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Approximative Bayesian inference

Overview

Latent Gaussian models

Latent Gaussian models

Latent Gaussian models have often the following hierarchical
structure

• Observed data y, yi |xi ∼ π(yi |xi ,θ)

• Latent Gaussian field x ∼ N (·,Σ(θ))

• Hyperparameters θ

• variability
• length/strength of dependence
• parameters in the likelihood

π(x,θ | y) ∝ π(θ) π(x | θ)
∏

i∈I

π(yi | xi ,θ)
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Overview

Latent Gaussian models

Example: Generalised additive (mixed) models

g(µi ) =
∑

j

fj(zji ) +
∑

k

βj z̃ji + ǫi

where

• each fj(·), is a smooth (random) function

• βj is the linear effect of zj

Observations {yi} from an exponential family with mean {µi}
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Overview

Latent Gaussian models

Examples

1D Smoothing count data, general spline smoothing,
semi-parametric regression, GLM(M), GAM(M), etc

2D Disease mapping, log-Gaussian Cox-processes,
model-based geostatistics, 1D-models with spatial
effect(s)

3D Time-series of images, spatio-temporal models.

Features

• Dimension of the latent Gaussian field, n, is large, 102 − 105,
but often Markov.

• Dimension of the hyperparameters dim(θ) is small, 1 − 5, say.

• Dimension of the data dim(y) might vary, but is often
non-Gaussian.



Approximative Bayesian inference

Overview

Latent Gaussian models

Examples

1D Smoothing count data, general spline smoothing,
semi-parametric regression, GLM(M), GAM(M), etc

2D Disease mapping, log-Gaussian Cox-processes,
model-based geostatistics, 1D-models with spatial
effect(s)

3D Time-series of images, spatio-temporal models.

Features

• Dimension of the latent Gaussian field, n, is large, 102 − 105,
but often Markov.

• Dimension of the hyperparameters dim(θ) is small, 1 − 5, say.

• Dimension of the data dim(y) might vary, but is often
non-Gaussian.



Approximative Bayesian inference

Overview

Latent Gaussian models

Examples

1D Smoothing count data, general spline smoothing,
semi-parametric regression, GLM(M), GAM(M), etc

2D Disease mapping, log-Gaussian Cox-processes,
model-based geostatistics, 1D-models with spatial
effect(s)

3D Time-series of images, spatio-temporal models.

Features

• Dimension of the latent Gaussian field, n, is large, 102 − 105,
but often Markov.

• Dimension of the hyperparameters dim(θ) is small, 1 − 5, say.

• Dimension of the data dim(y) might vary, but is often
non-Gaussian.



Approximative Bayesian inference

Overview

Latent Gaussian models

Examples

1D Smoothing count data, general spline smoothing,
semi-parametric regression, GLM(M), GAM(M), etc

2D Disease mapping, log-Gaussian Cox-processes,
model-based geostatistics, 1D-models with spatial
effect(s)

3D Time-series of images, spatio-temporal models.

Features

• Dimension of the latent Gaussian field, n, is large, 102 − 105,
but often Markov.

• Dimension of the hyperparameters dim(θ) is small, 1 − 5, say.

• Dimension of the data dim(y) might vary, but is often
non-Gaussian.



Approximative Bayesian inference

Overview

Latent Gaussian models

Examples

1D Smoothing count data, general spline smoothing,
semi-parametric regression, GLM(M), GAM(M), etc

2D Disease mapping, log-Gaussian Cox-processes,
model-based geostatistics, 1D-models with spatial
effect(s)

3D Time-series of images, spatio-temporal models.

Features

• Dimension of the latent Gaussian field, n, is large, 102 − 105,
but often Markov.

• Dimension of the hyperparameters dim(θ) is small, 1 − 5, say.

• Dimension of the data dim(y) might vary, but is often
non-Gaussian.



Approximative Bayesian inference

Overview

Latent Gaussian models

Examples

1D Smoothing count data, general spline smoothing,
semi-parametric regression, GLM(M), GAM(M), etc

2D Disease mapping, log-Gaussian Cox-processes,
model-based geostatistics, 1D-models with spatial
effect(s)

3D Time-series of images, spatio-temporal models.

Features

• Dimension of the latent Gaussian field, n, is large, 102 − 105,
but often Markov.

• Dimension of the hyperparameters dim(θ) is small, 1 − 5, say.

• Dimension of the data dim(y) might vary, but is often
non-Gaussian.



Approximative Bayesian inference

Overview

Examples: 1D

Examples of latent Gaussian models: 1D



Approximative Bayesian inference

Overview

Examples: 1D

Longitudinal mixed effects model: Epil-example from
BUGS



Approximative Bayesian inference

Overview

Examples: 1D

Longitudinal mixed effects model: Epil-example from
BUGS



Approximative Bayesian inference

Overview

Examples: 1D

Longitudinal mixed effects model: Epil-example from
BUGS



Approximative Bayesian inference

Overview

Examples: 2D

Examples of latent Gaussian models: 2D

Disease mapping: Poisson data



Approximative Bayesian inference

Overview

Examples: 2D

Examples of latent Gaussian models: 2D

Joint disease mapping: Poisson data
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Examples of latent Gaussian models: 2D

Spatial GLM with Binomial data
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Examples of latent Gaussian models: 2D
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Log-Gaussian Cox-process; Oaks-data
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Examples of latent Gaussian models: 2D+

Spatial logit-model with semiparametric covariates
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Latent Gaussian models: Characteristic features

Tasks

Tasks

Compute from

π(x,θ | y) ∝ π(θ) π(x | θ)
∏

i∈I

π(yi | xi )

the posterior marginals:

π(xi | y), for some or all i

and/or
π(θi | y), for some or all i
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Latent Gaussian models: Characteristic features

Our approach

Our approach: Approximate Bayesian Inference

• Can we compute (approximate) marginals directly without
using MCMC?

• YES!

• Gain
• Huge speedup & accuracy
• The ability to treat latent Gaussian models properly ;-)
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Latent Gaussian models: Characteristic features

Main ideas

Main ideas (I)

Main ideas are simple and based on the identity

π(z) =
π(x , z)

π(x |z)
leading to π̃(z) =

π(x , z)

π̃(x |z)

When π̃(x |z) is the Gaussian-approximation, this is the
Laplace-approximation.
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Latent Gaussian models: Characteristic features

Main ideas

Main ideas (II)

Construct the approximations to

1. π(θ|y)

2. π(xi |θ, y)

then we integrate

π(xi |y) =

∫
π(θ|y) π(xi |θ, y) dθ

π(θj |y) =

∫
π(θ|y) dθ−j
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Gaussian Markov Random fields (GMRFs)

GMRFs: def

A Gaussian Markov random field (GMRF), x = (x1, . . . , xn)
T , is a

normal distributed random vector with additional Markov
properties

xi ⊥ xj | x−ij ⇐⇒ Qij = 0

where Q is the precision matrix (inverse covariance)

Sparse matrices gives fast computations!
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The GMRF-approximation

The GMRF-approximation

π(x | y) ∝ exp

(
−

1

2
xTQx +

∑

i

log π(yi |xi )

)

≈ exp

(
−

1

2
(x − µ)T (Q + diag(ci ))(x − µ)

)
= π̃(x|θ, y)

Constructed as follows:

• Locate the mode x∗

• Expand to second order

Markov and computational properties are preserved
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Part I

Some more background: The Laplace
approximation
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Outline I
Background: The Laplace approximation

The Laplace-approximation for π(θ|y)
The Laplace-approximation for π(xi |θ, y)

The Integrated nested Laplace-approximation (INLA)
Summary
Assessing the error

Examples
Stochastic volatility
Longitudinal mixed effect model
Log-Gaussian Cox process

Extensions
Model choice
Automatic detection of “surprising” observations

Summary and discussion

Bonus
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Outline II
High(er) number of hyperparameters
Parallel computing using OpenMP
Spatial GLMs
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Background: The Laplace approximation

The Laplace approximation: The classic case

Compute and approximation to the integral

∫
exp(ng(x)) dx

where n is the parameter going to ∞.

Let x0 be the mode of g(x) and assume g(x0) = 0:

g(x) =
1

2
g ′′(x0)(x − x0)

2 + · · · .
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Background: The Laplace approximation

The Laplace approximation: The classic case...

Then ∫
exp(ng(x)) dx =

√
2π

n(−g ′′(x0))
+ · · ·

• As n → ∞, then the integrand gets more and more peaked.

• Error should tends to zero as n → ∞

• Detailed analysis gives

relative error(n) = 1 + O(1/n)
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Background: The Laplace approximation

Extension I

gn(x) =
1

n

n∑

i=1

gi (x)

then the mode x0 depends on n as well.
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Background: The Laplace approximation

Extension II

∫
exp(ng(x)) dx

and x is multivariate, then

∫
exp(ng(x)) dx =

√
(2π)n

n| − H|

where H is the hessian (matrix) at the mode

Hij =
∂2

∂xi∂xj

g(x)

∣∣∣∣∣
x=x0
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Background: The Laplace approximation

Computing marginals

• Our main issue is to compute marginals

• We can use the Laplace-approximation for this issue as well

• A more “statistical” derivation might be appropriate
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Background: The Laplace approximation

Computing marginals...

Consider the general problem

• θ is hyper-parameter with prior π(θ)

• x is latent with density π(x |θ)

• y is observed with likelihood π(y |x)

then

π(θ|y) =
π(x , θ|y)

π(x |θ, y)

for any x!
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Background: The Laplace approximation

Computing marginals...

Further,

π(θ|y) =
π(x , θ|y)

π(x |θ, y)

∝
π(θ) π(x |θ) π(y |x)

π(x |θ, y)

≈
π(θ) π(x |θ) π(y |x)

πG (x |θ, y)

∣∣∣∣∣
x=x∗(θ)

where πG (x |θ, y) is the Gaussian approximation of π(x |θ, y) and
x∗(θ) is the mode.
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Background: The Laplace approximation

Computing marginals...

Error:

With n repeated measurements of the same x, then the
error is

π̃(θ|y) = π(θ|y)(1 + O(n−3/2))

after renormalisation.

Relative error is a very nice property!
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Background: The Laplace approximation

The Laplace-approximation for π(θ|y)

The Laplace approximation

The Laplace approximation for π(θ|y) is

π(θ | y) =
π(x, θ|y)

π(x|y,θ)
(any x)

≈
π(x, θ|y)

π̃(x|y,θ)

∣∣∣∣∣
x=x∗(θ)

= π̃(θ|y) (1)
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Background: The Laplace approximation

The Laplace-approximation for π(θ|y)

Remarks

The Laplace approximation

π̃(θ|y)

turn out to be accurate: x|y,θ appears almost Gaussian in most
cases, as

• x is a priori Gaussian.

• y is typically not very informative.

• Observational model is usually ‘well-behaved’.

Note: π̃(θ|y) itself does not look Gaussian. Thus, a Gaussian
approximation of (θ, x) will be inaccurate.



Approximative Bayesian inference

Background: The Laplace approximation

The Laplace-approximation for π(θ|y)

Remarks

The Laplace approximation

π̃(θ|y)

turn out to be accurate: x|y,θ appears almost Gaussian in most
cases, as

• x is a priori Gaussian.

• y is typically not very informative.

• Observational model is usually ‘well-behaved’.

Note: π̃(θ|y) itself does not look Gaussian. Thus, a Gaussian
approximation of (θ, x) will be inaccurate.



Approximative Bayesian inference

Background: The Laplace approximation

The Laplace-approximation for π(θ|y)

Remarks

The Laplace approximation

π̃(θ|y)

turn out to be accurate: x|y,θ appears almost Gaussian in most
cases, as

• x is a priori Gaussian.

• y is typically not very informative.

• Observational model is usually ‘well-behaved’.

Note: π̃(θ|y) itself does not look Gaussian. Thus, a Gaussian
approximation of (θ, x) will be inaccurate.



Approximative Bayesian inference

Background: The Laplace approximation

The Laplace-approximation for π(θ|y)

Remarks

The Laplace approximation

π̃(θ|y)

turn out to be accurate: x|y,θ appears almost Gaussian in most
cases, as

• x is a priori Gaussian.

• y is typically not very informative.

• Observational model is usually ‘well-behaved’.

Note: π̃(θ|y) itself does not look Gaussian. Thus, a Gaussian
approximation of (θ, x) will be inaccurate.



Approximative Bayesian inference

Background: The Laplace approximation

The Laplace-approximation for π(θ|y)

Remarks

The Laplace approximation

π̃(θ|y)

turn out to be accurate: x|y,θ appears almost Gaussian in most
cases, as

• x is a priori Gaussian.

• y is typically not very informative.

• Observational model is usually ‘well-behaved’.

Note: π̃(θ|y) itself does not look Gaussian. Thus, a Gaussian
approximation of (θ, x) will be inaccurate.



Approximative Bayesian inference

Background: The Laplace approximation

The Laplace-approximation for π(xi |θ, y)

Approximating π(xi |y, θ)

This task is more challenging, since

• dimension of x, n is large

• and there are potential n marginals to compute, or at least
O(n).

An obvious simple and fast alternative, is to use the
GMRF-approximation

π̃(xi |θ, y) = N (xi ; µ(θ), σ2(θ))
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Background: The Laplace approximation

The Laplace-approximation for π(xi |θ, y)

Laplace approximation of π(xi |θ, y)

• The Laplace approximation:

π̃(xi | y, θ) ≈
π(x,θ|y)

π̃(x−i |xi , y,θ)

∣∣∣∣∣
x−i=x∗−i

(xi ,θ)

• Again, approximation is very good, as x−i |xi , θ is ‘almost
Gaussian’,

• but it is expensive. In order to get the n marginals:
• perform n optimisations, and
• n factorisations of n − 1 × n − 1 matrices.

Can be solved.
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Background: The Laplace approximation

The Laplace-approximation for π(xi |θ, y)

Simplified Laplace Approximation

An series expansion of the LA for π(xi |θ, y):

• computational much faster: O(n log n) for each i

• correct the Gaussian approximation for error in shift and
skewness

log π̃(xi |θ, y) = −
1

2
x2
i + bxi +

1

6
d x3

i + · · ·

• Fit a skew-Normal density

2φ(x)Φ(ax)

• sufficiently accurate for most applications
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• Use the Hessian to construct new variables
• Grid-search
• Can be case-specific
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The Integrated nested Laplace-approximation (INLA)

Summary

The integrated nested Laplace approximation (INLA) II

Step II For each θj

• For each i , evaluate the Laplace approximation
for selected values of xi

• Build a Skew-Normal or log-spline corrected
Gaussian

N (xi ; µi , σ
2
i ) × exp(spline)

to represent the conditional marginal density.
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Summary

The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

• For each i , sum out θ

π̃(xi | y) ∝
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j

π̃(xi | y, θj) × π̃(θj | y)

• Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i ) × exp(spline)

to represent π̃(xi | y).
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Practical approach (high accuracy)

• Rerun using a fine integration grid

• Possibly with no rotation

• Just sum up at grid points, then interpolate



Approximative Bayesian inference

The Integrated nested Laplace-approximation (INLA)

Summary

Computing posterior marginals for θj (II)

Practical approach (high accuracy)

• Rerun using a fine integration grid

• Possibly with no rotation

• Just sum up at grid points, then interpolate



Approximative Bayesian inference

The Integrated nested Laplace-approximation (INLA)

Summary

Computing posterior marginals for θj (II)

Practical approach (high accuracy)

• Rerun using a fine integration grid

• Possibly with no rotation

• Just sum up at grid points, then interpolate



Approximative Bayesian inference

The Integrated nested Laplace-approximation (INLA)

Summary

Computing posterior marginals for θj (II)

Practical approach (lower accuracy)
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• ...BUT, adjust the standard deviation in each direction

• Then use numerical integration
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The Integrated nested Laplace-approximation (INLA)

Assessing the error

How can we assess the error in the approximations?

Tool 1: Compare a sequence of improved approximations

1. Gaussian approximation

2. Simplified Laplace

3. Laplace
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The Integrated nested Laplace-approximation (INLA)

Assessing the error

How can we assess the error in the approximations?

Tool 2: Estimate the error using Monte Carlo

{
π̃u(θ | y)

π(θ | y)

}−1

∝ EeπG
[exp {r(x;θ, y)}]

where r() is the sum of the log-likelihood minus the second order
Taylor expansion.
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The Integrated nested Laplace-approximation (INLA)

Assessing the error

How can we assess the error in the approximations?

Tool 3: Estimate the “effective” number of parameters as defined
in the Deviance Information Criteria:

pD(θ) = D(x;θ) − D(x;θ)

and compare this with the number of observations.

Low ratio is good.

This criteria has theoretical justification.
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Examples

Stochastic volatility

Stochastic Volatility model
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Log of the daily difference of the pound-dollar exchange rate from
October 1st, 1981, to June 28th, 1985.
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Stochastic volatility

Stochastic Volatility model

Simple model

xt | x1, . . . , xt−1, τ, φ ∼ N (φxt−1, 1/τ)

where |φ| < 1 to ensure a stationary process.

Observations are taken to be

yt | x1, . . . , xt , µ ∼ N (0, exp(µ + xt))
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Simple model
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where |φ| < 1 to ensure a stationary process.
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Examples

Stochastic volatility

Results

Using just the first 50 data-points only, which makes the problem
much harder.
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Examples

Stochastic volatility

Results
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Stochastic volatility

Results
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Examples

Stochastic volatility

Using the full dataset
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Examples

Stochastic volatility

Student-tν
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Longitudinal mixed effect model

Epil-example from Win/Open-BUGS
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Examples

Log-Gaussian Cox process

Log-Gaussian Cox process
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Locations of trees of a particular type: Data comes from a
50-hectare permanent tree plot which was established in 1980 in
the tropical moist forest of Barro Colorado Island in Gatun Lake in
central Panama.
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Examples

Log-Gaussian Cox process

Log-Gaussian Cox process
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Examples

Log-Gaussian Cox process

Log-Gaussian Cox process
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Examples

Log-Gaussian Cox process

Model

Model for log-density at each “pixel” in a 200 × 100 lattice

ηi = β0 + β1c1i + β2c2i + ui + vi ,
∑

i

ui = 0

The spatial term is an IGMRF

E(ui | u−i ) =
1

20

(
8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)

Prec(ui | u−i ) = 20κu
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Examples

Log-Gaussian Cox process

Results
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Examples

Log-Gaussian Cox process

Results
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Examples

Log-Gaussian Cox process

Results
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• Model choice/selection

• Automatic detection of “surprising” observations

Will not discuss

• High(er) number of hyperparameters

• Parallel computing using OpenMP

• Sensitivity Analysis
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Extensions

Model choice

Model choice

Chose/compare various model is important but difficult

• Bayes factors (general available)

• Deviance information criterion (DIC) (hierarchical models)
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Extensions

Model choice

Marginal likelihood

Marginal likelihood is the normalising constant for π̃(θ|y),

π̃(y) =

∫
π(θ)π(x|θ)π(y|x, θ)

π̃G(x|θ, y)

∣∣∣∣∣
x=x⋆(θ)

dθ. (2)

I many hierarchical GMRF models the prior is intrinsic/improper,
so this is difficult to use.
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Extensions

Model choice

Deviance Information Criteria

Based on the deviance

D(x;θ) = −2
∑

i

log(yi | xi ,θ)

and
DIC = 2 × Mean (D(x;θ)) − D(Mean(x);θ∗)

This is quite easy to compute
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Extensions

Model choice

Bayesian Cross-validation

Easy to compute using the INLA-approach

π(yi | y−i ) =

∫

θ

{∫

xi

π(yi | xi , θ) π(xi | y−i ,θ) dxi

}
π(θ | y−i ) dθ

where

π(xi | y−i ,θ) ∝
π(xi |y, θ)

π(yi |xi ,θ)

Require a one-dimensional integral for each i and θ.
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Extensions

Automatic detection of “surprising” observations

Automatic detection of “surprising” observations

Compute
Prob(ynew

i ≤ yi | y−i )

Look for unusual large or small values
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Summary and discussion

• Latent Gaussian models are an important class of models with
a wide range of applications!

• The integrated nested Laplace-approximations works
extremely well, way beyond my expectations!!!

• Obtain in practice “exact” results
• Relative error only
• Computationally FAST even for large n
• Take advantage of multicore architecture using OpenMP

• Extensions
• Compare models (DIC/Bayes factors)
• Cross-validation and “surprising” observations
• High(er) number of hyperparameters
• Sensitivity analysis
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Approximative Bayesian inference

Bonus

High(er) number of hyperparameters

High(er) number of hyperparameters

Numerical (grid) integration is costly and costs at least

3dim(θ)

Need another approach for “high-dimensional” hyperparameters.



Approximative Bayesian inference

Bonus

High(er) number of hyperparameters

Borrow ideas from experimental design...

www.wikipedia.org: In statistics, a central composite
design is an experimental design, useful in response
surface methodology, for building a second order
(quadratic) model for the response variable without
needing to use a complete three-level factorial
experiment.
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Bonus

High(er) number of hyperparameters

Idea
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Bonus

High(er) number of hyperparameters

Number of integration points

Dimension #Int.pts CCD #Int.pts GRID: 3dim

2 9 8
3 15 27
4 25 64
5 27 125
6 45 216
7 79 343
8 81 512
9 147 729
10 149 1000
14 285 2744
18 549 5832
22 1069 10648
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Bonus

High(er) number of hyperparameters

Experience so far

• Works quite well

• The integration problems is well-behaved.
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Bonus

Parallel computing using OpenMP

Parallel computing using OpenMP

Why?

• Speed (primary)

• Ability to run larger models (secondary)

Why are so few doing this?

• (Seemingly) difficult

• Better to wait more than to code more

• Lack of local parallel machines.
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Parallel computing using OpenMP

Result

The Gain/Pain-ratio is simply to low!

But there is hope, due to

• new trends in computing

• including parallel tools into mainstream compilers
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Bonus

Parallel computing using OpenMP

Trends in computing

Once upon a time, chip makers made computer chips faster every
year by increasing their processing speeds. But lately, the
microprocessor industry has run into some fundamental limits to
those speeds.
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Bonus

Parallel computing using OpenMP

Trends in computing

The latest solution: Design chips with multiple processor cores.



Approximative Bayesian inference

Bonus

Parallel computing using OpenMP

Trends in computing

The result: Today’s big-brained chips that can do more processing
than ever before, if the software is modified to take advantage of
their design.
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Bonus

Parallel computing using OpenMP

Parallel machines are now everywhere...
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Bonus

Parallel computing using OpenMP

How to make use of multicore machines?

May 13, 2007: GCC 4.2 Release Series

OpenMP is now supported for the C, C++
and Fortran compilers.
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Bonus

Parallel computing using OpenMP

OpenMP: coding

• Easy way to parallelize code

• Start with a serial version

• Parallel parts of the code when you have time

• Will still run on a serial machine

• Very little interference with the code itself, mainly compiler
directives
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Bonus

Parallel computing using OpenMP

OpenMP: running

• Just run the program and the run-time environment will take
care of the rest.

• This includes how many CPU’s that are used at the time.

• This will change during the execution of the program.
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Bonus

Parallel computing using OpenMP

Example from GMRFLib

#pragma omp p a r a l l e l f o r p r i v a t e ( i )
f o r ( i = 0 ; i < n ; i++) {

GMRFLib 2order approx (NULL , &bb [ i ] , &cc [ i ] , d [ i ] ,
mode [ i ] , i ,
mode , l og lFunc , l o g l Fun c a r g ,
&( b l o ckupda t e pa r−>s t e p l e n ) ) ;

cc [ i ] = MAX(0 . 0 , cc [ i ] ) ;
}
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Bonus

Parallel computing using OpenMP

GMRFLib

• INLA-routines make quite good use of OpenMP

• and so does the inla-program.
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Bonus

Spatial GLMs

Spatial GLMs (w/S.Martino/J.Eidsvik)

Model

• Stationary Gaussian field on a torus

• non-Gaussian observations

• n is huge: n = 5122 or n = 10242

• number of observations, m, is small, a few hundred.

Solve using

• INLA, but the computational tools are now very different
• Exploit the block Toeplitz structure using DFTs
• and simply rank-m correct for the observations using soft

constraints.
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Bonus

Spatial GLMs

Example: Rongelap data
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Bonus

Spatial GLMs

Example: Rongelap data, results

Marginal predictions.
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Bonus

Spatial GLMs

Example: Rongelap data, results

Marginal predicted standard deviations.
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Approximative Bayesian inference
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Spatial GLMs

Spatial GLMs: Summary

• Main interest is to predict unobserved sites

• Gaussian approximations seems sufficient

• they are O(m)-times faster to compute...

• Can also use GMRFs for large m using GMRF-proxies for
Gaussian fields
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