas using
an Epanechnikov acceptance probability is equivalent suagng a measurement
error with varianced? /5. Therefore, using Algorithm B uses measurement error
only 60% as variable as that assumed in Algorithm A, and ss garhaps not

surprising that Algorithm B gives more accurate resultshis ttase.

4 Approximate Markov chain Monte Carlo

For problems which have a tightly constrained posteriotrithistion (relative to

the prior), repeatedly drawing independent value8 @fom its prior distribution

in the rejection algorithm can be inefficient. For problenita high dimensional

6 this inefficiency is likely to make the application of a rdjea type algorithm
impracticable. The idea behind Markov chain Monte Carlo (T is to build

a Markov chain orf and correlate successive observations so that more time is
spent in regions of high posterior probability. Most MCM@ailithms, such as

the Metropolis-Hastings algorithm, depend on knowledgtheflikelihood func-
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tion which we have assumed is not known, Marjoram et al. (2@03 an ap-

proximate version of the Metropolis-Hastings algorithnijeh approximates the
acceptance probability by using simulated model output &itmetric and a 0-1
cut-off to approximate the likelihood ratio. This, as be&fois equivalent to as-
suming uniform error on a set defined by the metric and thednte. As above,
this algorithm can be generalized from assuming uniformsuesanent error to
an arbitrary error term. Below, are two different algorithta perform MCMC for

the model described by Equatidn (1). The difference betwieetwo algorithms
is in the choice of sample space used to construct the saaia@hstribution. In

Algorithm C we consider the state variable to belong to thecepof parameter
values®, and construct a Markov chaiffy, 6,, ...} which obeys the following

dynamics:
Algorithm C: probabilistic approximate MCMC 1

C1 At timet, propose a move fronf, to 6’ according to transition kernel

q(6, 6').
C2 SimulateX’ ~ n(6").

C3 Set6 1 = 6’ with probability
r(&76’|x/>:Mmin (1,w>7 (3)

otherwise se 1 = 6.
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An alternative approach is to introduce the value of the fated output as an
auxiliary variable and construct the Markov chain on thecsfiax 2", where 2

is the space of model outputs.

Algorithm D: probabilistic approximate MCMC 2

D1 Attimet, propose a move fronfy = (6, %) to ¢/’ = (6’,X’) with 6’ drawn

from transition kernefj(&;, 6'), andX’ simulated from the model usiry:

X'~ n(8)

D2 Setyr,1 = (6',X’) with probability

r((6,%),(68',X’)) =min (1, ;@@(D—X’)q(ef,e[)n(e'))) L@

o
|
X
=2
P
A
=
©

otherwise setly 1 = 4.

Proof 2 (of convergence) To show that these Markov chains converge to the re-
quired posterior distribution, it is sufficient to show thiie chains satisfy the

detailed balance equations

n(s)p(s,t) = m(t)p(t,s) forall st

where -, ) is the transition kernel of the chain ard-) the required stationary

distribution.
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For Algorithm C the transition kernel is the product of@&8’) and the ac-
ceptance rate. To calculate the acceptance rate, note th&quation [(B) the
acceptance probability is conditioned upon knowledgecin¢l so we must inte-
grate out X to find r(6, 8). This gives the transition kernel for the chain:

(6.6) = (6.0 [ TP X i (1, q(; ) (X' | 64"

The target stationary distribution is

6) [ Te(D—X)m(X | B)dX

0 |D) = D)

It is then simple to show that the Markov chain described lgpAthm C satisfies

the detailed balance equations (see€ Liu (2001) for comparaiculations).

For Algorithm D, the transition kernel is

P((8.20).(6°X)) = (8, 0)mx' | )min (1, LD JATAE) ),

(D —X)a(&, 6") ()
(5)

The Markov chain in this case takes value®ix 2™ and the required stationary

distribution is

(D= X)m(X | 6)7(8)

n(6,X | D) = D)

(6)

It can then be shown that Equations$ (5) ahH (6) satisfy thailéet balance equa-

tions.
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While Algorithm C is more recognisable as a generalizatibthe approximate

MCMC algorithm given in_Marjoram et al. (2003), Algorithm 3 likely to be

more efficient in most cases. This is because the ratio of heode densities that
occurs in acceptance ratd (4) is likely to result in largebpbilities than those
given by Equatior(3) which simply hasg(D — x) /c term instead. Algorithm D

also has the advantage of not requiring a normalizing cahsta

5 Extensions

5.1 Importance sampling

Suppose our aim is to calculate expectations of the form
E(f(6) | D) = / £(6)7(6 | D)d®

where the expectation is taken with respect to the postdistribution of6. The
simplest way to approximate this is to draw a sampleédofalues{6}i—1 . n,
from 11(6 | D) using Algorithm B, C or D and then approximate using the sum
n—1y f(68). However, a more stable estimator can be obtained by usegsdr
from the prior weighted byt (D — X;) as in Algorithm B. For eaclig;, X;) pair
drawn from the prior and simulator in steps B1 and B2, as§igweightw; =

(D —X;). Then an estimator of the required expectation is

> f(6)w

2 Wi
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This is an importance sampling algorithm targeting thetjdistribution
n(X,0|D)dm(D—-X)r(X|6)mn(0)

using instrumental distributiori(X | 8)1(6). Note that if the uniform acceptance

kernel

(D —X) Dlppx)<s

is used, then this approach reduces to the rejection ahgorias proposals are
given weight 1 (accepted) or O (rejected), showing thateth@no uniform-ABC
version of importance sampling.

Sequential Monte Carlo algorithms are possible howevaﬂ,@ll.

2007) and Toni et al! (2009) considered algorithms in whiehtolerance is

slowly reduced through a schedulg ..., dr to some small final value. Both of

these algorithms, as well as variants such as Drovand ﬁQid) and Del Moral et al.

2012), which use Metropolis-Hastings moves of the parantettween iterations

to provide more efficient proposals, can be extended to thergésed ABC case
using general acceptance kernels. The move from 0-1 cst@ffjleneral accep-
tance rates can introduce difficulties with memory constsaidue to the require-

ment to store a large number of particles, many with smalhioatzero weights.

Partial rejection control, introduced iu (2001) andemded to an ABC set-

ting by [.(2012), can be used to reject partidissmall weights, only

keeping particles which have weight above some threshold.
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5.2 Modd selection

The theoretical acceptance rate from the rejection algorifAlgorithm A with
0 = 0) is equal to the model evidenegD). The evidence from different models

can then be used to calculate Bayes factors which can be ageiform model

selection|(Kass and Raftery, 1995). Itis possible to apprate the value oft(D)

by using the acceptance rate from Algorithm A (WilkinsonQZY) By doing this

for two or more competing models, we can perform approxinnadelel selec-

tion, although in practice this approach can be unstabl® earies (Wilkinson,

2007). The estimate afi(D) can be improved and made interpretable by using

the weighted estimate
1 n 1 m ]
Sy > (DX
n i; m jzl
wherexl,... XM~ n(6) and6y,...,6, ~ r(-). This gives a more stable estima-

tor than simply taking the acceptance rate, and also tenttetexact value (as

n,m— o) for the model given by Equatiohl(1).

Robert et al.[(2011) and Didelot et al. (2011) have highkghthe dangers of

using ABC algorithms for model selection whénandX are replaced by sum-
mariesS(D) andS(X). The Bayes factor based on the full d&awill in general
differ from the Bayes factor based on the summ&(iy), even wherSis a suffi-
cient statistic for@ for both simulators.

The approach advocated here, of considering ABC as an éxtens the
modelling process, using acceptance kemgD — X) (or 1(S(D)|S(X)) in a

more general non-additive setting) to represent the oglatiip between simula-
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tor output and observations (as encapsulated by Thedresudgests a different
approach. The choice of acceptance kernel should be maatecafeful consid-
eration of the simulator’s ability, and inevitably involv@a degree of subjective
judgement (as does the choice of simulator, prior, and sumstatistics). The
kernel used forms part of the statistical model, and any mselection scheme
will assess this choice, as well as the choice of simulatdipaior. In other words,
it is inevitable that the estimated Bayes factor will depapdnrt: in general, fur-
ther highlighting the need for its careful design.

Similarly, the choice of summary statist&D) used to reduce the dimension
of the data and simulator output, should be based on camfsideration of what
aspects of the data we expect the simulator to be able todepeo Recent work

by/Nunes and Baldin 10), Fearnhead and Prangle (J.Qaﬂj_eB_ej_el (2012)

and Prangle et al 3) has focussed on automated methiodsdosing good

summary statistics, but care should be taken to ensure thenaties selected
coincide with the modeller’s expectations of what the seail can reproduce.
Examples can be constructed in which summaries are stramfglynative about
the parameters (in the sensemf@|S(D)) differing from 1(0)), but which do
not produce believable posteriors. For example, in dynalgstem models,
phase sensitive summaries (such as the sum of square ddéxeare usually in-
formative about the simulator parameters, even thoughithelators were only
designed to capture the phase-insensitive parts of themyst/sing these sum-
maries will give the appearance of having learned about #rarpeters, as the

posterior will differ from the prior, but it is unclear whethwhat has been learnt
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is of value. If the summarg(D) is chosen on a sound physical basis, and the
inference viewed as conditional upon this choice (i.e.,dbsterior is taken to

be 1(6|S(D)) and is not seen as an approximatiomi@|D)), then the difficul-

ties for ABC model selection raised by Robert etial. (201&)arcumvented, and

interpretation is clear.

6 Discussion

It has been shown in this paper that approximate Bayesiapgtation algorithms
can be considered to give exact inference under the assumgitimodel error.
However, this is only part of the way towards a complete ustadeiding of ABC
algorithms. In the majority of the application papers uskBC methods, sum-
maries of the data and model output have been used to redeickntiension of
the output. It cannot be known whether these summaries diieieot for the
data, and so in most cases the use of summaries means tleaisthaother layer
of approximation. While this work allows us to understand #rror assumed
on the measurement of the summary, it says nothing aboutefteat using the
summary rather than the complete data has on the inference.

The use of a simulator discrepancy term when making infa®cimportant
if one wants to move from making statements about the simutatstatements
about reality. There has currently been only minimal work&on modelling the
discrepancy term for stochastic models. One way to apprthaslis to view the

model as deterministic, outputting a densiy(x) for each value of the inpud
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(many realizations of)(6) would be needed to learmp(x)). The discrepancy
term € can then be considered as representing the difference &etwéx) and

the true variability inherent in the physical system.
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