RL 681

APPROXIMATE BOUNDARY CONDITIONS
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Abstract: Approximate boundary conditions are a means for simulating material and
surface effects in scattering and propagation. A number of conditions are

discussed and criteria given for their validity.

1. Introduction

Approximate boundary conditions (hereafter abbreviated as abc's) can be very
helpful in simplifying the analytical or numerical solution of wave problems involving
complex structures. They are important in all disciplines, e.g. acoustics, hydro-
dynamics and electromagnetics, where boundary conditions are involved, and are
becoming more so as we seek to model more complicated situations. Some versions have

also been around for a long time, and while the classical condition E = 0 at the

tan
surface of a metal is often regarded as exact, it is in fact an approximation for
all metals even at microwave frequencies.

In electromagnetics (to which we shall confine our attention) abc's are now
widely used in scattering, propagation and waveguide analyses to simulate the
material and geometric properties of the surfaces involved. Take, for example, a
finite body immersed in a homogeneous medium and illuminated by an electromagnetic
field. Knowing the material properties of the body it is, in principle, possible
to find the scattered field outside by taking into account the propagation of the
fields throughout the body. Nevertheless, the task would be greatly simplified

if these properties could be simulated via a boundary condition involving only the
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external fields imposed at the outer surface, thereby converting a two (or more)
media problem into a one medium one. This is the objective of an abc. Though

it is generally convenient to take the surface where the abc is applied to

coincide with the actual surface of the body, this is not necessary. The only
requirement is that in the region of interest the field obtained using the
postulated condition approximates the exact field to an adequate degree of accuracy.

If the exact solution of the original problem were known, we could always
construct a posteriori an equivalent boundary condition which, if imposed at the
surface, would reproduce precisely the fields throughout the region exterior to
the body. Unfortunately the condition would almost certainly be unique to that
particular situation, and to be useful an abc has to be applicable to a class of
incident field and body configurations over and beyond the specific one for which
it was derived.

Since an abc is needed to solve a problem whose solution cannot (in practice)
be obtained without it, its use inevitably entails a certain amount of risk. In any
given case there may be several different conditions that could be used, each derived
by considering a simplified (canonical) problem whose solution can be found. When
applied to the original problem, each will generate a solution having some degree
of error. The more complicated the condition is, the greater the (presumed) accuracy
of the solution; but the difficulty of computing the solution, and the restrictions
on the applicability of the abc, will also be greater. Which condition to use could
then be a matter of judgement, and the applicability of any abc can seldom be
rigorously justified in advance. Some criteria can be specified that are necessary
for an accurate approximation to the field, and others are suggested by the manner in
which the abc was derived, but often those conditions which have a physical basis yield

accurate results when their applicability cannot be justified. It may then be that



-3~

the only justification we have is the degree to which results obtained in
analogous situations are supported by experimental and other data. If this seems
rather poor grounds for proceeding, it is no worse than for the physical optics
method (which is itself based on a degenerate type of abc) whose utility far
exceeds its formal validity.

In the following we discuss two different types of conditions: those imposed
at a plane interface or the surface of a finite body, and those which are either
boundary or jump conditions and can be used to simulate the effect of a layer of
electrically small thickness. For simplicity, time harmonic fields are assumed

with a time dependence e1wt, and the surrounding medium is treated as free space.

2. Planar Surfaces

The most common abc is an impedance boundary condition derived by considering
the simple problem of a plane wave incident on a half space. We choose the interface
to be the plane z = 0 of a Cartesian coordinate System with z axis directed out of the
material half space. If E,H is the field in z > 0, the assumed conditions at

z = 0 are then

(1)

X y y X
i.e.,

¥ o) A ~

noa(maAE) = H (2)

where n = 2 is the outward unit vector normal. The condition is physically
meaningful and can be justified under a variety of circumstances. n is the impedance
Tooking into the half space and is a function of the material properties. In general
it is also a function of the incident field direction, but if (2) is to have any

reasonable applicability, it is necessary that n be independent of this direction.
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If the medium occupying the half space is homogeneous and isotropic with

permittivity ¢ and permeapility u, and if

leul > e u (3)

i.e., the (complex) refractive index is large in magnitude, it can be shown
that [1,2]
n o= 7 (4)

where Z = Vu/e is the intrinsic impedance of the medium. In effect (3) ensures
that the field in the medium is a plane wave propagating in the -z direction, and

(1) then follows from the continuity of n . E and n H at the boundary. As

required, n = 0 corresponds to perfect conductivity, but it is not necessary that
In| be small for the boundary condition to be valid. The abc (2) with (4) is
usually attributed to Leontovich (see[3]), and was widely used [4,5] in Russian
work on ground wave propagation during WW II.

An obvious generalization of the above result is to an inhomogeneous medium.
If the medium is stratified in planes perpendicular to the z direction, n must be
replaced by the impedance of the multilayer structure for incidence in the -z

direction, and the resulting abc (2) is valid when this is also the impedance for

all directions of incidence. Thus, for a metal-backed layer of thickness d,
n = il tan(kod/e_u_) (5)

provided (3) is satisfied, where k0 is the propagation constant of free space.

On the other hand, if ¢ and/or u vary continuously as functions of z, Rytov [6]

has shown that to a first order the effect is to replace n by Z{1 + O(kglaZ/az)}.
Lateral variations as a function of x and/or y have more effect, and a key

finding [2] is that the first derivatives of ¢ and u do not appear explicitly in



the boundary condition. It follows that (2) with (4) is valid as it stands to
at least a first order, and can be treated as a local boundary condition with
n = n(x,y). In this form it has been used [7], for example, to analyze reflection
from a periodically varying substrate beneath a coal layer, and is a vital tool in
the design of radar absorbing materials for treating edges. There is no theoretical
information about the maximum rate of change of n for which the abc remains valid.

If the material in z < 0 is anisotropic so that ¢ and/or u are tensors, (2) is
is still applicable under the conditions stated provided n is treated as a tensor.
In particular, if the x and y axes coincide with the principal axes of the tensor,

(1) becomes

with n; # np.

An alternative use of the impedance boundary condition is to simulate the
effect of minor departures of the surface from a plane. For a perfectly conducting
surface having small irregularities distributed in a statistically uniform and
isotropic manner with rms height h and correlation lTength 2, the field satisfies (2)
at the mean surface z = 0 provided koh << /F;E and the surface slopes are small
[5,8]. Presumably, analogous results could be obtained for a dielectric material.
The same is also true for systematic departures from a plane, e.q., corrugations,
and the surface can be treated as a planar impedance one provided [9] the spacing of
the grooves exceeds their individual width and there are many corrugations per
wavelength. The resulting abc (2) is an important tool in the analysis and design
of waveguides [10] for low loss, high power applications, and for improving the
radiation properties of conical and sectoral horns [11]. With the (tensor)
impedance computed from a knowledge of the geometry and the field structure, the

theoretical predictions are in good agreement with experimental data.
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It might seem that the boundary condition (2) is fundamentally a vector
one in that E and H are both involved, but if n is a constant scalar, simple

manipulation of (2) or (1) yields [2]

ok dH L

_Z_' n_ = —Z 1 .....g =
9z 1ko z E 0 3z ¥ ]ko n Hz 0 (7)

where Z, is the intrinsic impedance of free space. These are 'scalar' conditions,
each involving only one field component, and have no counterpart where n is a tensor.
If, for a homogeneous medium, (3) is relaxed, n will depend on the incident field
direction in the manner displayed by the Fresnel reflection coefficients. To
provide a better approximation to the field and still have the boundary conditions
independent of the incident field direction, Karp and Karal [12] proposed a

generalization of (7) in the form

M
I (% ikorm>u = 0 (8)

m=1
with u either EZ or Hz' By using two or more factors in the product, constant
Fm's can be found to improve the simulation of both homogeneous and multi-layer
structures.

Recently, the idea has been revived [13] in connection with the use of
fictitious boundaries to limit the area of computation in field problems., In effect,
the need is for a perfectly absorbing surface. Using methods quite different from
those discussed here, a hierarchy of highly absorbing boundary conditions were

developed which, for the scalar problem treated, are identical to (8) with T = 1.

3. Curved Surfaces

In writing the abc (1) in the vector form (2) and requiring that the surface

impedance n be independent of the incident field direction, an objective was



-7-

to obtain a boundary condition that could be applicable to the curved surface of
a finite body. The restrictions that must be placed on the type of surface to
Justify the application are discussed in [1-3]. In addition to (3) it is evident
that the penetration depth must be small compared with the minimum thickness and
minimum radius of curvature o of the body, and the local wavelength in the
material must also be small compared with p. For a lossy homogeneous body, these

can be summarized as

[Im Nk o >> 1 (9)

where N = /EE7E;ﬁ;'is the complex refractive index.

Evidence in support of (9) has been obtained from the exact solutions for
coated and homogeneous cylinders and spheres [14,15]. If (3) is satisfied, each mode
satisfies an impedance boundary condition, but only if (9) is also fulfilled are
the modal impedances identical and equal to the planar value. In spite of this,

(2) has been applied to edged bodies such as a Tossy half plane [16] or coated
ogival cylinder with the same impedance used right up to the edge. The results
obtained are physically reasonable and in those cases where experimental data are
available, the theoretical results give excellent agreement. For the general
problem of a real (and irregular) earth, Godziﬂski [17] has developed a number
of approximate expressions for the surface impedance to simulate the effects
encountered in propagation.

In many instances the numerical solution of a boundary value problem subject
to the abc (2) is not significantly harder than in the corresponding perfectly
conducting case for which n = 0. It may even be simpler. A non-zero impedance
can improve the stability of a numerical solution of an integral equation, and having
developed a formulation for one particular (E field) incident polarization, results
for the corresponding H field excitation can be obtained using duality (E > H,

H+ -E, n > 1/n). Although the boundary supports both electric and magnetic

*
surface currents K and K respectively, where



K="n,H, K = -n,E, (10)

the two are related via (2):

It is therefore sufficient to solve for one of them.

Nevertheless, the vector character of the condition (2) can be a major
hindrance to an analytical solution. A basic problem such as a wedge or an
elliptic cylinder illuminated by a plane wave no longer yields to the method of
separation of variables unless n varies in a manner prescribed by the metric
coefficients for the appropriate coordinate system. Unfortunately, the scalar

equivalents (7) have no counterparts for other than a single plane interface [18].

4, Sheets and Layers

An abc can also be used to simulate a layer of electrically small thickness
using a sheet of infinitesimal thickness. An example is a conducting layer whose
thickness t is much greater than the penetration depth but much smaller than the
free space wavelength, which can be approximated mathematically as a sheet where
the condition (2) is imposed. If n is now the outward normal to (say) the upper

(positive) side, the sheet supports (total) electric and magnetic currents

A + * A
n

i =

respectively, with

3= - RaEm v Een] L e e v nen] L ()

1

n
+

where the symbol ‘_ denotes the discontinuity across the sheet. The sheet is, of

- . ] ) *
course, impenetrable, and there is in general no connection between J and J

analogous to (11).
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An impedance sheet is closely related to two other types of sheet both of
which are partially transparent. Consider a thin layer of highly conducting
material whose permeability is that of free space. If o is the conductivity, a
surface resistance R = (m)'l can be defined, and as t + 0 we can imagine o to
increase in such a manner that R is finite in the limit. The result is a sheet
whose electromagnetic properties are specified by the single measurable quantity R.
Though obviously an idealization, sheets are readily available with thickness no more
than about 0.1 mm presenting almost constant resistance as high as 1800 o/square
over a wide range of frequencies. The precise value depends on the amount of carbon
loading employed, and sheets of this type are of great interest for cross section
reduction purposes [19].

We can arrive at the same concept using a layer of material whose
permittivity is ¢ with y = u, as before. If the permittivity is large enough for
the normal component of the polarizability current to be neglected, the Tayer can
be approximated [20] by a sheet whose surface "resistance" is

iz

R = - ¢ : (14)
kor(e/eo - 1)

and this has been used to analyze thin dielectric sheets, lossy and otherwise, in
various configurations [20,21].

The above sheets are examples of an electrically resistive sheet whose total
current strength is proportional to the tangential electric field at the surface.
As originally proposed by Levi-Civita[22], the sheet is characterized by a jump
discontinuity in n . H across the surface, but no discontinuity in n . E. It

therefore supports only an electric current, and the conditions that define it are
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A A ~
nAElT = naHT L s)

When R = 0 the sheet is perfectly conducting and when R = » it is no longer there.
In general R is complex, and if the material comprising the sheet is also
anisotropic, e.g. if parallel wires are embedded in a dielectric, R will also be
a tensor.

The electromagnetic dual is a 'magnetically conductive' sheet having
conductivity R*, a realization of which could be a Tayer of material having
permeability u with ¢ = € . The conditions at its surface are the dual of (15),
namely
n

() = R, E (16)

A + _
n . Ho =0 ,

When R* = 0 the sheet Tooks Tike a 'perfect ferrite' whose permeability is infinite,
and when R* = » it no longer exists.

Planar sheets of these types are complementary in the sense that a
generalization of Babinet's principle can be developed for them [23]. Though each
is partially transparent, the superposition of a resistive sheet having R = n/2 and
a conductive one with R = (Zn)'1 is mathematically equivalent [23] to an impedance
sheet with surface impedance n. A set of sheets spaced slightly apart has been

suggested as a model for a graded absorber.
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