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Abstract

Approximate Bayesian computation (ABC) or likelihood-free inference

algorithms are used to find approximations to posterior distributions without

making explicit use of the likelihood function, depending instead on simu-

lation of sample data sets from the model. In this paper we show that under

the assumption of the existence of a uniform additive model error term, ABC

algorithms give exact results when sufficient summaries areused. This in-

terpretation allows the approximation made in many previous application

papers to be understood, and should guide the choice of metric and toler-

ance in future work. ABC algorithms can be generalized by replacing the
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0-1 cut-off with an acceptance probability that varies withthe distance of

the simulated data from the observed data. The acceptance density gives the

distribution of the error term, enabling the uniform error usually used to be

replaced by a general distribution. This generalization can also be applied

to approximate Markov chain Monte Carlo algorithms. In light of this work,

ABC algorithms can be seen as calibration techniques for implicit stochas-

tic models, inferring parameter values in light of the computer model, data,

prior beliefs about the parameter values, and any measurement or model

errors.

Keywords: Approximate Bayesian computation; calibration; implicitinfer-

ence; likelihood-free inference.

1 Introduction

Approximate Bayesian computation (ABC) algorithms are a group of methods

for performing Bayesian inference without the need for explicit evaluation of the

model likelihood function (Beaumont et al., 2002, Marjoramet al., 2003, Sisson et al.,

2007). The algorithms can be used with implicit computer models (Diggle and Gratton,

1984) that generate sample data sets rather than return likelihoods. ABC methods

have become popular in the biological sciences (Sunnaker etal., 2013) with ap-

plications in genetics (see, for example, Siegmund et al., 2008, Foll et al., 2008),

epidemiology (Blum and Tran, 2010, Tanaka et al., 2006) and population biology

(Ratmann et al., 2007, Hamilton et al., 2005, Cornuet et al.,2008) most common.

2



This popularity is primarily due to the fact that the likelihood function, which can

be difficult or impossible to compute for some models, is not needed in order to

do inference. However, despite their popularity little is known about the quality

of the approximation they provide beyond results shown in simulation studies.

In this paper we give a framework in which the accuracy of ABC methods can

be understood. The notation throughout this paper is as follows. Letθ denote

the vector of unknown model parameters we wish to infer, and letη (·) denote the

computer simulator. We assumeη (·) is stochastic, so that the simulator repeatedly

run atθ will give a range of possible outputs, and writeX ∼ η (θ) to denote that

X has the same distribution as the model run atθ. To distinguish the model output

from the observed data, letD denote the observations. The aim is to calibrate the

model to the data, in order to learn about the true value of theparameter. The

Bayesian approach is to find the posterior distribution ofθ givenD, given by

π(θ | D) =
π(D | θ)π(θ)

π(D)
.

Throughout this paper,π(·) is used to denote different probability densities, and

π(· | ·) conditional densities, with the context clear from the arguments. Above,

π(θ) is the prior distribution,π(D | θ) is the likelihood of the data under the

model given parameterθ (the probability distribution ofη (θ)), π(θ | D) is the

posterior distribution, andπ(D) is the evidence for the model.

It is usual in Bayesian inference to find that the normalizingconstantπ(D) is

intractable, and a wide range of Monte Carlo techniques havebeen developed to
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deal with this case (Liu, 2001). Doubly-intractable distributions are distributions

which have a likelihood functionπ(D | θ) = q(D | θ)/c(θ) which is known only

up to a normalizing constant,c(θ), which is intractable. Standard Monte Carlo

techniques do not apply to these distributions, and Murray et al. (2006) have de-

veloped algorithms which can be used in this case. ABC methods are Monte Carlo

techniques developed for use with completely-intractabledistributions, where the

likelihood functionπ(D | θ) is not even known up to a normalizing constant.

ABC algorithms, sometimes called likelihood-free algorithms, enable inference

using only simulations generated from the model, and do not require any evalua-

tion of the likelihood. The most basic form of the ABC algorithm is based on the

rejection algorithm, and is as follows:

Algorithm A: approximate rejection algorithm

A1 Drawθ ∼ π(θ)

A2 SimulateX from the simulatorX ∼ η (θ)

A3 Acceptθ if ρ(X,D)≤ δ.

Here, ρ(·, ·) is a distance measure on the model output space, andδ is a tol-

erance determining the accuracy of the algorithm. Acceptedvalues ofθ are

not from the true posterior distribution, but from an approximation to it, written

π(θ | ρ(D,X)≤ δ). Whenδ = 0 this algorithm is exact and gives draws from the

posterior distributionπ(θ | D), whereas asδ → ∞ the algorithm gives draws from

the prior. While smaller values ofδ lead to samples which better approximate
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the true posterior, they also lead to lower acceptance ratesin step A3 than larger

values, and so more computation must be done to get a given sample size. Con-

sequently, the toleranceδ can be considered as controlling a trade-off between

computability and accuracy.

Several extensions have been made to the approximate rejection algorithm.

If the data are high dimensional, then a standard change to the algorithm is to

summarize the model output and data, using a summary statistic S(·) to projectX

andD onto a lower dimensional space. Algorithm A is then changed so that step

A3 reads

A3′ Acceptθ if ρ(S(X),S(D))≤ δ.

Ideally, S(·) should be chosen to be a sufficient statistic forθ. However, if the

likelihood is unknown, then sufficient statistics cannot beidentified. Summariz-

ing the data and model output using a non-sufficient summary adds another layer

of approximation on top of that added by the use of the distance measure and tol-

erance, but again, it is not known what effect any given choice for S(·) has on the

approximation.

In this paper it is shown that the basic approximate rejection algorithm can

be interpreted as performing exact inference in the presence of uniform model or

measurement error. In other words, it is shown that ABC givesexact inference for

the wrong model, and we give a distribution for the model error term for whatever

choice of metric and tolerance are used. This interpretation allows us to show

the effect a given choice of metric, tolerance and weightinghave had in previous

applications, and should provide guidance when choosing metrics and weightings
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in future work. It is also shown that Algorithm A can be generalized to give

inference under the assumption of a completely flexible formfor the model error.

We discuss how to model the model error, and show how some models can be

rewritten to give exact inference. Ratmann et al. (2007) explored a related idea,

and looked at using ABC algorithms to diagnose model inadequacies. The aim

here is not to diagnose errors, but to account for them in the inference so as to

provide posteriors that take known inadequacies into account, and to understand

the effect of using standard ABC approaches.

Finally, ABC has been extended by Marjoram et al. (2003) fromthe rejec-

tion algorithm to approximate Markov chain Monte Carlo algorithms, and by

Sisson et al. (2007), Toni et al. (2009), and Beaumont et al. (2009) to approximate

sequential Monte Carlo algorithms. We extend the approximate Markov chain

Monte Carlo algorithm to give inference for a general form oferror, and suggest

methods for calculating Bayes factors and integrals for completely-intractable dis-

tributions.

2 Interpreting ABC

In this section a framework is described which enables the effect a given metric

and weighting have in ABC algorithms to be understood. This will then allow

us to improve the inference by carefully choosing a metric and weighting which

more closely represents our true beliefs. The key idea is to assume that there

is a discrepancy between the best possible model predictionand the data. This
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discrepancy represents either measurement error on the data, or model error de-

scribing our statistical beliefs about where the model is wrong. George Box fa-

mously wrote that ‘all models are wrong, but some are useful’, and in order to link

models to reality it is necessary to account for this model error when performing

inference. In the context of deterministic models, this practice is well established

(Campbell, 2006, Goldstein and Rougier, 2009, Higdon et al., 2008), and should

also be undertaken when linking stochastic models to reality, despite the fact that

the variability in the model can seemingly explain the data as they are.

The framework introduced here uses the best input approach,similar to that

given in Kennedy and O’Hagan (2001). We assume that the measurementD can

be considered as a realization of the model run at its best input value,θ̂, plus an

independent error termε

D = η (θ̂)+ ε. (1)

The errorε might represent measurement error onD, or model error inη (·),

or both, in which case we writeε = ε1+ ε2. Discussion about the validity of

Equation (1), and whatε represents and how to model it are delayed until Section

3, and for the time being we simply considerε to have densityπε(·). The aim is

to describe our posterior beliefs about the best inputθ̂ in light of the errorε, the

dataD, and prior beliefs about̂θ. Consider the following algorithm:

Algorithm B: probabilistic approximate rejection algorithm

B1 Drawθ ∼ π(θ)

B2 SimulateX from the modelX ∼ η (θ)
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B3 Acceptθ with probability πε (D−X)
c .

Here,c is a constant chosen to guarantee thatπε(D−X)/c defines a probability.

For most cases we will expectε to have a modal value of 0, and so takingc =

πε(0) will make the algorithm valid and also ensure efficiency by maximizing the

acceptance rate. If summaries are involved, or ifD andX live in non-comparable

spaces, so thatD−X does not make sense, we can instead use any distribution

relatingX to D, πε(D|X) instead.

The main innovation in this paper is to show that Algorithm B gives exact

inference for the statistical model described above by Equation (1). This is essen-

tially saying that ABC gives exact inference, but for the wrong model.

Theorem 1 Algorithm B gives draws from the posterior distributionπ(θ̂ | D) un-

der the assumption that D= η (θ̂)+ ε andε ∼ πε(·) independently ofη (θ̂).

Proof 1 Let

I =















1 if θ is accepted

0 otherwise.

We then find that

pr(I = 1 | θ) =
∫

pr(I = 1 | η (θ) = x,θ)π(x | θ)dx

=
∫ πε(D−x)

c
π(x | θ)dx.
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This gives that the distribution of accepted values ofθ is

π(θ | I = 1) =
π(θ)

∫

πε(D−x)π(x | θ)dx
∫

π(θ ′)
∫

πε(D−x)π(x | θ ′)dxdθ ′
.

To complete the proof we must find the posterior distributionof the best model

input θ̂ given the data D under the assumption of model error. Note that π(D |

η (θ̂) = x) = πε(D−x) which implies that the likelihood ofθ is

π(D | θ̂) =
∫

π(D | η (θ̂) = x, θ̂)π(x | θ̂)dx

=
∫

πε(D−x)π(x | θ̂)dx.

Consequently, the posterior distribution ofθ̂ is

π(θ̂ | D) =
π(θ̂)

∫

πε(D−x)π(x | θ̂)dx
∫

π(θ)
∫

πε(D−x)π(x | θ)dxdθ

which matches the distribution of accepted values from Algorithm B.

To illustrate the algorithm, we consider the toy example used in Sisson et al.

(2007) and again in Beaumont et al. (2009) where analytic expressions can be

calculated for the approximations.

Example 1 Assume the model is a mixture of two normal distributions with a

uniform prior for the mean:

η (θ)∼
1
2
N (θ,1)+

1
2
N (θ,

1
100

), θ ∼ U [−10,10].
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Further assume that we observe D= 0, but that there is measurement errorε on

this data. Ifε ∼ U [−δ,δ], which is the assumption made when using Algorithm

A withρ(x,0) = |x|, then it is possible to show that the approximation is

π(θ | ε ∼U [−δ,δ],D=0) ∝ Φ (δ −θ)−Φ(−δ−θ)+Φ(10(δ−θ))−Φ(−10(δ+θ))

for θ ∈ [−10,10], whereΦ(·) is the standard Gaussian cumulative distribution

function. An alternative to assuming uniform error, is to suppose that the error

has a normal distributionε ∼N (0,δ2/3). It can then be shown that the posterior

distribution ofθ is

π(θ | ε ∼ N (0,
δ2

3
),D = 0) ∝

1
2

φ(θ;0,1+
δ2

3
)+

1
2

φ(θ;0,
1

100
+

δ2

3
)

truncated onto[−10,10]. This is the approximation found when using Algorithm

B with a Gaussian acceptance kernel, whereφ(·;µ,σ2) is the probability density

function of a Gaussian distribution with meanµ and varianceσ2. The value of

the variance,δ2/3, is chosen to be equal to the variance of aU [−δ,δ] random

variable. For large values of the toleranceδ, the difference between the two

approximations can be significant (see Figure 1), but in the limit as δ tends to

zero, the two approximations will be the same, corresponding to zero error.
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Figure 1: The posterior distributions found when using Algorithm A (solid line)
and Algorithm B (dashed line) with a Gaussian acceptance kernel. The left plot is
for δ = 1 and the right plot forδ = 0.1. The two curves are indistinguishable in
the second plot.

3 Model discrepancy

The interpretation of ABC given by Theorem 1 allows us to revisit previous anal-

yses done using the ABC algorithm, and to understand the approximation in the

posterior in terms of the distribution implicitly assumed for the error term. If the

approximate rejection algorithm (Algorithm A) was used to do the analysis, we

can see that this is equivalent to using the acceptance probability

πε(r)
c

=















1 if ρ(r)≤ δ

0 otherwise
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wherer is the distance between the simulated and observed data. This says that

Algorithm A gives exact inference for the model which assumes a uniform mea-

surement error on the region defined by the 0-1 cut-off, i.e.,

ε ∼ U {x : ρ(x,D)≤ δ}.

If ρ(·, ·) is a Euclidean metric,ρ(D,x) = (x−D)T(x−D), this is equivalent to

assuming uniform measurement error on a ball of radiusδ aboutD. In most

situations, it is likely to be a poor choice for a model of the measurement error,

because the tails of the distribution are short, with zero mass outside of the interval

[−δ,δ].

There are two ways we can choose to view the error term; eitheras mea-

surement error or model error. Interpretingε to represent measurement error is

relatively straight forward, as scientists usually hold beliefs about the distribution

and magnitude of measurement error on their data. For most problems, assump-

tions of uniform measurement error will be inappropriate, and so using Algorithm

A with a 0-1 cut-off will be inappropriate. But we have shown how to replace this

uniform assumption with a distribution which more closely represents the beliefs

of the scientist. Although the distribution of the measurement error will often be

completely specified by the scientist, for example zero-mean Gaussian error with

known variance, it is possible to include unknown parameters for the distribution

of ε in θ and infer them along with the model parameters. Care needs tobe taken

to choose the constantc so that the acceptance rate in step B3 is less than one for
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all values of the parameter, but other than this it is in theory simple to infer error

parameters along with the model parameters. So for example,if ε ∼ N (0,σ2),

whereσ2 is unknown, we could includeσ2 in θ.

Some models have sampling or measurement error built into the computer

code so that the model output includes a realization of this noise. Rather than

coding the noise process into the model, it will sometimes bepossible to rewrite

the model so that it outputs the latent underlying signal. Ifthe likelihood of the

data given the latent signal is computable (as it often is), then it may be possible

to analytically account for the noise with the acceptance probability πε(·). ABC

methods have proven most popular in fields such as genetics, epidemiology, and

population biology, where a common occurrence is to have data generated by

sampling a hidden underlying tree structure. In many cases,it is the partially

observed tree structure which causes the likelihood to be intractable, and given

the underlying tree the sampling process will have a known distribution. If this

is the case (and if computational constraints allow), we canuse the probabilistic

ABC algorithm to do the sampling to give exact inference without any assumption

of model error. Note that if the sampling process gives continuous data, then exact

inference using the rejection algorithm would not be possible, and so this approach

has the potential to give a significant improvement over current methods.

Example 2 To illustrate the idea of rewriting the model in order to do analytic

sampling, we describe a version of the problem considered inPlagnol and Tavaŕe

(2004) and Wilkinson and Tavaré (2009). Their aim was to use the primate fossil

record to date the divergence time of the primates. They usedan inhomogeneous
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branching process to model speciation, with trees rooted attime t= τ , and simu-

lated forwards in time to time t= 0, so that the depth of the tree,τ , represents the

divergence time of interest. The branching process is parametrized byλ , which

can either be estimated and fixed, or treated as unknown and given a prior dis-

tribution. Time is split into geologic epochsτ < tk < · · · < t1 < 0, and the data

consist of counts of the number of primate species that have been found in each

epoch of the fossil record, D= (D1, . . . ,Dk). Fossil finds are modelled by a dis-

crete marking process on the tree, with each species having equal probabilityα

of being preserved as a fossil in the record. If we let Ni be the cumulative number

of branches that exist during any point of epoch i, then the model used for the

fossil finds process can be written as Di ∼ Binomial(Ni,α ). The distribution of

N = (N1, . . . ,N14) cannot be calculated explicitly and so we cannot use a likeli-

hood based approach to find the posterior distribution of theunknown parameter

θ = (λ ,τ ,α ). The ABC approach used in Plagnol and Tavaré (2004) was to draw

a value ofθ from its prior, simulate a sample tree and fossil finds, and then count

the number of simulated fossils in each epoch to find a simulated value of the

data X. They then acceptedθ if ρ(D,X) ≤ δ for some metricρ(·, ·) and toler-

anceδ. This gives an approximation to the posterior distributionof the parameter

given the data and the model, where the approximation can be viewed as model

or measurement error.

However, instead of approximating the posterior, it is possible in theory to

rewrite the model and perform the sampling analytically to find the exact posterior

distribution:
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1. Drawθ = (λ , p,α )∼ π(·)

2. Simulate a treeT using parameterλ and count N

3. Acceptθ with probability∏k
i=1

(Ni
Di

)

α Di(1−α )Ni−Di .

This algorithm gives exact draws from the posterior distribution ofθ given D, and

in theory there is no need for any assumption of measurement error. Note thatθ

can include parameterα for the sampling rate, to be inferred along with the other

model parameters. However, this makes finding a normalizingconstant in step 3

difficult. Without a normalizing constant to increase the acceptance rate, applying

this algorithm directly will be slow for many values of D and k(the choice of prior

distribution and number of parameters we choose to include in θ can also have a

significant effect on the efficiency). A practical solution would be to add an error

term and assume the presence of measurement error on the data(which is likely

to exist in this case), in order to increase the acceptance probability in step 3.

Approaching the problem in this way, it is possible to carefully model the error on

D and improve the estimate of the divergence time.

Usingε to represent measurement error is straight forward, whereas usingε to

model the model discrepancy (to account for the fact the model is wrong) is harder

to conceptualize and not as commonly used. For deterministic models, the idea

of using a model error term when doing calibration or data assimilation is well

established and described for a Bayesian framework in Kennedy and O’Hagan

(2001). They assume that the model run at its ‘best’ input,η (θ̂), is sufficient

for the model when estimatinĝθ . In other words, knowledge of the model run
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at its best input provides all the available information about the system for the

purpose of prediction. If this is the case, then we can defineε to be the difference

betweenη (θ̂) andD, and assumeε is independent ofη (θ̂). Note that the error

is the difference between the data and the model run at its best input, and does

not depend onθ. If we do not include an error termε, then the best input is the

value ofθ that best explains the data, given the model. When we includean error

term which is carefully modelled and represents our beliefsabout the discrepancy

betweenη (·) and reality, then it can be argued thatθ̂ represents the ‘true’ value of

θ, and thatπ(θ̂ | D,ε ∼ πε(·)) should be our posterior distribution forθ̂ in light

of the data and the model.

For deterministic models, Goldstein and Rougier (2009) provide a framework

to help think about the model discrepancy. To specify the distribution of ε, it

can help to break the discrepancy down into various parts: physical processes not

modelled, errors in the specification of the model, imperfect implementation etc.

So for example, ifη (·) represents a global climate model predicting average tem-

peratures, then common model errors could be not including processes such as

clouds, CO2 emissions from vegetation etc., error in the specification might be

using an unduly simple model of economic activity, and imperfect implementa-

tion would include using grid cells too large to accurately solve the underlying

differential equations. In some cases it may be necessary toconsider model and

measurement error,ε +e say, and model each process separately. For stochastic

models, as far as we are aware, no guidance exists about how tomodel the error,

and indeed it is not clear whatε should represent.
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To complicate matters further, for many models the dimension of D andX

will be large, making it likely that the acceptance rateπε(X −D) will be small.

As noted above, in this case it is necessary to summarize the model output and

the data using a multidimensional summaryS(·). Using a summary means that

rather than approximatingπ(θ | D), the algorithms approximateπ(θ | S(D)). The

interpretation ofε as model or measurement error still holds, but now the error is

on the measurementS(D) or the model predictionS(X). If each element ofS(·)

has an interpretation in terms of a physical process, this may make it easier to

break the error down into independent components. For example, suppose that we

useS(x) = (x̄,sxx), the sample mean and variance ofX, and that we then use the

following acceptance density

πε(S(X)−S(D)) = π1(X̄− D̄)π2(sXX−sDD).

This is equivalent to assuming that there are two sources of model error. Firstly,

the mean prediction is assumed to be wrong, with the error distributed with den-

sity π1(·). Secondly, it assumes that the model prediction of the variance is wrong,

with the error having distributionπ2(·). It also assumes that the error in the mean

prediction is independent of the error in the variance prediction. This indepen-

dence is not necessary, but helps with visualization and elicitation. For this reason

it can be helpful to choose the different components ofS(·) so that they are close to

independent (independence may also help increase the acceptance rate). Another

possibility for choosingS(·) is to use principal component analysis (if dim(X)
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is large) to find a smaller number of uncorrelated summaries of the data which

may have meaningful interpretations. In general however, it is not known how

to choose good summaries. Joyce and Marjoram (2008) have suggested a method

for selecting between different summaries and for decidinghow many summaries

it is optimal to include. However, more work is required to find summaries which

are informative, interpretable and for which we can describe the model error.

Finally, once we have specified a distribution forε, we may find the acceptance

rate is too small to be practicable and that it is necessary tocompromise (as in

Example 2 above). A pragmatic way to increase the acceptancerate is to use

a more disperse distribution forε. This moves us from the realm of usingε to

model an error we believe exists, to using it to approximate the true posterior.

This is currently how most ABC methods are used. However, even when making

a pragmatic compromise, the interpretation of the approximation in terms of an

error will allow us to think more carefully about how to choose between different

compromise solutions.

Example 3 One of the first uses of an ABC algorithm was by Pritchard et al.

(1999), who used a simple stochastic model to study the demographic history of

the Y chromosome, and used an approximate rejection algorithm to infer muta-

tion and demographic parameters for their model. Their dataconsisted of 445 Y

chromosomes sampled at eight different loci from a mixture of populations from

around the world, which they summarized by just three statistics: the mean (across

loci) of the variance of repeat numbers V , the mean effectiveheterozygosity H,

and the number of distinct haplotypes N. The observed value of the summaries
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for their sample was D≡ (V,H,N)T = (1.149,0.6358,316)T. They elicited prior

distributions for the mutation rates from the literature, and used diffuse priors

for population parameters such as the growth rate and the effective number of

ancestral Y chromosomes. Population growth was modelled using a standard co-

alescent model growing at an exponential rate from a constant ancestral level,

and various different mutation models were used to simulatesample values for

the three summaries measured in the data. They then applied Algorithm A using

the metric

ρ(D,X) =
3

∏
i=1

Di −Xi

Di
(2)

where X is a triplet of simulated values for the three summaries statistics. They

used a tolerance value ofδ = 0.1, which for their choice of metric corresponds to

an error of 10% on each measurement. This gives results equivalent to assuming

that there is independent uniform measurement error on the three data summaries,

so that the true values of the three summaries have the following distributions

V ∼ U [1.0341,1.2624], H ∼ U [0.58122,0.71038], N ∼ U [284,348].

Beaumont et al. (2002) used the same model and data set to compare the relative

performance of Algorithm A with an algorithm similar to Algorithm B, using an

Epanechnikov density applied to the metric value (2) for theacceptance probabil-

ity πε(·). They set a value ofδ (the cut-off in Algorithm A and the range of the

support forε in Algorithm B) by using a quantile Pδ of the empirical distribution

function of simulated values ofρ(D,X), i.e., P0.01 means they accepted the 1% of
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model runs with values closest to D. They concluded that Algorithm B gives more

accurate results than Algorithm A, meaning that the distribution found using Al-

gorithm B is closer to the posterior found when assuming no measurement error

(δ = 0).

The conclusion that Algorithm B is preferable to Algorithm Afor this model

is perhaps not surprising in light of what we now know, as it was not taken into

account that both algorithms used the same value ofδ. For Algorithm A this

corresponds to assuming a measurement error with varianceδ2/3, whereas using

an Epanechnikov acceptance probability is equivalent to assuming a measurement

error with varianceδ2/5. Therefore, using Algorithm B uses measurement error

only 60% as variable as that assumed in Algorithm A, and so it is perhaps not

surprising that Algorithm B gives more accurate results in this case.

4 Approximate Markov chain Monte Carlo

For problems which have a tightly constrained posterior distribution (relative to

the prior), repeatedly drawing independent values ofθ from its prior distribution

in the rejection algorithm can be inefficient. For problems with a high dimensional

θ this inefficiency is likely to make the application of a rejection type algorithm

impracticable. The idea behind Markov chain Monte Carlo (MCMC) is to build

a Markov chain onθ and correlate successive observations so that more time is

spent in regions of high posterior probability. Most MCMC algorithms, such as

the Metropolis-Hastings algorithm, depend on knowledge ofthe likelihood func-

20



tion which we have assumed is not known. Marjoram et al. (2003) give an ap-

proximate version of the Metropolis-Hastings algorithm, which approximates the

acceptance probability by using simulated model output with a metric and a 0-1

cut-off to approximate the likelihood ratio. This, as before, is equivalent to as-

suming uniform error on a set defined by the metric and the tolerance. As above,

this algorithm can be generalized from assuming uniform measurement error to

an arbitrary error term. Below, are two different algorithms to perform MCMC for

the model described by Equation (1). The difference betweenthe two algorithms

is in the choice of sample space used to construct the stationary distribution. In

Algorithm C we consider the state variable to belong to the space of parameter

valuesΘ, and construct a Markov chain{θ1,θ2, . . .} which obeys the following

dynamics:

Algorithm C: probabilistic approximate MCMC 1

C1 At time t, propose a move fromθt to θ ′ according to transition kernel

q(θt,θ ′).

C2 SimulateX′ ∼ η (θ ′).

C3 Setθt+1 = θ ′ with probability

r(θt ,θ ′ | X′) =
πε(D−X′)

c
min

(

1,
q(θ ′,θt)π(θ ′)

q(θt ,θ ′)π(θt)

)

, (3)

otherwise setθt+1 = θt .
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An alternative approach is to introduce the value of the simulated output as an

auxiliary variable and construct the Markov chain on the spaceΘ×X , whereX

is the space of model outputs.

Algorithm D: probabilistic approximate MCMC 2

D1 At time t, propose a move fromψt = (θt,Xt) to ψ′ = (θ ′,X′) with θ ′ drawn

from transition kernelq(θt ,θ ′), andX′ simulated from the model usingθ ′:

X′ ∼ η (θ ′)

D2 Setψt+1 = (θ ′,X′) with probability

r((θt,Xt),(θ ′,X′)) = min

(

1,
πε(D−X′)q(θ ′,θt)π(θ ′)

πε(D−Xt)q(θt ,θ ′)π(θt)

)

, (4)

otherwise setψt+1 = ψt .

Proof 2 (of convergence) To show that these Markov chains converge to the re-

quired posterior distribution, it is sufficient to show thatthe chains satisfy the

detailed balance equations

π(s)p(s, t) = π(t)p(t,s) for all s, t

where p(·, ·) is the transition kernel of the chain andπ(·) the required stationary

distribution.

22



For Algorithm C the transition kernel is the product of q(θ,θ ′) and the ac-

ceptance rate. To calculate the acceptance rate, note that in Equation (3) the

acceptance probability is conditioned upon knowledge of X′ and so we must inte-

grate out X′ to find r(θ,θ ′). This gives the transition kernel for the chain:

p(θt ,θ ′) = q(θt,θ ′)

∫

X

πε(D−X′)

c
min

(

1,
q(θ ′,θt)π(θ ′)

q(θt ,θ ′)π(θt)

)

π(X′ | θ ′)dX′.

The target stationary distribution is

π(θ | D) =
π(θ)

∫

X πε(D−X)π(X | θ)dX
π(D)

.

It is then simple to show that the Markov chain described by Algorithm C satisfies

the detailed balance equations (see Liu (2001) for comparable calculations).

For Algorithm D, the transition kernel is

p((θt ,Xt),(θ ′,X′)) = q(θt,θ ′)π(X′ | θ ′)min

(

1,
πε(D−X′)q(θ ′,θt)π(θ ′)

πε(D−Xt)q(θt,θ ′)π(θt)

)

.

(5)

The Markov chain in this case takes values inΘ×X and the required stationary

distribution is

π(θ,X | D) =
πε(D−X)π(X | θ)π(θ)

π(D)
. (6)

It can then be shown that Equations (5) and (6) satisfy the detailed balance equa-

tions.
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While Algorithm C is more recognisable as a generalization of the approximate

MCMC algorithm given in Marjoram et al. (2003), Algorithm D is likely to be

more efficient in most cases. This is because the ratio of model error densities that

occurs in acceptance rate (4) is likely to result in larger probabilities than those

given by Equation (3) which simply has aπε(D−x)/c term instead. Algorithm D

also has the advantage of not requiring a normalizing constant.

5 Extensions

5.1 Importance sampling

Suppose our aim is to calculate expectations of the form

E( f (θ) | D) =
∫

f (θ)π(θ | D)dθ

where the expectation is taken with respect to the posteriordistribution ofθ. The

simplest way to approximate this is to draw a sample ofθ values{θi}i=1,...,n,

from π(θ | D) using Algorithm B, C or D and then approximate using the sum

n−1∑ f (θi). However, a more stable estimator can be obtained by using draws

from the prior weighted byπε(D−Xi) as in Algorithm B. For each(θi ,Xi) pair

drawn from the prior and simulator in steps B1 and B2, assignθi weight wi =

πε(D−Xi). Then an estimator of the required expectation is

∑ f (θi)wi

∑wi
.
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This is an importance sampling algorithm targeting the joint distribution

π(X,θ | D) ∝ πε(D−X)π(X | θ)π(θ)

using instrumental distributionπ(X | θ)π(θ). Note that if the uniform acceptance

kernel

πε(D−X) ∝ Iρ(D,X)≤δ

is used, then this approach reduces to the rejection algorithm, as proposals are

given weight 1 (accepted) or 0 (rejected), showing that there is no uniform-ABC

version of importance sampling.

Sequential Monte Carlo algorithms are possible however, and Sisson et al.

(2007) and Toni et al. (2009) considered algorithms in whichthe toleranceδ is

slowly reduced through a scheduleδ1, . . . ,δT to some small final value. Both of

these algorithms, as well as variants such as Drovandi et al.(2011) and Del Moral et al.

(2012), which use Metropolis-Hastings moves of the parameter between iterations

to provide more efficient proposals, can be extended to the generalised ABC case

using general acceptance kernels. The move from 0-1 cut-offs to general accep-

tance rates can introduce difficulties with memory constraints, due to the require-

ment to store a large number of particles, many with small butnon-zero weights.

Partial rejection control, introduced by Liu (2001) and extended to an ABC set-

ting by Peters et al. (2012), can be used to reject particles with small weights, only

keeping particles which have weight above some threshold.
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5.2 Model selection

The theoretical acceptance rate from the rejection algorithm (Algorithm A with

δ = 0) is equal to the model evidenceπ(D). The evidence from different models

can then be used to calculate Bayes factors which can be used to perform model

selection (Kass and Raftery, 1995). It is possible to approximate the value ofπ(D)

by using the acceptance rate from Algorithm A (Wilkinson, 2007). By doing this

for two or more competing models, we can perform approximatemodel selec-

tion, although in practice this approach can be unstable asδ varies (Wilkinson,

2007). The estimate ofπ(D) can be improved and made interpretable by using

the weighted estimate
1
n

n

∑
i=1

1
m

m

∑
j=1

πε(D−X j
i )

whereX1
i , . . . ,X

m
i ∼ η (θi) andθ1, . . . ,θn ∼ π(·). This gives a more stable estima-

tor than simply taking the acceptance rate, and also tends tothe exact value (as

n,m→ ∞) for the model given by Equation (1).

Robert et al. (2011) and Didelot et al. (2011) have highlighted the dangers of

using ABC algorithms for model selection whenD andX are replaced by sum-

mariesS(D) andS(X). The Bayes factor based on the full dataD, will in general

differ from the Bayes factor based on the summaryS(D), even whenS is a suffi-

cient statistic forθ for both simulators.

The approach advocated here, of considering ABC as an extension of the

modelling process, using acceptance kernelπε(D−X) (or πε(S(D)|S(X)) in a

more general non-additive setting) to represent the relationship between simula-
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tor output and observations (as encapsulated by Theorem 1),suggests a different

approach. The choice of acceptance kernel should be made after careful consid-

eration of the simulator’s ability, and inevitably involves a degree of subjective

judgement (as does the choice of simulator, prior, and summary statistics). The

kernel used forms part of the statistical model, and any model selection scheme

will assess this choice, as well as the choice of simulator and prior. In other words,

it is inevitable that the estimated Bayes factor will dependuponπε in general, fur-

ther highlighting the need for its careful design.

Similarly, the choice of summary statisticS(D) used to reduce the dimension

of the data and simulator output, should be based on careful consideration of what

aspects of the data we expect the simulator to be able to reproduce. Recent work

by Nunes and Balding (2010), Fearnhead and Prangle (2012), Barnes et al. (2012)

and Prangle et al. (2013) has focussed on automated methods for choosing good

summary statistics, but care should be taken to ensure the summaries selected

coincide with the modeller’s expectations of what the simulator can reproduce.

Examples can be constructed in which summaries are stronglyinformative about

the parameters (in the sense ofπ(θ|S(D)) differing from π(θ)), but which do

not produce believable posteriors. For example, in dynamical system models,

phase sensitive summaries (such as the sum of square differences) are usually in-

formative about the simulator parameters, even though the simulators were only

designed to capture the phase-insensitive parts of the system. Using these sum-

maries will give the appearance of having learned about the parameters, as the

posterior will differ from the prior, but it is unclear whether what has been learnt
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is of value. If the summaryS(D) is chosen on a sound physical basis, and the

inference viewed as conditional upon this choice (i.e., theposterior is taken to

beπ(θ|S(D)) and is not seen as an approximation toπ(θ|D)), then the difficul-

ties for ABC model selection raised by Robert et al. (2011) are circumvented, and

interpretation is clear.

6 Discussion

It has been shown in this paper that approximate Bayesian computation algorithms

can be considered to give exact inference under the assumption of model error.

However, this is only part of the way towards a complete understanding of ABC

algorithms. In the majority of the application papers usingABC methods, sum-

maries of the data and model output have been used to reduce the dimension of

the output. It cannot be known whether these summaries are sufficient for the

data, and so in most cases the use of summaries means that there is another layer

of approximation. While this work allows us to understand the error assumed

on the measurement of the summary, it says nothing about whateffect using the

summary rather than the complete data has on the inference.

The use of a simulator discrepancy term when making inferences is important

if one wants to move from making statements about the simulator to statements

about reality. There has currently been only minimal work done on modelling the

discrepancy term for stochastic models. One way to approachthis is to view the

model as deterministic, outputting a densityπθ(x) for each value of the inputθ
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(many realizations ofη (θ) would be needed to learnπθ(x)). The discrepancy

term ε can then be considered as representing the difference betweenπθ(x) and

the true variability inherent in the physical system.
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