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Abstract—In this paper we study the capacity of the half-
duplex wireless butterfly network, in which a relay node facil-
itates the communication between two interfering transmitter-
receiver pairs. We use the deterministic approach to make
progress towards approximating the capacity region of this
network. We use the insights obtained from the analysis of
the corresponding deterministic problem to derive a new upper
bound on the capacity of this network. We also propose a
transmission strategy and show that for symmetric channel gains
the gap between its achievable rate region and the upper bound
is at most log 15

2
≈ 1.95 bits/sec/Hz per user.

I. INTRODUCTION

The wireless butterfly network, shown in Figure 1, is a

canonical scenario where network coding improves through-

put compared to routing [1]. It is one of the basic coding

configurations exploited in COPE [2], a practical network

coding protocol shown experimentally to be able to double

or triple throughput in 802.11 mesh networks. In this network

the source node Si, i = 1, 2 wishes to communicate to the
destination nodeDi, i = 1, 2 simultaneously utilizing the relay
R. The traditional wireless network coding model assumes

unit capacity broadcast links that are operated orthogonally,

with error-free decoding on each link. Information from each

source is decoded at the relay and the opposite destination. The

relay transmits the bitwise XOR of its inputs, from which each

destination is able to decode its message using knowledge of

the other message.

These and other works highlight scenarios where network

coding is useful, though the assumption of separate physical

layer and network layer coding is suboptimal. In this paper

we study the information theoretic capacity of the wireless

butterfly network, with the linear additive Gaussian noise

channel model. Motivated by the deterministic approach in [3],

here we make progress towards the goal of approximating the

capacity region of this network. In a related work [4], authors

have proposed and analyzed a few decode-forward relaying

strategies for this network (in the presence of a direct link

between each source and destination).

The deterministic model simplies the wireless interaction

model by eliminating the noise and allows us to focus more on

signal interactions. This approach was successfully applied to

the relay network in [3], and resulted in insight into transmis-

sion techniques which further led to an approximate capacity

characterization of the noisy wireless relay network [5]. This

approach was also applied recently to the bidirectional relay

channel problem [6], which again resulted in approximating

its capacity region.

Inspired by these results, we examine the deterministic half-

duplex butterfly network. We first derive a new outer bound on

its capacity which is tighter than the cut-set upper bound. Then

in the case that the channel gains are symmetric, we propose

a scheme that achieves the outer bound and characterize the

capacity exactly. Quite interestingly, the side channels (i.e. the

channel between S1 and D2 and between S2 and D1) are

used for two different purposes: in the first phase (i.e. relay

listens) it is used by each destination to decode a part of the

interference in the relay’s signal. In the second phase (i.e.

relay transmits) each source uses the side channel to cancel

another part of the interference in the relays’s transmitted

signal. This transmission technique is called interference-

neutralization and was recently proposed in [7].

Next, we use the insights that we obtained so far and analyze

the capacity of the symmetric Gaussian butterfly network. By

following similar steps, we first derive an outer bound on its

capacity. Then we show that a natural translation of our earlier

scheme achieves within log 15
2 ≈ 1.95 bits/sec/Hz per user

of the upper bound for symmetric channels gains and hence

approximate its capacity to within a constant.

II. SYSTEM MODEL

The system model for the wireless butterfly network is

shown in Figure 1. We assume that there is a half-duplex

constraint on the relay which means it can not listen and

transmit at the same time. We assume that the fraction of

the time that the relay is listening is fixed and denoted by

t. Although t can not adaptively change as a function of the

channel gains, one can optimize it beforehand. Therefore as

shown in Figure 2 the network has two modes of operation,

in the first mode the relay listens and in the second mode it

transmits. We denote the transmit and received signal of node

i at mode j (j = 1, 2) by respectively Xi,j and Yi,j .
In the AWGN channel model we have

YD1,1 = hS1D2
XS2,1 + ZD1,1

YD2,1 = hS1D2
XS1,1 + ZD2,1

YR,1 = hS1RXS1,1 + hS2RXS2,1 + ZR,1

YD1,2 = hS2D1
XS2,2 + hRD1

XR,2 + ZD1,2

YD2,2 = hS1D2
XS1,2 + hRD2

XR,2 + ZD2,2 (1)

311978-1-4244-4536-3/09/$25.00 ©2009 IEEE

ITW 2009, Volos, Greece, June 10 - 12, 2009

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:54:54 UTC from IEEE Xplore.  Restrictions apply. 



where Z’s are i.i.d. complex Gaussian noises with power 1

and hi.j’s are complex numbers representing the channel gains.

There is also an average power constraint equal to 1 at each

node (in each mode).

hRD1

S2

S1

R

D1

D2

hS1R

hS2R

hS2D1

hS1D2

hRD2

Fig. 1. The system model for wireless butterfly network.

III. THE DETERMINISTIC BUTTERFLY NETWORK

In this section we analyze the capacity region of the

deterministic half-duplex butterfly network. Here is a formal

definition of this model.

Definition 3.1: (Definition of the deterministic model [3])

Consider a wireless network as a set of nodes V , where |V | =
N . Communication from node i to node j has a non-negative

integer gain n(i,j) associated with it. This number models the

channel gain in a corresponding Gaussian setting. At each time

t, node i transmits a vector xi[t] ∈ F
q
2 and receives a vector

yi[t] ∈ F
q
2 where q = maxi,j(n(i,j)). The received signal at

each node is a deterministic function of the transmitted signals

at the other nodes, with the following input-output relation: if

the nodes in the network transmit x1[t],x2[t], . . .xN [t] then
the received signal at node j, 1 ≤ j ≤ N is:

yj [t] =

N
∑

k=1

Sq−nk,j xk[t] (2)

for all 1 ≤ k ≤ N , where S is the q × q shift matrix and the

summation and multiplication is in F2.

Now that we have defined the deterministic channel model

we can apply it to the butterfly network network. A pictorial

representation of an example of such network with two pairs

is shown in Figure 4. In this Figure each little circle represents

a signal level and a bit can be sent on it. The transmit and

received signal levels are sorted from MSB to LSB from top to

bottom. The channel gain between two nodes i and j indicates

how many of the first MSB transmitted signal levels of node

i are received at destination node j. Now as described in the

channel model (2), at each received signal level, the receiver

gets only the modulo two summation of the incoming bits.

YD1,1

S2

S1

R

D1

D2

YR,1

XS1,1

XS2,1

YD2,1

(a) Mode 1

YD1,2

S2

S1

R

D1

D2

XR,2

XS1,2

XS2,2

YD2,2

(b) Mode 2

Fig. 2. Network has two modes of operation; in the first node the relay
listens (a), in the second mode the relay transmits (b).
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(a) Deterministic

h1

S2

S1

R
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D2

h2
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h1

h1

h1

(b) Gaussian

Fig. 3. The symmetric wireless butterfly network

A. Capacity region of the symmetric half-duplex deterministic

butterfly network

Here we examine the case that the channel gains are

symmetric. As shown in Figure 3(a) all gains to/from the relay

have gain n and the side links have gain m. It is easy to show

that in this case the optimal duplexing time is t = 0.5.
Now by applying the cut-set upper bound to this network

(with t = 0.5), we obtain the following bound on its capacity
region,

R1 ≤
n

2
, R2 ≤

n

2
, R1 + R2 ≤

m + n

2
+ m. (3)

Now consider the example shown in Figure 4. We note that

the rate point (R1, R2) = (1.5, 1.5) is inside the cut-set upper
bound region. We ask whether this rate point is achievable?

To answer this question first note that all the information

bits that are going from one source to the intended destination

are going through the relay. This means that each bit should

appear in at least one of the received equations at the relay.

Therefore to get a rate of 1.5 bits/sec per user in the first mode
each source should send 3 information bits, as shown in Figure

4 (a). Then, at the end of mode 1, the relay receives the modulo

two summation of the bits transmitted by two sources and each

destination gets information about the interfering bit on the

equation that the relay received at the highest signal level. So if

we forward this equation in the second mode, each destination

can decode its desired bit from that equation. The side link

can also be used to cancel the interference from one of the

other two equations, as illustrated in Figure 4 (b). However

it does not seem possible to cancel the interfering bit from

the remaining equation, hence only one user should use that

level. In the next theorem we show that indeed this is true and

we derive a genie-aided upper bound on the sum-rate of this

network. Furthermore, we also show that the new upper bound

is always achievable and hence characterize the capacity region

of the symmetric half-duplex deterministic butterfly network.

Theorem 3.2: Consider the half-duplex deterministic butter-

fly network shown in figure 3(a). The capacity region of this

network is characterized by

0 ≤ R1 ≤
n

2
, 0 ≤ R2 ≤

n

2
, R1 +R2 ≤

max(m, n)

2
+m.

(4)

Proof:
-Converse: The first two bounds are just based on the cut-

set upper bound. We just need to prove the bound on the sum-
rate. Consider any scheme operating over blocks of length 2T
(T time steps in mode 1 and T time steps in mode 2), such
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b1,3 ⊕ b2,3

b1,1

S1

S2

b1,2

b1,3

b2,1

b1,1 ⊕ b2,1

R

D2

D1

b1,1

b2,1

b2,2

b2,3

b1,2 ⊕ b2,2

(a) Mode 1

b1,2 ⊕ b2,2

b1,1 ⊕ b2,1

S1

S2

D2

D1

R

b1,1 ⊕ b2,1

b1,1 ⊕ b2,1

b1,3

b1,3

b2,3

b1,2 ⊕ b2,2

b1,3 ⊕ b2,3

b2,3

b1,2 ⊕ b2,2

(b) Mode 2

Fig. 4. An example of a symmetric deterministic butterfly network (n > 2m).

that at the end the each destinationDi can decode the intended
message Wi with rate Ri with a vanishing error probability
ǫi,2T , i = 1, 2. Now assume that a genie provides XT

S1,2 to
D2. By using data processing and Fano’s inequality we have

2T (R1 + R2) = H(W1) + H(W2)

≤ H(X2T
S1

) + H(X2T
S2

) = H(X2T
S1

, X2T
S2

)

= I
“

X2T
S1

, X2T
S2

; Y 2T
D2

, XT
S1,2

”

+ H
“

X2T
S1

, X2T
S2

|Y 2T
D2

, XT
S1,2

”

= I
“

X2T
S1

, X2T
S2

; Y 2T
D2

, XT
S1,2

”

+ H
“

X2T
S2

|Y 2T
D2

, XT
S1,2

”

+

+ H
“

X2T
S1

|Y 2T
D2

, XT
S1,2X2T

S2

”

≤ I
“

X2T
S1

, X2T
S2

; Y 2T
D2

, XT
S1,2

”

+ H
“

X2T
S2

|Y 2T
D2

”

+

+ H
“

X2T
S1

|Y 2T
D2

, XT
S1,2X2T

S2

”

≤ I
“

X2T
S1

, X2T
S2

; Y 2T
D2

, XT
S1,2

”

+ 2Tǫ2,2T + H
“

X2T
S1

|Y 2T
D2

, XT
S1,2X2T

S2

”

∗
= I

“

X2T
S1

, X2T
S2

; Y 2T
D2

, XT
S1,2

”

+ 2Tǫ2,2T + H
“

X2T
S1

|Y 2T
D1

”

≤ I
“

X2T
S1

, X2T
S2

; Y 2T
D2

, XT
S1,2

”

+ 2Tǫ2,2T + 2Tǫ1,2T

≤ H
“

Y 2T
D2

, XT
S1,2

”

+ 2Tǫ2,2T + 2Tǫ1,2T

≤ H(Y T
D2,1) + H(Y T

D2,2) + H(XT
S1,2) + 2Tǫ2,2T + 2Tǫ1,2T

≤ Tm + T max(m, n) + Tm + 2Tǫ2,2T + 2Tǫ1,2T

where (∗) is true since given Y 2T
D2

and XT
S1,2, node 2 can

reconstruct Y 2T
D1
. Now dividing both sides by 2T and letting

2T → ∞ we get our bound.

-Achievability: Now we describe the achievability. We

consider three cases

Case 1: m ≥ n

In this case the upper bound is shown in Figure 5 (a).

We just need to show that the point (R1, R2) = (n
2 , n

2 ) is
achievable. The achievability scheme in this case is described

below.

1) In mode 1, source 1 and 2 broadcast n fresh bits,

Xi,1 = [bi,1 bi,2 . . . bi,n 0 . . .]
t
, i = 1, 2 (5)

n
2

R2

(n
2
, n

2
)

R1
n
2

(a) Case 1 and 2 (m ≥ n
2
)

n
2

R2

R1
n
2

(n
2
, m)

(m, n
2
)

(b) Case 3 (n
2

> m)

Fig. 5. Illustration of the outer-bound; in case 1 and 2 the sum-rate constraint
is not active (a), in the third case the sum-rate constraint becomes active (b).

D1

b1,1

b1,2

b2,1

b1,1 ⊕ b2,1

R

b1,1

b2,1

b2,2

S1

S2

b1,2 ⊕ b2,2

D2

(a) Mode 1

b1,2

b1,1 ⊕ b2,1

b2,2

b2,2

b1,1 ⊕ b2,1

S1

S2

R

b1,1 ⊕ b2,1

D1

D2

b1,2 ⊕ b2,2

b1,2

(b) Mode 2

Fig. 6. Illustration of the achievability strategy in case 2 (2m ≥ n > m).

since m ≥ n, at the end of the first mode, D1 decodes

X2,1 and D2 decodes X1,1 and the relay receives

YR,1 = [b1,1 b1,2 . . . b1,n]
t
⊕ [b2,1 b2,2 . . . b2,n]

t

2) In mode 2, both sources are silent and the relay sends

XR,2 = YR,1 and the destinations receive

Y1,2 = Y2,2 = [b1,1 . . . b1,n]t ⊕ [b2,1 . . . b2,n]t

Now since destination D1 had decoded X2,1 in the

first mode, it knows [b2,1 b2,2 . . . b2,n]
t
and can decode

[b1,1 b1,2 . . . b1,n]
t
. Similarly destination D2 can also

decode [b2,1 b2,2 . . . b2,n]t. Therefore we send n bits

from each source to the corresponding destination in 2

time steps and we achieve rate point (R1, R2) = (n
2 , n

2 ).

Case 2: 2m ≥ n > m

The upper bound in this case is the same as before (shown

in Figure 5 (a)) and again we just need to show that the point

(R1, R2) = (n
2 , n

2 ) is achievable. The scheme is pictorially
illustrated in Figure 6 and it is more precisely described below.

1) As shown in Figure 6, transmission in mode 1 is the

same as before. However, at the end of this mode

each destination only decodes the first m bits of the

interfering source.
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2) In mode 2, both sources repeat the last m bits that they

sent in previous mode and the relay just forwards its re-

ceived signal,XR,2 = YR,1. Now the signal sent by each

source cancels the interference in the last m equations

coming from the relay and each destination receives

the last m bits of its corresponding source. This trans-

mission technique is called interference-neutralization

and it was recently proposed in [7]. However at the

end of last mode, each destination could also decode

the interference in the first m equations coming from

the relay. Therefore it can also decode the first m

bits coming from its corresponding source. Now since

2m ≥ n, each destination can decode all n bits sent

by the corresponding source and we achieve rate point

(R1, R2) = (n
2 , n

2 ).

Case 3: n > 2m

In this case the upper bound is shown in Figure 5 (b). We

need to show that points (R1, R2) = (n
2 , m) and (R1, R2) =

(m, n
2 ) are achievable. The scheme that achieves the first

corner point is pictorially illustrated in Figure 4. The scheme

is the same as the previous case, except now each destination

can cancel interference from only 2m < n equations. Hence

the middle levels at the relay are just only used for one source-

destination pair and one user gets maximum rate n
2 and the

other one gets rate m.

IV. SYMMETRIC GAUSSIAN BUTTERFLY NETWORK

In this section we use the intuitions obtained so far to find

the approximate capacity region of the symmetric Gaussian

butterfly network shown in Figure 3(b). The relationship

between the transmit and received signals in this network was

described in Section II. We first state our main result,
Theorem 4.1: Consider the half-duplex Gaussian butterfly

network shown in figure 3(b) and described in (1). Assume
that the relay listen-transmit time is t = 0.5. The capacity
region of this network is within 1

2 log 15 ≈ 1.95 bits/sec/Hz
per user of the following region

0 ≤ R1 ≤
1

2
log

`

1 + |h1|
2´

, 0 ≤ R2 ≤
1

2
log

`

1 + |h1|
2´

R1 + R2 ≤
1

2
log

`

(1 + |h2|
2)(2 + |h2|

2)(1 + |h1|
2 + |h2|

2)
´

(6)

Proof:

-Converse: See Appendix A.

-Achievability: Now we describe the achievability strategy.

Similar to the deterministic case we consider three cases.

However due to the limitation of the space we only discuss

the last case which is more general than the other ones.
Assume |h1| ≥ |h2|

2 ≥ 1. We want to show that we can
achieve within 1

2 log 15 bits per user of the following

R
∗
1 =

1

2
log

`

1 + |h1|
2
´

R
∗
2 =

1

2
log

„

(1 + |h2|
2)(2 + |h2|

2)(1 + |h1|
2 + |h2|

2)

1 + |h1|2

«

(7)

Motivated by the optimal scheme that we found for the

deterministic case, in the first mode each source uses a

superposition of three code-words to create the transmit signal,

XT
Si,1 =

√

1 − α2 − β2UT
Si

+ αV T
Si

+ βWT
Si

, i = 1, 2 (8)

where U(Si, 1)T , V (Si, 1)T and W (Si, 1)T are just random

Gaussian codewords with variance 1. Now based on the

optimal scheme in the deterministic case, α and β are set

such that

1) V (Si, 1)T and W (Si, 1)T are arrived at noise level at

the destinations (i.e. α2 + β2 = 1
|h2|2

),

2) W (Si, 1)T arrives at the relay with the same power level

as the SNR of the side-link (i.e. β = |h2|
|h1|
).

This results in the following choice for α and β,

β =
|h2|

|h1|
, α =

s

1

|h2|2
−

|h2|2

|h1|2
(9)

Then at the end of the first mode, the destination nodes and
the relay receive

Y
T

D1,1 = h2(
p

1 − α2 − β2U
T
S2

+ αV
T

S2
+ βW

T
S2

) + Z
T
D1,1

Y
T

D2,1 = h2(
p

1 − α2 − β2U
T
S1

+ αV
T

S1
+ βW

T
S1

) + Z
T
D2,1

Y
T

R,1 = h1(X
T
S1,1 + X

T
S2,1) + Z

T
R,1 (10)

Now each destination attempts to decode the U codeword that

it observes by treating V and W as noise. This can be done

with low error probability if

RUi
≤ log

(

1 +
|h2|

2(1 − α2 − β2)

|h2|2(α2 + β2) + 1

)

= log

(

1 +
|h2|

2 − 1

2

)

(11)
In the second mode the relay will just adjust the power of

the received signal and forward it, while each destination node
attempts to send a signal to cancel the interferingW codeword
from the relays transmitted signal. More precisely

XT
Si,2 = −

βh2
1

h2

p

2|h1|2 + 1
W T

Si
= −

|h2|h2
1

h2|h1|
p

2|h1|2 + 1
W T

Si
, i = 1, 2

XT
R,2 =

1
p

2|h1|2 + 1
Y T

R,1 (12)

Note that since
|h1|

4|h2|
2

(2|h1|2+1)|h1|2|h2|2
<

|h1|
4|h2|

2

2|h1|4|h2|2
= 1

2 < 1,
then we are satisfying the power constraint at each source.
Now at the second mode destination 1 receives

Y T
D1,2 = h1XT

R,2 + h2XT
S2,2 + ZT

D1,2

=
h1

p

2|h1|2 + 1
((h1

p

1 − α2 − β2)(UT
S1

+ UT
S2

) +
h1|h2|

|h1|
W T

S1

+ αh1

“

V T
S1

+ V T
S2

”

+ ZT
R,1) + ZT

D1,2 (13)

Now since in the previous mode destination 1 was able to
decode UT

S2
, it can cancel it from its received signal and create

Ỹ
T
D1,2 =

h1
p

2|h1|2 + 1
((h1

p

1 − α2 − β2)UT
S1

+
h1|h2|

|h1|
W

T
S1

+ αh1

“

V
T
S1

+ V
T

S2
) + Z

T
R,1

”

+ Z
T
D1,2 (14)
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Now it will first attempt to decode UT
S1
by treating V T

S1
and

WT
S1
as noise. This can be with small error probability if

RU1
≤ log

„

1 +
|h1|

2(1 − α2 − β2)

|h2|2 + 2α2|h1|2 + 3 + |h1|−2

«

= log

0

@1 +
|h2|

2 − 1

2 + 3 |h2|2

|h1|2
+ |h2|2

|h1|4
− |h2|4

|h1|2

1

A (15)

Since |h2| ≥ 1, we have

log

0

@1 +
|h2|2 − 1

2 + 3 |h2|2

|h1|2
+ |h2|2

|h1|4
− |h2|4

|h1|2

1

A ≥ log

„

1 +
|h2|2 − 1

5

«

(16)

Therefore by (11), (15) and (16) it is sufficient to have

RU1
≤ log

(

1 +
|h2|

2 − 1

5

)

(17)

Now after decoding UT
S1
, destination D1 attempts to decode

both V T
S1
and V T

S2
by treating WT

S1
as noise. This can also be

done with low error probability if,

RVi
≤ log

„

1 +
α2|h1|

2

3 + |h2|2 + |h1|−2

«

, i = 1, 2

RV1
+ RV2

≤ log

„

1 + 2
α2|h1|

2

3 + |h2|2 + |h1|−2

«

(18)

Finally, after decoding V T
S1
and V T

S2
and removing V T

S1
+V T

S2

from Ỹ T
D1,2, destination D1 attempts to decode WT

S1
. This can

be done with low error probability if

RW1
≤ log

(

1 +
|h2|

2

3 + |h1|−2

)

(19)

Now we set,

RV1
= log

(

1 +
|h1|

2 − |h2|
4

|h2|2(3 + |h2|2 + |h1|−2)

)

, RV2
= 0

Hence from (17) and (19) we achieve the following rate from
S1 to D1,

R1 =
1

2
(RU1

+ RV1
+ RW1

)

=
1

2

„

log
(|h2|

2 + 4)(|h1|
2 + 3|h2|

2 + |h2|
2|h1|

−2)

5|h2|2(3 + |h1|−2)

«

(|h2|≥1)
>

1

2
log

„

1 + |h1|
2

15

«

= R
∗
1 −

1

2
log 15 (20)

We can also achieve the following rate from S2 to D2,

R2 =
1

2

`

RU2
+ RV2

+ RW2

´

=
1

2
log

„

(|h2|2 + 4)(3 + |h2|2 + |h1|−2)

5(3 + |h1|−2)

«

(|h1|>|h2|
2≥1)

>
1

2
log

„

1

15
(1 + |h2|

2)(2 + |h2|
2)

1 + |h1|2 + |h2|2

1 + |h1|2

«

= R∗
2 −

1

2
log 15 (21)

Therefore we achieve within 1
2 log 15 bits per user of the

desired corner point. Similarly we can show this for the other

corner point. Therefore we are at most 1
2 log 15 bits per user

away from the upper bound.
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APPENDIX A

PROOF OF THE CONVERSE FOR THEOREM 4.1

The first two inequalities are from the cut-set bound. Now
we prove the third constraint. Consider any scheme operating
over blocks of length 2T , such that at the end each destination
Di can decode the intended message Wi with rate Ri with a
vanishing error probability ǫi,2T , i = 1, 2. Now assume that a
genie provides a side information s to D2, where

s = h2X
T
S1,2 + Z

T
D2,2 − Z

T
D1,2 (22)

Now if node D2 can decode X2T
S2
, it can reconstruct

Ỹ
T

D2,2 = h2X
T
S2,2 + Y

T
D2,2 − s

= h2X
T
S2,2 + h1X

T
R,2 + Z

T
D1,2 = Y

T
D1,2 (23)

Now similar to the deterministic case we can write

2T (R1 + R2) = H(W1) + H(W2) ≤ H(X2T
S1

) + H(X2T
S2

)

= H(X2T
S1

, X2T
S2

) = I(X2T
S1

, X2T
S2

; Y 2T
D2

, s) + H(X2T
S1

, X2T
S2

|Y 2T
D2

, s)

= I(X2T
S1

, X2T
S2

; Y 2T
D2

, s) + H(X2T
S2

|Y 2T
D2

, s) + H(X2T
S1

|Y 2T
D2

, s, X2T
S2

)

(23)
= I(X2T

S1
, X2T

S2
; Y 2T

D2
, s) + H(X2T

S2
|Y 2T

D2
, s)+

+ H(X2T
S1

|Y 2T
D2

, s, X2T
S2

, Y T
D1,2)

≤ I(X2T
S1

, X2T
S2

; Y 2T
D2

, s) + H(X2T
S2

|Y 2T
D2

) + H(X2T
S1

|X2T
S2

, Y T
D1,2)

≤ I(X2T
S1

, X2T
S2

; Y 2T
D2

, s) + H(X2T
S2

|Y 2T
D2

) + H(X2T
S1

|Y T
D1,1, Y T

D1,2)

= I(X2T
S1

, X2T
S2

; Y 2T
D2

, s) + H(X2T
S2

|Y 2T
D2

) + H(X2T
S1

|Y 2T
D1

)

≤ I(X2T
S1

, X2T
S2

; Y 2T
D2

, s) + 2T (ǫ1,2T + ǫ2,2T )

= h(Y 2T
D2

, s) − h(Y 2T
D2

, s|X2T
S1

, X2T
S2

) + 2T (ǫ1,2T + ǫ2,2T )

≤ h(Y 2T
D2

, s) − h(Y 2T
D2

, s|X2T
S1

, X2T
S2

, X2T
R ) + 2T (ǫ1,2T + ǫ2,2T )

= h(Y 2T
D2

, s) − 3T log 2πe + 2T (ǫ1,2T + ǫ2,2T )

≤ h(Y T
D2,1) + h(Y T

D2,2) + h(s) − 3T log 2πe + 2T (ǫ1,2T + ǫ2,2T )

≤ T (log(2πe(1 + |h2|
2)) + log(2πe(1 + |h1|

2 + |h2|
2))+

+ log(2πe(2 + |h2|
2))) − 3T log 2πe + 2T (ǫ1,2T + ǫ2,2T )

= T log
`

(1 + |h2|
2)(2 + |h2|

2)(1 + |h1|
2 + |h2|

2)
´

+ 2T (ǫ1,2T + ǫ2,2T )

Now by diviing both sides by 2T and letting 2T → ∞ we

get our bound.
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