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Aim of the paper

@ They consider approximate Bayesian inference for additive regression
models, where the latent field/component is Gaussian

@ They show that, by using an integrated nested Laplace approximation
(INLA), we can directly compute very accurate approximations to the
posterior marginals

@ The methodology is particularly attractive if the latent Gaussian
model is a GMRF

@ Main benefit: computational time. Where MCMC algorithms need
hours or days to run, the INLA approximations provide more precise
estimates in seconds or minutes

E. Salazar (Reading group) April 16, 2012 3/14



Class of models

They consider a subclass of structured additive regression models, named
latent Gaussian models:

Structured additive regression models

@ Linear predictor: 7, = a + Z?Ll FO (i) + 302 | Brzki + €
e Observations: y ~ m(y|n) = [1, 7(vi|m)
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Class of models

They consider a subclass of structured additive regression models, named
latent Gaussian models:

Structured additive regression models
@ Linear predictor: n; = o + Z;”il f(j)(,uji) + ZZil Brziki + €
e Observations: y ~ w(y|n) = [ [, 7(vi|m:)

Latent Gaussian models

If we assign Gaussian priors on o, {f7) ()}, {8} and {e;}, let  denote
the vector of all the latent Gaussian variables and 8 the vector of
hyperparameters we will have the three-stage Bayesian hierarchical model

Hyperprior: 8 ~ 7(6)
Parameter model: |0 ~ w(x|0) =N(0,3%(0))
Observation model: yl|xz,0 ~ H m(yi|ni, @)
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Latent Gaussian models: notation and basic
properties

o Observed data: y;|z; ~ m(y;|x;, @)

e Latent Gaussian field:  ~ N(0,X(0))
@ Hyperparameters: 6
°

Posterior distribution:

(@, 6ly) o< w(0)m(x|6) Hﬂ(yi\fm, 0)

Features:

@ y; is often non-Gaussian (Poisson, binomial, etc)
o Dimension of the latent Gaussian field: n large between 102 - 10°

@ Dimension of 8: dim(8) is small, between 1 — 5
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Main goal: compute marginal posterior distribution

From

m(x, 0y) oc w(0)7((0) | [ w(yil=i,0)
compute the posterior marginals
w(aly) = [ i, w(6ly) d6.

(0;1y) = f ~(Oly)do_;.

The key feature of the approach is to use this form to construct nested
approximations

F(xily) = f F(x116.y) 7(Oly) do.
70 = [ 76w do-,.
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What is the main idea?

The approach os based on the the identity

m(z, 2) . . m(x, z)
= leading t =
m(2) @) eading to  7(z) @)
where 7(z|z) is the Gaussian approximation (Tierney and Kadane's 1986 Laplace
approximation)

INLA approximates
rxly) = f 7(x116. y) 7 (0ly) 46,

(8;ly) = f (Bly) do_j.

by
N m(z,0,y)
(0 < =
R rLx 1
A(wily) = Y # (@il y)7(Oly) A
k
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Steps
(1)

(2)

Exploring 7(6|y)

From m(x,0,y) = 7w(x|0,y) m(0|y) 7(y) follows that

m(x,0,y)

, Va
m(x(6,y)

m(0ly)

INLA approximation:
m(z,6,y)

7(0ly) o 7a(x|0,y) z=x*(6)

where 7 is the Gaussian approximation to m(x|0,y) and x*(0) is the mode

locate the mode of 7(0|y) by optimizing log{7(0|y)} with respect to 8 (using e.g.
quasi-Newton method)

at the modal configuration 8™ compute the negative Hessian matrix H > 0. Let
3 = H ' = VAV and use the standardized variable z instead of 8 and
compute (z) = 8* + VA/22

explore log{7(0|y)} by using the z-parameterization

posterior marginals 7 (6;|y) can be obtained directly from 7 (6|y)




we can start from the mode z = 0 and go in the positive direction of z;
with step length J, say J, = 1 as long as

log[7{0(0)|y}] — log[7{6(2)|y}] < d-

62
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(a)

Fig. 1. lllustration of the exploration of the posterior marginal for 8: in (a) the mode is located and the Hes-
sian and the co-ordinate system for z are computed; in (b) each co-ordinate direction is explored (e) until the

61

01
(b)

log-density drops below a certain limit; finally the new points (e) are explored
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Approximating 7(z;|0, y)

Recall that

Faily) =Y 7 (@sl0k, y) 7 (Or]y) Ax
k

with a set of weighted points {6i} to be used in the previous integration.

Three alternatives for approximation m(z;|0, y)

@ Gaussian approximation (Rue and Martino, 2007), easily extractable from
7a(x]0,y) where
76 (2:]0,y) = N(wi; 1i(6),07(9))

@ Laplace approximations
#ra(2:]0,y) = N(w:; (), 07(8)) exp{cubic spline(x:)}

@ Simplified Laplace approximation based on the skew-normal distribution (Azzalini
and Capitano, 1999)

The simplified Laplace approximation appears to be highly accurate for many
observational models.
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Approximation methods in machine learning

e Variational Bayes (VB): The principle of VB is to use as an
approximation the joint density ¢(x, @) that minimizes the
Kullback-Leibler contrast of 7(x, 8|y) wrt ¢(x, )

However, even though VB seem often to approximate well the
posterior mode, the posterior variance can be (sometimes)
underestimated.

e Expectation propagation (EP): (Minka, 2001). For latent Gaussian
models can be demonstrated that EP usually overestimates the
posterior variance (Bishop, 2006, chapter 10)
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Disease mapping with covariate

Example: Larynx cancer mortality counts are observed in the 544 district of Germany
from 1986 to 1990. The data are conditionally independently Poisson counts

yi|n: ~ Poisson(E; exp(n;)), ,i=1,...,544

where FE; is fixed and accounts for demographic variation, and 7; is the log relative risk.
Together with the counts, for each district, the level of smoking consumption ¢; is
registered.

The model for 7; is
N = p+ fo(si) + Bei +us

where f,(s;) is the spatial effect and w; is the unstructured random effect.
The model has three hyperparameters 8 = (log As,log Af,log ;) (unknown precisions)
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(a) (b)

Figure 8: Standardised mortality ratio for larynx cancer, panel (a) and observed covariate values, panel(b)
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Implementing using the INLA package for R

require(rgl)
require (INLA)
require(lattice)

# Disease mapping with covariate
data(Germany)
Germany<-cbind (Germany,region.struct=Germany$region)

# Model (INLA approximation)
formula<-Y"f(region.struct,model="besag",graph.file="germany.graph",
param=c(1,0.00005) ,initial=2.8)+x+f (region,model="iid")

mod<-inla(formula, family="poisson", data=Germany, E=E,
control.inla=1ist(h=0.01), verbose=TRUE)

# Plots

source ("draw-map.r")

res = matrix(mod$mode$x[1:1632],544,3)
germany .map(res[,2])

plot (mod)
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