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Aim of the paper

They consider approximate Bayesian inference for additive regression
models, where the latent field/component is Gaussian

They show that, by using an integrated nested Laplace approximation
(INLA), we can directly compute very accurate approximations to the
posterior marginals

The methodology is particularly attractive if the latent Gaussian
model is a GMRF

Main benefit: computational time. Where MCMC algorithms need
hours or days to run, the INLA approximations provide more precise
estimates in seconds or minutes
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Class of models
They consider a subclass of structured additive regression models, named
latent Gaussian models:

Structured additive regression models

Linear predictor: ηi = α+
∑nf

j=1 f
(j)(µji) +

∑nβ
k=1 βkzki + εi

Observations: y ∼ π(y|η) =
∏

i π(yi|ηi)

Latent Gaussian models
If we assign Gaussian priors on α, {f (j)(·)}, {βk} and {εi}, let x denote
the vector of all the latent Gaussian variables and θ the vector of
hyperparameters we will have the three-stage Bayesian hierarchical model

Hyperprior: θ ∼ π(θ)

Parameter model: x|θ ∼ π(x|θ) = N (0,Σ(θ))

Observation model: y|x,θ ∼
∏
i

π(yi|ηi,θ)
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Latent Gaussian models: notation and basic

properties

Observed data: yi|xi ∼ π(yi|xi,θ)
Latent Gaussian field: x ∼ N (0,Σ(θ))

Hyperparameters: θ

Posterior distribution:

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i

π(yi|xi,θ)

Features:

yi is often non-Gaussian (Poisson, binomial, etc)

Dimension of the latent Gaussian field: n large between 102 - 105

Dimension of θ: dim(θ) is small, between 1− 5
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Main goal: compute marginal posterior distribution

From
π(x,θ|y) ∝ π(θ)π(x|θ)

∏
i

π(yi|xi,θ)

compute the posterior marginals

The key feature of the approach is to use this form to construct nested
approximations
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What is the main idea?
The approach os based on the the identity

π(z) =
π(x, z)

π(x|z) leading to π̃(z) =
π(x, z)

π̃(x|z)
where π̃(x|z) is the Gaussian approximation (Tierney and Kadane’s 1986 Laplace
approximation)

INLA approximates

by

π̃(θ|y) ∝ π(x,θ,y)

π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

π̃(xi|y) =
∑
k

π̃(xi|θk,y)π̃(θk|y)∆k
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Exploring π̃(θ|y)
From π(x,θ,y) = π(x|θ,y) π(θ|y) π(y) follows that

π(θ|y) ∝ π(x,θ,y)

π(x|θ,y)
, ∀x

INLA approximation:

π̃(θ|y) ∝ π(x,θ,y)

π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

where π̃G is the Gaussian approximation to π(x|θ,y) and x∗(θ) is the mode

Steps

(1) locate the mode of π̃(θ|y) by optimizing log{π̃(θ|y)} with respect to θ (using e.g.
quasi-Newton method)

(2) at the modal configuration θ∗ compute the negative Hessian matrix H > 0. Let
Σ = H−1 = V ΛV T and use the standardized variable z instead of θ and
compute θ(z) = θ∗ + V Λ1/2z

(3) explore log{π̃(θ|y)} by using the z-parameterization

(4) posterior marginals π(θj |y) can be obtained directly from π̃(θ|y)



we can start from the mode z = 0 and go in the positive direction of z1
with step length δz say δz = 1 as long as

log[π̃{θ(0)|y}]− log[π̃{θ(z)|y}] < δz
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Approximating π̃(xi|θ,y)
Recall that

π̃(xi|y) =
∑
k

π̃(xi|θk,y)π̃(θk|y)∆k

with a set of weighted points {θk} to be used in the previous integration.

Three alternatives for approximation π(xi|θ,y)

Gaussian approximation (Rue and Martino, 2007), easily extractable from
π̃G(x|θ,y) where

π̃G(xi|θ,y) = N(xi;µi(θ), σ2
i (θ))

Laplace approximations

π̃LA(xi|θ,y) = N(xi;µi(θ), σ2
i (θ)) exp{cubic spline(xi)}

Simplified Laplace approximation based on the skew-normal distribution (Azzalini
and Capitano, 1999)

The simplified Laplace approximation appears to be highly accurate for many
observational models.
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Approximation methods in machine learning

Variational Bayes (VB): The principle of VB is to use as an
approximation the joint density q(x,θ) that minimizes the
Kullback-Leibler contrast of π(x,θ|y) wrt q(x,θ)

However, even though VB seem often to approximate well the
posterior mode, the posterior variance can be (sometimes)
underestimated.

Expectation propagation (EP): (Minka, 2001). For latent Gaussian
models can be demonstrated that EP usually overestimates the
posterior variance (Bishop, 2006, chapter 10)
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Disease mapping with covariate

Example: Larynx cancer mortality counts are observed in the 544 district of Germany
from 1986 to 1990. The data are conditionally independently Poisson counts

yi|ηi ∼ Poisson(Ei exp(ηi)), , i = 1, . . . , 544

where Ei is fixed and accounts for demographic variation, and ηi is the log relative risk.
Together with the counts, for each district, the level of smoking consumption ci is
registered.

The model for ηi is
ηi = µ+ fs(si) + βci + ui

where fs(si) is the spatial effect and ui is the unstructured random effect.
The model has three hyperparameters θ = (log λs, log λf , log λη) (unknown precisions)
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Implementing using the INLA package for R

require(rgl)

require(INLA)

require(lattice)

# Disease mapping with covariate

data(Germany)

Germany<-cbind(Germany,region.struct=Germany$region)

# Model (INLA approximation)

formula<-Y~f(region.struct,model="besag",graph.file="germany.graph",

param=c(1,0.00005),initial=2.8)+x+f(region,model="iid")

mod<-inla(formula, family="poisson", data=Germany, E=E,

control.inla=list(h=0.01), verbose=TRUE)

# Plots

source("draw-map.r")

res = matrix(mod$mode$x[1:1632],544,3)

germany.map(res[,2])

plot(mod)
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