Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

H. Rue, S. Martino and N. Chopin Journal of the Royal Statistical Society, Series B

Presented by Esther Salazar Duke University

April 16, 2012

Class of models 2

- ∢ ≣ →

・ロト ・回ト ・ヨト

Aim of the paper

- They consider approximate Bayesian inference for *additive regression models*, where the latent field/component is Gaussian
- They show that, by using an integrated nested Laplace approximation (INLA), we can directly compute very accurate approximations to the posterior marginals
- The methodology is particularly attractive if the latent Gaussian model is a GMRF
- Main benefit: computational time. Where MCMC algorithms need hours or days to run, the INLA approximations provide more precise estimates in seconds or minutes

イロト 不得下 イヨト イヨト 二日

Class of models

They consider a subclass of *structured additive regression models*, named latent Gaussian models:

Structured additive regression models

- Linear predictor: $\eta_i = \alpha + \sum_{j=1}^{n_f} f^{(j)}(\mu_{ji}) + \sum_{k=1}^{n_\beta} \beta_k z_{ki} + \epsilon_i$
- Observations: $\boldsymbol{y} \sim \pi(\boldsymbol{y}|\boldsymbol{\eta}) = \prod_i \pi(y_i|\eta_i)$

Class of models

They consider a subclass of *structured additive regression models*, named latent Gaussian models:

Structured additive regression models

- Linear predictor: $\eta_i = \alpha + \sum_{j=1}^{n_f} f^{(j)}(\mu_{ji}) + \sum_{k=1}^{n_\beta} \beta_k z_{ki} + \epsilon_i$
- Observations: $\boldsymbol{y} \sim \pi(\boldsymbol{y}|\boldsymbol{\eta}) = \prod_i \pi(y_i|\eta_i)$

Latent Gaussian models

If we assign Gaussian priors on α , $\{f^{(j)}(\cdot)\}$, $\{\beta_k\}$ and $\{\epsilon_i\}$, let x denote the vector of all the latent Gaussian variables and θ the vector of hyperparameters we will have the three-stage Bayesian hierarchical model

Hyperprior:
$$\theta \sim \pi(\theta)$$

Parameter model: $x|\theta \sim \pi(x|\theta) = \mathcal{N}(0, \Sigma(\theta))$
Observation model: $y|x, \theta \sim \prod_{i} \pi(y_i|\eta_i, \theta)$

April 16, 2012

4 / 14

Latent Gaussian models: notation and basic properties

- Observed data: $y_i | x_i \sim \pi(y_i | x_i, \boldsymbol{\theta})$
- Latent Gaussian field: $\boldsymbol{x} \sim \mathcal{N}(0, \boldsymbol{\Sigma}(\boldsymbol{\theta}))$
- Hyperparameters: θ
- Posterior distribution:

$$\pi(oldsymbol{x},oldsymbol{ heta}|oldsymbol{y}) \propto \pi(oldsymbol{ heta})\pi(oldsymbol{x}|oldsymbol{ heta}) \prod_i \pi(y_i|x_i,oldsymbol{ heta})$$

Features:

- y_i is often non-Gaussian (Poisson, binomial, etc)
- ullet Dimension of the latent Gaussian field: n large between 10^2 10^5
- Dimension of θ : dim (θ) is small, between 1-5

Main goal: compute marginal posterior distribution From

$$\pi(oldsymbol{x},oldsymbol{ heta}|oldsymbol{y}) \propto \pi(oldsymbol{ heta})\pi(oldsymbol{x}|oldsymbol{ heta}) \prod_i \pi(y_i|x_i,oldsymbol{ heta})$$

compute the posterior marginals

$$\pi(x_i|\mathbf{y}) = \int \pi(x_i|\boldsymbol{\theta}, \mathbf{y}) \,\pi(\boldsymbol{\theta}|\mathbf{y}) \,\mathrm{d}\boldsymbol{\theta},$$
$$\pi(\boldsymbol{\theta}_j|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \,\mathrm{d}\boldsymbol{\theta}_{-j},$$

The key feature of the approach is to use this form to construct nested approximations

$$\tilde{\pi}(x_i|\mathbf{y}) = \int \tilde{\pi}(x_i|\boldsymbol{\theta}, \mathbf{y}) \,\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) \,\mathrm{d}\boldsymbol{\theta},$$
$$\tilde{\pi}(\boldsymbol{\theta}_j|\mathbf{y}) = \int \tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) \,\mathrm{d}\boldsymbol{\theta}_{-j}.$$

(日) (周) (三) (三)

What is the main idea?

The approach os based on the the identity

$$\pi(z) = \frac{\pi(x,z)}{\pi(x|z)}$$
 leading to $\tilde{\pi}(z) = \frac{\pi(x,z)}{\tilde{\pi}(x|z)}$

where $\tilde{\pi}(x|z)$ is the Gaussian approximation (Tierney and Kadane's 1986 Laplace approximation)

INLA approximates

$$\pi(x_i|\mathbf{y}) = \int \pi(x_i|\boldsymbol{\theta}, \mathbf{y}) \,\pi(\boldsymbol{\theta}|\mathbf{y}) \,\mathrm{d}\boldsymbol{\theta},$$
$$\pi(\boldsymbol{\theta}_j|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \,\mathrm{d}\boldsymbol{\theta}_{-j},$$

by

$$\tilde{\pi}(\boldsymbol{\theta}|\boldsymbol{y}) \propto \left. \frac{\pi(\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{y})}{\tilde{\pi}_G(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})} \right|_{\boldsymbol{x}=\boldsymbol{x}^*(\boldsymbol{\theta})} \\ \tilde{\pi}(x_i|\boldsymbol{y}) = \left. \sum_k \tilde{\pi}(x_i|\theta_k, \boldsymbol{y}) \tilde{\pi}(\theta_k|\boldsymbol{y}) \Delta_k \right.$$

A E A

Exploring $\tilde{\pi}(\boldsymbol{\theta}|\boldsymbol{y})$

• From $\pi(x, \theta, y) = \pi(x|\theta, y) \ \pi(\theta|y) \ \pi(y)$ follows that

$$\pi(oldsymbol{ heta}|oldsymbol{y}) \propto rac{\pi(oldsymbol{x},oldsymbol{ heta},oldsymbol{y})}{\pi(oldsymbol{x}|oldsymbol{ heta},oldsymbol{y})}, \quad orall oldsymbol{x}$$

INLA approximation:

$$ilde{\pi}(oldsymbol{ heta}|oldsymbol{y}) \propto \left.rac{\pi(oldsymbol{x},oldsymbol{ heta},oldsymbol{y})}{ ilde{\pi}_G(oldsymbol{x}|oldsymbol{ heta},oldsymbol{y})}
ight|_{oldsymbol{x}=oldsymbol{x}^*(oldsymbol{ heta})}$$

where $\tilde{\pi}_G$ is the Gaussian approximation to $\pi({\bm x}|{\bm \theta},{\bm y})$ and ${\bm x}^*({\bm \theta})$ is the mode

Steps

- (1) locate the mode of $\tilde{\pi}(\theta|y)$ by optimizing $\log{\{\tilde{\pi}(\theta|y)\}}$ with respect to θ (using e.g. quasi-Newton method)
- (2) at the modal configuration θ^* compute the negative Hessian matrix H > 0. Let $\Sigma = H^{-1} = V \Lambda V^T$ and use the standardized variable z instead of θ and compute $\theta(z) = \theta^* + V \Lambda^{1/2} z$

(日) (四) (三)

- (3) explore $\log\{\tilde{\pi}(\boldsymbol{\theta}|\boldsymbol{y})\}$ by using the *z*-parameterization
- (4) posterior marginals $\pi(\theta_j | \boldsymbol{y})$ can be obtained directly from $\tilde{\pi}(\boldsymbol{\theta} | \boldsymbol{y})$

we can start from the mode z = 0 and go in the positive direction of z_1 with step length δ_z say $\delta_z = 1$ as long as

 $\log[\tilde{\pi}\{\boldsymbol{\theta}(0)|\boldsymbol{y}\}] - \log[\tilde{\pi}\{\boldsymbol{\theta}(\boldsymbol{z})|\boldsymbol{y}\}] < \delta_{z}$

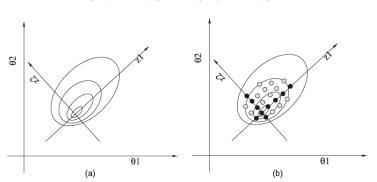


Fig. 1. Illustration of the exploration of the posterior marginal for θ : in (a) the mode is located and the Hessian and the co-ordinate system for z are computed; in (b) each co-ordinate direction is explored (•) until the log-density drops below a certain limit; finally the new points (•) are explored

- 4 同 1 - 4 三 1 - 4 三 1

Approximating $\tilde{\pi}(x_i | \boldsymbol{\theta}, \boldsymbol{y})$

Recall that

$$\tilde{\pi}(x_i|\boldsymbol{y}) = \sum_k \tilde{\pi}(x_i|\theta_k, \boldsymbol{y})\tilde{\pi}(\theta_k|\boldsymbol{y})\Delta_k$$

with a set of weighted points $\{\theta_k\}$ to be used in the previous integration.

Three alternatives for approximation $\pi(x_i|\boldsymbol{\theta}, \boldsymbol{y})$

• Gaussian approximation (Rue and Martino, 2007), easily extractable from $\tilde{\pi}_G(x|\theta, y)$ where

$$\tilde{\pi}_G(x_i|\boldsymbol{\theta}, \boldsymbol{y}) = N(x_i; \mu_i(\boldsymbol{\theta}), \sigma_i^2(\boldsymbol{\theta}))$$

• Laplace approximations

$$\tilde{\pi}_{LA}(x_i|\boldsymbol{\theta}, \boldsymbol{y}) = N(x_i; \mu_i(\boldsymbol{\theta}), \sigma_i^2(\boldsymbol{\theta})) \exp\{\text{cubic spline}(x_i)\}$$

• Simplified Laplace approximation based on the skew-normal distribution (Azzalini and Capitano, 1999)

The simplified Laplace approximation appears to be highly accurate for many observational models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Approximation methods in machine learning

• Variational Bayes (VB): The principle of VB is to use as an approximation the joint density $q(x, \theta)$ that minimizes the Kullback-Leibler contrast of $\pi(x, \theta|y)$ wrt $q(x, \theta)$

However, even though VB seem often to approximate well the posterior mode, the posterior variance can be (sometimes) underestimated.

• Expectation propagation (EP): (Minka, 2001). For latent Gaussian models can be demonstrated that EP usually overestimates the posterior variance (Bishop, 2006, chapter 10)

イロト 不得下 イヨト イヨト 二日

Disease mapping with covariate

Example: Larynx cancer mortality counts are observed in the 544 district of Germany from 1986 to 1990. The data are conditionally independently Poisson counts

 $y_i | \eta_i \sim \mathsf{Poisson}(E_i \exp(\eta_i)), \quad , i = 1, \dots, 544$

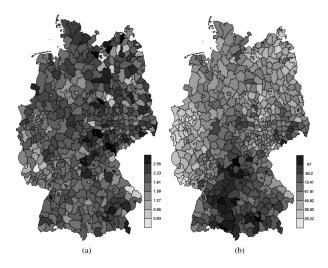
where E_i is fixed and accounts for demographic variation, and η_i is the log relative risk. Together with the counts, for each district, the level of smoking consumption c_i is registered.

The model for η_i is

$$\eta_i = \mu + f_s(s_i) + \beta c_i + u_i$$

where $f_s(s_i)$ is the spatial effect and u_i is the unstructured random effect. The model has three hyperparameters $\theta = (\log \lambda_s, \log \lambda_f, \log \lambda_\eta)$ (unknown precisions)

◆□▶ ◆□▶ ◆三▶ ◆三▶ □ のへ⊙



<ロ> (日) (日) (日) (日) (日)

Implementing using the INLA package for R

```
require(rgl)
require(INLA)
require(lattice)
# Disease mapping with covariate
data(Germanv)
Germany <- cbind (Germany, region.struct=Germany $region)
# Model (INLA approximation)
formula<-Y<sup>c</sup>f(region.struct,model="besag",graph.file="germany.graph",
param=c(1,0,00005),initial=2.8)+x+f(region.model="iid")
mod <- inla(formula, family="poisson", data=Germany, E=E,
control.inla=list(h=0.01), verbose=TRUE)
# Plots
source("draw-map.r")
res = matrix(mod$mode$x[1:1632],544,3)
germany.map(res[,2])
```

plot(mod)

イロト 不得下 イヨト イヨト 二日