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Motivation

 Energy-efficiency is of paramount concern in digital system 
design 

 Computing becomes increasingly heavy with media 
processing (audio, video, graphics, and image), recognition, 
and data mining 

 A common characteristic: a perfect result is 
not necessary and an approximate or 
less-than-optimal result is sufficient 

 Signal processing: image, video, speech
o Human perception is not sensitive 

to high frequency changes
o Natural noise floor due to quantization noise

 Search, machine learning, data mining

 Optimization

© 2013 Han and Orshansky
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Sources of Imprecision Tolerance

 Perceptual limitations: these are determined by the ability of 
the human brain to ‘fill in’ missing information and filter out 
high-frequency patterns 

 Redundant input data: this redundancy means that an 
algorithm can be lossy and still be adequate

 Noisy inputs

Source: A. Raghunathan, Dagstuhl Seminar 2012
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Error-Resilient Paradigms

 How can we exploit system’s ability for imprecision-tolerance 
for energy reduction?

 Approximate Computing

 Does not involve assumptions on the stochastic nature of any 
underlying processes implementing the system. Utilizes statistical 
properties of data and algorithms to trade quality for energy reduction. 

 Stochastic Computing

 Real numbers are represented by random binary bit streams that are 
usually implemented in series (or parallel) and in time (or space). 
Information is carried on the statistics of the binary streams. 

 Probabilistic Computing

 Exploits intrinsic probabilistic behavior of the underlying circuit fabric, 
most explicitly, of the stochastic behavior of a binary switch under the 
influence of thermal noise. 

© 2013 Han and Orshansky
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Stochastic Computing: Basics

 In stochastic computing, real numbers in [0, 1] are 
represented by random binary bit streams

 Information is carried in the statistics of the binary streams, 
e.g., the proportion of 1’s

An inverter and stochastic encoding

Stochastic AND logic: 

(a) the general model; 

(b) the special case of multiplication

with independent inputs.

Stochastic logic models: (a) An unreliable AND gate; 

(b) A general stochastic implementation; (c) for soft errors; 

(d) for stuck-at-1 fault; (e) for stuck-at-0 fault [Han14].

© 2013 Han and Orshansky
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Stochastic Computing: Milestones

 Probabilistic logic and multiplexing [vonNeumann52]

 Renaissance in 2000s for nanoelectronics [Han05]

 Stochastic computing systems [Poppelbaump67, Gaines69]

 Stochastic neural computation [Brown01]

 Stochastic LDPC decoders [Gaudet03, Tehrani08]

 General-purpose computing [Qian11, Li12]

 Reliability analysis [Han14, Aliee13]

 Spectral transform analysis [Alaghi12]

 Recent review in [Alaghi12]

 Extensions to error-resilient systems [Shanbhag10, Sartori11, Cho12]

© 2013 Han and Orshansky
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Probabilistic Computing

 A proposal for using physically unreliable devices

 Probabilistic switches and probabilistic Boolean logic developed 
from a thermodynamic perspective

 Probabilistic CMOS (PCMOS) family of circuits 

 A recent philosophical introduction in [Palem12]

A tradeoff between switching probability and associated energy: energy-

probability relationship of an XOR gate [Palem12]

© 2013 Han and Orshansky
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Approximate Computing

 Employs deterministic designs that produce imprecise results

 Key idea: trade small quality degradation for improved design 
metrics, esp. energy

 Accurate (optimal) computation is expensive in terms of energy

 Typical behavior often much better than rare worst-case behavior

 Performance or Timing
o E.g. for N-bit ripple carry adders, worst-case carry-length (delay) ~ N 
o Expected carry-length is ~ log N

 This tutorial is focused on how hardware is re-designed for 
approximate computing applications

© 2013 Han and Orshansky
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Approximate n-bit Adders

 In an approximate implementation, n-bit adders can be divided 
into two modules: the (accurate) upper part of more significant 
bits and the (approximate) lower part of less significant bits.

 For each lower bit, a single-bit approximate adder implements 
a modified, thus inexact, function of the addition. 

A general architecture for an approximate adder divided into two modules: 

the accurate MSBs and approximate LSBs.

© 2013 Han and Orshansky
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Approximate Full Adders

 Approximate Mirror Adders 
(AMAs) [Gupta13]

 Approximate XOR/XNOR 
Adders (AXAs) [Yang13]

A 10T full adder 

[Lin07]

An 8T approximate adder [Yang13]
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Approximate and Probabilistic Adders

Approximate logic design

 Lower-part OR adder  
[Mahdiani10]

Probabilistic adder

 PCMOS-based design 
[Cheemalavagu05]

© 2013 Han and Orshansky
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Approximate Speculative Adders (1)

 The critical path delay of a parallel adder (such as a carry look 
ahead) is asymptotically proportional to log(N) for an N-bit adder. 

 Sub-logarithmic delays can however be achieved by the so-
called speculative adders [Lu04, Verma08].

 A speculative adder exploits the 
fact that the typical carry 
propagation chain is significantly 
shorter than the worst-case carry 
chain by using a limited number of 
previous input bits to calculate the 
sum (e.g. look-ahead k bits) [Lu04]. 

 It can be developed into a reliable 
variable latency speculative adder 
(VLSA) with error detection and 
recovery [Verma08].

A speculative adder as an 

almost correct adder (ACA).

© 2013 Han and Orshansky
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Approximate Speculative Adders (2)

 An error tolerant adder truncates the carry propagation chain by 
dividing the adder into several sub-adders (ETAII); its accuracy 
can be improved by connecting carry chains in a few most 
significant sub-adders (ETAIIM) [Zhu09].

 An alternating carry select process can be used in the sub-adder 
chain to enhance the design (ETAIV) [Zhu10].

A general architecture of an error tolerant adder (ETA).

© 2013 Han and Orshansky
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Approximate Speculative Adders (3)

 A reliable variable latency carry select adder (VLCSA) employs 
carry chain truncation and carry select addition as a basis in a 
speculative adder [Du12]. 

 An accuracy-configurable adder (ACA) enables an adaptive 
operation, either approximate or accurate, that is configurable at 
runtime [Kahng12].

 In a dithering adder, subsequent additions produce opposite-
direction errors such that the final result has a smaller overall 
error variance [Miao12].

 More details discussed later.

© 2013 Han and Orshansky
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Approximate Multipliers (1)

 A multiplier usually consists of three stages: partial product 
generation, partial product accumulation and a carry propagation 
adder at the final stage.

 The use of speculative adders in an approximate multiplier to 
compute the sum of partial products is not efficient in terms of 
trading off accuracy for energy and area savings [Lu04, Huang12].

 In [Kulkarni11], inaccurate 2 × 2 multiplier blocks are used to 
compute approximate partial products that are accumulated 
using accurate adders.

Truth table for the approximate 2 × 2 multiplier

(a) Inaccurate 

2 × 2 multiplier

(b)   Accurate 2 × 2 multiplier

© 2013 Han and Orshansky
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Approximate Multipliers (2)

 A significant design aspect is to reduce the critical path delay in 
an approximate multiplier.

 A high-performance approximate multiplier with configurable 
partial error recovery is proposed for DSP applications [Liu14]. 

An approximate multiplier with partial error recovery

 This multiplier leverages a 
newly-designed 
approximate adder that 
limits its carry propagation 
to the nearest neighbors for 
fast partial product 
accumulation. 

 Different levels of accuracy 
can be achieved through a 
configurable error recovery 
by using different numbers 
of MSBs for error reduction.

 Similar performance as 
exact multipliers in image 
processing applications.

© 2013 Han and Orshansky
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New Metrics for Approximate Circuits

 The traditional metric of reliability is defined as the probability of 
correct circuit function:

 Reliability of any approximate circuit is 0 for some inputs.

 New metrics are needed to assess the reliability of approximate 
circuits.

 Error rate (ER) or error frequency is the fraction of incorrect outputs 
out of a total number of inputs in an approximate circuit [Breuer04].

 Error significance (ES) refers to the degree of error severity due to 
the approximate operation of a circuit [Breuer04], as
o the numerical deviation of an incorrect output from a correct one 

[Shin10],
o the Hamming distance of the two vectors [Kahng12], 
o the maximum error magnitude of circuit outputs [Miao12]. 

 A composite quality metric is the product of ER and ES [Shin11, 
Chong06].

 Other common metrics include the relative error, average error and 
error distribution.

© 2013 Han and Orshansky
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Error Distance for Approximate Circuits

 Error distance is defined as the arithmetic distance between an 
inexact output and the correct output for a given input [Liang13].
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Mean and Normalized Error Distances

 Mean error distance (MED) considers the averaging effect of 
multiple inputs.

 The MED is useful in measuring the implementation accuracy of a 
multiple-bit adder, but its value increases exponentially with the 
number of approximate bits in an adder.

 Normalized error distance (NED) is the normalization of MED for 
multiple-bit adders.

 The NED is a nearly invariant metric independent of the size of an 
adder, so it is useful when characterizing the reliability of a specific 
design of full adders.

 MED or NED can be used with power or energy for evaluating 
the tradeoff between power consumption and precision in an 
approximate circuit. 

© 2013 Han and Orshansky
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NED as a Metric for Approximate adders

 The normalized error distance (NED) is almost independent of 
the number of approximate bits.

 It provides an effective alternative to an application-specific 
metric such as the peak signal-to-noise ratio (PSNR).

Normalized error distance (NED) vs. the number of approximate bits in an adder.

© 2013 Han and Orshansky
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Power and Accuracy Tradeoffs

 The product of power and NED can be utilized for evaluating 
the tradeoff between power consumption and precision. 

 To emphasize the significance of a particular metric (such as the 
power or precision), a different measure with more weight on this 
metric can be used for a better assessment of a design 
according to the specific requirement of an application. 

Power and precision tradeoffs: the product of power per bit and NED is shown by a dashed curve.

The arrow points to the direction for a better design with a more efficient power and accuracy tradeoff.

© 2013 Han and Orshansky
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Formally Modeling Timing Starved Addition

 Key question: what is the energy-
optimal design strategy for timing-
starved approximate adders?

 Need a tool for analysis of impact 
of internal values when starvation 
occurs

 Formalizes error frequency-
magnitude trade-offs

 Model: rightmost point of a 
segment shows farthest accessible 
internal carry (at a given budget)

 An effective way of energy saving: Vdd scaling

 Can use timing-starved adders to reduce energy

 Different ways of dealing with the carry chain

Fully-budgeted
adder

© 2013 Han and Orshansky
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Modeling Timing Starved Adder (TSA)

 Under reduced budget, some bits do not have access to primary carry-in 

 In a TSA, actual accessible carry depends on previous cycle and is unknown

 Error magnitude depends on pattern of T and F bits in starved operation

 In above TSA, any bit up to MSB can be false, max error magnitude is 2N-1

Timing budget = k

© 2013 Han and Orshansky
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Error Pattern and Max Possible Error

 Goal: reduce error magnitude via two mechanisms

 Prohibit ‘bad’ patterns of false bits
 Convert true bits into false bits

 Statement: An F* pattern with a bitwidth of m, with a right-most 
bit in the pattern rooted at bit position r, can result in errors with 
only two magnitudes: 2m+r-1 or 2r

 Example: consider a 16b adder, k=8 (timing sufficient for 8 bits)

 Suppose, MSB bits has TTFFFTTT pattern

 Error could be either 211 or 214-1 depending on F direction (F+ /F-)

 Statement: An F* pattern produces only small error 2r if all 
internal carries are fixed to the same value (1 or 0)

 Suggests a Fixed Internal Carry (FIC) structure

© 2013 Han and Orshansky
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Aligned Fixed Internal Carry Adder

 Location of leftmost possible FT transition bounds max error magnitude

 Max error is reduced if a false bit is followed by a string of false bits

 To shift FT transition, convert as many following T bits to F bits
o Convert TTFFFTTT pattern into TTFFFFFF  error = 211 -> 28

 Realized via Aligned FIC (AFIC)

 All bits > h must depend on same (in)correct carry

 If bit j is F, j-1 is also F since both depend on same incorrect carry (fixed at 0)

FIC AFIC

© 2013 Han and Orshansky
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Error Frequency-Magnitude Curve

 Alignment of segments means that effective carry chains are reduced for the 
sum-bits below MSB

 Increases probability of individual and thus overall error

 For quadratic quality metrics, minimization of error magnitude is more important

 As long as timing budget > 4bits, AFIC is better than FIC
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Reducing Max Error via LSB Bounding

 AFIC always under (over) estimates true result depending on 
fixed (controlled) carry

 Quality-optimal adder is achieved by further reducing the 
chances to trigger the max error

 Optimal LSBs bounding logic should  

 Produce a correct result when C = 0, and

 Produce largest possible value (i.e. 11 : : : 1) when C = 1 to 
compensate for MSBs errors

 Conditional Upper Bounding (CUB) logic

 Fixed internal carries to 0

 Under-estimating approximate adders

 Conditional Lower Bounding (CLB) logic

© 2013 Han and Orshansky
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Using Both Bounding Directions: Dithering Adder

 Produces zero-centered error distributions and a reduced-variance error

 In experiments we use A[h-1] as the dithering signal

 Can also employ dithering approximate adder

 Alternates between CLB and CUB logic

© 2013 Han and Orshansky
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Adder Quality-Energy Design-Space 
Exploration

 16-bit CLAs and TS-CLA

 Conventional timing-starved adder experiences a sharp drop in 
quality once their timing budget is exceeded.

 Different type AFIC adders with h=9
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Timing Starved Adders in Image Processing

 IDCT based image processing system

 Left: a truncated adder: PSNR=16.90dB, energy savings = 40%

 Center: an inexact CB logic adder: PSNR=33.15dB, energy 
savings = 38%

 Sharpening filter

 Right: an inexact CB logic adder: PSNR = 23.7dB (original 23.9dB), 
energy savings = 40%

IDCT, Truncated IDCT, AFIC+CB Filter, AFIC+CB
© 2013 Han and Orshansky
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Approximate Logic Synthesis (ALS)

 Need new formal tools for synthesizing approximate versions of 
combinational Boolean functionality

 E.g., use it to synthesize approximate versions of conditional 
bounding logic

 Approximate Boolean function has a modified truth table 
compared to exact function

 Reduced complexity, delay, and energy

 Prior work

 ALS with error frequency constraint only [Shin10, Palem10]
o High runtime for large error frequencies

o Does not consider error magnitude

 ALS with error magnitude constraint only [Miao12, Roy12]  
o Based on unmodified conventional logic synthesis flow
o Does not consider error frequency

© 2013 Han and Orshansky
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General ALS Problem Formulation

 Goal: develop a general algorithm to generate approximate 
Boolean function from an exact function

 Handling arbitrary constraints on error structure

(1)

 Our contributions:

 Identify isomorphism of ALS w/ un-constrained error frequency 
and Boolean Relation (BR) minimization problem

 Develop an efficient algorithm to refine error magnitude-
constrained solution to satisfy error frequency constraint

© 2013 Han and Orshansky
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ALS Constrained by Error Magnitude Only

 ALS constrained by error magnitude only

(2)

 Rewrite Equation 2 minterm-wise

(3)

Ei represents the additional values that Fm can take while satisfying 
the error magnitude constraints

 Error magnitude constrained ALS problem is isomorphic with 
the Boolean Relation (BR) problem

© 2013 Han and Orshansky
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ALS Constrained by Error Magnitude Only

 Boolean Relation (BR)

 A Boolean relation is a one-to-many, multi-output Boolean 
mapping, R: Bn →Bk

 Boolean relation problem finds the min-cost 2-level function 
satisfying the given BR

 Exact algorithms [Brayton89], [Lin90], [Jeong92]

 Heuristic algorithms Herbs [Ghosh90], Gyocro [Watanabe93], 
BREL [Baneres04]

 Example: ALS with error magnitude M = 1

© 2013 Han and Orshansky
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Frequency-Constrained ALS: Formulation

 The frequency of errors of FM solved by BR solver may not satisfy 
the constraint R 

 For any function FM,r

 Allows converting the problem to the min-cost increase problem

(4)

 Goal: find FM,R by identifying the minterms of the function on which 
the correctness should be enforced with the minimum literal 
increase

© 2013 Han and Orshansky
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Frequency-Constrained ALS: Strategy

 Theorem: For a single-output function F, the optimal set of 
minterms to add to the ON/OFF-set at the minimum literal 
increase in the cover of function FM,r, lies among the prime 
implicants of the minimum cover of the minterms with identical 
error structure

 Definitions 

 DIFF minterm
o A minterm x on which F(x) ≠ FM (x)

 DIFF prime
o Prime implicants of the minimum cover of each group 

© 2013 Han and Orshansky
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Example: Logically Approximate 2-bit Adder

© 2013 Han and Orshansky
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ALS Experiments: Approximate Arithmetic 
Circuits

 Adder: 

 8b: runtime 2s~5m

 10b: runtime 30s~3h

 Multiplier:

 Truncated 8b: 20m~3.3h

© 2013 Han and Orshansky
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Incremental Refinement Property

 Incremental refinement property: iterations of an algorithm can be 
terminated earlier to save energy in exchange for incrementally lower 
quality. 

 FFT-based maximum-likelihood detection algorithm [Nawab et al. 1997]

 Can terminate FFT at an intermediate stage of computation 

 Detection performance grows monotonically with number of stages
o Converges to that of the exact ML detector

 Support vector machines [Chipa et al. 2010]

 Number of support vectors correlates well with algorithm quality
o Also determines algorithm’s energy

Source: Nawab et al. 1997
© 2013 Han and Orshansky
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Dynamic Bit-Width Adaptation

 Run-time adaptation of bit-width is an effective tool

 Powerful in changing energy-quality trade-off; easily available 

 Ex. Discrete-cosine transform algorithm [Park et al. 2011]

 High-frequency DCT coefficients are small after quantization 
o Less impact on image than low-frequency coefficients

 Lower bit-width can be used for high frequency coefficients
o Use carry save adder tree implementation and turn off un-used adders
o 60% power savings at slight image quality degradation (3dB) 

Source: Park et al. 2011.

Level 1

Level 2

Row Coefficients

Level 3

© 2013 Han and Orshansky
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Adaptive Voltage-Overscaling

 Conventional design aims to 
ensure timing correctness

 At circuit level, can reduce 
energy by accepting some 
timing errors

 Timing-error acceptance 
philosophy 
 Worst-case timing is not 

guaranteed

 Prevent severe quality loss

Direct Vdd reduction

Controlled Timing-Error Acceptance
(same Vdd reduction as above)

© 2013 Han and Orshansky
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Reducing Energy via Controlled Timing 
Error Acceptance

 Scaling of Vdd leads to non-uniform timing errors

 Eliminate sources of worst and earliest timing errors

Principles

 (1) Controlling large magnitude errors in operations by 
exploiting the knowledge of statistics of operands

 (2) Controlling the frequency of error-generating operations by 
dynamically re-arranging the sequence of operations, i.e. in 
accumulation

 (3) Timing errors in early algorithm steps tend to cause larger 
final errors due to incorrect data reuse

© 2013 Han and Orshansky
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Timing Error Dependence on Operand 
Values

 Small positive + small negative addition leads to early and large errors

 Observation: these patterns can be processed on smaller adder

 Smaller adder -> smaller worst-case delay -> can reduce Vdd w/o errors

 Use small-width adder selectively for small opposite sign operands 

 Adder 1: full width (24-bit) 

 Adder 2: reduced width 
(use sign extension)

o In practice, use variable–
width adder

 2D-IDCT coefficient matrix 
components distribution 
[Goodman, 2000]
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Error Control Based on Operand Statistics

 Use reduced-width adder for small operands

 Keep a full-width adder for larger operands

 In practice, use single variable-width adder 

 For a PSNR loss of 5dB, we get 32% energy reduction
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Controlling Error Frequency by Dynamically 
Rearranging Operation Sequence
 In error-accepting paradigm, frequency of errors determines quality loss

 Reduce Vdd to cause violations (and reduce energy)

 Reduce the frequency of error occurrence

 Accumulation on opposite-sign numbers causes large error

 Case 1: 11111111+00000001+11111111+00000001

 Case 2: (11111111+11111111)+(00000001+00000001)

 Solution: separate accumulation registers for positive/negative numbers
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Error Acceptance Techniques in IDCT

 Combination of techniques is effective

 Q-E profile is significantly improved

 Energy savings: 60% at PSNR = 30dB

 Area overhead: ~3%

 Acceptable image quality
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Error Post-Processing in 2D-IDCT
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Summary

 Review of error-permissive paradigms: stochastic, probabilistic, 
and approximate computing

 Approximate arithmetic circuits (adders, multipliers)

 Metrics for approximate computing

 Introduced a formal model for timing starved addition

 Approximate logic synthesis

 Boolean-relations based algorithm

 Algorithm-level approximate computing

 Incremental refinement principle

 Dynamic bit-width adaptation

 Developed several strategies for circuit-level timing error 
acceptance
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Conclusions

 Approximate computing shows promise 

 Large number of error-permissive applications

 Does not seem suitable for general-purpose computing

 Better understanding of scope of application is needed

 Design considerations

 Identification of algorithm phases that allow errors 
o E.g. control vs. data, error tolerant vs. critical computations

 Identification of relevant error metric
o Error frequency vs. magnitude

 Tool support needed

 Early work on automated approximate synthesis

 Open question:

 When will approximate computing principles be used in practice?
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