
Purdue University

Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

Approximate computing: An integrated cross-layer
framework
Swagath Venkataramani
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

Recommended Citation
Venkataramani, Swagath, "Approximate computing: An integrated cross-layer framework" (2016). Open Access Dissertations. 1022.
https://docs.lib.purdue.edu/open_access_dissertations/1022

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1022?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1022&utm_medium=PDF&utm_campaign=PDFCoverPages

APPROXIMATE COMPUTING:

AN INTEGRATED CROSS-LAYER FRAMEWORK

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Swagath Venkataramani

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

ii

க�ற� ைகம� அள�, க�லாத� உலகள�

 -- ஔைவயா�

What you have learned is a mere handful;

What is yet to be learnt is the size of the world!

– Auvayar

iii

ACKNOWLEDGMENTS

The true highlight of my PhD, more than the projects I worked on, was the

people I worked with. I had the opportunity to collaborate with people from diverse

technical backgrounds ranging from devices to algorithms, and the unique perspective

that each brought forward was truly an enriching learning experience, for which I am

ever grateful. I truly relish the relationships I have developed with my collaborators

over the years, and wish to take it forward in the same spirit, as I take the next step

in my profession career.

The single most reason behind all I have learnt and achieved, both professionally

and personally, is my advisor Prof. Anand Raghunathan. He had undisputedly cared

for my development and put my interests first in all decisions. I have always looked

up to him and emulate him in all aspects of research, right from what problems to

choose, what unique angles I as a researcher can bring in, where to spend my effort so

that it is most impactful, and how best to present my work such that it is as intuitive

to others as it is to me. The sheer experience of spending over half a decade with

him has immensely helped me to organically develop as a researcher. I thank him

all the flexibility and he is undoubtedly my superhero, the epitome of kindness, work

ethic and intelligence. In the same breath, I thank all my teachers, right from my

childhood, for who I am is a direct result of the knowledge they imparted.

My lab, Integrated Systems Laboratory, could not have been a more productive

environment. My longevity at Purdue allowed me to work with some uniquely amaz-

ing people, seniors Vinay, Jacques, Vivek, Rangha, Yue Du, Younghyun and juniors

Shankar, Ashish, Younghoon Shubham, Sanchari, Junshi, Neel, Arnab, and Sanjay.

Needless to say, our relationships transcend beyond the walls of the MSEE 337. We

always had our backs in thick and thin, and I enjoyed and learned from every bit

(pun intended) of interaction. I truly care about each one of their successes, continue

iv

to feel proud of their accomplishments and strive to imbibe their finest qualities in

me. ISL is the prime example of a truly synergistic academic lab, its strength purely

stemming from the mutual care and respect people show for each other.

I interacted significantly with Prof. Vijay Raghunathan and Prof. Kaushik Roy

throughout my PhD. I thank them for their support and guidance at each important

step in my development. I also worked closely with students from Nanoelectron-

ics Research Labs, Embedded Systems Lab, Integrating Imaging Lab at Purdue. I

equally cherish those relationships and look forward to continue working with them

in future. I also thank those I collaborated with in the industry, specifically during

my internships at Exa-scale computing research and parallel computing labs at Intel,

and Sensing and energy research group at Microsoft. I thank my mentors for their

support and trust in my abilities.

I spent most of my time outside lab at the badminton courts in Purdue. Bad-

minton was so integral to me, and I thank the Purdue Badminton Club members and

other badminton enthusiasts in the midwest region for all the fun and competition

we had on and off court. I also thank my cricket buddies for the fun times we shared.

On the personal front, I am undeservedly fortunate to have met Vijay, Kaushik,

Priyanka, Chandana, Shankar, Samyuktha and Tanmay at Purdue. The veracity in

their characters demonstrated the true kinship I never felt over the years. They kept

me honest and their care for me kept me unfazed. I attribute every smile I enjoyed

and every pain I felt to them. I cannot understate the influence my roomate Ashiwan

has had on me. I never felt a stranger when he was around, and eternal gratitude

to him and Sanju. I also thank my friends, Leena, Anand and others at Bangalore

for all the fond memories. I will be amiss not to thank my family in the US for their

inspiration and incessant support.

Finally, I thank my parents, Chithra and Venkataramani, for unconditionally be-

ing there for me and imparting values that defines my very identity today. The fol-

lowing pages are a product their emboldened vision, unfettering hope, and countless

scarifies, and for that I humbly dedicate what is rightly theirs to them.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

ABBREVIATIONS . xv

ABSTRACT . xvii

1 INTRODUCTION . 1

1.1 Intrinsic Application Resilience . 2

1.2 Approximate Computing . 5

1.3 Thesis Contributions . 7

1.3.1 Approximate and Quality Configurable Circuits:
Design and Synthesis . 8

1.3.2 Programmable Approximate Computing Architectures . . . 10

1.3.3 Software and Algorithms for Approximate Computing 11

1.4 Thesis Organization . 13

2 DESIGN AND SYNTHESIS OF APPROXIMATE AND QUALITY CON-
FIGURABLE CIRCUITS . 14

2.1 Introduction . 14

2.2 Quality Metrics . 17

2.2.1 Metrics Constraining the Magnitude of Error 17

2.2.2 Metrics Constraining the Frequency of Error 18

2.2.3 Composite Metrics . 19

2.3 SALSA: Don’t Care based Logic Approximation 20

2.3.1 Preliminaries and Approach 21

2.3.2 SALSA Methodology . 27

2.3.3 Speedup techniques and other heuristics 33

vi

Page

2.3.4 Experimental Methodology 38

2.3.5 Results . 40

2.4 SASIMI: A Unified Circuit Transformation for Approximate and Qual-
ity Configurable Circuit Design . 52

2.4.1 SASIMI: Design Approach 53

2.4.2 Quality Configurable circuit design using SASIMI 55

2.4.3 SASIMI Methodology . 59

2.4.4 Experimental Methodology 63

2.4.5 Results: Approximate Circuits 65

2.4.6 Results: Quality configurable circuits 68

2.4.7 Application-level evaluation of SASIMI circuits 69

2.5 Summary . 70

3 QUALITY PROGRAMMABLE PROCESSORS 72

3.1 Introduction . 72

3.2 A Case for Quality Programmability 74

3.3 Quality Programmable Processors: Concept & Overview 75

3.3.1 QP-ISA: Quality Programmable ISA 76

3.3.2 QP-uArch: Micro-architecture with Accuracy-Energy Trade-off 77

3.3.3 Quality Monitors: Error Feedback to Software 78

3.3.4 Programming QPPs . 78

3.4 Quora: A Quality Programmable Vector Processor 79

3.4.1 Quora Instruction Set . 80

3.4.2 Quora Micro-architecture 86

3.5 Micro-architectural Mechanisms for Quality Scaling 92

3.5.1 Precision Scaling . 92

3.5.2 Array Level Organization of Precision Scaling Units 96

3.5.3 Precision Scaling: Impact on Energy 98

3.5.4 Quality Translation and Error Estimation 99

vii

Page

3.6 Evaluation Methodology . 101

3.6.1 RTL Implementation . 102

3.6.2 Application Benchmarks . 102

3.6.3 Energy and Quality Measurements 104

3.7 Experimental Results . 105

3.7.1 Energy Benefits . 105

3.7.2 Quality Programmability in Instructions 106

3.7.3 Energy Contribution of Quality Programmable Instructions . 107

3.7.4 Precision Scaling Mechanisms 108

3.7.5 Architectural Exploration 109

3.8 Summary . 110

4 ENERGY-EFFICIENT DEEP LEARNING USING APPROXIMATE COM-
PUTING . 111

4.1 Introduction . 111

4.1.1 Deep Learning Networks: Computational Challenges 111

4.1.2 Efficiency of DLNs: Prior Research Directions 113

4.1.3 Deep Learning ⇔ Approximate Computing 114

4.2 Neural Nets: Preliminaries . 117

4.3 AxNN: Approach and Design Methodology 119

4.3.1 AxNN: Design Approach . 120

4.3.2 AxNN Design Methodology 124

4.4 Quality Configurable Neuromorphic Processing Engine 126

4.5 Experimental Methodology . 128

4.6 Results . 129

4.6.1 Energy benefits of AxNN . 129

4.6.2 Uniform approximation: Comparison 130

4.6.3 Resilience Characterization: Insights 131

4.6.4 Impact of Retraining . 132

viii

Page

4.6.5 AxNNs on Commodity Platforms 133

4.7 Summary . 134

5 SCALABLE EFFORT CLASSIFIERS 135

5.1 Introduction . 135

5.2 Scalable effort Classifiers . 139

5.2.1 Design of Scalable effort Classifier Stage 140

5.2.2 Efficiency and Accuracy Optimization 141

5.2.3 Multi-way Scalable effort Classifiers 144

5.3 Design Methodology . 146

5.3.1 Training Scalable effort Classifiers 146

5.3.2 Testing Scalable effort Classifiers 148

5.4 Experimental Methodology . 148

5.4.1 Application Benchmarks . 148

5.4.2 Energy Evaluation . 150

5.5 Results . 151

5.5.1 Energy Improvement . 151

5.5.2 Impact of Hard Inputs on Efficiency 151

5.5.3 Optimizing the Number of Classifier Stages 153

5.5.4 Efficiency-Accuracy Tradeoff using δ 154

5.6 Summary . 155

6 RELATED WORK . 157

6.1 Approximate Computing in Software 157

6.2 Hardware Design for Approximate Computing 157

6.3 Approximate Circuits . 159

7 CONCLUSION . 161

7.1 Thesis Summary . 162

7.2 Research Challenges . 163

REFERENCES . 166

ix

VITA . 175

x

LIST OF TABLES

Table Page

2.1 Circuits used in experiments to evaluate SALSA 39

2.2 Truth table comparison of original and approximate 3-bit adder for relative
error (Sa1), uni-directional relative error (Sa2), error probability (Sa3) and
unidirectional relative error with error probability (Sa4) metrics 48

2.3 Quality configurable circuits synthesized for average error magnitude with
two quality modes . 67

2.4 Quality configurable circuits synthesized for error probability metric with
two quality modes . 68

3.1 Representative instructions in Quora’s ISA 84

3.2 Quality translation and error estimation for quality programmable instruc-
tions . 100

3.3 Quora: Micro-architectural parameters and implementation metrics . 102

3.4 Quora: List of application benchmarks 103

3.5 Execution time and energy of instructions in Quora’s ISA 105

4.1 qcNPE parameters and metrics . 128

4.2 NN benchmarks used to evaluate AxNN 129

5.1 Application benchmarks used to evaluate scalable effort classifiers . . . 150

xi

LIST OF FIGURES

Figure Page

1.1 Illustration: Inefficiency in viewing computers as precise calculators . . 1

1.2 Emerging applications requiring good-enough answers 3

1.3 Intrinsic Application Resilience: Sources 4

1.4 Fraction of execution time contributed by resilient computations 4

1.5 Efficiency gap in Computing . 5

1.6 Approximate Computing: Design Principle 6

1.7 Contributions of the dissertation to approximate computing 7

2.1 Approximate and quality configurable circuit design 14

2.2 Need for quality configurable circuits 15

2.3 Error Probability Distribution . 19

2.4 Quality constraint circuit . 22

2.5 Approximation don’t cares . 24

2.6 Illustration: 2-bit multiplier circuit . 27

2.7 Illustration: Quality function . 28

2.8 STEP1 - Obtaining ADCs of a primary output in terms of other original
and approximate circuit outputs . 30

2.9 Illustration: ADC-PO circuit when approximating output bit S[1] . . . 31

2.10 STEP2 - Obtaining ADCs of a primary output in terms of primary inputs 31

2.11 Illustration: ADC circuit for output S[1] 32

2.12 Illustration: Approximate circuit with output S[1] simplified 33

2.13 Equating un-approximated output bits 34

2.14 Illustration: ADC-PO circuit with un-approximated output bits equated 35

2.15 Quality function decomposition . 36

2.16 Exploiting I/O dependencies and calculating subset of ADCs 38

xii

Figure Page

2.17 Results for maximum error magnitude metric 42

2.18 Results for relative error metric . 43

2.19 Results for error probability metric . 44

2.20 Delay sweep of original and approximate circuits for a 32-bit kogge stone
adder . 45

2.21 Delay sweep of original and approximate circuits for a 32-bit ripple carry
adder . 46

2.22 Area and power scaling for adders of various bit widths 46

2.23 Surface plots of exhaustive simulation on approximate circuits synthesized
using various quality metrics . 49

2.24 Area and power comparison of SALSA with output LSB truncation for
kogge-stone Adder . 50

2.25 Area and power comparison of SALSA with output LSB truncation for
array multiplier . 51

2.26 Approximate circuit design using SASIMI 54

2.27 Criteria for selecting substitution candidates 54

2.28 Quality configurable circuit design using SASIMI 55

2.29 Selective substitution, quality selection and clock extension circuits . . 57

2.30 Timing diagram showing signal transitions in accurate and approximate
modes . 58

2.31 CAD flow employed in the implementation of SASIMI 64

2.32 Area and power benefits for error probability metric 65

2.33 Area and power benefits for average error magnitude metric 66

2.34 Area and power of KSA with delay sweep 67

2.35 Energy v.s. accuracy trade-off in classification 70

3.1 Fraction of instructions that may approximated under arbitrary vs. con-
trolled approximations . 75

3.2 Conceptual overview of a quality programmable processor 76

3.3 Resursive breakdown of computations in error resilient applications . . 81

3.4 Software visible micro-architectural state in Quora 82

xiii

Figure Page

3.5 Quora micro-architecture . 87

3.6 Approximate processing element . 88

3.7 Mixed accuracy processing element . 89

3.8 Comparison of processing elements in Quora 91

3.9 Up/down precision scaling . 93

3.10 Precision scaling with error monitoring 94

3.11 Precision scaling with error compensation 95

3.12 Dynamic precision scaling . 96

3.13 Array level organization of precision scaling units 97

3.14 Energy benefits for different application-level quality constraints 106

3.15 Energy reduction and application-level quality degradation for different
instruction level quality specifications 107

3.16 Contribution of quality programmable instructions to dynamic instruction
count, execution cycles and energy . 108

3.17 Energy vs. error curves for micro-benchmarks using different precision
scaling mechanisms . 108

3.18 Energy vs. quality curves for varying array dimensions 109

4.1 Computational requirements for embedding deep learning in low-power
devices . 112

4.2 Computational requirements for training deep learning networks in the
cloud . 113

4.3 Research directions to improve deep learning efficiency 114

4.4 Neural network preliminaries . 118

4.5 Overview of the Approximate Neural Networks (AxNN) design approach 120

4.6 Illustration: Neuron resilience characterization 121

4.7 Techniques used to approximate neurons 122

4.8 Incremental retrain of AxNN . 123

4.9 Block diagram of qcNPE . 127

4.10 Improvement in energy using AxNN 130

4.11 Quality vs. energy trade-offs with uniform and AxNN approximations . 130

xiv

Figure Page

4.12 Neuron average error maps in MNIST [39] 132

4.13 Impact of retraining on energy and quality 133

4.14 AxNN runtime on commodity platform 134

5.1 Scalable effort classifiers: Approach . 136

5.2 Distribution of class probabilities for MNIST dataset 137

5.3 A scalable effort classifier consists of a sequence of decision models, which
grow progressively more complex . 139

5.4 Design of scalable effort classifier stage 140

5.5 δ controls the fraction of inputs classified by a stage. 143

5.6 One vs. rest approach is used for multi-way classification. GC can prune
some classes in the next stage. 145

5.7 Improvement in average OPS/input and energy for different applications. 152

5.8 (a) Normalized OPS consumed by the scalable-effort classifier with increas-
ing fraction of hard inputs. (b) Total complexity of the added classifier
stages for different applications . 153

5.9 Normalized reduction in OPS with different numbers of classifier stages
for the ADULT-J48 application . 154

5.10 Energy vs. accuracy trade-off by modulating consensus threshold . . . 154

xv

ABBREVIATIONS

AxC Approximate Computing

SALSA Systematic Automatic Logic Synthesis of Approximate circuits

ALS Approximate Logic Synthesis

QCC Quality Constraint Circuit

ADC Approximation Don’t Cares

EXDC External Don’t Cares

SASIMI Substitute-And-SIMplIfy

TS Target Signal

SS Substitute Signal

QPP Quality Programmable Processor

QP-ISA Quality Prgrammable Instuction Set Architecture

QP-uArch Quality Programmable Micro-architecture

QUORA Quality Programmable 1D/2D Vector Processor

APE Approximate Processing Element

MAPE Mixed Accuracy Processing Element

CAPE Completely Accurate Processing Element

PScU Precision Scaling Units

QCU Quality Control Unit

SM Streaming Memory

NN Neural Networks

DLN Deep Learning Networks

AxNN Approximate Neural Networks

qcNPE Quality Configurable Neural Processing Engine

NCU Neuron Computation Unit

xvi

AFU Activation Function Unit

RTL Register Transfer Level

HW/SW Hardware/Software

MAC Multiply And Accumulate

SAD Sum of Absolute Differences

DCT Discrete Cosine Transform

xvii

ABSTRACT

Venkataramani, Swagath PhD, Purdue University, December 2016. Approximate
Computing: An Integrated Cross-layer Framework. Major Professor: Anand
Raghunathan.

We have witnessed a fundamental shift in the nature of workloads executed by

computing platforms across the spectrum, from mobile and deeply-embedded devices

to servers and data centers. Increasingly, computing platforms need to analyze, orga-

nize and search through large amounts of real-world data, intelligently interact with

the physical world, be context-aware, and present more natural human interfaces.

These tasks do not involve the computation of a golden answer or unique numerical

result. Instead, they need to produce outputs that are good-enough or of sufficient

quality. Such workloads possess intrinsic application resilience, or the ability to pro-

duce outputs of acceptable quality even when a large fraction of their computations

are performed in an imprecise or approximate manner. Intrinsic application resilience

offers an entirely new dimension along which computing platforms can be optimized.

However, the design of computing platforms still continues to be guided by the dogma

that every computation must be executed with the same strict notion of correctness.

With the demand for computing performance growing unabated on the one hand,

while traditional benefits due to technology scaling diminish on the other, it is im-

portant to leverage this new source of efficiency.

A new design approach, called approximate computing (AxC), leverages the flex-

ibility provided by intrinsic application resilience to realize hardware or software im-

plementations that are more efficient in energy or performance. Approximate com-

puting techniques forsake exact (numerical or Boolean) equivalence in the execution

of some of the application’s computations, while ensuring that the output quality is

xviii

acceptable. While early efforts in approximate computing have demonstrated great

potential, they consist of ad hoc techniques applied to a very narrow set of appli-

cations, leaving in question the applicability of approximate computing in a broader

context.

The primary objective of this thesis is to develop an integrated cross-layer ap-

proach to approximate computing, and to thereby establish its applicability to a

broader range of applications. The proposed framework comprises of three key com-

ponents: (i) At the circuit level, systematic approaches to design approximate cir-

cuits, or circuits that realize a slightly modified function with improved efficiency,

(ii) At the architecture level, utilize approximate circuits to build programmable ap-

proximate processors, and (iii) At the software level, methods to apply approximate

computing to machine learning classifiers, which represent an important class of ap-

plications that are being utilized across the computing spectrum. Towards this end,

the thesis extends the state-of-the-art in approximate computing in the following

important directions.

Synthesis of Approximate Circuits. First, the thesis proposes a rigorous frame-

work for the automatic synthesis of approximate circuits, which are the hardware

building blocks of approximate computing platforms. Designing approximate circuits

involves making judicious changes to the function implemented by the circuit such

that its hardware complexity is lowered without violating the specified quality con-

straint. Inspired by classical approaches to Boolean optimization in logic synthesis,

the thesis proposes two synthesis tools called SALSA and SASIMI that are general,

i.e., applicable to any given circuit and quality specification. The framework is further

extended to automatically design quality configurable circuits, which are approximate

circuits with the capability to reconfigure their quality at runtime. Over a wide range

of arithmetic circuits, complex modules and complete datapaths, the circuits syn-

thesized using the proposed framework demonstrate significant benefits in area and

energy.

xix

Programmable AxC Processors. Next, the thesis extends approximate comput-

ing to the realm of programmable processors by introducing the concept of quality

programmable processors (QPPs). A key principle of QPPs is that the notion of

quality is explicitly codified in their HW/SW interface i.e., the instruction set. In-

structions in the ISA are extended with quality fields, enabling software to specify

the accuracy level that must be met during their execution. The micro-architecture

is designed with hardware mechanisms to understand these quality specifications and

translate them into energy savings. As a first embodiment of QPPs, the thesis presents

a quality programmable 1D/2D vector processor QP-Vec, which contains a 3-tiered

hierarchy of processing elements. Based on an implementation of QP-Vec with 289

processing elements, energy benefits upto 2.5× are demonstrated across a wide range

of applications.

Software and Algorithms for AxC. Finally, the thesis addresses the problem of

applying approximate computing to an important class of applications viz. machine

learning classifiers such as deep learning networks. To this end, the thesis proposes two

approaches—AxNN and scalable effort classifiers. Both approaches leverage domain-

specific insights to transform a given application to an energy-efficient approximate

version that meets a specified application output quality. In the context of deep learn-

ing networks, AxNN adapts backpropagation to identify neurons that contribute less

significantly to the network’s accuracy, approximating these neurons (e.g., by using

lower precision), and incrementally re-training the network to mitigate the impact

of approximations on output quality. On the other hand, scalable effort classifiers

leverage the heterogeneity in the inherent classification difficulty of inputs to dynam-

ically modulate the effort expended by machine learning classifiers. This is achieved

by building a chain of classifiers of progressively growing complexity (and accuracy)

such that the number of stages used for classification scale with input difficulty. Scal-

able effort classifiers yield substantial energy benefits as a majority of the inputs

require very low effort in real-world datasets.

xx

In summary, the concepts and techniques presented in this thesis broaden the ap-

plicability of approximate computing, thus taking a significant step towards bringing

approximate computing to the mainstream.

1

1. INTRODUCTION

Traditionally, computing platforms are viewed as calculators that execute tasks de-

manded by applications in a very precise manner. While the performance and effi-

ciency of computing platforms have grown exponentially over the decades, their design

continues to be guided by the principle that every computation they are tasked with is

sacred and are carried out with a strict (and unique) notion of correctness. However,

from a holistic application perspective, not all computations are equally important

i.e., a range of answers to underlying computations result in the same eventual ap-

plication output. For example, consider the two tasks, shown in Figure 1.1, which

are very similar to each other. In both cases, we wish to divide 433 by 21, but in the

first case the output is compared to 20.4, while in the second, it is compared to 1.

Computers today, due to their inability to understand the context in which the result

float x = 433/21
float y = 20.4
(x > y) ? YES :NO

�YES

float x = 433/21
float y = 1
(x > y) ? YES :NO

�YES

�����

But, I worked
harder than
needed

���	
����20.4�

���	
����1�

Fig. 1.1.: Illustration: Inefficiency in viewing computers as precise calculators

of the division operation is used, would expend the same effort to execute the tasks.

However, as a high-level analogy, if the tasks were carried out by the human brain,

it would find the second task to be much easier than the first, because it inherently

2

possesses the ability to compute results to the desired level of precision [1]. Hence,

viewing computers as precise calculators clearly leads to significant in-efficiency and

an overkill for many applications that computing platforms execute today.

1.1 Intrinsic Application Resilience

The landscape of computing applications has evolved over the years and we have

witnessed a fundamental shift in the nature of workloads executed by computing

platforms across the spectrum. With the ubiquity of the world wide web and the

explosion in digital data of various forms, computing platforms in data centers and

the cloud are used to analyze, interpret, and mine vast collections of raw data using

semantic abstractions. At the other end of the spectrum, the need for intelligence

and context-awareness in mobile and embedded devices implies that they too execute

workloads that involve recognizing and interpreting data sensed from the physical

world and their users. These workloads, which are of growing interest and expected

to drive the usage of future computing platforms [2,3], do not expect a unique golden

numerical answer. Rather, they are characterized by whether they produce an ac-

ceptable user experience, or results of sufficient quality. Even when a golden output

is defined, the best known algorithms fall short of perfection (e.g., for most real world

recognition and classification problems, achieving 100% accuracy remains a distant

objective). Hence, in their context, functional correctness is redefined from obtaining

precise numerical answers to producing outputs that are “good-enough” to the end

user (Figure 1.2).

These emerging workloads invariably exhibit significant intrinsic application re-

silience, which is broadly defined as the ability of applications to produce outputs

of acceptable quality despite some of their underlying computations being executed

in an imprecise or approximate manner. As illustrated in Figure 1.3, this intrin-

sic resilience, which is also shared by many prevalent application domains such as

multimedia, graphics, and signal processing, stems from various factors [4–6]:

3

Recognition

Search

Mining

Video Processing

Vision

Search

���������	
���������			

Fig. 1.2.: Emerging applications requiring good-enough answers

• The algorithms are designed to handle noisy real-world inputs, which as a con-

sequence equips them to tolerate errors introduced in the intermediate compu-

tations.

• The computation patterns employed in these applications are typically iterative

and statistical in nature allowing for errors introduced by approximations to

attenuate or self-heal over time.

• A range of outputs are considered equivalent since no golden answer exists, or

small deviations in the output cannot be perceived by users.

Recent studies [4] of intrinsic resilience in a suite of 12 emerging recognition, mining,

and search applications revealed that on average, 83% of the runtime was spent

in computations that were tolerant to errors in their outputs. This reaffirms the

qualitative observation that a broad range of application domains exhibit significant

intrinsic resilience.

The growth in demands being placed on computing platforms is expected to con-

tinue unabated, while on the other hand the benefits due to technology scaling con-

tinue to diminish. As illustrated in Figure 1.5, this growing efficiency gap is chal-

lenging designers of computing platforms and pushing them to innovate in hitherto

4

Intrinsic

Application

Resilience

‘Noisy’ Real
World Inputs

Self- Healing/
Iterative

algorithms

Redundant
Input data

No Golden
Output

Perceptual
Limitations

Statistical
Probabilistic

Computations

Fig. 1.3.: Intrinsic Application Resilience: Sources

0 10 20 30 40 50 60 70 80 90 100

Online data clustering

Character recognition

Health information analysis

Census data classification

Census data modeling

Image segmentation

Eye model generation

Eye detection

Digit model generation

Digit recognition

Image search

Document search

Application execution time (%) �
Total Resilience

���������������������������	�����
�����������

Fig. 1.4.: Fraction of execution time contributed by resilient computations

unexplored directions for improving the performance and energy efficiency. Some of

the promising directions that are being explored include heterogeneous parallel ar-

chitectures, near-threshold computing and accelerator-based computing. Optimizing

designs by exploiting the intrinsic resilience of applications has the potential to be-

come another dimension along which improvements in computing efficiency may be

realized, since a large part of the growth in computing workloads can be attributed to

application domains that possess significant resilience, including recognition, mining,

synthesis, audio/video processing, data analytics, search, and graphics.

5

��������	
��

����
������	��
�� �
�����
�� Increased

compute and data
requirements

�����

Need new sources of
efficiency across the
computing stack to

bridge the gap!

�������������������

Diminishing benefits
from technology

scaling

������������������
�������

Algorithm & Software

Architecture

Logic and Circuits

Compiler and OS

�
�
��

�
�

��
�
�

�

Approximate
Computing ??

Fig. 1.5.: Efficiency gap in Computing

1.2 Approximate Computing

Approximate computing (AxC) is an emerging design approach that seeks to

achieve new efficiencies in computing platforms by designing them such that they

are capable of producing “good enough” results. Approximate computing platforms

exploit the intrinsic resilience of applications by foregoing exactness or full correctness

in the execution of selected computations, thereby improving performance or energy

efficiency. Figure 1.6 illustrates the design principle behind approximate computing.

Given the functional requirements of an application, the traditional design process in-

volves several levels of design abstraction viz. developing the algorithm (or software),

mapping the algorithmic computations to the desired hardware architecture, refining

the architecture to circuit and layout to obtain the final implementation. One of the

key invariants in the design process is that perfect equivalence (numerical or Boolean)

6

is maintained as the design progresses across the different levels of abstraction. As

shown in Figure 1.6, approximate computing challenges this long-held dogma. In

addition to the functional requirements of the application, the quality desired at the

application output is also provided. Given these output quality specifications, ap-

proximations can be introduced in any of the design abstraction layers, provided the

resultant degradation in output quality is acceptable. The key to the efficiency of

approximate computing is to obtain a favorable a energy (or performance) v.s. qual-

ity trade-off i.e., the benefits in energy is disproportionately large compared to the

quality sacrificed in the process.

Implementation Golden
Implementation

Approximate

Implementation

Algorithm Architecture Circuit Layout

Exact
Equivalence

Relaxed
Equivalence

Application

Quality
Specifications

Quality
Met?

��������������
	

�
��
�
�

�

���������������

�
�
�
��

�

�

����������	
�����

���������

Fig. 1.6.: Approximate Computing: Design Principle

There has been significant interest in the area of approximate computing in recent

years, and several techniques for approximate computing in hardware [6–13] or soft-

ware [5,14–18] have been proposed. While these efforts have established the potential

for significant improvements from approximate computing, they have invariably been

explored in an application-specific context — the techniques are often ad hoc and ap-

plicable to specific applications, or the end result is often application-specific custom

hardware. Consequently, two key questions that are frequently asked of approximate

computing are “Is the approach applicable to a broader range of applications and

domains?” and “Is it possible to amortize design effort by creating approximate com-

7

puting platforms that can be re-used across applications?” This dissertation aims to

answer the above questions in the affirmative.

1.3 Thesis Contributions

�!"����#���$#%&�'(����)���

*&���#+�$"���	��'(���

�������(����#&����%%(%�

�����$#%&�'(���!��&'(��

��������������������

����

�����

����

�����
���� ����!� "�#���"

��%�"��%��$�

�� $����%%��%��

��	%&����

�����������%�

'�(��&�#�)��

���!�

�����*����)��##�����

�����%%�����%�)��

• 
	���,��&���#+�

"%(�%��������-�./��

)��#(%�"%(��$$(%�

•  ��0��$#%&�'(��$�#�

•  ��0���%(�%���#��#&%��

THESIS
CONTRIBUTIONS

�� �+�$�#�#����%�

�!)!�,-�.����+�%�

������+$�(%����!�

�����*�

���)��##�����

��&��������/����

����	�"��

�$$��0�#������(�
�����*�

���1)��������������%�

•  �����1��(�2#���%����$���

�(�����""%(!���'(��

•  �������1����	�����%�&�#�

#%��$�(%��'(���(%�

�""%(!���#������*&���#+�

�(�	�&%�������%�&�#$�

Original
Circuit

Approxim
ate Circuit

�&���#+�

&��'(��

��

�������

���	
��
���

�
�
�

�

�

�

�

�(3�&���#(�

�""%(!��#��

�����4��

���#��("5��

#(��""%(!54��

�����*��2����%�32����

�$�#�4�����/��#�2��5%�
�

�0�������32����

•  �6��,���""�������"�

���%�����(���!��"��6(%$��

•  �������� �7�������%%�1��%,�

������#�������$$���%$��+�

(�&��'����("&#����(%#�

3�#����"&#�����&�#+����

�""����'(���%(�%��

�""����'(���

�&���#+��

��*&�%���#�

Recognition

Search
Mining Vision

Video

Design
automation tools
for synthesizing

approximate
circuits

Utilize approx.
circuits to build
programmable

AxC
architectures

Systematic
methods to map
applications to
AxC platforms

Fig. 1.7.: Contributions of the dissertation to approximate computing

To address the fundamental challenges associated with the broader adoption of ap-

proximate computing, this dissertation develops an integrated and systematic frame-

work for approximate computing as outlined in Figure 1.7. The proposed framework

comprises of three key components, which collectively involve developing approximate

computing techniques at various layers of the computing stack. First, at the circuit

8

level, the thesis develops techniques to design approximate circuits that are highly

efficient in performance, area and power. To enable generality and scalability, the

thesis embodies the fundamental approximate circuit design principles into synthesis

frameworks that can automatically generate “correct-by-construction” approximate

versions for any given circuit, and any desired accuracy bound specified at the cir-

cuit outputs. Next, at the architecture level, the approximate circuits are used to

build approximate computing architectures that yield a favorable trade-off between

efficiency and application output quality. Towards this end, the thesis investigates

how approximate computing can be best leveraged in the context of programmable

processors. Finally, at the software level, the thesis develops methodologies to sys-

tematically identify resilient computations within an application and map them to

approximate computing platforms. An overview of the important contributions of

the dissertation are described below.

1.3.1 Approximate and Quality Configurable Circuits:

Design and Synthesis

Approximate circuits are the basic hardware building blocks of approximate com-

puting platforms. Approximate circuits are highly efficient hardware implementations

that realize a slightly modified logic function compared to the original specifications

within a specified quality constraint. Most research efforts in the area of approximate

circuits can be summarized as manual designs of simple arithmetic circuits such as

adders [19–22] and multipliers [23]. However, the broader adoption of approximate

circuits requires a systematic methodology to design approximate implementations

for any arbitrary circuit. Moreover, it is critical that such a methodology enable

the generation of “correct-by-construction” approximate circuits that are guaranteed

to satisfy designer-specified quality constraints, which is often not the case for the

aforementioned manual designs.

9

Towards this objective, the thesis presents two synthesis methodologies viz. SALSA

and SASIMI for the automatic design of approximate circuits. We further extend the

methodology to synthesize quality configurable circuits, which possess the additional

capability to reconfigure their quality at runtime. A brief summary of the method-

ologies are presented below.

SALSA

The first methodology SALSA extends the classical don’t care based optimization

approach for Approximate Logic Synthesis (ALS). The key hallmark of SALSA is the

rigorous formulation of the problem of ALS into an equivalent traditional logic syn-

thesis problem, thereby allowing the capabilities of existing synthesis tools to be fully

utilized for logic approximation. SALSA achieves this by forming a virtual Quality

Constraint Circuit (QCC) that encodes the quality constraints using logic functions

called Q-functions. It then captures the flexibility engendered by the relaxed qual-

ity specifications as Approximation Don’t Cares (ADCs), which are used for circuit

simplification using traditional don’t care based optimization techniques.

SASIMI

The second methodology SASIMI, introduces a new circuit transformation called

Substitute-and-Simplify, for approximate circuit design. The key insight behind

SASIMI is to identify signal pairs in the circuit that assume the same value with

high probability, and substitute one for the other. While these substitutions intro-

duce functional approximations, if performed judiciously, they result in some logic

to be eliminated from the circuit while also enabling downsizing of gates on critical

paths (simplification), resulting in significant power savings. SASIMI performs the

substitution and simplification iteratively, while ensuring that a user-specified quality

constraint is satisfied. SASIMI is extended to perform automatic synthesis of quality

configurable circuits that can dynamically operate at different accuracy levels depend-

10

ing on application requirements. It is worthy to note that the quality configurable

circuits synthesized by SASIMI do not incur any energy overheads even during the

accurate mode of operation.

The synthesis tools, SALSA and SASIMI, were prototyped and utilized to synthe-

size approximate and quality configurable versions of a wide range of circuits com-

prised of arithmetic building blocks (adders, multipliers, MAC), ISCAS benchmarks

and entire datapaths (DCT, FIR, IIR, SAD, FFT Butterfly, Euclidean distance),

demonstrating scalability and significant improvements in area (1.1X to 1.85X for

tight error constraints, and 1.2X to 4.75X for relaxed error constraints) and energy

(1.15X to 1.75X for tight error constraints, and 1.3X to 5.25X for relaxed error con-

straints).

1.3.2 Programmable Approximate Computing Architectures

The thesis extends approximate computing to realm of programmable processors

by introducing the concept of Quality Programmable Processors (QPPs). In QPPs,

as shown in Figure 1.7, the conventional HW/SW interface, which allows specifica-

tion of just the operation and the operands, is enhanced to explicitly embody the

notion of quality. The ISA of a quality programmable processor contains instructions

associated with quality fields to specify the accuracy level that must be met during

their execution. It thus empowers software with the ability to specify not just what

the operation is but also how significant it is in the context of the application. This

ability to control the accuracy of instruction execution greatly enhances the scope of

approximate computing, allowing it to be applied to larger parts of programs. The

micro-architecture of a quality programmable processor contains hardware mecha-

nisms that translate the instruction-level quality specifications into energy savings.

Additionally, it may expose the actual error incurred during the execution of each

instruction (which may be less than the specified limit) back to software.

11

As a first embodiment of quality programmable processors, the thesis presents the

design ofQuora, an energy efficient, quality programmable vector processor. Quora

utilizes a 3-tiered hierarchy of processing elements that provide distinctly different en-

ergy vs. quality trade-offs, and uses hardware mechanisms based on precision scaling

with error monitoring and compensation to facilitate quality programmable execu-

tion. We evaluate an implementation of Quora with 289 processing elements in

45nm technology. The results demonstrate that leveraging quality-programmability

leads to 1.05×-1.7× savings in energy for virtually no loss (<0.5%) in application

output quality, and 1.18×-2.1× energy savings for modest impact (<2.5%) on output

quality.

1.3.3 Software and Algorithms for Approximate Computing

At the software level, given an application and an application output quality

requirement, the key challenge is to identify which computations to approximate

and by how much. This requires quality-aware software optimization frameworks

to identify resilient computations and quantitatively evaluate how approximations

to these computations impact the application output. The dissertation addresses

this problem in the context of an important class of applications viz. machine/deep

learning classifiers. To this end, the thesis proposes the following approximation

frameworks that leverage domain-specific insights to systematically transform a given

application into its approximate version.

AxNN: Approximate Neural Networks

Large-scale neural networks or Deep Learning Networks (DLNs) have become

popular due to their state-of-the-art performance on a wide range of machine learn-

ing problems. One of the key challenges with deep learning networks is their high

computational complexity. To improve the efficiency of DLNs while preserving their

functional performance, the thesis proposes a method to transform any given neural

12

network (NN) into an Approximate Neural Network (AxNN). This is performed by

(i) adapting the backpropagation technique, which is commonly used to train these

networks, to quantify the impact of approximating each neuron to the overall network

quality (e.g., classification accuracy), and (ii) selectively approximating those neurons

that impact network quality the least. Further, leveraging the key observation that

training is a naturally error-healing process, the network is incrementally retrained

with the approximations in-place, reclaiming a significant portion of the quality ceded

by approximations. We evaluated the proposed approach by constructing AXNNs for

6 recognition applications (ranging in complexity from 12-47,818 neurons and 160-

3,155,968 connections). Our results demonstrate 1.14×-1.92× energy benefits for

virtually no loss (< 0.5%) in output quality, and even higher improvements (upto

2.3×) when some loss (upto 7.5%) in output quality is acceptable.

Scalable Effort Classifiers

Scalable effort classifiers are a new approach to optimizing the energy efficiency

of supervised machine-learning classifiers. Its efficiency stems from the observation

that the inherent classification difficulty varies widely across inputs in real-world

datasets; only a small fraction of the inputs truly require the full computational

effort of the classifier, while the large majority can be classified correctly with very

low effort. Yet, state-of-the-art classification algorithms expend equal effort on all

inputs, irrespective of their difficulty. To address this inefficiency, scalable effort

classifiers dynamically adjust their computational effort depending on the difficulty of

the input data, while maintaining the same level of accuracy. Scalable effort classifiers

are constructed by utilizing a chain of classifiers with increasing levels of complexity

(and accuracy). Scalable effort execution is achieved by modulating the number of

stages used for classifying a given input. Every stage in the chain contains an ensemble

of biased classifiers, where each biased classifier is trained to detect a single class more

accurately. The degree of consensus between the biased classifiers’ outputs is used

13

to decide whether classification can be terminated at the current stage or not. Thus

any given classification algorithm can be transformed into a scalable effort chain. We

build scalable effort versions of 8 popular recognition applications using 3 different

classification algorithms. Our experiments demonstrate that scalable effort classifiers

yield 2.79× reduction in average operations per input, which translates to 2.3× and

1.5× improvement in energy for hardware and software implementations, respectively.

In summary, the dissertation outlines an integrated framework for approximate

computing that includes automatic frameworks to synthesize approximate circuit

blocks, a programmable architecture along with its HW/SW interface that explicitly

embodies the notion of quality, and finally software methodologies to systematically

identify resilient computations within an application in order maximize the benefits

for a desired output quality.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the synthe-

sis methodologies proposed for approximate and quality configurable circuit design.

Chapter 3 details the concept of quality programmable processors, and the key is-

sues involved in their design. Chapter 4 describes AxNN, the approach proposed to

systematically identify and approximate resilient computations in deep learning net-

works. Chapter 5 outlines the concept of scalable effort classifiers and the methodol-

ogy employed to construct scalable effort versions of any given classification algorithm.

Chapter 6 presents the previous related efforts in the area of approximate comput-

ing and places the contributions of this thesis in their context. Finally, Chapter 7

provides a summary and outlines the key directions for future research.

14

2. DESIGN AND SYNTHESIS OF APPROXIMATE AND

QUALITY CONFIGURABLE CIRCUITS

2.1 Introduction

Approximate circuits, or circuits that have lower hardware complexity (switched

capacitance, leakage, and critical path), while evaluating the required function within

a desired accuracy, are key ingredients in the design of an approximate computing

system. Given the golden specifications of a circuit and a quality constraint that

denotes the type and amount of error that the implementation can accommodate,

the objective of the approximate circuit design process, as illustrated in Figure 2.1, is

to make judicious changes to the function to be implemented such that it translates

to a more efficient implementation, while differing from the original specification in

a manner bounded by the specified quality constraint. The quality constraint is

typically dictated by the application based on the context in which the output of the

circuit is used.

��������

	
���������

Design Process

��������	������� ���
�������	������

��������	
���������

	�������

Fig. 2.1.: Approximate and quality configurable circuit design

In many applications, the degree of resilience often varies across computations

depending on the application context or the dataset being processed [4,8]. For exam-

ple, consider the JPEG image compression application, shown in Figure 2.2, in which

15

each 8x8 block of the image is converted to its frequency domain representation us-

ing 2-D Discrete Cosine Transform (DCT). It is well known that the output of the

JPEG application is impacted the most by the DC component at the top-left corner

of the image compared to to other high frequency components. Now, if the computa-

tions corresponding to each component are mapped to the same underlying hardware,

then it is necessary to operate the hardware with different accuracies depending on

the significance of the component. In such scenarios, it is desirable to construct a

more sophisticated variant of approximate circuits, called quality-configurable circuits,

which are capable of reconfiguring to adapt their accuracy at run-time. Quality con-

figurable circuits typically contain additional inputs to indicate the current quality

requirement and the circuits are embodied with the capability to dynamically adapt

their accuracy and energy consumption accordingly. The quality constraint during

their design process comprises of a series of quality levels that are desired during

operation.

��������	
�

�	��	��

���
������	
���

	
��

��������

������
��	

�� �������

Fig. 2.2.: Need for quality configurable circuits

Traditionally, when it comes to the design of approximate circuits, there have

been two major schools of thought: (i) Timing approximation, where the circuit is

subject to voltage over-scaling resulting in timing errors [24, 25], and (ii) Functional

approximation, where the circuit realizes a slightly different logic function than spec-

ified, resulting in a more efficient implementation [19–23, 26]. Currently, the design

16

of approximate circuits is (perhaps too much of) an art, requiring significant manual

effort. Previous efforts largely consist of manual designs of simple arithmetic circuits

such as adders [19–22, 26] and multipliers [23]. However, a key requirement for their

mainstream adoption is to develop systematic design techniques and synthesis tools

that are general and scalable to arbitrary circuits and quality constraints. Ideally,

tools should:

• Allow designers to simply specify the circuit and quality constraint, relieving

them from the burden of how to perform the approximation.

• Generate “correct-by-construction” approximate and quality configurable cir-

cuits that are guaranteed to satisfy the imposed quality constraints.

• Effectively translate the flexibility engendered by the quality constraints into

improvements in performance or energy consumption.

This chapter presents a rigorous framework for the automatic synthesis of approx-

imate and quality configurable logic circuits that achieves the aforementioned objec-

tives. Traditional Boolean optimization approaches in logic synthesis can be broadly

classified into two categories [27]. One class of techniques performs local optimiza-

tions in the circuit by identifying don’t care conditions on the circuit nodes [28, 29],

while the other introduces perturbations in the circuit, e.g., by adding wires, in-order

to potentially enable the removal of redundant logic [30]. Drawing inspiration from

such classical approaches, this chapter presents two approaches viz. SALSA [31] and

SASIMI [32], for the automatic synthesis of approximate circuits. SALSA extends the

classical approach of implicit don’t care based optimization through approximation

don’t cares, an entirely new class of don’t cares that represent the functional flexibil-

ity afforded by the specified quality constraint. SASIMI, on the other hand, adopts

the circuit transformation approach and introduces substitute-and-simplify as a new

transformation to generating approximate and quality configurable circuits.

The rest of the chapter is organized as follows. Section 2.2 presents an overview

of the quality metrics commonly used in evaluating approximate circuits. A detailed

17

description of the two design approaches SALSA and SASIMI and the methodology

adopted in their respective implementations are then presented in the Sections 2.3

and 2.4. Finally, Section 2.5 provides a summary and concludes the chapter.

2.2 Quality Metrics

Before describing the approximate design techniques, we present an overview of

the quality metrics that are typically employed in constraining the quality of the

approximate circuit. As described in Section 2.1, quality metrics provide a bound on

the type and amount of error that can be introduced in the implementation during

the process of approximating the circuit function. They are typically a function of the

original (Oorig) and approximate (Oapprox) circuit implementations. Quality metrics

can be classified into three broad categories‘

2.2.1 Metrics Constraining the Magnitude of Error

The first class of quality metrics constrain the quantity or magnitude of error at

the output of the circuit. The bound in the magnitude of error may be either absolute

i.e. true for every input to circuit or statistical over all possible circuit inputs. Some

of the most common quality metrics belonging to both the categories are described

below.

Maximum Error Magnitude: The maximum error (MaxErr) metric, shown in

Equation 2.1, bounds the absolute difference in magnitude between the outputs of

the original and approximate circuits to be less than a specified threshold.

MaxErr = MAX∀inputs(|Oacc −Oapprox|) (2.1)

Relative Error Magnitude: The relative error (RelErr) metric, shown in equa-

tion 2.2, constraints the ratio of the original and approximate circuit outputs to differ

from 1 by at most a certain margin.

18

RelErr =
∣

∣

∣

Oapprox

Oorig

∣

∣

∣ (2.2)

Average Error Magnitude: The average error (AveErr) metric, shown in Equa-

tion 2.3, bounds the absolute difference in magnitude between the original and ap-

proximate circuits, averaged over all possible inputs.

AveErr =

∑

∀inputs |Oorig −Oapprox|

Total number of Inputs
(2.3)

Mean Squared Error Magnitude: As shown in Equation 2.4, the mean squared

error (MSErr) metric constrains the mean of the squared difference in magnitude

between the outputs of the original and approximate circuits over all possible inputs

to be less than a specified threshold.

AveErr =

∑

∀inputs(Oorig −Oapprox)
2

Total number of Inputs
(2.4)

Unidirectional Error: In addition to constraining the absolute magnitude of error,

unidirectional quality metrics place a restriction on the direction in which error occurs

to be either positive or negative. Unidirectional variants can be conceived for each of

the error magnitude based quality metrics described above.

2.2.2 Metrics Constraining the Frequency of Error

The second class of quality metrics constrain the frequency of error i.e. the number

of inputs for which the circuit can an incorrect value. These metrics are particularly

useful when the output of the circuit does not represent a numerical value. Few

examples of quality metrics in this class are described below.

Error Probability: The most prominent quality metric in this class is the error

probability (ErrProb) metric shown in Equation 2.5. It is defined as the fraction

of inputs vectors for which the approximate circuit output differs from the original

circuit.

19

ErrProb =
Total Inputs for which Oorig �= Oapprox

Total number of Inputs
(2.5)

Bit Error Probability: The bit error probability (BitErrProb) metric, shown in

Equation 2.6, is similar to the error probability metric, but in this case, the error

probabilities of individual output bits are constrained separately.

BitErrProbi =
Total Inputs for which Oi

orig �= Oi
approx

Total number of Inputs
(2.6)

2.2.3 Composite Metrics

Composite quality metrics are a combination of both the above classes, wherein

the approximate circuits are constrained in both the magnitude and the frequency of

error.

��

��
�

����

����

����

��

��� ����� �� ���� ��

�
��
�
��
�
��
�
�
�
��
�	

���
�

���������������������	������

Fig. 2.3.: Error Probability Distribution

These metrics are commonly represented as an error probability distribution,

shown in Figure 2.3, in which the X-axis represents the magnitude of error and the

Y-axis provides the probability with which error of a given magnitude can occur in

the approximate implementation.

20

2.3 SALSA: Don’t Care based Logic Approximation

The first approximate design technique SALSA extends the concept of traditional

don’t cares to approximate logic synthesis. Starting with an RTL description of the

exact circuit and a quality constraint that specifies the type and amount of error

tolerable in the implementation, SALSA automatically synthesizes a functionally ap-

proximate version of the circuit that adheres to the pre-specified error constraints.

The key steps involved in the proposed SALSA methodology are described below.

First, SALSA constructs a virtual Quality Constraint Circuit (QCC) that encodes

the specified quality constraints using logic functions called Q-functions. This en-

ables SALSA to enforce the quality constraints during synthesis. Next, using the

QCC, SALSA identifies Approximation Don’t Cares (ADCs), an entirely new class

of don’t cares that are borne out of the quality specifications. These ADCs are then

used for circuit simplification by leveraging standard don’t care based optimization

methodologies.

Thus SALSA rigorously reformulates the problem of Approximate Logic Synthesis

(ALS) and maps it into a traditional logic synthesis problem. The problem formula-

tion and the solution approach adopted in SALSA beget the following advantages:

• The proposed methodology provides an inherent guarantee that the specified

bounds are never transgressed, thus enabling synthesis of correct-by-construction

approximate circuits.

• The transformations are completely independent of the target error metric as

well as the circuit considered for approximation. In essence, this decouples

the synthesis procedure from the error metric, making this approach flexible

and general. A variety of errors metrics can thus be specified based on the

application requirements.

• Additionally, by virtue of transforming and mapping ALS to a traditional logic

synthesis problem, existing off-the-shelf logic synthesis tools could just be re-

used for approximate circuit synthesis. This obviates the need for developing

21

a custom tool for ALS, thus lowering the barrier to adoption. Further, this

widens the scope of approximations that can be effected on the circuits, since

the entire power of existing logic optimization algorithms can be leveraged.

SALSA is prototyped using two different logic synthesis tools viz. SIS [33] and

Synopsys Design Compiler [34], thereby demonstrating generality and used it to syn-

thesize a range of arithmetic circuits and datapaths. The approximate circuits syn-

thesized by SALSA achieve significant reductions in area and power.

2.3.1 Preliminaries and Approach

The problem statement for approximate logic synthesis could be articulated as fol-

lows. Given the description of a logic circuit and a constraint on the errors that could

be tolerated, the synthesis procedure should identify avenues for logic simplification

and generate a functionally approximate version of the that satisfies the pre-defined

error bounds. The following sections describes the approach used in SALSA to ac-

complish this objective.

Quality constraint circuit

Figure 2.4 shows the Quality Constraint Circuit (QCC) that is used in SALSA to

formulate the problem of approximate synthesis. The QCC is composed of three major

blocks viz. the Original circuit, the Approximate circuit and the Quality function (Q-

function). The original circuit block contains a structural description of the circuit

that needs to be approximated and the error constraints that are to be satisfied are

encoded into the Q-function. From the problem definition, both these blocks are

available as inputs to SALSA. The task of SALSA is to synthesize the approximate

circuit, so that the constraints set in the Q-function are never violated.

The inputs to the QCC are the primary inputs of the circuit considered for ap-

proximation. The output of the QCC is a single bit Q that indicates whether the

constraints encoded into the Q-function are satisfied. The Q-function takes outputs

22

�		
�������

����	���

�������

����	���

����������

���	��������

��������

	��	���

�	�����

�	�������

�

�
�����

�
�������

Fig. 2.4.: Quality constraint circuit

from both the original circuit POorig and approximate circuit POapprox and decides

if the quality constraints are satisfied. A Q output of logic ‘1’ means that the ap-

proximate circuit conforms to the imposed quality bounds whereas a logic ‘0’ output

indicates a transgression. Thus, the QCC determines the legitimacy of the approx-

imate circuit. From a functional viewpoint, for the approximate circuit to be valid,

we need to ensure that Q evaluates to ‘1’ for all possible input combinations. Stated

otherwise, the QCC with the synthesized approximate circuit should evaluate to a

tautology. At all times during the approximate synthesis process, SALSA preserves

this invariant.

Quality function

As mentioned earlier, the Q-function takes in outputs from the original and ap-

proximate circuits and generates a single bit output indicating if the quality con-

straints are satisfied. In a circuit with M primary outputs, the Q-function maps 2M

inputs into a one bit output. For example, consider the maximum error magnitude

metric described in Section 2.2, in which the approximate output is constrained to

differ from the correct output by no more than a specified value. In this case, the

Q-function, as shown in Equation 2.7, is composed of a subtractor that evaluates

23

the difference between the original and approximate circuits outputs followed by a

comparator circuit the compares the difference with a pre-determined threshold.

Q =
(

|POorig − POapprox| ≤ K
)

? 1 : 0 (2.7)

Another example is the relative error metric for which the Q-function, as shown

in Equation 2.8, is comprised of a divider that computes the ratio of the approximate

and original circuit outputs followed by two comparators.

Q =

(

1−K ≤
POapprox

POorig

≤ 1 +K

)

? 1 : 0 (2.8)

Thus, in SALSA, any quality metric that could be expressed as a Boolean func-

tion of the original and approximate circuit output bits could be specified as the

Q-function.

Approximation don’t cares

We next describe the strategy used in SALSA to transform the ALS problem into

a traditional logic synthesis problem. In the QCC, the primary outputs of the original

and approximate circuit represent internal nodes. We know that the outputs of the

approximate circuit POapprox are valid provided that they do not cause the value at

Q to evaluate to ‘0’ for any input value. In other words, we could functionally modify

the approximate circuit if the change can never affect the value of Q.

In multi-level logic synthesis, the Observability Don’t Cares (ODCs) of a node in

a logic circuit can be defined as the set of input values for which the primary outputs

of the circuit remain insensitive to the node’s output [27]. These input combinations

can be used to simplify the node because they do not affect the primary outputs of

the circuit.

Applying this concept in our scenario, finding the observability don’t cares at a

bit of POapprox (which is an internal signal in the QCC) gives us the set of primary

input values for which Q is insensitive to an output of the approximate circuit. As

24

�������� �

�	
��������

�������

���

����

�����	���

��������

������ �

��	����	�
�

���������

��������

����

Fig. 2.5.: Approximation don’t cares

shown in Figure 2.5, when the ODCs occur at inputs, the approximate output can be

incorrect as it does not affect Q. SALSA uses this information to aid in approximating

the circuit, and by virtue of their special significance these ODCs are termed as

Approximation Don’t Cares (ADCs) of the circuit.

The question that remains is how we could make use of the ADCs to approximate

the circuit. We know that External Don’t Cares (EXDCs) of an output in a circuit are

the set of primary input combinations for which that primary output is a don’t care.

In our case, if the approximate circuit block is looked at in isolation, the ADCs for a

given bit of POapprox could be considered as the external don’t cares for that output.

Therefore, by setting these input combinations (ADCs) as EXDCs of an output in

the approximate circuit, we could legally simplify or (in our context) approximate

the cone of logic generating that output using standard don’t care based synthesis

techniques [28–30].

Selection of high effort ADCs

The approach described above can be utilized to approximate any circuit for which

the quality metric is entirely expressed in form of a logic circuit within the Q-function

of the QCC. This is possible in the case of quality metrics, such as maximum error

magnitude and relative error, in which only the quantity or magnitude of error at the

circuit output is constrained. However, as described in Section 2.2, the quality metric

25

may also additionally bound the number of inputs for which the circuit can produce

an erroneous output. For example, consider the error probability metric. In this case,

quality is defined as the fraction of inputs that result in an incorrect output i.e. the

actual magnitude of error at the output is unconstrained but rather the number of

inputs that can produce an error is bounded. Thus in cases where quality is defined

over many inputs to the circuit, it cannot be completely expressed as a logic circuit in

the QCC. In order to be able to handle such quality metrics in SALSA, we adopt the

following approach. We make a key observation that only the input vectors the are

defined as an ADC can result in an incorrect output after the circuit is approximated.

Therefore, bounding the number of ADCs specified for a given output automatically

constrains the fraction of inputs for which the output can be incorrect. Hence, based

on the probability of error, a subset of vectors is chosen from the ADC set previously

computed and used as EXDCs during circuit simplification.

The question that remains to be answered is that which vectors from the ADC

set should be chosen to be designated as EXDCs. For this purpose, we define effort

of a input vector as the number of wires in the circuit that the input sets to a non-

controlling value. The tenet behind this definition is that, if a given input vector sets

most wires in the circuit to a non-controlling value, then it potentially uses a large

amount of logic in the circuit for generating the output. Hence selecting such high

effort input vectors as ADCs has the potential to result in better logic simplification.

Note that in the case of the error probability metric, since no bound on the magnitude

of error is imposed, the Q-function is unity. This means that every input vector is

an ADC and a subset from entire input space could to be chosen for approximation.

However, for other composite metrics where both the magnitude and probability of

error at the output is bounded, the search space for high effort vectors is limited to

the ADC set computed using QCC.

26

Iterative simplification

In the procedure described above, it is important to note that when one output is

being approximated, the functionality of all other outputs remain unaffected. This is

because the ADCs, by definition, are specific to a given output bit and do not influence

other outputs in any way. However, there could be avenues for approximation in the

cones of logic of other output bits and hence this process of approximation should be

repeated for all output bits. After each approximation, the QCC setup is updated

with the latest available approximate circuit before computing the ADCs for the next

output bit.

In summary, the key steps in SALSA are as follows:

• Form QCC and compute ADCs at an output bit of the approximate circuit.

• If the probability of error is additionally constrained, a subset of vectors from

the computed set of ADCs is accordingly selected.

• Set these ADCs as EXDCs for that output bit and simplify the circuit under

this condition.

• Update the QCC with the latest available approximate circuit and iterate this

process over all output bits.

The above procedure ensures that the approximations carried out never violate the

specified error bounds. Also, the intermediate circuit produced after each iteration is

legal and synthesis can be stopped at any point to yield a valid approximate circuit.

As shown in Section 4, these steps can be realized using conventional logic synthesis

tools, which vastly increases the scope of optimization techniques used in ALS.

27

2.3.2 SALSA Methodology

This section describes the methodology that we use to realize the approach pro-

posed in the previous section. The potential challenges in such an implementation

and the speedup techniques and heuristics to overcome the same are also described.

Fig. 2.6.: Illustration: 2-bit multiplier circuit

To illustrate the various steps in the methodology, we will use a multiplier circuit

and the Q-function (relative error) circuit shown in Figures 2.6 and 2.7 respectively.

The primary inputs to the multiplier 2-bit signals ‘A’,‘B’ and the 4-bit original and

approximate outputs are denoted as ‘So’ and ‘Sa’ in the Q-function.

Algorithm 1 provides an overview of the steps involved in SALSA. For each output

bit, SALSA computes the ADCs and uses them to approximate the logic cone that

generates it. The process of finding the ADCs for a given output bit is carried out

in two steps. First, the ADCs are computed as a function of other inputs to the

Q-function in the QCC i.e. POorig and POapprox with the exception of the output bit

being processed. Next, using the original and the approximate circuits, these ADCs

28

Fig. 2.7.: Illustration: Quality function

are expressed in terms of the primary inputs. After this, the computed ADCs are

specified as EXDCs for the output bit under consideration and used to simplify its

logic. The approximate circuit thus obtained is retained as the starting point for

subsequent iterations. We describe below how these steps can be implemented using

off-the-shelf logic synthesis tools.

SALSA algorithm

STEP 1: In order to compute the ADCs of a primary output bit POi of the

approximate circuit, we should perform ODC analysis at that node in the QCC.

Finding ODCs of an internal node in a circuit, as shown in Figure 2.8, involves co-

29

factoring the output with respect to the internal node and finding the set of input

combinations for which both the positive and negative co-factors are equal. The

resultant circuit contains a description of the ADCs of POi in terms of all outputs in

POorig and all outputs in POapprox except POi. We call this the ADC-PO circuit.

Algorithm 1 SALSA

Inputs: O : Original Circuit

Q : Quality Function

Output : A : Approximate Circuit

Begin

Initialize A ⇐ O

for each POi ǫ POapprox do

STEP 1: Obtain ADCs as f(POorig ∪ POapprox - POi)

ADC POi ⇐ Get ADC PO (Q, POi)

STEP 2: Obtain ADCs as f(PI)

ADC PIi ⇐ Get ADC (O, A, ADC POi)

STEP 3: Select high effort ADCs

ADCi ⇐ Sel ADC (ADC PIi, A, ADCi)

STEP 4: Approximate POi using ADCs

Ai ⇐ Approx PO (A, POi, ADCi)

Update A ⇐ Ai

end for

Return A

End

In this step, we have essentially extracted the information about the sensitivity of

Q to the primary output of interest. This step is performed only with the Q-function

and does not involve the original circuit in any way. Once we have extracted this

information, the Q-function is not required any further in the algorithm. For the

Q-function shown in Figure 2.7, when approximating output bit Sa[1], the ADC-PO

30

circuit looks as shown in Figure 2.9. Note that the ADC-PO circuit is independent

of Sa[1] and is a function of all original and other approximate output bits.

Fig. 2.8.: STEP1 - Obtaining ADCs of a primary output in terms of other original

and approximate circuit outputs

STEP 2: After STEP 1, the ADCs for POi are available as a function of other

primary outputs in the ADC-PO circuit. In this step, we express the ADCs in terms of

primary inputs of the circuit. As shown in Figure 2.10, we connect the approximate

and original circuits to the ADC-PO circuit obtained in the previous step. This

concatenated circuit is simplified and the required ADCs for POi are thus obtained.

For our example, assume that the other output bits have not yet been approx-

imated. In that case, the original circuit is same as the approximate circuit. By

concatenating it to the ADC-PO circuit shown in Figure 2.9, the ADCs of S[1] in

terms of primary inputs are obtained as shown in Figure 2.11.

STEP 3: Once the ADCs are computed in terms of primary inputs, if a bound on

error probability is additionally provided, the high effort ADCs need to be selected

for circuit approximation. If the number of ADCs are less than the target error

probability, than the entire set is used. If not, the circuit is simulated for the ADC

set and the value of at the internal nodes are recorded. The effort value for the ADCs

are then calculated based on the number of wires that are set to non-controlling value.

31

Fig. 2.9.: Illustration: ADC-PO circuit when approximating output bit S[1]

Fig. 2.10.: STEP2 - Obtaining ADCs of a primary output in terms of primary inputs

The ADCs are sorted based on the effort and the high effort ADCs are selected such

that the error probability is satisfied. If the number of ADCs are large, then an

exhaustive simulation is infeasible. For example, in case of error probability metric,

the ADC set is comprised by the entire input space. In such a scenario, we find effort

of ADC cubes rather than individual ADCs. The size of the cube is decided based

32

Fig. 2.11.: Illustration: ADC circuit for output S[1]

on the number of primary inputs in the circuit. By doing this we lose optimality in

computing the exact ADC set but it largely contributes to scalability of the algorithm.

STEP 4: Given a set of ADCs for an output bit, approximating its logic can

be done in a fairly straight forward manner. The computed ADCs are specified as

External Don’t Cares in the appropriate format required by the logic synthesis tool

and conventional don’t care based optimization techniques are invoked to simplify

the logic cone that generates the output bit. The resultant circuit is used as the

approximate circuit in the next iteration.

Using the ADCs obtained in Figure 2.11 , the output bit S[1] is simplified and the

corresponding approximate circuit is shown in Figure 2.12. This circuit should now

be used in STEP 2 to calculate the ADCs of the successive output bit.

Thus, SALSA efficiently implements the approach described in Section 3 by re-

formulating the ALS problem using traditional logic synthesis operations. In each

iteration of the algorithm, the synthesis tool is called thrice — once to perform each

of the three steps in the algorithm.

33

Fig. 2.12.: Illustration: Approximate circuit with output S[1] simplified

2.3.3 Speedup techniques and other heuristics

We next describe some optimizations that could be used to enhance the scalability

of the SALSA methodology. The challenges to the above methodology could stem

from two different sources - the quality function and the original circuit. If the Q-

function is complex, the run-times of steps 1 and 2 of the algorithm are impacted.

Also, if the original circuit has a large number of inputs or outputs, then forming

the ADCs in step 2 could be a time consuming process. Speed up techniques and

heuristics to overcome these challenges are discussed below.

34

Equating un-approximated output bits

In SALSA, each iteration of the algorithm approximates the logic cone that gen-

erates one output bit. The hitherto unprocessed output bits should have their logic

to be same as the original circuit. Therefore, while calculating the ADCs, we need

not specify the entire approximate circuit, but only the logic cones that generate the

output bits that have been previously approximated.

��������

������

��	�
���

������

�

��

��
��

��
��

�������

��������

�������������

����

�������

�������

�������

�������

�����������

����

������
������� ������!�

Fig. 2.13.: Equating un-approximated output bits

Using this observation, as shown in Figure 2.13, the unprocessed output bits of

the approximate circuit are set equal to the corresponding output bits of the original

circuit. This vastly simplifies the logic for ADC generation (STEP 1 and STEP 2),

especially for initial output bits processed, and does not result in loss of any optimality

in the approximations. In our example, since S[1] is the first bit to be approximated,

all output bits in the approximate circuit are same as the original circuit. Hence the

ADC-PO circuit in Figure 2.9 can be simplified to Figure 2.14. Notice that Figure 2.14

is only a function of original outputs. We obtain the same ADC set as in Figure 2.11

using this ADC-PO circuit.

35

Fig. 2.14.: Illustration: ADC-PO circuit with un-approximated output bits equated

Quality function decomposition

When the number of outputs present in the original circuit is large, the complex-

ity of the Q-function eventually grows and STEP 1 and STEP 2 of the algorithm

consume significant time. A divide-and-conquer heuristic, shown in Figure 2.15,

could be used to tackle this bottleneck. The idea is to decompose the Q-function

into stages, with each stage only considering a disjoint subset of outputs from the

original circuit. Each stage thus approximates only its subset of output bits and its

output is used as the initial approximate circuit in the next stage. For the first stage,

the functionality of the Q-function does not change because none of the output bits

have been approximated. However, to preserve quality at the end of each stage, the

subsequent stages are designed considering the worst case error that could occur in

the previously approximated output bits.

The method used to decompose the Q-functions used in this work are presented

below. First, consider the error magnitude metric for a circuit with N output bits.

The Q-function is given by Equation 2.9.

Q =
(

|POorig[N − 1 : 0]− POapprox[N − 1 : 0]| ≤ K
)

? 1 : 0 (2.9)

36

����		����	�

����������

�

�����	���

����	���

�

���������

����	���

����������� �����������

�����	����

����	���

�

������

����	�����

�����	����

����	���

�

������

����	�����

�����	����

����	���

����		����	�

����������

�

����		����	�

����������

�

Fig. 2.15.: Quality function decomposition

The aim is to decompose this Q-function into two disjoint stages that use the lower

and upper N/2 output bits respectively. The first stage is functionally similar to

Equation 2.9 but uses only the lower N/2 output bits as shown in Equation 2.10.

Q =
(

|POorig[N/2− 1 : 0]− POapprox[N/2− 1 : 0]| ≤ K
)

? 1 : 0 (2.10)

The first N/2 bits can be approximated using this as the Q-function. Now for approx-

imating the next N/2 bits, the second stage is constructed by conservatively assuming

the maximum error that could occur in the lower N/2 bits. The Q-function for the

second stage is given by Equation 2.11.

Q =
(

|POorig[N − 1 : N/2]− POapprox[N − 1 : N/2]| ≤ K − 2N/2 − 1
)

? 1 : 0

(2.11)

This procedure can be extended to further break the Q-function into as many stages

as desired.

The relative error metric given in Equation 2.2 could similarly be decomposed

into disjoint stages. For an N-bit circuit, to decompose the Q-function into K stages,

the ith stage will be given together by Equations 2.12a, 2.12b and 2.12c.

Q1 =

(

POapprox[
Ni
K

− 1 : N(i−1)
K

] + 1

POorig[
Ni
K

− 1 : N(i−1)
K

]
≤ 1 +K

)

? 1 : 0 (2.12a)

Q2 =

(

POapprox[
Ni
K

− 1 : N(i−1)
K

]

POorig[
Ni
K

− 1 : N(i−1)
K

] + 1
≥ 1−K

)

? 1 : 0 (2.12b)

37

Q = Q1 & Q2 (2.12c)

Equation 2.12a satisfies the upper bound of Equation 2.2 by propagating its worst

case when the value of numerator is maximized because of errors in previous stages

and the denominator remains unaffected by any error. Equation 2.12b propagates

worst case for the lower bound of Equation 2.2 which occurs when the denominator

value is maximized while the the numerator remains unaffected. The Q-bit is the

logical AND of both lower and upper bounds as given in Equation 2.12c.

This divide and conquer heuristic is very powerful because it allows SALSA to

handle Q-functions of arbitrary sizes by suitably decomposing them into disjoint

stages. Nevertheless, we sacrifice some approximation capability in using this heuristic

as the maximum error is propagated across Q-blocks in adjacent stages.

Exploiting input-output dependencies

The previous speedup techniques were targeted at addressing the challenge of the

Q-function being complex or having a large number of inputs. However, challenges

may arise in finding the ADCs when the circuit to be approximated itself is large.

We present two techniques to directly address this issue.

We know that, for a given output bit, not all primary inputs lie in its cone of logic.

Hence, when finding the ADCs (in STEP 2) for a given output bit, we just need to

define the circuit in terms of primary inputs in its transitive fan-in and generate the

ADCs only in terms of these inputs. This is accomplished in Figure 2.16 (dotted

lines), where the independent primary inputs are removed from the original and

approximate circuit blocks. It is important to note that, this technique is exploited

when generating the ADCs (STEP 2) and not when simplifying the circuit using

these ADCs (STEP 3). This is because we would like to preserve the logic sharing

between the output bits. In the implementation, we use the IO dependencies for ADC

generation but do not extract cones of logic during logic simplification.

38

Fig. 2.16.: Exploiting I/O dependencies and calculating subset of ADCs

Calculating subset of ADCs

Although the above technique is efficient in many cases, it is not effective when

a primary output depends on most of the primary inputs. This scenario happens

in the output MSB bits of arithmetic circuits, where the output depends on all less

significant input bits. To tackle this, we resort to computing only a subset of the ADCs

and use them for circuit approximation. As shown in Figure 2.16, in STEP2, we set

certain dependent inputs in the cone of logic of an output to zero and then calculate

its ADCs using the usual procedure. In the calculated ADC set, the condition for

the dependent inputs that were set to zero is appropriately added before using them

for circuit approximation. The above techniques allow us to use SALSA on larger

circuits and more complex Q-functions.

2.3.4 Experimental Methodology

In order to demonstrate the proposed approach, we tested it on a wide range of

circuits for three different quality metrics descirbed in Section 2.2 viz. maximum error

magnitude (Equation 2.1), relative error (Equation 2.2) and error probability (Equa-

tion 2.5). Further, to demonstrate generality, the methodology was implemented

using two different off-the-shelf synthesis tools, namely SIS [33] and Synopsys Design

Compiler [34].

39

Table 2.1.: Circuits used in experiments to evaluate SALSA

Name Delay (ns) P orig Gate I/O

Width Count

RCA Ripple Carry Adder 32 1012 64/33

KSA Kogge Stone Adder 32 1361 64/33

CLA Carry Look-ahead Adder 32 926 64/33

MUL Array Multiplier 8 1055 16/16

WTM Wallace Tree Multiplier 8 1132 16/16

MAC Multiply and Accumulate 8 1910 48/33

with 32-bit accumulator

SAD
Sum of Absolute Differences

8
1241 48/33

(Used in Motion Estimation)

EU DIST
2D-Euclidean Distance Unit

8
1668 32/16

(sans square root)

BUT
Butterfly structure

8
496 16/18

(Used in FFT computation)

FIR 4-tap FIR filter 8 1719 32/16

IIR 4-tap IIR filter 8 2135 56/16

DCT
8-input Discrete Cosine

8
10817 64/72

Transform Block

The circuits used in the experiments, listed in Table 2.1, range from simple arith-

metic circuits to complex datapaths. The complexity of the circuits in terms of

number of inputs, outputs, and gate count is also listed. The circuits were mapped

to the IBM 45nm technology library using Design Compiler and evaluated for area,

power and delay using Synopsys Power Compiler.

40

2.3.5 Results

In this section, we present the results of experiments that evaluate the approximate

circuits generated by SALSA. We begin by presenting the area and power savings ob-

tained at iso-delay for the benchmarks listed in Table 2.1 across various error metrics.

We demonstrate the effectiveness of SALSA approximations across all design points

of the circuit by comparing the original and approximate circuit implementations for

the entire delay range. We illustrate the scalability of SALSA by synthesizing cir-

cuits of various bit widths and show that the approximations scale across the same.

We also perform a detailed quality function exploration to understand the nature of

approximations carried out by SALSA. Finally, we show for error significance metric

that SALSA approximated circuits outperform circuits approximated by output LSB

truncation for all target error values.

Area and power benefits for various error metrics

Maximum error magnitude

Figure 2.17 shows the relative area (ratio of approximate circuit to original circuit)

vs. maximum error magnitude and relative power (ratio of approximate to original)

vs. maximum error magnitude plots for the benchmark circuits. The maximum error

magnitude is shown as a percentage of the maximum output value because the circuits

possess different numbers of output bits and thus errors of the same magnitude have

varying significance. The dynamic ranges of feasible errors are accordingly different,

prompting the use of 2 different error ranges in the graphs. For 32-bit circuits like

adders, MAC, and SAD, the lower X axis scale is used while other circuits, whose

individual outputs have fewer bits (9 for DCT, BUT and 16 for the rest), follow the

upper X axis. From the results, we see an exponential decrease (Note: X axis is in

log scale) in area and power initially, which then commences to taper out as we move

towards larger error values. This is explained by the fact that, in any arithmetic

41

circuit, adjacent output bits have an exponential difference in their significance. So,

for the same increase in maximum error magnitude, the incremental potential for

approximation is less as the actual value of the error increases. Also, for a given

maximum error magnitude, the cone of logic generating the LSB bits, that have

exponentially lower significance compared to their MSB counterparts, have a large set

of ADCs and hence have a better chance of being approximated. From Figure 2.17,

we see that SALSA yields area savings in the range of 1.1X-1.85X for tight error

constraints (less than 1%) and up to 4.75X for relaxed error constraints (upto 20%).

Power benefits range from 1.15X-1.75X and 1.3X-5.25X for similar tight and relaxed

error constraints respectively.

Relative error

The next set of graphs, in Figure 2.18, show the results obtained for the relative

error metric. The relative error is defined as the ratio of the approximate output to the

original output. Similar trends with savings up to 1.7X in area and 1.65X in power are

observed for this metric. We also observed that the ADCs derived by SALSA for the

relative error metric and the maximum error magnitude metric differed significantly.

In case of the relative error metric, for small actual values of output, even a small

change in the logic would prompt the output to deviate by a large percentage relative

to the golden value. Moreover, the ADCs for the LSBs cannot depend on the MSB

inputs. Therefore, we get a comparatively larger ADC set for the MSB output bits.

Error probability

Graphs shown in Figure 2.19 give the area and power reduction obtained by ap-

proximating the benchmark circuits for error probability metric. As seen from Fig-

ure 2.19a, in case of arithmetic circuits, the area and power savings range upto 1.53X

and 1.45X respectively for tight error probabilities upto 5% and upto 2.5X for relaxed

error probabilities. Similarly, for complex data paths shown in Figure 2.19b, the sav-

42

���� �� ���

����

�� �

��"�

��#�

��$�

��%�

��&�

��7�

��

����

�����&� �����#� ������� ����'��

�
��
�

��
��

�

�������������	
����������

���� �� ���

����

����

����

����

����

����

����

����

��7�

��

����

������� ������� ������� ������� ������� �������

�
�
�

��
��
�

�

�������������	
��������

 !��

"#��

!$��

�%$�

&'��

(a) Area and power savings for arithmetic circuits

���� �� ���

��!�

��"�

��#�

��$�

��(�

��)�

��

����

������� ������� ������� �����	� ����
�� ����
	�

�
��

���
�

�

���������������������8�

���� �� ���

����

����

����

����

����

����

��

����

������� ������� ������� �����	� ����
�� ����
	�

�
�
�
�
��
��
�

�

���������������������8�

����

����

� !�"�#�

$ #�

%"&�

""&�

��#�

(b) Area and power savings for complex blocks and complete datapaths

Fig. 2.17.: Results for maximum error magnitude metric

ings in area and power range upto 1.67X and 2.3X for tight and relaxed constraints

respectively.

Area and power comparison across circuit delay range

Functional approximations facilitated by SALSA have the potential to improve

area, power or performance or combinations thereof. Each curve in the graphs pre-

43

'�%�

'���

'���

'���

'� �

(�

(�(�

'� �'� �'� �'� �'� (''�

�
)

�

�!
!(

�

�����
��
)�
����
�
))�)�!!(�

'�%�

'���

'���

'���

'� �

(�

(�(�

'� %'� (''�

�
�
*

)�
!!
(

�

�����
��
)�
����
��))�)�!!(�

 !��

"#��

!$��

�%$�

&'��

(a) Area and power savings of arithmetic circuits

��%�

����

����

����

�� �

��

����

�� %�� ����

�
��

�*
*(

�

&���������������������	��

��

���

���

���

���

���

��

���

�� ��� ����

�
	
�
�
��

�

�

�����������������������	��

��

����

����

� !�

� "�#�!�

$#��

##��

��!�

(b) Area and power savings of functional blocks and datapath modules

Fig. 2.18.: Results for relative error metric

sented in section 6 contains iso-delay points for a given delay of the original circuit.

To conclusively demonstrate the effectiveness of the functional approximation over a

wide range of delay values, we synthesize the approximate and original circuits for the

entire delay range of the original circuit and plot the corresponding Area vs. Delay

and Power vs. Delay curves for various error values.

Figure 2.20 shows the delay sweep plot for a 32-bit Kogge-Stone adder for the

maximum error magnitude quality metric. Figure 2.20a gives the actual area and

44

����

����

����

����

����

��	�

�

�
�

�� ���� ����

�
��
�

��
��

�

�������������	�

����

����

����

����

����

����

��	�

�

�
�

�� ���� ����

�
�

�
��
��
	

�

�������������	�

���

����

����

����

����

(a) Area and power savings for arithmetic circuits

����

����

��%�

����

����

����

��

����

�� ���� ����

�
��
�

��
�	

�

�������������	�

����

����

��%�

����

����

����

��

����

�� ���� ����

�
�

�
��
��
	

�

�������������	�

����

����

��������

	���

���

����

(b) Area and power savings for complex blocks and complete datapaths

Fig. 2.19.: Results for error probability metric

power values while the normalized values are depicted in Figure 2.20b. We could see

that the functionally approximated circuit performs consistently better in area and

power for the entire delay range of the original circuit.

The Kogge-Stone adder is a balanced tree structure that is well optimized for delay

and hence, despite considerable area and power benefits, the scope for reducing circuit

delay is minimal. On the other hand, if we consider a linear structure like the ripple-

carry adder which is optimal in area but not in delay, the approximations result in

breaking carry chains, thereby yielding significant performance benefits. Figure 2.21

45

��

���

����

����

����

�����

����

�����

����� ��� ���� ���� �����

�
��
�

��
�
�
�
	�

�

�

��������	�

��

��������

��
����	�

��
����	�

�������	�

��

���

����

����

����

����

����

����

����

����� ���� ����� ���� �����

�
�
�
�
��
��

	�

�

�

�

��������	�

��

��������

��
����	�

��
����	�

�������	�

(a) Area vs. Delay and Power vs. Delay Trade-off Curves

��

��!�

����

����

����

"�

��"�� ��!� ��!�� ���� �����

�
�
�
�
��
��
�

�

���	
����������

������	��

���������

���������

���������
��

����

����

����

����

��

����� ���� ����� ���� �����

�
��
	

���
��

�

���	
���������

������	��

���������

���������

���������

(b) Normalized Area vs. Delay and Normalized Power vs. Delay Curves

Fig. 2.20.: Delay sweep of original and approximate circuits for a 32-bit kogge stone

adder

shows the delay sweep plot for a 32-bit ripple Carry adder for the same quality metric.

The slack obtained in each implementation is provided in Figure 2.21b. Although

the area savings saturate after a point where structural or sizing optimizations do

not yield any improvement, we see a corresponding rise in the circuit slack. The

approximate circuit could thus be clocked at a higher frequency or alternatively be

subject to voltage scaling (without any timing errors) to instead obtain additional

savings in power. In summary, the above plots illustrate the fact that SALSA offers

a wide scope of approximation across all design points for a given circuit.

46

����

����

����

����

����

����

����

����

����

���� ���� ���� ���� ���� ��	� ��
� ����

�
��

��
µ

m
2
)

--
>

�

��������������

��������

���������

���������

�������

(a) Area vs. Delay Sweep

��

�����

����

�����

����

�����

����

���� ���� ���� ���� ���� ��+� ���� ����

�
�
��

��
�
��

��
�	

�

�����������	�

��������

���������

���������

�������

(b) Circuit Slack vs. Delay Sweep

Fig. 2.21.: Delay sweep of original and approximate circuits for a 32-bit ripple carry

adder

Scaling of SALSA approximations across circuit bit widths

��

����

����

����

����

�����

�����

�����

�����

�����

�����

��� ��� ��� ����

�
	

�

��
µ

m
2
)

--
>

�

�������������

�	�������

����

������

�������

��

����

����

����

����

����

����

��� ��� ��� ����

�
�
�

	�
�µ

m
)

--
>

�

�������������

�	�������

����

������

�������

Fig. 2.22.: Area and power scaling for adders of various bit widths

The graphs shown in Figure 2.22 depict the area and power benefits obtained

across adders of different bit widths (16,32,64,128) for the same maximum error mag-

nitude. The scalability of the proposed approach is demonstrated by the fact that

SALSA is able to consistently achieve benefits for similar circuits with varying bit

widths.

47

Quality function exploration

In order to provide few insights into the nature of approximations performed by

SALSA, we use it to approximate a 3-bit adder and exhaustively simulate the resulting

circuit for all possible input combinations. We choose 4 different error metrics viz.

relative error, uni-directional relative error, error probability and uni-directional error

with error probability. The relative error metric was described earlier, while the uni-

directional percentage error metric has the additional constraint that errors may occur

only in a certain direction (Positive or Negative). In this case, the quality function

was coded such that the approximate circuit can tolerate errors only in the positive

direction (i.e., approximate result could only be greater than golden value). We

choose an error bound of 75% in both cases for illustration. The error probability

metric is the percentage of inputs that can produce a wrong value, which in this case is

chosen to be 15%. The uni-directional error with error probability metric, in addition

to allowing only positive errors, bounds the error probability to 15%. Table 2.2 shows

the results of the simulation performed. Columns A and B in the table are circuit

inputs, while columns So, Sa1 through Sa4 represent outputs corresponding to original

circuit and approximate circuits corresponding to the various quality metrics. From

the table, we can see that the error bounds are never violated in the approximate

circuit. Also in the Sa2 column of the table, corresponding to the uni-directional

error metric, the approximate circuit has errors only in the positive direction. From

the table, we can also observe that the outputs of the approximate circuit tend to

be clustered together based on the available resilience. This clustering of outputs

for adjacent input combinations enhances the scope of approximation because, from

a truth table perspective, adjacent entries have the same value for all output bits

and the resultant function thus has a better chance for being simplified. For the

uni-directional error metric, since we can tolerate only positive errors, there is less

scope of clustering when the actual output is itself large. Accordingly, we could see

48

Table 2.2.: Truth table comparison of original and approximate 3-bit adder for relative

error (Sa1), uni-directional relative error (Sa2), error probability (Sa3) and unidirec-

tional relative error with error probability (Sa4) metrics

A B So Sa1 Sa2 Sa3 Sa4 A B So Sa1 Sa2 Sa3 Sa4

0 0 0 1 1 0 1 4 0 4 5 5 4 4

0 1 1 1 1 1 1 4 1 5 5 5 5 5

0 2 2 1 3 2 3 4 2 6 5 7 6 6

0 3 3 1 3 3 3 4 3 7 5 7 7 7

0 4 4 5 5 4 5 4 4 8 9 9 8 8

0 5 5 5 5 5 5 4 5 9 9 9 9 9

0 6 6 5 7 6 7 4 6 A 9 B A A

0 7 7 5 7 7 7 4 7 B 9 B B B

1 0 1 1 1 1 1 5 0 5 5 5 5 5

1 1 2 1 2 2 2 5 1 6 5 6 6 6

1 2 3 1 3 3 3 5 2 7 5 7 7 7

1 3 4 5 4 4 4 5 3 8 5 8 8 8

1 4 5 5 5 5 5 5 4 9 9 9 9 9

1 5 6 5 6 6 6 5 5 A 9 A A A

1 6 7 5 7 7 7 5 6 B 9 B B B

1 7 8 5 8 8 8 5 7 C D C C C

2 0 2 3 3 2 3 6 0 6 7 7 6 6

2 1 3 3 3 3 3 6 1 7 7 7 7 7

2 2 4 5 5 4 5 6 2 8 5 9 8 8

2 3 5 5 5 5 5 6 3 9 5 9 9 9

2 4 6 7 7 6 7 6 4 A B B A A

2 5 7 7 7 7 7 6 5 B B B B B

2 6 8 5 9 8 9 6 6 C D D C C

2 7 9 5 9 9 9 6 7 D D D D D

3 0 3 3 3 3 3 7 0 7 7 7 7 7

3 1 4 5 4 4 4 7 1 8 5 8 8 8

3 2 5 5 5 5 5 7 2 9 5 9 9 9

3 3 6 5 6 6 6 7 3 A 5 A A A

3 4 7 7 7 7 7 7 4 B B B B B

3 5 8 5 8 8 8 7 5 C D C C C

3 6 9 5 9 9 9 7 6 D D D D D

3 7 A 5 A A A 7 7 E D E E E

minimal clustering towards the end compared to when the actual output values are

small.

49

0
2

4
6

8 0

5

10

0

2

4

6

8

10

12

14

B −−>

A −−>

S
 −

−
>

Approximate

Original

(a) Sa1: Relative error

0

2

4

6

8

0

2

4

6

8
0

5

10

15

B −−>A −−>

S
 −

−
>

Approximate

Original

(b) Sa2: Uni-directional error

(c) Sa3: Error probability

0

2

4

6

8

0

2

4

6

8
0

5

10

15

B −−>A −−>

S
 −

−
>

Approximate

Original

(d) Sa4: Unidirectional error with error probabil-

ity

Fig. 2.23.: Surface plots of exhaustive simulation on approximate circuits synthesized

using various quality metrics

To visualize the approximate outputs better, Figure 2.23 shows the surface plot of

the original and approximate circuit outputs for each error metric. In Figure 2.23a,

the approximate circuit output deviates from the original in both directions while

the unidirectional error (Figure 2.23b) restricts the approximate output to be always

above the original. Note that the case when original output is zero is a don’t care

50

in the Q-function (divide by zero) and we see that SALSA has considered this and

set the approximate output to ‘1’ because it leads to an optimized implementation.

The error probability can be visualized from the percentage of surface area where

the original and approximate output planes are different. The number of spikes in

Figure 2.23c corresponds to the circuit error probability which is 12.5%. Figure 2.23b,

corresponding to Sa2, has 16 spikes and hence an error probability of 25%. But for Sa4

this needs to be bounded to 15%. From the ADC set computed for Sa2, the high effort

ADCs are selected and used. This bounds the error probability to the desired value as

seen in Figure 2.23d. A variety of quality functions tailored suitably to the needs of

application can thus be used in SALSA and the procedure for synthesis, while being

independent of the error metric, efficiently exploits this flexibility in approximating

the circuit.

Comparison with output LSB truncation

One direct way of constructing approximate circuits for maximum error magnitude

metric is output bit truncation, in which the LSB bits of the output that carry less

significance than the target error threshold can be pruned without violating quality

constraints. Figures 2.24 and 2.25 show the area and power benefits obtained by

��

�� �

����

����

�� �

��!�

����

����

����

����

��

���� �� ��� ����

�
��

�
��
�

�

�������������	��
�����

�	�
	�������	��������

������

��

����

����

����

����

����

����

����

����

����

��

���� �� ��� ����

�
�
�

�
��

�

�

�������������	��
�����

�	�
	�������	��������

������

Fig. 2.24.: Area and power comparison of SALSA with output LSB truncation for

kogge-stone Adder

51

��

����

����

����

����

��

����

������ ���� ���

�
��
�

��
��

�

�������	
�����������	
�����

��������������	
���	�

������

��

����

����

����

����

��

����

������ ����� ���� �� ��� ����

�
�
�
��
��
�

�

��������������������	
�����

��������������	
���	�

������

Fig. 2.25.: Area and power comparison of SALSA with output LSB truncation for

array multiplier

output LSB truncation for a kogge-stone adder and array multiplier circuit. We

see in case of output LSB truncation that as the error constraints are relaxed the

resultant increase in savings are discretized by the number of output bits present

in the circuit. The discrete steps grow exponentially in length (Note: X axis is in

log scale) corresponding to the difference in significance of adjacent output bits and

no additional approximation can be done for any intermediate values of errors. The

graphs also depict the savings obtained by SALSA for a range of error significance

constraints. We could observe that the circuits synthesized by SALSA are superior

compared to output LSB truncation. This proves the ability of SALSA to make

use of the flexibility offered by the error constraints during synthesis. It is worth

mentioning that output LSB truncation is not possible for other metrics like relative

error and error probability, while SALSA, in addition to being better, is a more

general procedure for approximate logic synthesis.

52

2.4 SASIMI: A Unified Circuit Transformation for Approximate and

Quality Configurable Circuit Design

This section describes the second approach, called Substitute-And-Simplify (SASIMI),

which is a unified circuit transformation for the design of both approximate and qual-

ity configurable circuits. The key insight behind SASIMI is to identify near-identical

signal pairs, or signal pairs that assume the same value with high probability, and

substitute one for the other. Such substitutions may introduce functional approxi-

mations — when an input causes the substituted signal to assume an incorrect value,

and also causes the incorrect value to propagate to a circuit output. Naturally, it is

important to restrict the substitutions chosen such that the impact on output quality

is not excessive. On the other hand, well-chosen substitutions can lead to the simpli-

fication of the circuit by eliminating some of the logic that generates the substituted

signal, while also downsizing logic in its transitive fan-out (since the substitution

may introduce timing slack). Approximate circuits are automatically synthesized by

iterating the substitute-and-simplify steps in a quality-constrained loop.

We extend SASIMI to the synthesis of quality configurable circuits, by augment-

ing the approximate circuit to detect when errors are incurred at runtime, and uti-

lizing an additional clock cycle to re-compute the logic in the transitive fanout of

the substituted signal, thereby “correcting” the error. The error correction may be

performed universally or selectively, or completely skipped based on the desired ac-

curacy level. While the accurate mode of operation is reminiscent of variable-latency

circuits [35–38], we note that our design and synthesis approach differ significantly

as the quality constraints imposed in the other approximate modes are considered.

In contrast, traditional variable-latency design methodologies are oblivious to the

degradation in output quality, since errors are always corrected.

In summary, the key contributions of SASIMI are as follows:

53

• SASIMI introduces a novel approximate circuit transformation, Substitute-and-

Simplify, that judiciously employs signal substitutions to reduce the circuit’s

power consumption while satisfying the user-specified quality constraints.

• It is the first approach to automatically synthesize quality configurable circuits.

SASIMI achieves quality configurable execution by selectively utilizing an ad-

ditional clock cycle to correct errors that may violate the desired quality.

SASIMI is prototyped and evaluated across a wide range of arithmetic units,

data paths and ISCAS85 benchmarks, demonstrating significant benefits in power

and area. Further, case studies of using the circuits generated by SASIMI in two

recognition applications — Support vector machines (SVM) and K-Nearest Neighbor

(k-NN) classification – illustrate the utility of the proposed techniques.

2.4.1 SASIMI: Design Approach

Figure 2.26 illustrates the basic approach adopted in SASIMI. The key idea is

to identify pairs of signals in the circuit that are similar to each other in their logic

functionality and substitute one signal in place of the other, thereby functionally ap-

proximating the circuit. The signal that is being replaced is called the target signal

(TS) and the signal substituting TS is termed the substitute signal (SS). The candi-

dates for SS can be logic zero, logic one and other signals (and their complements) in

the circuit. If chosen judiciously, substitutions have the ability to bring about circuit

simplifications (detailed below) that yield significant savings in area and power. For

approximate circuit design, the substitute-and-simplify steps are performed succes-

sively until the approximate circuit reaches the target error constraint.

The trade-offs and desired criteria in choosing the TS-SS substitution pair are

shown in Figure 2.27. When the target signal gets substituted, the gates that are

exclusive to the cone of logic that generates TS can be deleted. The logic in the

transitive fan-out of TS, whose timing requirements are constrained by TS, is poten-

tially downsized since the substitution with SS introduces timing slack. Further, the

54

�������������������

��������

������

������ ���������

�������

�����

������ ��������

�	�!�		��� �"����� �#�

�	�!�$		� �"������ �%��

		��
�
��

�
�
��

��� ���

������ ����

������

�������	�������

��	
��

����������������

	�����������

	�������		
�

������������

�����
�

�
�
��

�
�
��

���

Fig. 2.26.: Approximate circuit design using SASIMI

transitive fan-ins of TS that fan-out to other logic cones in the circuit can be sized

independent of TS. Thus, in choosing TS, both the direct effect of logic elimination

and the indirect impact of logic downsizing should be considered. Also, signals that

fan-out to outputs that cannot tolerate errors, or signals that cause unacceptable

degradation in output quality, are undesirable choices for TS.

Adverse Favorable

Logic
Deletion

Logic
Downsizing

Introduces
Errors

�  !
�#���������
�
������

�
����#
���
�#���

������

�  Conservative estimate:

Errors at internal

signals need not

propagate to output

�  ��������	�
��	���������

����������������	�����	������

�  ����������	���	����

��������������������������

	�������	�

�  ������������������	�

��	�
��	���������

�������

Fig. 2.27.: Criteria for selecting substitution candidates

In choosing the substitute signal, the potential error caused by the substitution

should be considered. The error introduced can be inferred using the signal probability

of the difference signal (PDIFF), which is the XOR of TS and SS. Since each signal

55

and its complement are SS candidates, the ones with least probability product -

PDIFF ∗ (1 − PDIFF) - of being different from TS is desired. However, it is worth

noting that an error at TS need not be sensitized at the primary outputs and hence

the actual circuit error has to be separately estimated. Further, to facilitate logic

downsizing, substitute signals that introduce as larger slack at TS are desirable. We

also impose a constraint that substitutions should not cause combinational cycles in

the circuit.

2.4.2 Quality Configurable circuit design using SASIMI

������

���

��

�

������ ���������

	���

������	���

��

�

��

	��

��������

��� �����

	��

������

��������

����������

	�������

��

������	���

������	���

������

����������

Fig. 2.28.: Quality configurable circuit design using SASIMI

The above approach can be directly applied to the synthesis of quality configurable

circuits with multiple quality modes. Without loss of generality, the approach is

explained considering two quality modes - the accurate mode and the approximate

mode. The key idea is to make the quality configurable circuit latency elastic and

“recover” from errors caused due to approximations when the circuit is in the accurate

mode. As illustrated in Figure 2.28, substitutions are performed in the circuit but the

logic generating TS is retained and the difference between TS and SS is monitored.

56

In the accurate mode, the circuit operates in a single cycle if TS and SS take the

same value. Otherwise, an additional cycle is provided in which the correct result is

re-computed from the point of substitution. In the approximate mode, since the error

caused by the substitution is tolerable, any difference between TS and SS is ignored

and the circuit always operates in a single cycle. Thus, based on the quality mode, the

circuit selectively recovers from errors caused by substitutions that are intolerable. As

shown in Figure 2.28, additional control inputs Q to the circuit indicate the desired

quality mode.

Realizing quality configurable operation requires additional circuits for selective

substitution, quality selection and clock extension, which are shown in Figure 2.29.

The corresponding timing diagram illustrating single cycle and two cycle operations

is given in Figure 2.30. The substitution circuit detects the difference between TS

and SS, and allows the clock extension circuit to choose which of these signals is fed

to downstream logic. At the start of every operation, the SSi signals are chosen by

default and the difference (DIFFi) from all substitutions are accumulated (DSacc).

The quality selection circuit uses the accumulated difference signal (DSacc) and the

quality control bits (Q) to determine the need for a second clock cycle. This is used

along with input quality indicator (Q) bits (Figure 2.30: Cycles 2 and 4) in the quality

selection logic to determine the need for a second clock cycle. If required, the clock

extension circuit then gates the clock for a cycle and (Figure 2.30: Cycle 2) also sets

the EFF flip-flop so that all substitution circuits select the corresponding TSi signals

in the second cycle, thereby correcting the error.

For correct operation of quality configurable circuits, the following timing con-

straints have to be satisfied. First, to ensure completion of single cycle operations,

Equation 2.13a constrains the delay of paths from inputs to outputs through SSi.

The terms Tcq(IFF) and Tsp(OFF) refer to C-Q delay and setup times of input and

output FFs, respectively. Equation 2.13b and 2.13c ensure that the difference in

substitutions are detected and the signals for EFF update and clock extension settle

57

��������

	���

����
����

������

������	
��������	�����
���� ������

����������	�����
����

����

��

��

��
������

��������

������

������������
��	�����
����

���	������
��	��

����

Fig. 2.29.: Selective substitution, quality selection and clock extension circuits

within the clock period. Finally, Equation 2.13d requires all paths originating from

EFF to evaluate within the clock period, thereby ensuring two cycle operation.

Tcq (IFF) + Tmax (I → SSi → O) + Tsp (OFF) ≤ Tclk (2.13a)

Tcq (IFF) + Tmax (I → TSi → STALL) + Tsp (EFF) ≤ Tclk (2.13b)

Tclk tr + Tcq (IFF) + Tmax (I → TSi → STALL) ≤ Tclk (2.13c)

Tcq (EFF) + Tmax (EFF → O) + Tsp (OFF) ≤ Tclk (2.13d)

Note that clock skew is ignored in the above constraints for ease of explanation, but

can be considered and addressed using conventional techniques.

The trade-offs involved in quality configurable synthesis are similar to approximate

synthesis with one notable difference - since no logic is deleted, the potential for logic

downsizing is critical. As shown in Figure 2.28, both the transitive fan-out and the

independent logic of TS can be downsized as the timing constraint is relaxed at that

point. However, additional area and power is consumed by the substitution, quality

selection and clock extension circuits. Also, the occasional need for additional clock

cycles in the accurate mode impacts performance. Our experiments demonstrate

that, despite these overheads, by choosing proper substitution candidates, the energy

58

����

������

������

	�
����

���

������� ������� ������� �������

��������������

�����
����

����������������

�����������

�����
����

�����������������

����

����

��������������

�����
����

��������������� �

���!����

"##�

�� ���$��
��%���� �����&�%�
��%����

'������

�&
��(����

Fig. 2.30.: Timing diagram showing signal transitions in accurate and approximate

modes

consumed is lowered even in the accurate mode. The energy savings are larger in the

approximate mode, with no impact on performance. If the switch between quality

modes is coarse grained, then the clock extension circuit can be power gated in the

approximate mode, leading to additional savings in power/energy. Note that the

actual error in the approximate mode is evaluated at the circuit outputs as before.

The error indicator output, shown in Figure 2.28, is conservative since the difference

in TS and SS may not be sensitized to the circuit’s output.

In cases where multiple approximate modes exist, the substitutions are grouped

such that an additional cycle is provided only to selected substitutions that cause

intolerable errors. Thus from exclusive single cycle operation, the quality configurable

59

circuit progressively recovers from more and more errors (or substitutions) as the

quality constraints are tightened.

2.4.3 SASIMI Methodology

This section details the automation of the proposed approach for approximate and

quality configurable circuit synthesis.

Algorithm 2 Pseudo-code for SASIMI-Approximate

Input: Original Circuit: Cktorig, Target Error: ERR

Output: Approximate Circuit: Cktapprox

1: Begin

2: Initialize: NewCktapprox = Cktorig

3: Approximate Circuit Error: ACE = 0

4: while ACE ≤ ERR do

5: Cktapprox = NewCktapprox

6: <TS,SS> = get substitution candidate(Cktapprox)

7: NewCktapprox = substitute TS=SS in Cktapprox

8: Simplify (NewCktapprox)

9: ACE = compute error (Cktorig, NewCktapprox)

10: end while

11: return Cktapprox

12: End

Algorithm 2 describes the procedure for approximate circuit synthesis. The inputs

to the algorithm are the original circuit (Cktorig) and the target error acceptable

in its approximate implementation (ERR). The algorithm is iterative (lines 4-10)

and performs successive substitutions until the imposed target error constraints are

violated. In each iteration, the following steps are carried out: (i) the best candidate

signal pair for substitution is identified (line 6), (ii) the substitution is performed (line

60

7) and the circuit is simplified (line 8), and (iii) the error in the approximate circuit

is estimated (line 9). The algorithm proceeds to the next iteration if the approximate

circuit error is less than the specified target error constraint (line 4). If not, the last

legal approximate circuit is produced as the output (line 11).

The procedure used in the identification of candidate signal pairs for substitution is

detailed in Algorithm 3. For each signal (S) in the given circuit, the following metrics

are computed in lines 6-10. S.TFIind (line 6) calculates the size of the independent

logic that can be removed if S is substituted. This gives the measure of the logic

deletion potential of S. S.TFOcrit (line 8) is the size of the transitive fan-out of S,

whose arrival times are constrained by it. This can be evaluated by setting the arrival

time at S to be zero and recomputing the arrival times of its transitive fan-outs and

identifying the gates whose arrival times have been relaxed. This, combined with the

actual arrival time of S (maximum slack that can be introduced) gives the maximum

potential for logic downsizing of S. A weighted sum of the normalized deletion and

downsizing potentials is used to compute the signal score (S.Score) in line 10. The

S.Sens field (line 9) indicates if the signal fans-out to an output that cannot tolerate

errors, in which case the S.Score is made zero. Note that all the above fields can

be computed efficiently in a single topological and reverse topological traversal of the

circuit. The signals within a top fraction of the maximum score are designated as

target signal TS candidates (TScandidates).

Using the set TScandidates, the best substitution pair is identified by lines 15-

25 in Algorithm 3. For each signal in TScandidates and each legitimate substitute

signal (SS) candidate, the substitution score (SUB.Score) is computed in line 19.

SUB.Score is similar to the signal score, except that the estimates of logic deleted

and downsizing possible are refined. Further, the potential error introduced by the

substitution (Pdiff) is also taken into account. Using SUB.Score as the metric, the

best substitution pair is identified. It is worth noting that the computed SUB.Score

can be reused in the next iteration, if both TS and SS are unaffected during the

simplify step, greatly reducing the runtime of Algorithm 3. The parameter α used to

61

Algorithm 3 Pseudo-code to obtain substitution candidate

Input: Circuit: Ckt

Output: Target-Substitute signal pair: TSbest, SSbest

1: Begin

2: Read Ckt and sort signals in topological order

3: A = Area of the circuit

4: D = Delay of circuit

5: for each S: Signals ∈ Ckt do

6: S.TFIind = Independent logic size in Tr.fan-in of S

7: S.AT = Arrival time of S

8: S.TFOcrit = Size of Tr.fan-out made critical by S

9: S.Sens = 0 if S fans out to a sensitive output; else 1

10: S.Score = S.Sens ∗
[

α(S.TFIind

A
) + (1− α)(S.AT

D
)(S.TFOcrit

A
)
]

11: end for

12: TS max score = max(S.Score) ∀S ∈ Ckt

13: TScandidates = {S ∋ (S.Score ≥ β ∗ TS max score)}

14: SUB max score = 0

15: for each TS ∈ TSset do

16: for each SS ∈ {0, 1, S ∈ Ckt ∋ S.AT < TS.AT} do

17: Pdiff : Probability of TS �= SS

18: SS = (Pdiff < 0.5) ? K : K

19: SUB.Score =

[

α
(

TS.TFIind−(TS.TFIind∩SS.TFIind)
A

)

+

(1− α)
(

TS.AT−SS.AT
D

)(

S.TFOcrit

A

)

]/

Pdiff ∗ (1− Pdiff)

20: if (SUB.Score > SUB max score) then

21: SUB max score = SUB.Score

22: <TSbest, SSbest> = <TS, SS>

23: end if

24: end for

25: end for

26: return TSbest, SSbest

27: End

62

weight the logic deletion and downsizing potentials is chosen empirically based on the

objective of the synthesis. In the case of approximate circuits, the deletion potential

is given higher weight (larger α), since it is more significant that downsizing. In

quality configurable synthesis, since the independent logic is retained, the downsizing

potential carries more importance. For our experiments, α values of 0.75 and 0.25

were used for approximate and quality configurable synthesis, respectively.

Algorithm 4 Pseudo-code for SASIMI-Quality-Configurable

Input: Original Circuit: Cktorig, Error List: ERRlist

Output: Quality Configurable Circuit: Cktqc

1: Begin

2: Initialize: NewCktqc = Cktorig + Clk Extension Ckt

3: for each ERR ∈ ERRlist do

4: while QC Circuit Error: QCE < ERR do

5: Cktqc = NewCktqc

6: <TS,SS> = get substitution candidate(Cktqc)

7: # Insert substitution circuit

8: # Add substitution to Quality selection circuit

9: NewCktqc = form qc ckt TS=SS in Cktqc

10: Simplify (NewCktqc)

11: QCE = compute error (Cktorig, NewCktqc)

12: end while

13: end for

14: return Cktqc

15: End

Note that in choosing the best substitution candidate for a given circuit, the

potential benefits in terms of logic deletion and downsizing are weighed against the

error introduced by the substitution. Hence, although the substitutions are chosen

in a greedy manner within each iteration of Algorithm 2, the use of benefits-to-error

63

ratio (instead of choosing just based on the benefits) in the selection process implies

that the algorithm does not entirely exhaust the error constraints in a given iteration

but rather retains some flexibility for future iterations.

Algorithm 4 describes the methodology for quality configurable synthesis. A list

of error constraints corresponding to the desired quality modes is provided as input.

For each quality mode (lines 3-12), the procedure resembles approximate synthesis

(Algorithm 2), except that in addition, the substitutions are grouped based on the

quality mode in the quality selection circuit (line 9). The substitution and clock

extension circuits are also appropriately added to the circuit. Note that, in the

proposed procedure, the set of substitutions causing two cycle operation in a given

quality mode is a strict super set of all modes with lower quality constraints. This

greatly simplifies the design of the quality selection circuit.

Using Algorithms 2, 3 and 4, the SASIMI paradigm can automatically synthe-

size approximate and quality configurable circuits for any given circuit and quality

constraint.

2.4.4 Experimental Methodology

We evaluated SASIMI on a wide range of benchmarks including (i) arithmetic

circuits viz. adders - Kogge stone (KSA), Ripple carry (RCA), Carry lookahead

(CLA), multipliers - Wallace tree (WTM), array (MUL) and Multiply and Accumu-

late (MAC), (ii) complex datapath modules viz. Sum of Absolute difference (SAD),

Euclidean Distance unit(EUDIST), FFT Butterfly (BUT), and (iii) circuits from the

ISCAS85 benchmark suite. Figure 2.31 shows the CAD flow adopted in the im-

plementation of SASIMI. The benchmarks were synthesized using Synopsys Design

Compiler Ultra [34] and mapped to the IBM 45nm technology library. The met-

rics used for identifying substitution candidates were computed using custom tools

that analyzed the synthesized netlist. The signal probability calculation engine in

Synopsys Power Compiler was used to obtain difference probabilities among signal

64

pairs. For the experiments, all input vectors were considered equi-probable and the

synthesized approximate and quality configurable circuits were evaluated for area

and power at iso-delay. In the case of quality configurable circuits, the additional

hardware overheads in substitution, clock extension and quality selection circuits are

included during area and power estimation, and an energy comparison is performed

taking into account the additional clock cycles incurred.

������������	
���	���

 	!����������	�
����
�����������

����������

������������

����������

��������	�����

������������
�������	
��

��	�������� ���������

����������
����������	
���

�����������

��� ��������

!�������

���"�

�����#$!�

�������������

%���

&�� ����
��

������������
�������	
��

���'�������������

Fig. 2.31.: CAD flow employed in the implementation of SASIMI

The circuits were synthesized for two different target quality metrics viz. error

probability and average error magnitude described in Section 2.2. The error proba-

bility metric was estimated by ORing the difference (Oorig xor Oapprox) at all output

65

bits and then computing its static signal probability. On the other hand, the average

error magnitude metric was evaluated by summing the difference signal probabilities

of all output bits weighted by their numerical significance.

2.4.5 Results: Approximate Circuits

This section presents the results of various experiments that compare circuits

generated by SASIMI to well-optimized, accurate baselines.

����

����

����

����

����

����

����

��

�� ���� �� ����
�

�
��

�
��
��

�

�����������	
������

	����

	�����

	
����

	�����

	�����

	���
�
����

����

����

����

����

����

����

��

�� ���� �� ����
�

�
�

�
��
��
�

�

�����������	
������

	����

	�����

	
����

	�����

	�����

	���
�

(a) ISCAS85 benchmarks

��
�

����

����

���

����

����

����

����

����

�

��
� �� �� � ��

�
��

�
��
��

�

�����������	
������

���� ����

���� ����

���� 	�
�
���

����

����

����

����

����

����

����

����

�

�� � �� �� �� ��

�
�

�
��
��
�

�

�����������	
������

���� ���� ����

���� ���� 	�
�

(b) Arithmetic modules

Fig. 2.32.: Area and power benefits for error probability metric

We begin by comparing the area and power consumed by the approximate circuits

relative to the original circuit at iso-delay, for a range of error probability and average

66

error magnitude constraints. In the case of error probability metric, as shown in

Figures 2.32a and 2.32b, we see that as the error constraints are relaxed, significant

benefits are obtained across all circuits. For ISCAS85 benchmarks, we see significant

benefits that amount to 15%-25% in area and 10%-28% in power are achieved for tight

error probabilities (less than 0.5%). As the error constraints are relaxed (less than

2%), area and power improvements between 30%-60% are obtained. For arithmetic

circuits, the improvements in area and power range from 15%-40% for tight error

probabilities (less than 1%) and upto 65% for relaxed error probabilities (less than

5%). In the case of ISCAS benchmarks, the benefits amount to 15%-35% in area

and 10%-40% in power for tight error probabilities and upto 60% for relaxed error

probabilities.

����

����

����

����

����

����

����

��

�� ���� ���� ����

�
��
�

��
��

�

���������������	
�����

����

����

����

����

����

����

����

��

�� ���� ���� ����

�
�
�
��
��
�

�

���������������	
�����

����

����

����

����

����

����

����

	���

�������

Fig. 2.33.: Area and power benefits for average error magnitude metric

Similar trends are observed for the average error magnitude metric. As depicted in

Figure 2.33, for average errors of less than 0.5% of the maximum value, improvements

in the range of 15%-65% in area and 20%-68% in power are obtained. These results

demonstrate the applicability and effectiveness of the SASIMI design approach and

synthesis methodology.

To demonstrate the effectiveness of functional approximations across the entire

design space, the approximate circuits were synthesized for a range of delay val-

67

���

�

���

��

����

���
���
����
���

�
��
�

��
�

��
�
�

� µ
m

2
)

 -
->

�

��	�
���������

�

���

���

���

����

���

���

���

���

�

���

���

���
���
����
���

�
�
�
�
��
��

�
�
��
�

�

��	�
���������

�

���

���

���

����

�������������	��������������	�

Fig. 2.34.: Area and power of KSA with delay sweep

Table 2.3.: Quality configurable circuits synthesized for average error magnitude with

two quality modes

Circuit Delay Area Power P2cycle Energyacc Energyapp Avg.Error

(ns) (%) (%) (%) (%) (%)

RCA 0.65 16.2 21.6 0.24 2.69 36.7 0.03

CLA 0.17 29.5 26.72 0.067 21.8 34.9 0.01

MAC 0.55 13.7 16.8 0.014 15.6 18.3 0.01

EUDIST 0.47 24.1 22.24 0.0075 21.6 24 0.12

MUL 0.35 32.9 36.5 0.05 33.3 40.05 1.2

SAD 0.5 11.6 12.1 0.002 12.0 14.44 0.01

ues. Figure 2.34 shows the area and power vs. delay plots for a 32-bit Kogge stone

adder with error probability metric. The approximate circuit outperforms the origi-

nal circuit at all delay values, which testifies to the wide scope of the optimizations

performed by SASIMI.

68

Table 2.4.: Quality configurable circuits synthesized for error probability metric with

two quality modes

Circuit Delay Area Power P2cycle Energyacc Energyapp ErrProb

(ns) (%) (%) (%) (%) (%)

KSA 0.2 16.3 14.79 0.009 14.02 22.27 0.7

c880 0.22 13.1 18.03 0.064 12.78 31.9 4.8

c1908 0.25 13.8 22.9 0.0102 22.11 31.31 0.95

c2670 0.22 5.09 15.68 0.0051 15.25 24.51 0.2

c3540 0.36 21.94 19.72 0.008 19.08 23.56 0.65

c7552 0.32 12.79 19.18 0.064 14.01 22.54 4.8

2.4.6 Results: Quality configurable circuits

Next, we present the results obtained for quality configurable designs with two

quality modes synthesized by SASIMI.

Table 2.3 tabulates the area, power and energy improvements obtained relative

to the original circuit for the average error magnitude metric. Column 3 shows the

percentage reduction in area. Despite the area overheads of the additional circuits,

the overall area savings range from 13%-32% compared to the original circuit. These

benefits come from the logic downsizing that was possible by the substitutions. Col-

umn 4 provides the corresponding improvement in power. The probability of two

cycle operations in the accurate mode is listed in Column 5. The total energy sav-

ings in the accurate and approximate modes are listed in Columns 6 and 7. In the

accurate mode, the circuit recovers from all errors, and the energy benefits are due

to the savings from logic downsizing outweighing the overheads of the added control

circuitry and two cycle operation. In the approximate mode, the additional energy

savings stem from two sources - the circuit has fewer or no two cycle operations as

it does not recover from all errors, and the clock extension circuit could be power

gated in the lowest quality mode. Due to these reasons, net energy savings between

69

14%-40% are obtained. Finally, column 8 gives the average error magnitude in the

approximate mode of the circuit.

Table 2.4 reports similar results for circuits synthesized using the error probability

metric. Energy benefits in the range of 22%-32% are obtained in the approximate

mode for error probabilities less than 1%. Note that the rate of two cycle operations

is a little larger than the actual error probability at the outputs, because not all

errors at the substitution points are sensitized at the outputs. In other words, the

clock extension mechanism and the error indicator output bit are conservative. In

summary, our experiments suggest that SASIMI is a promising approach for the

synthesis of approximate and quality configurable circuits.

2.4.7 Application-level evaluation of SASIMI circuits

We utilized the circuits synthesized by SASIMI to build a 25 X 25 systolic array

architecture [7] and analyzed the impact of approximations at the application level.

We chose applications based on two widely used classification algorithms viz. Support

Vector Machines (SVM) and K-Nearest Neighbors (k-NN). Approximate adders (A1

to A5) and multipliers (M1, M2, M3) synthesized with SASIMI were used in the mul-

tiply and accumulate units of the systolic array. Figure 2.35 illustrates the resulting

energy vs. classification accuracy trade-off obtained at the application level.

In case of k-NN, as shown in Figure 2.35a, for nearly no loss in accuracy (≤ 1%),

we obtain upto 30% energy savings in the MAC units. Experiments on the SVM

algorithm were conducted using two datasets viz. MNIST Digit recognition [39] and

Checkerboard. Figure 2.35b shows the energy gained for several accuracy levels in

each case. We observe that, for MAC units of similar error and energy profiles, the

loss in classification accuracy for the Checkerboard dataset is substantially larger

than MNIST. This proves the sensitivity of application resilience to the dataset being

processed, underscoring the need for quality configurability at runtime. Further,

70

��

����

����

����

����

��

����

&��� ���
��
��
�����

�
�
��

�
��
	

�

���
�

��
�

��
�

��
��

�

��� ����

�� ���� �� ��	� ��
�

������������������������������

�����������

����������

����������

�������

����
���������

(a) kNN-Checkerboard dataset

���

���

���

���

����

��

����

��	�

��
�

����

��

����

���� ������ ������ ������

�
�	

��

�
	
��

�
�

��

�
�	

�
��
�

��
��

�
�

�
�

��
	
��
��

�
��

�
�

��
�

�
��

�
��

��
�

�� !"� �#�$��%�	��� �������

������&	�����'�� �������	�

�������
��

����������

��������

(b) SVM

Fig. 2.35.: Energy v.s. accuracy trade-off in classification

these experiments demonstrate that significant energy benefits could be harnessed by

utilizing the synthesized computation units in domain specific architectures.

2.5 Summary

A promising approach to approximate computing in hardware is through the de-

sign of approximate and quality configurable circuits that are highly efficient in their

implementation, while meeting the user-specified quality requirements in evaluating

the required function. However, one of the key challenges impeding their mainstream

adoption is the lack of systematic design methodologies that are general and scalable

to any given circuit and quality constraints. Towards this objective, this chapter de-

scribed two approaches viz. SALSA and SASIMI that allowed automatic design and

synthesis of approximate and quality configurable circuits. The first approach SALSA

transforms the problem of approximate circuit synthesis into a well studied logic syn-

thesis problem and identifies don’t care conditions in the circuit that are borne out of

the quality specifications in order to simplify its implementation. On the other hand,

71

SASIMI adopts a circuit transformation approach, wherein the key idea is to identify

substitutions in the circuit that foster logic deletion and downsizing (simplification)

while introducing minimal error. Given a user specified quality requirement, the sub-

stitution and simplification steps are iteratively performed while the error constraints

are satisfied. SASIMI was further extended to synthesize quality configurable circuits,

where at runtime, selected input vectors were given an additional cycle to correct er-

rors due to approximations. The approaches were utilized to synthesize approximate

and quality configurable versions of a wide range of benchmarks including arithmetic

circuits, complex blocks and entire datapaths using different quality metrics, demon-

strating generality and significant benefits in energy and area. In addition, the utility

of the techniques were reaffirmed through case studies evaluating the benefits of the

synthesized approximate circuits at the application-level.

In summary, the design techniques and synthesis methodologies presented in this

chapter promise a new frontier in the design automation of approximate and quality

configurable circuits.

72

3. QUALITY PROGRAMMABLE PROCESSORS

3.1 Introduction

The previous chapter presented systematic methodologies for designing the basic

building blocks of approximate computing viz. approximate and quality configurable

circuits. Several research efforts have utilized such techniques to design larger approx-

imate computing systems at higher levels of design abstraction [5, 7–13, 40]. These

techniques have adequately demonstrated the benefits of approximate computing,

but almost always in an application-specific context. However, the mainstream adop-

tion of approximate computing, and its use in a broader range of applications, are

predicated upon the creation of programmable platforms for approximate computing.

A key requirement for programmable approximate computing platforms is that

they should provide a suitable HW/SW interface using which (i) programs can nat-

urally expose inherent application resilience, and (ii) hardware designers can inde-

pendently develop techniques to leverage the flexibility that it engenders. However,

this is not easily achieved. Previous attempts [11, 13, 14, 40] to extend approximate

computing to the realm of programmable processors have resulted in only small en-

ergy benefits as they are limited on two key fronts. First, their HW/SW interface

identifies computations that can be subject to approximations without constraining

the quantity of error that can be tolerated during execution. As shown in Section 3.2,

for a given application output quality requirement, allowing arbitrary errors during

execution severely limits the fraction of instructions to which approximations can be

applied. Second, they target applying approximate computing to complex general-

purpose cores. This fundamentally restricts their energy benefits, since the energy

consumption of such cores is dominated by control front-ends such as instruction fetch,

decode, dispatch, retire etc. that are inherently not amenable to approximation.

73

This chapter extends the state-of-the-art in approximate computing in two im-

portant directions.

• It proposes the concept of quality-programmable processors, wherein software

expresses its tolerance for approximate computing at the natural hardware-

software interface, i.e., the instruction set. The two key ingredients of a qual-

ity programmable processor are (i) a quality programmable ISA (QP-ISA), in

which instructions are associated with quality fields that explicitly indicate the

desired accuracy level that must be guaranteed during their execution, and (ii)

a quality programmable micro-architecture (QP-uArch), which is equipped with

hardware mechanisms to translate instruction-level quality specifications into

improvements in energy or performance. As a further enhancement, quality

programmable processors may provide feedback to software regarding the ac-

tual error incurred during the execution of an instruction. Software may use

this information to modulate the quality specifications for future instructions.

• It explores approximate computing in the context of a new class of programmable

architectures, viz. vector processors. Driven by the characteristics of a variety

of resilient workloads and considerations unique to approximate computing,

we propose Quora, a 1D/2D vector processor built from the ground up for

approximate computing. Quora is designed with a 3-tiered hierarchy of pro-

cessing elements – Approximate Processing Elements (APE), Mixed Accuracy

Processing Elements (MAPE), and Completely Accurate Processing Element

(CAPE) – that provide distinctly different energy vs. quality trade-offs. We

propose hardware mechanisms based on precision scaling with error monitoring

and compensation to facilitate quality-configurable execution on these process-

ing elements and demonstrate significant energy benefits.

The rest of the chapter is organized as follows. Section 3.2 motivates the need

for quality programmability in the instruction set. Section 3.3 provides an overview

of quality programmable processors and their key concepts. Section 3.4 describes

74

the instruction set and micro-architecture of the proposed quality programmable vec-

tor processor, Quora. Section 3.5 outlines the hardware mechanisms employed in

Quora to enable quality-configurable execution. Section 3.6 explains the evalua-

tion methodology, and the results of experiments conducted on a suite of benchmark

applications are presented in Section 3.7. Finally, Section 3.8 concludes the chapter.

3.2 A Case for Quality Programmability

A key aspect of quality programmable processors is that their HW/SW interface

allows software to not just identify approximate instructions, but to also explicitly

specify the quantity of error that each instruction can tolerate during its execu-

tion. Previous efforts to extend approximate computing to programmable proces-

sors [11,13,14,40] only denote instructions as accurate or approximate, while allowing

errors of arbitrary magnitude to occur in approximate instructions. We motivate the

need for quality programmability in instructions through two representative appli-

cations — image segmentation and handwritten digit recognition. The applications

were compiled to an x86 platform and an error injection framework, similar to [4],

was utilized to identify resilient instructions and inject errors in their outputs. The

errors were random but constrained to be within a pre-specified instruction-level qual-

ity bound. With this setup, for different application-level quality requirements, the

instruction-level quality bounds in the program are varied to study its impact on the

number of dynamic instructions that can be approximated.

Figure 3.1 shows the fraction of each application’s dynamic instructions that may

be executed approximately (Y-axis) vs. the loss in application output quality (X-axis)

for different levels of instruction accuracy. We observe in both cases that, when the

magnitude of error in the execution of approximate instructions is bounded, there is

a large increase in the percentage of dynamic instructions that may be approximated

for any given application output quality. For example, consider point A in the graph

for the image segmentation application, where the application-level quality loss is 2%.

75

In this case, when the instruction-level accuracy is constrained to within 2.5% of the

maximum value, the fraction of instructions that can be approximated increases by

16X compared to when errors of arbitrary magnitude are allowed. For this applica-

tion, across different application quality requirements, we observe between 10X-30X

increase in the number of approximate instructions when instruction-level errors are

bounded to within 2.5% of the maximum value. Similarly, in the case of handwrit-

ten digit recognition, the fraction of dynamic instructions that may be approximated

increases by 25X-107X when the instruction-level errors are constrained to less than

7.5% of the maximum value. Since the fraction of application instructions that may be

approximated is a key determinant on the energy savings that approximate comput-

ing can provide, we conclude that the capability to provide quality-programmability

in hardware is highly desirable.

�

�

��

��

��

��

��

� � � � � �� ��

�
��
��

�
�
�
��
�
��

�
�

��
�
��
��
��
��
�
�

�������������������	�������

��������

�����	

��
���	

�����	

�������������������������

�

�

�

�

��

��

��

� � � � �

�
��
��

�
�
�
��
�
��

�
�

��
�
��
��
��
��
�
�

�������������������	�������

��������

����	

����	

�����	

������������������ �!��������

��"#�

�
$�

Fig. 3.1.: Fraction of instructions that may approximated under arbitrary vs. con-

trolled approximations

3.3 Quality Programmable Processors: Concept & Overview

To enable broader use of approximate computing techniques in a programmable

context, we introduce the concept of quality programmable processors (QPPs), illus-

trated in Figure 3.2, in which: (i) software has the ability to express application

76

resilience as accuracy bounds/expectations at the outputs of individual instructions,

and (ii) hardware is equipped to understand and guarantee these accuracy bounds,

while exploiting the flexibility that they provide to obtain energy savings. This section

provides a conceptual overview of QPPs and their key components.

����%���%&'���&����

����%���%&'�

����%�(�

�) �%�)�)'�

��&������%�*

����& %���)�

%'!�����%&'!

�

% *

�)�&�����

����	�

��
��������	�
�����������

�����

�

��
����

�������	�
��

���
�����	��

�����
�� 		�	�

!������	�

����	���

"�����	

�

�#�
������$��������

����	�������������

�����	����%�
����

���
�

������&���������
��		�	�

���������������������

�����	���������	"����%�
����

���
���������	������	��������

'
(
)�
(

��
*
+

!
�

�
�

+	��
���

����	�������

%�
����

�#�����������

��������	���

&��������
�����

�	��	�

!������	�

��
�

������� �	
�	������ ���	
�	��������	�

�������������������������

��
�������
����������	��������

����������� ���	
���
����
�

���
��

Fig. 3.2.: Conceptual overview of a quality programmable processor

3.3.1 QP-ISA: Quality Programmable ISA

The primary requirement of QPPs is to provide software with the ability to ex-

pose application resilience to hardware. We propose to express resilience in terms of

accuracy bounds or expectations at the outputs of individual instructions through a

quality programmable instruction set architecture (QP-ISA). Selected instructions in

the ISA are extended with quality fields to indicate the desired level of accuracy with

which the instruction output must be computed. The quality fields denote both the

type and amount of error that can be tolerated during execution of the instruction.

The error may be expressed as a strict bound or as an expectation over all possi-

ble inputs. For example, the add instruction shown below requires the output error

magnitude to be within 1% of the maximum output value.

77

qpADD dest, op1, op2, ERR.MAG, 1 (3.1)

Note that the quality specifications are based purely on instruction semantics, and

do not depend on the specific approximate computing design technique employed in

hardware. This allows software to remain oblivious of hardware design techniques

and fosters portability across different quality programmable hardware platforms.

In summary, a quality programmable ISA contains quality programmable instruc-

tions, which are enhanced with explicit quality fields to indicate the desired accuracy

level required during execution. As an example of QP-ISA, the instruction set of the

proposed quality programmable vector processor, Quora, is discussed in Section 3.4.

3.3.2 QP-uArch: Micro-architecture with Accuracy-Energy Trade-off

The micro-architecture of a quality programmable processor contains execution

units whose computational accuracy is dynamically configurable at runtime. In other

words, these execution units possess accuracy knobs in hardware that can be modu-

lated to trade-off accuracy for energy consumption. A variety of approximate com-

puting design techniques may be employed for this purpose. For example, voltage

over-scaling is a popular technique where the supply voltage is reduced to benefit

energy while sacrificing accuracy due to errors caused by timing violations.

The micro-architecture also contains a Quality control unit that is capable of un-

derstanding the quality fields present in instructions and translates them into hard-

ware accuracy knobs, such that quality requirement dictated by the instruction is

guaranteed to be met. The quality translation may be static, where the hardware ac-

curacy knobs are set once at the start of instruction execution, or dynamic, in which

case, the instructions typically execute over multiple cycles and the knobs are varied

during the course of execution.

78

3.3.3 Quality Monitors: Error Feedback to Software

While a QPP guarantees that the accuracy levels set in the instruction, the er-

ror that occurs during the actual execution may be relatively low compared to the

specification. This can be attributed to the following reasons: (i) In case of most

approximate design techniques, the error introduced in computation is input depen-

dent. When errors adhere to pre-determined worst-case bounds, their variance across

all inputs is significant. (ii) The quality translation process is typically conservative

in order to guarantee the quality bounds without incurring excessive overheads in the

quality control unit.

We instrument the micro-architecture with quality monitors that estimate the

amount of error at the output of an instruction. This error estimate is provided back

to the software through special error registers. The ISA is enhanced with instructions

to access and operate on these error registers, which can be then be used to decide the

quality levels of future instructions. This error feedback enables software programs

to be robust to varying input data characteristics and differing approximate design

techniques employed in hardware.

3.3.4 Programming QPPs

In QPPs, the responsibility of maintaining the application-level output quality is

shared between hardware and software. The application developers, in addition to

the application source code, provide a quality requirement expected at the output of

the application. The quality requirement is application-specific and is typically based

on the context in which the application is being used. The application-level quality is

then translated into accuracy requirements at the outputs of instructions. Previously

proposed analysis and profiling frameworks such as [4,41–43] can be employed for this

purpose. The hardware exploits the flexibility provided by the relaxed instruction ac-

curacy to maximize energy savings subject to meeting the quality constraints dictated

by software. In addition, the interface allows hardware to dynamically provide feed-

79

back on the actual error incurred during execution, which can then be utilized by

software to relax the quality specifications of future instructions more aggressively.

3.4 Quora: A Quality Programmable Vector Processor

As a first embodiment of quality programmable processors, we describe a quality

programmable vector processor, Quora, which is designed to execute a intrinsically

resilient applications from various domains including recognition, mining, synthe-

sis, video processing, search etc. This section outlines the key design philosophy of

Quora, and describes in detail its instruction set and micro-architecture, which are

driven by characteristics of the target applications as well as considerations unique

to approximate computing.

In quality programmable designs, the energy savings stem predominantly from

scaling the accuracy of execution units in the processor. The control front-ends, such

as instruction fetch and decode, inherent to any programmable processor, have to

be performed in an accurate manner. Thus, the energy benefits from approximate

computing are limited by the fraction of energy consumed by execution units in the

design.

Keeping in mind the above observation, and the fact that the application domains

of interest invariably contain significant fine-grained data parallelism, we explore ap-

proximate computing in the context of a new class of programmable architectures,

viz. vector processors. While vector processors intrinsically amortize the cost of

control front-ends over several execution units, we further amplify this benefit in

Quora by employing a 3-tiered hierarchy of processing elements – a 2D array of

Approximate Processing Elements (APE), 1D arrays of Mixed Accuracy Processing

Elements (MAPE), and a scalar Completely Accurate Processing Element (CAPE) –

that are characterized by distinctly different control complexity and energy vs. qual-

ity trade-offs. Moreover, since the instructions operate on data vectors (or streams),

their execution typically extends over a large number of cycles, further reducing the

80

contribution of control front-ends to the overall application energy. Finally, the vec-

tor instructions in Quora also provide an added advantage in that instruction-level

quality specifications correspond to coarse-grained computations rather than indi-

vidual scalar operations. The micro-architecture propagates errors across the scalar

operations within a vector instruction and ensures that the instruction-level quality

specifications are satisfied.

3.4.1 Quora Instruction Set

This section describes the quality programmable instruction set of Quora. In

order to determine the right set of instruction primitives, we analyzed a wide range

of resilient applications by hierarchically breaking down the computations involved

as shown in Figure 3.3. We identified that these applications typically operate on

data streams and perform matrix-matrix and matrix-vector operations, generating

significant intermediate data. These intermediate results are then subject to complex

reduction operations to produce a small number of outputs. Leveraging these charac-

teristics, the proposed quality programmable instruction set is designed with 2D and

1D vector instructions, balancing efficiency and programmability.

Software Visible Micro-architectural State

Figure 3.4 shows the software visible micro-architectural state in Quora, which

consists of the following components:

• Streaming Memory Bank: Quora contains 2 streaming memory banks,

each containing streaming memory (SM) elements that are First-in-First-out

(FIFO) buffers of equal length. Each SM element can be individually addressed

and data vectors of length less than or equal to its size can be read or written.

To facilitate data re-use, the internal read and write pointers of SMs can be

altered relative to their current position through special instructions.

81

���������'���
	
���

������

����
��������'���

�����!����'���
��
��������	����������

��������������	��

����	�����

���� ����

�������

�����!�

����

���������
���
����������'���

��� ��������

����!�

����!�

�'�����'���

����
���

�����'���

����+!�""���

#��������$�

��� ��������

%�!&��

��� ��
'���

#����������

����
���

'""�

���������

#������

(�+��� ��������� '�

�����
�#�

���������

�����

��)!��	��

���+�������

	����������

���"'!�

(�	�*�

������+�

(�����

�(���"�

�
+++�
������

�����������

���������

������+�

#������

�
��������

���������

��,�����

���������

�!��
��

���������

�
���
-������ ����
��� �����������

���-�-����+�

#������

��
�����

.������

�����

"���,-���

�����,��

��-���,���

.������

���!����+�

����!�

'���������

���������

���������

$���
���

�������,��

'�������

�

����!�������!�

����!���#������

/����'����

�
�

#������

/����'����

�
�

�������

/����'����

�

�������,���

�������'����

�������'���

�������

��
�
�
�
��
�
�

��
�
�
�
�
�

���
��

�
���

�
��
�
�
�
��
����

�
��
��

�
���

�
��
�
�
�
��
����

� ��
�
�
�
��
�
�

��
�
�
�
�
�

�

Fig. 3.3.: Resursive breakdown of computations in error resilient applications

• 2D-array accumulator registers: Quora features a 2-dimensional array

of processing elements, each containing an accumulator register. Data can be

scanned in/out of the accumulators in the 2D-array by row or column.

• 1D-array accumulators, Register files and Mask: Two 1-dimensional ar-

rays of processing elements are arranged along the top and left borders of the

2D array. The 1D-array elements in a given set operate together in a Singe-

Instruction-Multiple-Data (SIMD) fashion. Each element contains an accumu-

lator register, a small register file, and a mask register that can be set or reset

through special instructions.

• Scalar Register file: In addition to the 2D and 1D processing elements,

Quora has a scalar processor with a register file random-accessible by software.

82

�����
�����

&
������
�

&
���

����
�

�"��

���

�����&
��

�������!�

��# ������!�

��#�"!������������	
�����

����	� �	���

���

Fig. 3.4.: Software visible micro-architectural state in Quora

• Error Register: The error register holds an estimate of the actual error in-

curred during the execution of quality programmable instructions. This register

can only be read (but not modified) by software.

• Program Counter/Status Register: The status register contains flags that

denote status of the processor.

Quality Programmable Instructions in Quora

Quality programmable instructions allow software to explicitly indicate the error

tolerable during their execution. In Quora’s ISA, instructions contain two quality

fields that denote the type and amount of error. The type of error may be a strict

bound or an expectation over all possible inputs. The error types supported in the

83

Quora ISA are defined below. In these definitions, Oacc and Oapprox denote the

accurate and approximate outputs of the instruction.

• Maximum Error Magnitude, shown in Equation 3.2, bounds the absolute

difference between the accurate and approximate outputs of an instruction to

be less than a specified threshold.

MaxErr = MAX∀inputs(|Oacc −Oapprox|) (3.2)

• Average Error Magnitude, shown in Equation 3.3, an expectation of the

absolute error magnitude over all possible inputs to the instruction.

AvgErr =

∑

∀inputs |Oacc −Oapprox|

Total no. of Inputs
(3.3)

• Error probability, shown in Equation 3.4, bounds the fraction of inputs for

which the instruction can produce an incorrect value.

ErrProb =
No. of Inputs for which Oacc �= Oapprox

Total no. of Inputs
(3.4)

Instruction Types

Quora features a rich instruction set architecture containing 47 instructions - 13

scalar, 9 2D-array , 22 1D-array, 3 SM - that execute on the respective processing

elements. The ISA is classified into 6 instruction types and Figure 3.1 tabulates a

subset of most commonly used instructions in each category. The different instruction

types are described below.

Scalar Instructions: The scalar instructions are similar to instructions in a RISC

ISA. The operands are fetched from either the scalar register file or the error register

and the result is always stored back to the scalar register file. They do not carry any

quality fields and are always required to execute in an accurate manner.

Streaming Memory Instructions: These instructions are used to load data vec-

tors into the streaming memory (SM) elements. The operands to the instructions

84

Table 3.1.: Representative instructions in Quora’s ISA

��������	
 ���������� �������

������

������������

���� ��
����� ���	��������������������������	����������

���� ��
���
���
�		�������������������!	�� �!�!�"�!�#

����� ������������� �������������$����	

��� ��
������������� ���������%����������!�����&���

����� '�	��%�$������

���������

�����(�

������������

���� ��������
�������
�����
�

��������
����������
����������

���	����������������������	�����	 ���

���������)���������� �����	�����������

%�����		�������������*��������� ���������

����%�����	���� �������%���&������*��		��������

����������	� (�������� ������� �����*

#������(�

�������������

�	��� ��������
����������
��

���������
���������
��������

������(�$�������� ���	���$��	�����%������

��	�����������	�����	� (���� �� ���������

�	���� ��������
����������
��

���������
���������
��������

������(�$�������� ����#�*�����%��������	�

����������	�����	� (���� ������������

��� �!�"
���������
�������
�

��������
����������
����������

�������������	�#������(�������������

������������������(�������+���*�%������

����� ���������
���������� !����� ������������

!������(�

!�	�������

�������������

�	��� �!�"
����������
�

���������
���������
��������

������(�$�������� �� ��������������%��

�������	�������������	��������#�,����(

����������� ��������� ������+���*�%������

�	��� �!�"
����������
��

���������
���������
��������

������(�$�������� �����* �%���������	�

������������	��������#�,����(�����������

����������������+�������%������

!������(�

����������

�������������

��� ��������
�	���
����������
�

���������

-���.���%���$����$����	�%��������/���������

����������������������	���*��%���)��� ����������!

!������(�

���%,

�$����	�

�������������

� ��� �!�"
��� �!�"����
�	���� �����������������������	������ �����������

�	���! �!�"
��� �!�"����
�	���
�

��������
��������

������(�$�������� ����0���	�	��		�������%�

���������� 	���#�
	���"���������������

�	�"� �!�"
��� �!�"����
�	���
�

��������
��������

������(�$�������� ��������$�������� �%��

��������������������������	���

����# �!�"
��� �!�"����
�	���
�������.���������������������������������

��������������	����

�� � �!�"
��� �!�"���� ����������.���������

85

are fetched from the scalar register file. The start address is present in register

R start add. The elements of the data vector are fetched in a burst-stride fashion,

where burst number of data elements are loaded from contiguous address locations

after which the data address is incremented by stride. This pattern is repeated until

all elements of the data vector are loaded into the SM. Multiple streaming memory

elements, indicated in the register R enb stream, can be loaded simultaneously with

the same data. Instructions to manipulate the internal read and write pointers of the

SMs also belong to this class.

2D-array Reduction Instructions: These instructions execute on the 2D-array of

processing elements, and typically perform reduction operations (e.g., Multiply-and-

accumulate) on the data vectors present in the SMs. Thus, in a single instruction,

all data vectors present in row SMs are operated with all data vectors in the column

SMs. These instructions extend over variable numbers of cycles based on control

parameters such as the vector length (R length), rows (R row enb) and columns

(R col enb) of the 2D-array that are active during execution. These instructions are

quality programmable and contain quality fields, whose values are obtained from the

scalar registers R q type and R q amt.

1D-array Reduction Instructions: Instructions of this type perform single-vector

reduction operations (e.g., min/max of a vector) and are executed on the PEs present

in the 1D-array. The PEs obtain their data operands by either scanning out the

accumulator registers of the 2D-array in row/column fashion or from the streaming

memory element located in their corresponding row/column. The < r/c > field in

the instruction indicates which of the two 1D-arrays is active. The R row enb and

R col enb registers indicate active processors and operands during execution. Similar

to 2D-array instructions, the values for quality fields are obtained from registers

R q type and R q amt.

1D-array Streaming Instructions: In this instruction type, data operands are

streamed in from either the 2D-array or streaming memory, and are stored back

86

in their respective registers after being operated upon in the 1D-array processing

elements. The instruction fields are similar to 1D-array reduction instructions.

1D-array Self Operand Instructions: The operand for this instruction type is

obtained from the register file of the 1D-array processing elements. These instructions

typically execute in a single cycle. The mask register, as in conventional SIMD

architectures, allows 1D-array processing elements to execute conditional (if-then-

else) statements. Instructions to conditionally set/reset the mask register also belong

to this category.

In summary, the proposed ISA is tailored to efficiently execute a wide range of

intrinsically resilient applications and has provisions for expressing application re-

silience to hardware using the instruction-level quality fields.

3.4.2 Quora Micro-architecture

The architecture of Quora was primarily driven by studying the characteristics

of numerous resilient applications. It also features several micro-architectural design

choices that enhance the energy savings achieved through approximate computing.

The block diagram of the Quora architecture is shown in Figure 3.5. This section

describes in detail the various architectural features and components of Quora. An

in-depth description of the different types of processing elements and their intercon-

nection patterns is also provided.

Processing Element Hierarchy

Quora contains three types of processing elements (PEs) that differ widely in

several aspects including their functional complexity, programmability, number and

ability to scale under approximate operation. A description of the different types of

PEs is provided below.

Approximate Processing Elements: The approximate processing elements (APEs)

are the simplest and most in number among the three types of PEs. As shown in Fig-

87

�� ��� �

�� ��� �

�� �

�� ��� � �� �

�� �

�� �

�� �

�� �

�� �

�� �

����

����

�
�
�

�

����

�
�
�

�

�
�
�

�

���	�

���	�

�
�
�

�

�
��
��

�
�

�

��	���	� ��	�

��	���	� ��	�

��	�

��	�

��	�

��	�

�
��

(
��

�
�
�
�

	
�
�
�

�

���	�

���	�

����

����

����

����

�
�
�
	

�

�
�
�
	

�

�
�
�
	

�

�
�
�
	

�

���� ���� ���� ��������

����

��������

�������

���(������
	����

����

������
�	�����

��������

��������� ����

��(���(�����

���������	���
��

�	���	��������

�����

!����

�
��
�
��

�

�
����

�	�����

����

����

������"�����#���#�

�����

����

�
��
�
��
"

��
�
�
�#
��
�#

�

�
��

� �
�
�

�

�����

��#�� ���(��

��#���$$�

��#�����$�

����������

��%�

�	�	��

��&�('&#���

���	&�('&#���

��&�(�&#���

���	&�(�&#���

�������

��������

�������$�

����(�����

�����$$�

��
�
	
�
��
�
	

�

��������������������
��������������������

�
�
�
��
��

��
�
�
��
�
��

�
��

�

��
�
�
��
��

��
�
�
��
�
��

���

Fig. 3.5.: Quora micro-architecture

ure 3.5, the APEs are arranged in a 2-dimensional array and are interconnected in a

systolic fashion with every APE connected only to its nearest neighbours. Figure 3.6

shows the block diagram of an APE. Each APE contains an accumulator register

and takes 2 operands as inputs. The input operands are processed through a 2-level

datapath and the results are accumulated with the value stored in the accumulator

register. The functionality of each level in the APE datapath can be selected using

control signals.

In a typical instruction, an APE operates over multiple cycles with new input

operands fed in every cycle from neighboring APEs to the left and top of it. The

APE elements in the left and top borders of the 2-D array take inputs from streaming

88

�+���

���

��� �

		
�

�

�

��

�
�

�

���

��

��������

������ ������

������� �!�

��

Fig. 3.6.: Approximate processing element

memory elements located along the borders. The input operands are registered in

each APE and are propagated to its right and bottom neighbours. The accumulator

contains the output at the end of execution. The accumulators present in a given row

or column of the array are also connected with each other. Thus, the accumulator

outputs can be scanned out to memory or shifted to neighboring APEs, in either row

or column fashion.

The APE elements are optimized to carry out vector-vector reduction operations

such as Dot product, Euclidean distance etc., which are very common in resilient

applications. Since most APE interconnects are fixed, they contain minimal control

logic and over 90% of their energy consumption is contributed by the execution units.

Note that the control logic is evaluated once at the start of the operation, while the

execution units operate over a large number of cycles. Hence among the PEs, the

APEs’ energy consumption scales the best under approximation.

Mixed Accuracy Processing Elements: Quora contains mixed accuracy pro-

cessing elements (MAPEs) arranged along the left and top borders of the APE array,

as shown in Figure 3.5. The MAPE elements are divided into two sets viz. row

MAPEs, present on the left border, and column MAPEs, along the top border. The

89

���

"") �
#

"

��������

����

	
��
�

�

��

�
�

���
��

���

���

�������

������������

�����

����

�� !���

�
�

�

����

Fig. 3.7.: Mixed accuracy processing element

MAPEs in each set operate together in an SIMD fashion. Figure 3.7 shows the block

diagram of a MAPE. It contains an accumulator register and along with a small reg-

ister file. The execution unit is more sophisticated compared to APE and always

takes the accumulator register as one of its operands. The second operand could be

obtained from the accumulator register of the APE element located on same row/col-

umn border as the MAPE element. However, the operand can also be fetched from

the streaming memory element located beside the MAPE or from its scratch register

file. The output of the execution unit is always stored back to the accumulator.

The MAPEs operate in 3 different modes: (i) Reduction mode, (ii) Streaming

mode, and (iii) Self-operand mode. Both reduction and streaming modes contain

multi-cycle operations where the data operands to MAPEs are either scanned out

from the APE array or from the streaming memory. In the case of reduction mode,

the output is reduced within the accumulator of MAPE, whereas in the streaming

mode, the result is stored back to the APE or SM that supplied the data operand

in a cyclical fashion. The self-operand mode is a single cycle operation in which the

data operand is fetched internally from the register file of the MAPE.

90

The MAPEs are designed execute a mix of arithmetic and control instructions.

To facilitate evaluation of conditionals (if-then-else statements), the MAPE elements

contain a mask register which can be set/reset based on the output of the execution

unit. A MAPE operates only if the mask register is unset. The MAPE accumulator

registers can be scanned out to memory in a manner similar to the APE accumulator

registers.

The applications of interest typically produce a large amount of intermediate data

on which complex reduction operations such as finding min/max, kernel functions

like tanh, exponential etc. are performed. MAPEs are tailored to perform such

operations. More than 70% of the energy consumed by MAPEs is contributed by the

execution unit and can be scaled under approximate operation. Thus, while MAPEs

are more complex and hence less scalable compared to APEs, they still offer significant

opportunities for approximate computing.

Completely Accurate Processing Element: Quora contains one completely

accurate processing element (CAPE), which is similar to a conventional scalar micro-

processor. It contains a register file from which operands are fetched and operated

upon in its execution unit. As the name implies, the operations performed by CAPE

are done in an completely accurate manner. CAPE is typically used to execute in-

structions that relate to the control flow of the program. This includes computations

for loop control, address computation, pointer arithmetic, etc.

In summary, as illustrated in Figure 3.8, Quora contains a 3-tiered hierarchy of

processing elements that vary in functionality and energy scalability under approxi-

mations. For a given array configuration of n rows and m columns, the architecture

contains n∗m APEs, n+m MAPEs and 1 CAPE. Hence, although individual CAPE

and MAPE elements are more complex, the energy consumption of Quora is dom-

inated by the APEs followed by MAPEs and the CAPE. The above design choices,

while allowing efficient execution of different applications, also enable significant en-

ergy benefits to be derived from approximate computing.

91

P
E
 c

o
u
n
t

C
o
m

p
le

x
it
y

MAPE

APE

CAPE

E
n
er

gy

Sc
o
p
e

fo
r

ap
p
ro

x
im

at
io

n

Energy scalability
under approximate

operation

(> 90%)

(> 70%)

Fig. 3.8.: Comparison of processing elements in Quora

Streaming Memory Elements

The streaming memory (SM) elements are First-in-first-out (FIFO) circular buffers

located along the left and top borders of the APE array, as shown in Figure 3.5. Data

operands are loaded into one or more of these SM elements from the data memory,

and subsequently consumed by the APEs and MAPEs. As seen from Figure 3.5, each

SM element is connected to exactly one APE and MAPE element located beside it.

Quality Control Unit and Quality Monitors

The quality control unit interprets the quality fields present in each instruction

and translates them, based on the instruction type, into the hardware accuracy knobs

for the APE and MAPE processing elements. Any approximate design technique may

be employed in the PEs, provided that suitable quality translation is performed in the

quality control unit. In Quora, precision scaling of input data operands is employed

to achieve quality configurability in the PEs. Different flavors of precision scaling

mechanisms are proposed for this purpose. Using precision scaling allows the quality

control units to be shared across APEs in a row/column. Hence, they are located

92

along the borders of the APE array as shown in Figure 3.5. The quality monitors

that estimate the error accrued during instruction execution are also shared among

PEs and are located along with the quality control units. Detailed descriptions of

various precision scaling techniques and their associated benefits and overheads are

provided in Section 3.5.

Instruction Fetch, Decode and Control Units

Quora contains a program counter that points to the address from which the next

instruction is fetched. The instruction decode unit identifies the type of instruction

to be executed on the APE, MAPE and CAPE elements. The control unit initiates

the instruction execution by asserting appropriate control signals to the processing

elements and streaming memories.

3.5 Micro-architectural Mechanisms for Quality Scaling

In order to facilitate quality-configurable execution on the processing elements,

Quora is designed with hardware mechanisms that provide trade-off between com-

putational accuracy and energy efficiency. Quora employs precision scaling, where

the bit width (precision) of input operands used by the processing elements (PEs)

are modulated during instruction execution. In this section, we describe the different

flavours of precision scaling used in Quora, along with their benefits and overheads.

The design of the quality control unit that translates instruction quality specifications

to the hardware precision scaling knob, and quality monitors that provide an estimate

of actual error in the execution are also outlined.

3.5.1 Precision Scaling

Precision scaling is a commonly used approximate design technique, in which some

pre-determined number of least significant bits (LSB) in the data operands to the PEs

93

are ignored during computation. This can be exploited for power savings by clock

gating or power gating parts of the datapath that are no longer necessary for reduced

precision operation. We leverage the fact that quality programmable instructions

in Quora often operate on data vectors over multiple cycles, and propose several

variations of precision scaling to achieve improved energy-quality trade-offs. These

mechanisms are described in the sections below.

Up/down Precision Scaling

"
�
�

�

�
�
�

�

���

�	
�

���	
�

���

Fig. 3.9.: Up/down precision scaling

Figure 3.9 shows the block diagram of the up/down precision scaling unit. It takes

a data operand (X) and the number of bits (PSc) by which it should be precision

scaled as its inputs. The precision scaled version of the operand (Xpsc) is produced

at the output. The up/down precision scaling mechanism is similar to round-off in

floating point notation. The LSB PSc bits of the input operand are first set to zero, as

in conventional truncation. However, if the value of the truncated bits is greater than

or equal to 2PSc−1, then the input is rounded up by adding 2PSc to the bit-truncated

version. For example, for a PSc value of 3, if the last 3 bits of the input operand

represents a value greater than or equal to 4, then 8 is added to the truncated input

value. The condition for rounding up vs. down can easily be detected in hardware

by checking if the (PSc− 1)th bit of the input is equal to 1.

94

Precision Scaling with Error Monitoring

#
"
�

��

�����

���

	

�

���

������

���

������

��������
	

�

	��

��� ��

�����

	
���

	��

Fig. 3.10.: Precision scaling with error monitoring

The error incurred in scaling precision should be monitored in order to evaluate

its impact on overall instruction output quality. The block diagram of the precision

scaling unit with error monitoring is shown in Figure 3.10. Up/down precision scaling

introduces errors that are either positive or negative, based on the direction in which

the value is rounded. Hence, the error monitoring circuit contains separate regis-

ters, P.Err and N.Err, to track positive and negative errors respectively. Typically,

quality programmable instructions in Quora operate on data vectors, whose indi-

vidual elements are precision scaled in successive execution cycles. Hence the error

monitoring circuit contains the provision to accumulate error over multiple cycles by

accordingly updating the error registers. The P.Err and N.Err registers are used to

estimate the overall error at the output of an instruction, as detailed in section 3.5.4.

Precision Scaling with Error Compensation

The up/down precision scaling, by virtue of introducing errors in either direction,

inherently possesses the ability to compensate for errors that accumulate over mul-

95

���

��

�����

���

	

�

������

���

������ 	

	��

��� ��

�����

	
���

	��

�

Fig. 3.11.: Precision scaling with error compensation

tiple cycles. We enhance the error compensating nature by dynamically varying the

threshold at which the values are rounded up/down in the precision scaling unit. The

block diagram for precision scaling with enhanced error compensation is shown in

Figure 3.11. The logic used to decide the rounding direction contains a comparator

whose threshold is varied based on the values in the error register. At the start of

instruction execution, both error registers are reset to zero and the threshold is set to

2PSc−1. However, during the course of execution, if the positive or negative error is

greater than twice the other, the comparator threshold is decreased or increased re-

spectively. Increasing the threshold causes more values to be rounded down, thereby

introducing more positive errors, and vice versa. This enhanced error compensation

significantly improves the energy-quality trade-off offered by Quora.

Dynamic Precision Scaling

In the previous mechanisms, the number of bits (PSc) by which the operands

are precision scaled is set once at the start instruction execution. We present a

96

����

��

�����

���

	

�

�������

���

���������
	

����

	��

��� ��

�����

	
���

	��

�

����

���

Fig. 3.12.: Dynamic precision scaling

final variant, dynamic precision scaling, where PSc is changed dynamically during

instruction execution based on the actual value of error. Figure 3.12 shows the block

diagram of a dynamic precision scaling unit. The error accrued in the error registers

are checked periodically and a new PSc value is determined based on the error.

3.5.2 Array Level Organization of Precision Scaling Units

This section describes how the precision scaling units (PScU) are integrated into

Quora. The quality programmable instructions execute on the APE/MAPE ele-

ments, whose data operands are fetched from either the streaming memory elements

or the accumulator registers present in the APE array. Hence, the precision scal-

ing units are placed along the left and top borders of the array between the APEs

and MAPEs, as shown in Figure 3.13. In case of instructions that operate on the

APE array, data from the streaming elements are precision scaled before being fed

into the APEs. Similarly, when the accumulator registers are scanned out for MAPE

operation, precision scaling is employed on those operands.

97

	�"����

�����"��

�������������

�������������

����

���� ���

������

��"���

"����

!$���

"����

!$���

"����

!$���
"����

!$���

"����

!$���

"����

!$���

"����

!$���

"����

!$���

�
�
"

�
�

�
�
"

�
�

�
�
"

�
�

�
�
"

�
�

��"��

��"��

��"��

��"��

�"���"�� �"��

�"�� �"���"�� �"��

�"�� �"���"�� �"��

�"�� �"���"�� �"��

��		�

	���
��������	�

�

�

�
�

�

�

�
�

�
�

�
�

�
�

�

���������������������

Fig. 3.13.: Array level organization of precision scaling units

Quality Control Unit

Figure 3.13 also shows the block diagram of the quality control unit. The quality

control unit maps the target quality specified in the instruction, based on its op-code,

to the precision scaling values for PScUs located along the rows (R.PSc) and columns

(C.PSc).

Quality Monitors

The logic for quality monitoring is distributed among individual precision scaling

units and the quality control unit. The positive and negative error registers in the

precision scaling units contain an estimate of error introduced in their respective data

vectors. These error registers are scanned along row and column precision scaling

units and used by the quality control unit to obtain the overall error at the output

98

of the instruction. The estimated error is stored in the error register, Err.Reg, of

Quora.

The quality translation and error estimation procedures are instruction dependent

and are described for various instructions and quality types in section 3.5.4.

3.5.3 Precision Scaling: Impact on Energy

Precision scaling of operands has significant impact on the energy consumed by

Quora. A qualitative evaluation of the various benefits and overheads are described

in this section.

Benefits

The energy benefits due to precision scaling stem from three direct sources.

• Reduction in Switching Activity When precision scaled, the LSB bits of

the data operands are set to zero. This results in reduction in the switching

activity in the PEs, as the logic slices corresponding to the precision scaled bits

are dormant. Hence, the dynamic power consumed by the PEs are inherently

reduced under precision scaled operation.

• Clock gating of registers: As the precision of the computations performed in

the PEs is scaled, bit slices of the registers can be clock gated to further enhance

their energy efficiency. As shown in Figure 3.13, signals for clock gating are

generated based on the PSc values in the quality control unit and fed to the

APEs and MAPEs.

• Voltage scaling: Precision scaling also leads to reduction in circuit delay due

to reduction in the critical path of the design. This can be used to benefit energy

consumption, by reducing the supply voltage to the APE and MAPE process-

ing elements. The quality programmable instructions in Quora execute over

multiple (tens to hundreds) clock cycles and hence supply voltage modulation

99

is feasible. Note that supply voltage reduction is only employed to exploit the

timing slack created by precision scaling, and no timing errors are introduced

in the PEs.

In addition to the above direct benefits, precision scaling provides an indirect

energy benefit in the execution of subsequent instructions. Precision scaling the

input operands of an instruction naturally results in its outputs being computed with

a lower precision. Thus, subsequent instructions that consume the output value of the

current instruction can also be precision scaled without any additional degradation in

their output quality. The hardware is equipped to store the precision of accumulator

registers in APEs/MAPEs, which are then selectively used to scale the precision of

future instructions that operate on these values.

Overheads

In Quora, the key hardware overheads of precision scaling are the precision

scaling units, which are located only along the top and left borders of the APE array,

and the quality control logic, which is global to the processor. The precision scaling

units are significantly smaller than the processing elements and their cost is further

amortized as they are shared among APEs in a given row or column. The APEs

are augmented with logic to enable clock gating of registers. In our implementation,

the hardware overheads for precision scaling contribute < 1% of the total energy

consumed by other components.

3.5.4 Quality Translation and Error Estimation

Quality translation entails determining the row (R.PSc) and column (C.PSc)

precision scaling values based on the type and amount of error specified in the quality

fields of the instruction. The error monitoring registers present in the precision scaling

units keep track of the error introduced in the input operands of the instruction. At

the end of instruction execution, this error at the inputs is translated into error at

100

the instruction output and stored in the error register (Err.Reg) of Quora. The

quality translation and error estimation procedures are instruction specific and are

shown for a representative subset of quality programmable instructions in Table 3.2.

Table 3.2.: Quality translation and error estimation for quality programmable in-

structions

������

	 $�
�����

��!����������

���������

�"������������

���������

���

������

������

�$����

�$����

��������

��	

�$���#

���

����

�����

�$���

�$���

�����

	����

��	���

�����

	����

�����

	����

��	���

�����

	����

��	���

	���������� 	����������

��	���
��	���

	����������

��	���

	����������

��	���

	����� ����� 	����� �����

��	��� ������
��	��� ������

��	���

We describe the procedure in detail for the multiply-and-accumulate instruction

(qpMAC : row 1 of Table 3.2) using the maximum error magnitude quality metric. In

the case of qpMAC, only one of the input operands (column operand in Quora) is

precision scaled. Equation 3.5a shows the analytical expression for error magnitude at

the instruction output when one of the operands is precision scaled. In Equation 3.5a,

Ai and Bi are the input operands, and ∆i is the error due to precision scaling Bi.

101

ErrMag = |Oacc −Oapprox| =
∣

∣

∣

n
∑

i=1

(AiBi)−
n

∑

i=1

(Ai(Bi +∆i)
∣

∣

∣
=

n
∑

i=1

(Ai∆i) (3.5a)

MaxErr ≥
n

∑

i=1

(Ai∆i) ≥ nAmax∆max ≥ n2BW2C.PSc−1

=⇒ C.PSc = 1 + log2

⌊MaxErr

n2BW

⌋

(3.5b)

We need to ensure that this error (ErrMag) is guaranteed to be lower than the

value, MaxErr, specified in the instruction quality amount field. Equation 3.5b also

shows the steps in calculating C.PSc under this condition. BW is the bit width of

the operation. As we can see from Equation 3.5b, the quality translation process

is conservative in-order to ensure the quality bounds are guaranteed for all possible

inputs.

The total positive and negative error in the input operands are available in the

P.Err andN.Err registers of the precision scaling units. In the worst case for qpMAC,

the error estimate is the maximum of P.Err and N.Err multiplied by the maximum

possible value of the other operand.

In summary, the precision scaling mechanisms enable quality-configurable execu-

tion of instructions inQuora and the quality control unit regulates these mechanisms

based on the instruction-level quality specifications.

3.6 Evaluation Methodology

In-order to demonstrate the energy benefits of quality programmability, we real-

ized a hardware implementation of Quora and performed a wide range of experi-

ments on it using a suite of popular applications from the recognition, mining and

synthesis application domains. This section describes our design flow, experimental

methodology and the benchmarks used in evaluation.

102

3.6.1 RTL Implementation

Quora was implemented at the register-transfer level (RTL) using Verilog HDL

and synthesized to the IBM 45nm technology library using Synopsys Design Com-

piler [34]. The micro-architectural parameters and implementation metrics are shown

in Table 3.3.

Table 3.3.: Quora: Micro-architectural parameters and implementation metrics

����	����������	���
��������� ��	�

���������������� ��������

*����%��	�����	� 9����	�9 	��	 !"#��!$� 9�%! 9��

��&���%�����'�� ��(��– 	��)����	 %!�)�"�

*�� �%�����(����'� %!

��*'+��%�����(����'� �,

�*���'�������-.���� !$/��*&

������ ��	�

���'.�����&� ,$��

���� !�����!

��0�� %�1�"���

	�'� 	�.�'� $/!/,!

$�2!"2

�2

�#2

/2 �2 ��	���2

���	���2

	��	�2

�����2

���	��2

�������2

Synopsys Power Compiler [34] was used to estimate power consumption at the

gate-level. Table 3.3 also shows the power breakdown among different components of

Quora. The APE and MAPE elements contribute 79% of the total power, providing

ample scope for obtaining energy benefits through approximate computing.

3.6.2 Application Benchmarks

Table 3.4 lists the applications and datasets that were used as benchmarks in our

experiments. The application-specific metrics used to evaluate the output quality are

also provided.

103

Table 3.4.: Quora: List of application benchmarks

������������� ���������� �������� �	�
���������

*���3� !!���� " !�

�������	�����

���������

�&����	����	���

��������
�����

������	����

����������	����

���&���+�

�����	��������	����

���������

�&����	����	���

��������
�����

 ���	�����������	����

�����

���)��&	��������&����

��	3��!��
�����

"+�� �	��	����

#$�%��

#�������&�'�$��������

)��	���%&��	�&�	����

�(������	����(�

�"������)�

��	�����������	���

�������	����
!�����
*�������	����������� ����'���	��

����&�� �	������+����
�����
��	����������&����

��	3��!��
�'&�	�

 ��&(��	��������
�����
��(��	����������

��'�!�

�&���	����

+�!���'���

��)�������	����

	���,-����&�	��

�(�������(��	�	����

*�����������
*�(�������&�	������

���!���+�

'�	���	�
����'��	�����

�����&�	���'�

����	�����(�

������	�)��

���	���'��

��	�����������	���

��&�	������

*�����������

*�(�������&�	������ ����'���	��

The applications were ported manually to the Quora ISA and the quality fields

of quality programmable instructions were set empirically using a greedy auto-tuning

procedure with iterative quality profiling as described below. First, the quality fields

in all quality programmable instructions in the assembly program are set as fully-

accurate. Next, the program is energy-profiled to identify the most energy consuming

instruction and its accuracy relaxed in steps of 2.5%. The application is executed on

an instruction-level simulator to evaluate application-level quality. This process is

104

repeated until the application-level quality constraint is violated to obtain to the

quality programmable assembly code.

3.6.3 Energy and Quality Measurements

Gate-level Energy Estimation for Micro-Benchmarks:

Since energy estimation of the entire application at the gate-level incurs pro-

hibitively large run-times, we used individual instructions in the ISA as micro-benchmarks

and evaluated their energy consumption. Table 3.5 shows the number of execution

cycles and energy for a subset of instructions. In the case of quality programmable

instructions, the energy consumed varies based on the desired accuracy level and is

shown as an energy range in Table 3.5. Note that these instructions, in addition to

executing on APE and MAPE processing elements, extend over a large number of

clock cycles compared to scalar instructions, enhancing their total energy consump-

tion. Also, since APEs and MAPEs dominate the energy consumption in Quora, a

significant fraction (¿80%) of the quality programmable instruction energy is scalable

under approximate operation.

RTL and Instruction-accurate Simulation

We used ModelSim [44] to simulate complete applications at the register-transfer

level and obtained the dynamic instruction count of various instructions in each pro-

gram. We combined the energy consumed by individual instructions with their dy-

namic count to compute the total energy consumed by Quora for executing the

entire application. Since precision scaling input operands only introduces functional

errors during execution, we developed an instruction accurate simulator and used it

to obtain the overall application output quality.

105

Table 3.5.: Execution time and energy of instructions in Quora’s ISA

�����������

��������

������

�����

����

�������	��
��	����

����������	����

����������������	

���� � �.��
 ��

���� � �.��� ��

����� �� �.��� ��

����� �� ��.
��– ��.�� �.���

������ �� ��.���– �.�� �.���

���
��
.�� ��

������ �� �.���– �.�� �.�
�

���� �� �.���– �.�� �.���

�����! � �.���– �.�� �.���

���"� � �.��– �.�
 �.���

3.7 Experimental Results

In this section, we present the results of various experiments that demonstrate

significant benefits obtained by leveraging quality programmability in the benchmark

applications.

3.7.1 Energy Benefits

Figure 3.14 shows the normalized energy consumption at different output qual-

ity targets for all applications. The energy is normalized to the base case where all

the quality programmable instructions in the application are executed in a fully ac-

curate manner. The energy benefits range between 1.05X-1.7X for virtually no loss

(< 0.5%)in output quality and between 1.18X-2.1X when modest loss (< 2.5%) in

quality is tolerable. When the quality requirements are further relaxed (< 7.5%), the

benefits extend upto 2.5X compared to fully-accurate Quora baseline. On an aver-

106

age, leveraging quality programmability results in 1.3X, 1.6X, and 1.85X at different

quality levels respectively.

�

�/�

���

���

���

�

���

�
�

��
�

��
��
�

�	

�

��
�

�
�

�

	
�����
� ������ ������� ������

Fig. 3.14.: Energy benefits for different application-level quality constraints

3.7.2 Quality Programmability in Instructions

To demonstrate the need for quality programmability in instructions, we examine

the energy and output quality of applications for different instruction level quality

bounds. Figure 3.15 shows the plot for 2 applications, viz. hand digit recognition

(MNIST dataset) and object classification (NORB dataset), both using the Support

Vector Machines (SVM) algorithm. In both cases, significant energy improvements

are obtained at lower error bounds for no degradation in application output quality.

However, after some point, energy benefits begin to taper off and the degradation in

application output quality becomes marked. Moreover, as seen from the graphs, based

on the application context and the dataset being processed, the same algorithm ex-

hibits significantly different energy-quality trade-offs. Thus, for a given target output

quality, to maximally exploit the benefits of error resilience, we require instructions

107

to be executed at different accuracy levels. Further, the target quality requirement

itself may vary based on the context in which the application output is used. These

factors underscore the importance of quality-programmability in instructions.

��#���#�����

��

��

��

	

	�

	�

	�

	�

�

��

�

��

��

��

�	

�

�
� �� ��
�

��
��
��
��
�
��
�
�

��
��
	

�
��

��

��
��
�

�

�
�

�

�
��
��
�

��
�
�

�
�

��
��
�

�

�����	���

�
�������	����������

������

������������������ ����
�

�

��

��

��

��

��

��

	�

��

�

��

��

��

�	

�

� �
�
�

�
��
��
��
��
�
��
�
�

��
��
	

�
��

��

��
��
�

�

�
�

�

�
��
��
�

��
�
�

�
�

��
��
�

�
�����	���

�
�������	����������

������

������������������ ����

�!"�#��$%&�

Fig. 3.15.: Energy reduction and application-level quality degradation for different

instruction level quality specifications

3.7.3 Energy Contribution of Quality Programmable Instructions

To better understand the scope of benefits that can be obtained by approximate

computing in Quora, we present the contribution of quality programmable instruc-

tions to the dynamic instruction count, execution cycles and overall energy for various

applications, in Figure 3.16.

On an average, we observe that, when applications are ported to Quora, less

than 2% of the instructions are quality programmable. These instructions typically

execute over multiple cycles contributing about 20% of total application runtime.

However, these instructions execute on the APE and MAPE elements, which enhance

their total energy contribution to more than 75%. This observation is typical of many

error resilient applications which contain few dominant kernels that are resilient and

consume a significant portion of application energy [4]. Thus, in Quora, significant

108

� �� '� (�)� ���

���������

�������&

����

#���

���

����	
����

����	
�����

���

���

������	

���������

�
����

��������

������

�����
������
�

Fig. 3.16.: Contribution of quality programmable instructions to dynamic instruction

count, execution cycles and energy

energy benefits can be realized even when pogram uses a small number of quality

programmable instructions.

3.7.4 Precision Scaling Mechanisms

�

���

���

���

��*

�

���

� ��� �

�
�
	

�
��
�
�

���
�
�

��

�
	�
�

��
��

�

���	�����		�	����������

 !���

�����

���	�
���

	�

	�

	�

	�

�

�	�

 � �

�
�
	

�
��
�
�

���
�
�

��

�
	�
�

��
��

�

���	�����		�	����������

�����

�����

���	�
���

	�

	��

	�

	��

�

�	�

 	� � �	�

�
�
	

�
��
�
�

��
�
�
�

��

�
	�
�

��
��

�

���	�����		�	����������

�����

�����

���	�
���

�

����������
������� �����������

Fig. 3.17.: Energy vs. error curves for micro-benchmarks using different precision

scaling mechanisms

109

The impact of employing the proposed precision scaling mechanisms is studied

using different micro-benchmarks and the results are presented in form of energy vs.

error graphs in Figure 3.17. We compare 3 schemes: (i) Truncation, where the LSB

bits of inputs operands to the instruction are set to zero, (ii) Up/down precision

scaling, where LSB bits are rounded up/down based on a fixed threshold, and (iii)

Precision scaling with error compensation, in which the threshold used in up/down

precision scaling is varied based on the actual error incurred during execution. The

micro-benchmarks were executed on 10000 random input instances. We can observe

from Figure 3.17 that precision scaling with enhanced error compensation outperforms

the other schemes and provides the best energy-quality trade-off in all 3 cases.

3.7.5 Architectural Exploration

���

���

���

���

���

��	

�

	� 	� 	� 	� 	�
��

�
�

�
�
��
��
�

�	

�
��

��
��

�������������
�����������

����
�

����
�

�����

�����

�����

���

���

���

���

���

���

��	

�

�� �� �� �� �� 	�

�
�
��

�
��
��
�

�	

�
��

��
��

�������������
������������

����
�

����
�

�����

�����

�����

����

Fig. 3.18.: Energy vs. quality curves for varying array dimensions

To study the impact of micro-architectural parameters on energy benefits, we per-

form an architectural exploration by varying Quora’s array dimensions. Figure 3.18

shows the energy vs. output quality (classification accuracy) graphs for two appli-

cations, k-NN and GLVQ. Exploiting quality programmability yields considerable

benefits across all the configurations. However, the benefits decrease as the array di-

mensions are reduced. This can be attributed to: (i) The fraction of energy consumed

110

by the control front-ends of the design become significant. The overheads increase

from 21% for a 16x16 array to 59% for a 2x2 array. (ii) The number of scalar instruc-

tions in the program that determine its control flow (such as loop iteration count etc.)

and their contribution to overall application energy increase – 10% for a 16x16 array

to 48% for a 2x2 array for the GLVQ application – as we reduce the parallelism in

the processor.

3.8 Summary

To broaden the applicability of approximate computing, this chapter proposed

quality programmable processors, in which the notion of quality is explicitly codified

in the HW/SW interface, i.e., the instruction set. The ISA of a quality programmable

processor contains instructions associated with quality fields to specify the accuracy

level that must be met during their execution. This chapter demonstrated that this

ability to control the accuracy of instruction execution greatly enhances the scope of

approximate computing, allowing it to be applied to larger parts of programs. The

micro-architecture of a quality programmable processor contains hardware mecha-

nisms that translate the instruction-level quality specifications into energy savings.

Additionally, it may expose the actual error incurred during the execution of each

instruction (which may be less than the specified limit) back to software.

As an embodiment of the above concepts, this chapter presented a quality pro-

grammable vector processor design, Quora, comprised of a 3-tiered hierarchy of

processing elements. Based on a 289 processing element RTL implementation and

gate-level energy evaluation of Quora, this chapter demonstrated that leveraging

quality programmability leads to significant improvements in energy efficiency. In

summary, quality programmable processors, by taking approximate computing to the

realm of programmable processors, achieves a significant milestone towards bringing

approximate computing to the mainstream.

111

4. ENERGY-EFFICIENT DEEP LEARNING USING

APPROXIMATE COMPUTING

4.1 Introduction

The field of neuromorphic computing has garnered significant interest in the past

decade due to a confluence of trends from neuroscience, machine learning, semicon-

ductor technology, and high performance computing. An important development

within this field has been the advent of large-scale neural networks (NNs) called Deep

Learning Networks [39, 45, 46] (DLNs). These biologically inspired algorithms have

shown state-of-the-art results on a variety of recognition, classification and inference

tasks. Hence, they are deployed in many real world applications such as Google image

search [47], Google Now speech recognition [48], and Apple Siri voice recognition [49],

among others.

4.1.1 Deep Learning Networks: Computational Challenges

Deep learning networks are highly compute and data intensive due to their large

scale and dense connectivity. To understand the computational challenges associated

with deep learning, we consider two concrete scenarios that we believe exemplify

the most pressing computational challenges: (i) embedding deep learning (network

evaluation) in low-power wearable and IoT devices, and (ii) high-speed training of

large-scale networks with large data sets. For our analysis, we consider some of the

top entries in the ImageNet image recognition competition [46,50–52], which has been

dominated by deep networks in recent years.

112

(2013)

2
.4

3

3
.3

0

3
.5

0
 7
.8

8

2
0
.4

2

0

5

10

15

20

25

AlexNet OverFeat GoogLenet VGG-A VGG-E

G
ig

a
 O

p
s

���#������#�

"���#������ ������

 ����

������	
������

������������ ������������

����	��	�����
��� �� �����
���������

����	�
�����

!"���##$�%� ���������������

*https://wiki.ubuntu.com/Specs/M/ARMSoCOMAP?action=AttachFile&do=get&target=OMAP_Overview_UDS.pdf

Overfeat DL network on a Google Glass

(2012) (2014) (2014) (2014)

DL compute requirements (network evaluation)

Fig. 4.1.: Computational requirements for embedding deep learning in low-power

devices

Deep learning in low-power devices

Consider the problem of processing the video stream captured by a smart glass

using a deep learning network that executes on the on-board processor (i.e., the

data cannot be uploaded to the cloud due to bandwidth, battery life, or privacy con-

straints). We note that such applications were explored for the Google Glass [53,54].

To evaluate the feasibility of this use-case, Figure 2 shows the number of ops required

to perform classification using the considered deep networks. Further, using specs

from the the Google Glass (OMAP 4430 processor, 2.1WH battery) [55,56], we com-

pute the frames-per-second that would be achieved assuming the mobile GPU is fully

dedicated to evaluation the deep network and runs at peak hardware performance,

as well as the battery life if the battery were used only to power the execution of the

deep network. As shown from the results in Figure 4.1, there is clearly a need for an

order-of-magnitude or higher improvement in processing efficiency to enable real-time

recognition in this scenario.

113

����	���
���

&'��%�(�������������	
� �������������

�������	���������������

��������������� !��"
�

#���$�%����$��&
�

Training VGG-E network on a Xeon Phi server

�
��	
�

�������	�����	%�

�����'(��$�
�

#)����'��
1E+02

1E+03

1E+04

1E+05

1E+06

Scalar Ops Memory Accesses

Pe
ta

 {
O

p
s/

A
cc

es
se

s}

Overfeat VGG-E Projected (Imagenet 22K)

DL compute requirements (training)

Fig. 4.2.: Computational requirements for training deep learning networks in the

cloud

Large-scale training in the cloud

If evaluating deep networks is a major challenge at one end of the computing

spectrum, building and training these networks is equally challenging at the other end.

Let us consider the problem of training a large-scale network for object recognition on

the ImageNet data set. Figure 4.2 shows the compute operations and memory accesses

required for training current and projected large-scale networks, and the execution

time and energy required for training the VGG-E network on an Intel Xeon Phi 7120p

processor [57] (again, assuming ideal hardware performance). Clearly, even these ideal

numbers indicate that there is a need for large improvements.

4.1.2 Efficiency of DLNs: Prior Research Directions

Previous efforts have explored three major directions for the efficient implemen-

tation of NNs, which are outlined in Figure 4.3. The first class of efforts focus on

improving the runtime of deep learning networks by parallelizing them on multi-

and many-core platforms [61]. The second direction is accelerator based computing,

in which custom architectures that are optimized to the computation and commu-

nication patterns of NNs are designed. A spectrum of architectures ranging from

114

application-specific NN designs [58] to programmable neural processors [59, 60] have

been proposed.

Hardware
accelerators

Post-CMOS

•  ***�����+��� �+)���*��,!"�

•  �#$�� �)�*�**�,!!�

•  *����������	
������

•  ��

•  ������������������������������������

•  ����������������� !���"�

•  ����!� ������ !���#�

•  ��

Implementations
on many-core

platforms

Approximate
computing

e

•  ������$�������%��� ���#�

•  &�'������(�����������������

•  ��

Deep Learning
Networks

Fig. 4.3.: Research directions to improve deep learning efficiency

The third prominent direction is the use of emerging device technologies to re-

alize the fundamental computations present in NNs. Efficient neuron and synapse

implementations based on resistive RAM [62], memristor based crossbar arrays [63],

and spintronics [64] have been explored in literature. Complementary to the above

efforts, this thesis explores approximate computing as a new dimension to improve

the implementation efficiency of deep learning.

4.1.3 Deep Learning ⇔ Approximate Computing

We observe that neural networks, by their very nature, are inherently amenable to

approximate computing. First, they are used in applications where less-than-perfect

115

results are acceptable, and often inevitable. Recent studies [4,65] have demonstrated

that their robustness to noisy, real-world input data also enables them to remain

resilient to inexactness or errors in a large fraction of their computations. The re-

silience to errors is in fact enhanced by the nature of computations performed within

a neuron itself. Each neuron in the network evaluates a weighted sum of its inputs,

followed by a saturating (or thresholding) non-linear activation function (e.g., tanh,

sigmoid). Errors in the positive and negative directions compensate for each other

during weighted summation and any residual errors are attenuated by the activation

function. Hence, by introducing imperfections in a disciplined manner, the energy

consumption of neural networks can be significantly reduced without sacrificing their

quality of output.

A key question in approximate computing is which computations to approximate,

and by how much. The judicious selection of approximations is critical to maximiz-

ing the benefits from approximate computing while ensuring minimal degradation in

output quality. For this purpose, it is necessary to determine the impact of approxi-

mating various internal computations on the eventual application output quality. In

the context of neuromorphic systems, we address this challenge by leveraging back-

propagation, an operation that is widely utilized for NN training. We observe that

backpropagation provides a measure of the sensitivity of the NN outputs to each neu-

ron in the network; thereby, it can be utilized to identify neurons that are likely to

be more resilient to approximations.

The process of training provides a further opportunity to maximize the benefits of

approximate computing in NNs. Training is an inherently error-healing process, since

it modulates the weights associated with each neuron in the NN such that the error

at the network outputs is minimized. Therefore, we suggest that training can also

be used to compensate for approximations. Further, this synergy can be exploited

in an iterative approximate-and-retrain loop to enhance the benefits of approximate

computing.

116

Based on the above insights, we propose a method to construct ApproXimate

Neural Networks (AxNNs) that consists of three key steps. First, it utilizes back-

propagation to characterize the importance of each neuron in the NN and identify

those that impact output quality the least. Next, the AxNN is created by selectively

replacing less significant neurons in the network with approximate versions that are

more energy-efficient. Towards this end, we utilize precision scaling, a popular approx-

imate design technique, and modulate the precisions of the inputs and the weights of

the neurons to realize versions with different accuracy vs. energy trade-offs. Once the

approximate NN is formed, we adapt the weights of the neurons in the approximated

network by incrementally retraining them. Since training is a naturally error-healing

process, this allows us to reclaim a significant portion of the quality ceded by approx-

imations. For a given output quality, retraining may create further opportunities to

approximate the NN, resulting in increased energy benefits. We develop an automatic

design methodology to generate AxNNs by iterating the aforementioned characterize,

approximate and retrain steps in a quality-constrained loop.

Another contribution of our work is the design of a quality-configurable Neu-

romorphic Processing Engine (qcNPE), which provides a programmable hardware

platform for efficiently executing AxNNs with arbitrary topologies, weights, and de-

grees of approximation. qcNPE features a 2D array of Neural Computation Units

(NCUs) and a 1D array of Activation Function Units (AFUs) that together enable the

efficient execution of neural networks. We equip the NCUs and AFUs with hardware

mechanisms based on precision scaling to effectively translate the reduced precision

of neurons into energy benefits at run-time.

In summary, the key contributions of AxNN are:

• We propose a new avenue for energy efficiency in neuromorphic systems by us-

ing approximate computing. We propose the concept of ApproXimate Neural

Networks (AxNNs) that leverage backpropagation to maximize the energy ben-

efits from approximate computing, while utilizing the inherent healing nature

of the training process to minimize their impact on output quality.

117

• Embodying the above design principle, we develop a systematic methodology,

which can automatically generate AxNNs for any given neural network. The

methodology is independent of the NN topology, network parameters and the

training dataset.

• We design a programmable and quality-configurable Neuromorphic Processing

Engine (qcNPE) that can be used to efficiently execute AxNNs.

• We construct approximate versions of 6 popular large-scale NN applications

using the proposed AxNN design methodology and execute them on two dif-

ferent platforms – qcNPE and commodity Intel Xeon server – to demonstrate

significant improvements in energy for negligible loss in output quality.

The rest of the chapter is organized as follows. Section 4.2 provides relevant

background on NNs. Section 4.3 outlines the proposed AxNN design methodology.

Section 4.4 details the architecture of qcNPE. Section 4.5 describes the experimental

methodology and the NN applications used. Section 4.6 presents the results and

Section 4.7 concludes the paper.

4.2 Neural Nets: Preliminaries

Neural networks can be broadly described as systems that functionally abstract

the computational behavior of the human brain. The fundamental computation unit

of NNs is called a neuron, which is densely interconnected with several others to

constitute a neural network. Each neuron in the network, as shown in Figure 4.4(a),

computes a weighted sum of all its inputs, followed by a non-linear activation function

on the weighted sum to produce the output.

While the proposed approach can be applied to various classes of NNs, in our

discussions we consider the most prevalent form, viz. feedforward NNs, wherein the

neurons are connected to form an acyclic network, as illustrated in Figure 4.4(b). The

operation of NNs typically involves 2 phases viz. training and testing. In the training

118

��

��

��

��

��

�

 $��	�$	��

��������*�

-�����*�

�����$��*�

������������	������
���	���������	���������

��

Fig. 4.4.: Neural network preliminaries

phase, the parameters of the NN (weights of each neuron) are identified based on the

training dataset. Once the NN is trained, it enters the testing or evaluation phase, in

which it is used to perform the desired application. A brief description of the steps

involved in testing and training are provided below.

Evaluating NNs—Forward Propagation:

Forward propagation, used widely in both testing and training, is the process of

evaluating the outputs of the NN. In forward propagation, the inputs are fed to the

neurons in the first layer, where they are processed and propagated to the neurons in

the next layer. This process is repeated at all the network layers and the NN outputs

are eventually computed.

Training NNs—Backpropagation:

The training process iterates over a dataset of training instances, pre-labeled with

golden outputs for the NN, to identify the values of network parameters that maxi-

mize the application output quality. The network parameters are typically initialized

randomly and are successively refined in each iteration as described below. First, the

119

NN is evaluated for a random training instance using forward propagation, and the

error at the network output (with reference to the golden output) is computed. Next,

a key step called backpropagation is invoked, which redistributes the error at the NN

output backward in the network, all the way to its inputs. Thus, backpropagation

quantifies the error contributed by each neuron in the network towards the global

network error. Knowing the respective error contributions, the network parameters

associated with each neuron are modulated such that the error at its output is re-

duced. Mathematically, the parameter update process is formulated as a gradient

descent optimization problem as shown in Equation 4.1. In this equation, wji repre-

sents the weight of the connection between neuron i and j, E denotes the global error,

α denotes the learning rate, and ψ′ is the first derivative of the activation function.

The ∆wji is computed by propagating the error back in the network through all the

connections in the downstream of j to the output.

∆wji = −α
∂E

∂wji

=
∑

k∈DownStream(j)

(

αψ′wkj

∂E

∂wkj

)

(4.1)

In the proposed methodology to construct AxNNs, we utilize two unique proper-

ties: (i) the ability to apportion global errors to local computations by using back-

propagation, and (ii) the ability to self-heal local errors in the network during training.

A detailed description of the principles behind AxNNs and their design are provided

in Section 4.3.

4.3 AxNN: Approach and Design Methodology

Approximate Neural Networks (AxNNs) are neural networks whose constituent

computations have been subject to approximations, resulting in improved energy

efficiency with acceptable output quality. This section outlines the key ideas behind

AxNNs and the proposed design methodology.

120

�

�

����(�����

���������������

�����(���������

������� �����

���� ����(�

�������

!

"

#

$

�

�

!

"

#

$

�

�

�����������

���	�
������	�

������
���	�
�

�����	�����

!

"

#

$

%�

%!

%"

%#

%$

%�

����(

����(

! #$
" � �

�������&� ����(����

&�������������

!

"

#

$

�

�

!

"

#

$

�

�

!

#
�

!

�

������� ��������(�������������

��� ��� ����� �������'��(��(

�������������������������������

��(�� ��������'��(��(

W’!�
W’!�
……

W’$�

&!�

&!�

……

&$�

)�&���������������������(�����

�����������&������

!

"

#

$

�

�

����(����������������(����

��������*������&��

������� ����&�������

+���(������������

���� ��������������������

�������

��������

	
��
���

�����������������

�

�
�

Fig. 4.5.: Overview of the Approximate Neural Networks (AxNN) design approach

4.3.1 AxNN: Design Approach

An AxNN can be viewed as a transformed version of a trained NN, where the

transformation introduces approximations such that the resulting energy is minimized

while the output quality meets a specified constraint. As shown in Figure 4.5, this

transformation involves three key steps: (i) Resilience characterization, wherein the

neural network is analyzed to identify neurons that impact output quality the least,

(ii) Neural network approximation, in which the neurons that were determined to be

resilient in the characterization step are approximated, and finally (iii) Incremental

retraining wherein the network is retrained with the approximations in-place such

that the loss in quality is further minimized. The following subsections provide an

in-depth description of each step in the process.

Neural network resilience characterization

A significant challenge to employing approximate computing in any application

is to distinguish computations that the application output is highly sensitive to (and

hence cannot be approximated) from resilient ones that may be subject to approxima-

121

tions. In the context of neuromorphic systems, we propose to utilize backpropagation

to characterize the resilience of each neuron. Backpropagation apportions the error

at the output of the NN to the outputs of individual neurons. Thereby, it provides a

measure of the error contributed by each neuron to the outputs of the network. We

make the following key observation: neurons that contribute the least to the global

error are more resilient i.e., more amenable to approximations. Conversely, neurons

contributing the highest error during backpropagation are deemed sensitive.

(E3) (E4) (E5) (E6) (E7)

��,�������� ���,�����

Neurons with lower error are
more resilient!

3

4

5

I1

I2

O7

6
O6

7

W13

W23

W14

W24

W25

W15

W57

W36

W56

W37

W47

W46

���

������

�������

���

���

���

�	�

Tr. Dataset

(E3) (E4) (E5) (E6) (E7) Sort

3
5 7 4 6

Fig. 4.6.: Illustration: Neuron resilience characterization

Based on the above insight, we propose a resilience characterization procedure,

illustrated in Figure 4.6, that involves the following operations. For each instance

in the training dataset, the error at the output of the neural network is computed

using forward propagation. Next, the errors are propagated back to the outputs of

individual neurons and their average error contribution over all inputs in the training

set is obtained. The neurons are then sorted based on the magnitude of their average

error contribution, and a pre-determined threshold is used to classify them as resilient

or sensitive. We note that, unlike the actual training process, the network parameters

are not altered during the resilience characterization step.

122

Approximation of resilient neurons

In the approximation step, the AxNN is formed by replacing approximate neurons

in place of the resilient neurons identified during resilience characterization. Approxi-

mate neurons are inaccurate but cost-effective hardware or software implementations

of the original neuron functionality and are the primary source of the energy efficiency

in AxNNs. Approximate neurons can be designed using a wide range of approximate

computing techniques. In this work, as shown in Figure 4.7, we explore two tech-

niques to approximate resilient neurons. First, we utilize precision scaling, a popular

technique in which the precisions (bit-widths) of the input operands and the neuron

weights are modulated based on their degree of resilience. In addition, we also explore

the use of piecewise-linear approximations of the activation function. These approx-

imations may lead to improved efficiency on various hardware platforms. However,

the proposed qcNPE architecture, described in Section 4.4, is specifically designed to

translate the reduced precision requirements of the approximate neurons into energy

improvements.

���������������� ��&��&������&��

���������&��W0

W1

I0

I1

IN

������

��&��&��

����&��

WN

��������������������������

����&������������������

�������������������������&��

������

����������������������������

������������������������

��� �

������ �

���

Fig. 4.7.: Techniques used to approximate neurons

Incremental retrain of AxNN

Although approximations are themselves introduced in a quality-aware manner,

we show how to further minimize their impact by leveraging the training process. As

discussed in Section 4.2, the training process modulates the parameters associated

123

with each neuron such that the global error is minimized. In fully-accurate NNs,

the output error originates from untrained or partially trained network parameters.

However, in the case of AxNNs, we intentionally supplement this error with a sec-

ondary source, viz. approximate neurons. Since training by nature has the ability

to minimize errors at neuron outputs, we assert that errors introduced by approxi-

mations can also potentially benefit from it. Leveraging this insight, we propose to

retrain the AxNN parameters with approximations in-place. The retraining process,

as shown in Figure 4.8, suitably adjusts the AxNN parameters, thereby alleviating

the impact of approximation-induced errors. Since retraining improves the output

quality of the AxNN, it enables new opportunities to perform additional approxi-

mations. This synergy between approximation and training can be captured in an

iterative approximate-and-retrain loop, as described in the next sub-section.

W’13

W’23

W’25

W’15

W’57

W’37

W’47

W46

W56

W36

Weights of neurons are modulated so
that overall NN error is reduced

����

����

3

4

5

6

7

W14

W24
���

���

���

3
5

7

	
���
����

�����

�����

	
������

����

����

����

����

����

�����

�����

�����

�����

�����

3

5

7

�����������������������

Fig. 4.8.: Incremental retrain of AxNN

Retraining the AxNN after approximations increases the overall runtime of the

training process. However, we note that the retraining is incremental i.e., it is carried

out for very few iterations (2 iterations in our experiments). Typically, the training

process in NNs takes several tens to hundreds of iterations and therefore the increase

in run-time complexity due to retraining is small. Also, in typical use cases of NN

applications, the training process is performed once or very infrequently. On the other

124

hand, the testing or evaluation phase, in which the actual classification is performed

using the NN, extends for much longer periods of time. Since AxNNs yield significant

energy benefits in the more critical evaluation phase, a small increase in the cost of

training is a favorable trade-off. The impact of retraining on the overall energy and

quality of AxNNs for different applications is discussed in Section 4.6.4.

4.3.2 AxNN Design Methodology

Algorithm 5 describes the pseudocode of the systematic methodology that we pro-

pose to automatically construct AxNNs. The inputs are a pre-trained neural network

(NN), its corresponding training dataset (TrData) and a quality constraint (Q) that

dictates the degradation in quality tolerable in the approximate implementation. The

quality specifications are application-specific and are typically used during the process

of constructing and training the NN itself. The algorithm iteratively builds the AxNN

by successively approximating the NN in each iteration (lines 3-15), while ensuring

that the quality bounds are satisfied.

The following steps are performed in each iteration of Algorithm 5. First, an esti-

mate of energy consumed by each layer of the NN (Layer.EList) is computed (line 5).

For this purpose, we employ a high-level energy model of the quality-configurable neu-

romorphic processing engine discussed in Section 4.4. However, other energy models

based on the complexity of neurons and the density of interconnections can also be

utilized. We thus identify the most energy-intensive layer (LayerEmax) in the network

(line 6) and target its constituent neurons for approximations. Next, the resilience of

each neuron in LayerEmax is characterized by finding the average error at its output

over the entire training set using backpropagation (line 7). We then compute the

mean of these errors (∆mean) and neurons whose error is below a threshold α ∗∆mean

are deemed resilient. Each of the resilient neurons previously identified are approx-

imated in steps by gradually reducing their precision of computations (lines 9-13).

The approximate neural network (AxNN) is thus obtained. Next, the AxNN is in-

125

Algorithm 5 AxNN: Design methodology

Input: Pre-trained neural network: NN ,

Training dataset: TrData, Quality constraint: Q

Output: Approximate neural network: AxNN

1: Begin

2: Initialize: AxNNtemp = NN

3: while QAxNN > Q do

4: AxNN = AxNNtemp

5: Layer.EList ← Energy estimates of AxNN layers

6: LayerEmax ← max (Layer.EList)

7: LayerEmax.∆ = backpropagation (AxNN ,TrData)

8: ∆mean = mean (LayerEmax.∆)

9: for each N : Neuron ∈ LayerEmax do

10: if LayerEmax.∆(N) ¡ α ∗∆mean then

11: AxNNtemp = Approximate N in AxNN

12: end if

13: end for

14: AxNNtemp = train (AxNNtemp, TrData, K epochs)

15: end while

16: return AxNN

17: End

126

crementally retrained for a small number of iterations (K epochs) to further improve

its quality (line 14). After retraining, if the AxNN meets the specified quality con-

straint, then lines 4-14 are repeated and the network is further approximated. If not,

the last valid AxNN is produced as the output.

The above design methodology can be utilized to construct energy-efficient approx-

imate versions of any neural network, subject to the desired quality requirements.

Furthermore, any approximation technique may be used, although approximations

that result in better energy vs. quality tradeoffs are clearly desirable.

4.4 Quality Configurable Neuromorphic Processing Engine

In this section, we describe the proposed quality configurable Neuromorphic Pro-

cessing Engine (qcNPE) that provides a hardware platform to execute AxNNs. The

qcNPE is a many-core architecture that exploits the fine-grained data parallelism

and data re-use patterns of NNs. A key feature of qcNPE is that it contains special-

ized processing elements whose accuracies (and energy) are dynamically configurable

and hence can be used to efficiently execute neurons with various degrees of approx-

imation.

Figure 4.9 shows the block diagram of qcNPE. It contains 2 types of process-

ing elements: (i) a 2D array of neural compute units (NCUs), and (ii) a 1D array

of activation function units (AFUs). The NCUs contain a 2-level datapath with an

accumulator register and compute the weighted sum of a stream of inputs over mul-

tiple cycles. The NCUs are connected to their nearest neighbors in the 2D array and

receive inputs from the left and top NCUs, which are then propagated to their right

and bottom neighbors in the next cycle. The NCUs along the top and left borders of

the 2D array receive inputs from two 1D arrays of First-In-First-Out (FIFO) memory

elements placed along the borders. Functionally, the NCUs are designed to perform

the weighted sum operation associated with each neuron. For this purpose, the in-

puts are streamed in along the rows and weights along the columns and operated

127

upon within each NCU. Note that the inputs and weights are re-used by all NCUs

in a given row and column respectively, which is a typical data flow pattern in NNs,

wherein the inputs fan-out to several neurons and the weights are shared amongst

neurons/across inputs.

��� ��� ���

��� ��� ���

��� ��� ���

���

���

���

���

�
	�

�
	�

�
	�

�	�

�	�

�	�

 '%���%������

������	�
���

�

���

���

����

��������

��	�

������ ����	�
 ���

���

���

�
	�

���

���

Fig. 4.9.: Block diagram of qcNPE

In order to facilitate execution with different accuracies, the NCUs are designed

with a precision control register, which is initialized at the beginning of the 2D array

operation. This is used to modulate the precision of the NCU inputs before they are

operated within the NCU. Scaling the precision of input operands naturally results

in power savings due to the reduction in switching activity in the NCU. In qcNPE,

this is further enhanced by clock gating the LSB bit slices of the NCU accumulator

128

register. In our implementation, the area and power overheads to enable quality

configurability amounted to less than 5% of the overall NCU.

The activation function units (AFUs), located on the right border of the 2D array,

are designed to perform the non-linear operation on the weighted sum computed in

the NCUs. As shown in Figure 4.9, this is carried out in a cyclical fashion, wherein

the weighted sums from the NCUs in each row are streamed out and the outputs of

the AFUs are stored back to the respective elements.

In summary, the qcNPE architecture provides an energy-efficient hardware plat-

form to execute AxNNs of any given topology, interconnectivity pattern and degrees

of approximation in their neurons.

4.5 Experimental Methodology

This section describes the experimental methodology and the benchmarks used

in our evaluation of AxNNs. The qcNPE was implemented at the Register-Transfer

Level (RTL) in Verilog HDL and mapped to the IBM 45nm technology using Syn-

opsys Design Compiler. Synopsys Power Compiler was used to estimate the energy

consumption of the implementation. The key micro-architectural parameters and

implementation metrics are shown in Table 4.1.

���	������������

��������
�����

��������������� �	�
��	�

��� ��������� ��	��	

���� ����� ��

���������� ��

����� �����

���������� � !���

���� ��"����

#�$�� ��"����%

&��� ������ �'(�'�

���)����* �&+

Table 4.1.: qcNPE parameters and metrics

Neural networks used in 6 popular classification and recognition applications,

listed in Table 4.2, were used as benchmarks in our experiments. The number of

layers, neurons and connections in the networks are also provided in Table 4.2. The

129

benchmarks were ported manually to qcNPE and the baseline was well optimized

for energy. We utilized classification accuracy, i.e., the fraction of instances correctly

classified as the measure of quality for all the benchmarks.

���	 ��� ��� ������� !����� ������� ������� ���

���������	�
����������� ���� � ����� ������

�	������������������� �� �� � !�"�" �#��#�

$��� ����������� %���& � �#�# �!#!�

 ����$�������� '(������� � �!!�" ")))"

�	���� �����������%*+ �� �� " �#!� !�))���

������ $��������,��� �-��� " �" ��#

Table 4.2.: NN benchmarks used to evaluate AxNN

4.6 Results

In this section, we present the results of experiments that demonstrate the energy

efficiency offered by AxNNs.

4.6.1 Energy benefits of AxNN

Figure 4.10 shows the energy improvement obtained using AxNNs for various

output quality (classification accuracy) constraints. The energy of each AxNN is

normalized to a fully-accurate qcNPE implementation in which none of the neurons

are approximated. Note that this is already a highly optimized baseline since the

qcNPE architecture is highly customized to the characteristics of NNs. Across all

benchmarks, AxNN consistently provides significant energy benefits between 1.14X-

1.92X for virtually no loss (¡ 0.5%) in application output quality. When the quality

constraints are relaxed to ¡ 2.5% and ¡ 7.5%, the benefits increase to 1.35X-1.95X and

1.41X-2.3X, respectively. On an average, AxNN achieves 1.43X, 1.58X and 1.75X

improvement in application energy for the different quality constraints.

130

.

.��

.��

.��

.��

/

%���� ����� �!�+ � ��� � ����%!� ���! &��%���

�
�
�%

�
!
"�

�
�,
�
�
��

#
�
�

�� � ��! -�.�$. %��$. %&�$.

Fig. 4.10.: Improvement in energy using AxNN

4.6.2 Uniform approximation: Comparison

We now illustrate the effectiveness of the proposed resilience characterization

methodology for NNs, by comparing it with a näıve approach wherein all the neurons

in the NN are approximated uniformly. Figure 4.11 shows the energy vs. accuracy

trade-off curves thus obtained for 3 different applications. We observe in all three

cases that the energy improvement obtained using AxNNs is substantially better at

all quality levels, compared to uniform approximation. Thus, it is critical to iden-

tify neurons that are amenable to approximations and directly applying approximate

computing techniques without the proposed resilience characterization step would

lead to limited benefits.

���

���

��

��

��!

��'

�

� ��"� ��� �� �

�
�
�
	�
�

��

�����������	
�����

�������

����

� �������

���

���

���

���

���

�

� ��� � ��� ��

�
�
�
�
�
��

�����������	
�����

�������

����

����	

���

���

���

���

���

�

� ��� � ��� ��

�
�
�
�
�

��

�����������	
�����

�������

����

���

Fig. 4.11.: Quality vs. energy trade-offs with uniform and AxNN approximations

131

4.6.3 Resilience Characterization: Insights

We present insights into the process of identifying resilient neurons in NNs and

illustrate them using the digit recognition application (MNIST) [39] as an example.

The NN takes a pixel map of a handwritten digit as its input and classifies it amongst

digits 0,1 . . . 9. The network contains 6 layers and progressively extracts feature maps

from the input image in the first four layers and combines them in layers 5 and 6 to

infer the class of the input. Each pixel in each feature map of each layer corresponds

to the output of a neuron.

Figure 4.12 shows the average errors (obtained using backpropagation) at the

outputs of all neurons in four selected layers of the digit recognition network. The

neurons are color-coded (blue to red) based on the magnitude of their errors and are

located on the feature maps corresponding to the pixel they generate. We observe

that the resilience of the neurons varies widely (6 orders of magnitude) across all

layers and to a substantial extent (4 orders of magnitude) within a given layer. We

also find that the fraction of neurons that are resilient decreases sharply as we move

closer to the NN outputs. This is attributed to the fact that neurons in the initial

layers typically process features local to a certain region of the image, while neurons

in the final layers infer global features from the previously extracted local features.

Since errors in global inferences are less tolerable, the neurons in the final layers are

correspondingly more sensitive. Further, errors in neurons closer to the inputs have

a greater chance of being compensated or filtered-out as they propagate through the

NN.

We also observe a significant correlation between the resilience of neurons and the

region of the image on which they operate. For example, in layer 1 of Figure 4.12,

neurons that process the center of the input image, where information is typically

concentrated, are less resilient. The neurons become progressively more resilient when

proceeding towards the borders of the image. Thus, the resilience characterization

132

Fig. 4.12.: Neuron average error maps in MNIST [39]

methodology utilized in AxNNs captures the physical intuitions behind the resilience

of neurons in NNs.

4.6.4 Impact of Retraining

To understand the benefits of incrementally retraining the network with the ap-

proximations in place, Figure 4.13 plots the normalized energy-quality trade-off ob-

tained with and without the retraining step in the AxNN methodology for four appli-

cations. We observe in all four cases that AxNN with retraining provides a superior

trade-off, i.e., lower energy for a given target quality. This is because, retraining

recovers a good amount of quality lost due to approximations, thereby allowing ad-

ditional approximations for the same quality.

133

���

���

���

���

���

	

��� ��� ��� ��� ��� 	

��������

������

�
���

����

����

����

����

����

	

��� ��� ��� 	

��������

������

������

���

���

���

���

���

���

���

	

��� ��� ��� ��� ��� 	

��������

������

�����

���

���

���

���

���

���

	

��� ��� ��� ���

��������

������

���������
�
�
��

�
��
��
	

��
�

�
��

��
��
��

���������	�����	�����

Fig. 4.13.: Impact of retraining on energy and quality

Across all our benchmarks, retraining the AxNN increased the run time of the

training process on an average by 21.5%. As discussed in Section 4.3.1, we believe

that this moderate increase in the training time is quite insignificant relative to the

energy benefits provided during the energy-critical testing phase of the application.

4.6.5 AxNNs on Commodity Platforms

In the previous subsections, the neurons were approximated by scaling the preci-

sion of their input operands and the energy benefits were evaluated using the proposed

qcNPE architecture. We now evaluate the benefits of AxNNs on commodity plat-

forms by designing approximate software implementations of NNs. Towards this end,

we replace the activation functions of selected neurons in the network, identified by

the AxNN methodology, with an approximate but significantly faster piecewise linear

function. The original and approximate implementations were executed on a server

with an Intel Xeon processor at 2.7 GHz and 132 GB memory. We note that the

software baseline implementation was aggressively optimized for performance.

Figure 4.14 shows the normalized runtime and quality of the software AxNN

implementations, with varying fraction of neurons approximated, for three appli-

cations. The graphs reveal that, as the fraction of neurons approximated by the

AxNN methodology increases, the runtime decreases proportionally. However, the

corresponding decrease in the application output quality is disproportionately small

134

due to the careful selection of neurons and re-training. On an average, the runtime

speedup is 1.35X with < 0.5% loss in the output quality. These results underscore

the generality of the AxNN methodology with respect to both the approximate com-

puting technique employed to create approximate neurons, as well as the hardware

platform used for their execution.

!"#

!"�

!"

!"!

#

!"#

!"�

!"

!"!

#

! !"#" !"" !"#" #

&
�

�$
"�
�
%
�
��
��

��
��

	

��

�
�
�
�
��
�
�

��
��

�����
������
��	���
������

�������

�������
��

��

��

�

��

��

��

�

� ��� �� � � �

	

��

�
�
�
�
��
��

��
��

	

��

�
�
�
�
��
�
�

��
��

�����
������
��	���
������

�������

�������

��

��

��

�

��

��

��

�

� ��� �� � � �

	

��

�
�
�
�
��
��

��
��

	

��

�
�
�
�
��
�
�

��
��

�����
������
��	���
������

�������

�������

!	"#$ �%��� &����

Fig. 4.14.: AxNN runtime on commodity platform

4.7 Summary

Neuromorphic systems are growing increasingly prevalent and are popularly em-

ployed in a wide variety of classification, recognition, search and computer vision

applications. In this thesis, we utilize approximate computing, an emerging design

paradigm, to design energy-efficient neuromorphic systems. We propose the concept

of Approximate Neural Networks (AxNNs), in which neurons that impact output

quality the least are systematically identified and approximated. The AxNN is then

retrained with the approximations in place, leading to additional opportunities to fur-

ther approximate the network. Also, we design a quality configurable neuromorphic

processing engine that can be utilized to efficiently execute AxNNs. Our experiments

on six NN applications demonstrated significant improvements in energy for negligible

loss in the output quality.

135

5. SCALABLE EFFORT CLASSIFIERS

5.1 Introduction

For many computational systems, all inputs are not created equal. Consider the

simple example of 8-bit multiplication; intuitively, computing the product of 02h

and 01h should be easier than multiplying 19h and 72h. Similarly, compressing a

picture that contains just the blue sky should take less effort than one that contains

a busy street. Ideally, to improve both speed and energy efficiency, algorithms should

expend effort (computational time and energy) that is commensurate to the difficulty

of the inputs. Unfortunately, for most applications, discriminating easy inputs from

hard ones at runtime is challenging. Thus, hardware or software implementations

tend to expend constant computational effort as determined by worst-case inputs or

a representative set of inputs. In this chapter, we focus on an important class of

algorithms - machine learning classifiers - and show how they can be constructed to

scale their computational effort depending on the difficulty of the input data, leading

to faster and more energy-efficient implementations.

Machine-learning algorithms are used to solve an ever-increasing range of clas-

sification problems in recognition, vision, search, analytics and inference across the

entire spectrum of computing platforms [66]. Machine learning algorithms operate in

two phases: training and testing. In training, decision models are constructed based

on a labeled training data set. In testing, the learnt model is applied to classify new

input instances. The intuition behind our approach is as follows. During the training

phase, instead of building one complex decision model, we construct a cascade or

series of models with progressively increasing complexity. During testing, depending

on the difficulty of an input instance, the number of decision models applied to it is

varied, thereby achieving scalability in time and energy.

136

������������	�
��������� ��������������������

�

&!�!!�

!��&!!

�&!
�

 �!
��'&!

�!!� �!
��'&!"��((!'�

'�%(!&!�%��&!��

��������

�	�
����
��������

���
���

��������

�	�
����

�����

�����

������
�δ�

�����������	����������
������

������������	����������
�������������

������

����������
� ���

����������
�����

!�	������
��������

�	�
����

"
��
�#
��

�$

"���#���%

"
��
�#
��

�$

"���#���%

!�	������
�������

�	�
����

"
��
�#
��

�$

!�	������
�������

���
���

"���#���%

Fig. 5.1.: Scalable effort classifiers: Approach

Figure 5.1 illustrates our methodology through a specific machine learning algo-

rithm namely a binary support-vector machine (SVM) classifier. In the traditional

approach shown in Figure 5.1(a), input training examples are used to build a decision

boundary (denoted as model X) that separates data into two categories or classes.

At test time, data instances are assigned to one class or the other depending on their

location relative to the decision boundary. The computational effort (in terms of

energy and time) to process every test instance depends on the complexity of the de-

cision boundary, e.g., non-linear boundaries typically require large number of support

vectors, and hence cost more than linear ones. In the example of Figure 5.1(a), a

single model (X) clearly needs to use a non-linear boundary in order to separate the

classes with high accuracy. However, this leads to high computational effort for not

only the hard test data instances (points close to the decision boundary) but also the

easy test data instances (points far away from the decision boundary). In contrast,

Figure 5.1(b) shows our approach, where we create multiple decision models (Y and

Z) with varying levels of complexity. In the simpler model (Y), two different linear

decision boundaries (dashed lines) are used to define a region around the original

137

�

����

���"

���(

����

��# ��(��	 ��� ��. � ��� ���

�
��

��
��
�
��

��
�
��
�
�

��
��
��

�
������	����
�������������	
�������	���	���������

����	
�	��������

����
�����	
�	��������

����
�

��� ���

Fig. 5.2.: Distribution of class probabilities for MNIST dataset

non-linear boundary, and selectively classify the easier training instances that lie be-

yond this region. The complex model (Z) is employed only for instances that cannot

be classified by the simpler model. This approach can save time and energy, since all

data instances need not be processed by the more complex non-linear decision model.

The amount of computational time and energy saved depends on the distribution

of input data. Fortunately, in many useful applications, lots of test data is easy.

For instance, while detecting movement using a security camera, most video frames

contain only static objects. We quantify this intuition for the popular MNIST hand-

writing recognition dataset [67]. Figure 5.2 shows the distribution of the probability

with which the classifier predicted the test instances to a particular class in the dataset

(inset images show some representative hard and easy instances). Observe that over

70% of the inputs were predicted with > 0.95 certainty. The fraction increases up to

95% at a probability > 0.8. Therefore, a significant majority of inputs lie far away

from the decision boundary, and a low complexity classifier can be employed in their

context.

We generalize the approach described above for any machine learning classifier

by constructing a cascaded series of classification stages with progressively increasing

138

complexity and accuracy. We also show how to construct simpler models for each

stage by using an ensemble of biased classifiers.

How do we determine the difficulty of an instance at runtime? Besides

model partitioning, this is another challenge that we address in the chapter. We

determine the hardness of each test data instance implicitly. The top portion of

Figure 5.1(b) illustrates our approach. We process test instances through the decision

models in a sequence starting from the simplest model. After the application of

every model, we estimate the confidence level of the produced output (i.e., the class

probability or classification margin). Constructing each model as an ensemble of

biased classifiers further facilitates this, since their consensus may be used to indicate

the confidence of classification. If the confidence is above a threshold, we accept

the output class label produced by the current model and terminate the classification

process. Simpler data instances get processed by only the initial few (simpler) models,

while harder instances need to go through more models. Thus, our approach provides

an inbuilt method to scale computational effort dynamically.

In summary, we make the following contributions:

• Given any machine learning classifier, we propose a systematic approach to

construct a scalable effort version thereof by cascading classification stages of

growing accuracy and complexity. The scalable effort classifier has accuracy

comparable to the original one, while being faster and more energy efficient.

• To construct the stages of the scalable effort classifier, we propose ensembles

of biased classifiers and a consensus operation that determines the confidence

level in the class labels produced by the classification stage.

• We present an algorithm to train a scalable effort classifier that trades off the

number of stages, complexity of each stage, and fraction of inputs classified by

each stage, to optimize the overall computational effort spent in classification.

• Across a benchmark suite of eight applications that utilize 3 classification algo-

rithms, we show that scalable effort classifiers provide 1.5× average reduction

139

in energy. Through hardware implementations in a 45nm SOI process, we also

demonstrate an average of 2.3× reduction in energy.

The rest of the chapter is organized as follows. In Section 5.2, we describe our

approach to the construction of scalable effort classifiers. In Section 5.3, we describe

a methodology to construct such classifiers. In Section 5.4, we describe our evaluation

methodology and benchmarks. We present experimental results in Section 5.5 and

conclude in Section 5.6.

5.2 Scalable effort Classifiers

������� �������
������	

&����

�	��	�'�������	���� ����

��������	
������
���
�
���������� �����

��������	
������
���

����

Fig. 5.3.: A scalable effort classifier consists of a sequence of decision models, which

grow progressively more complex

In this section, we present our structured approach to design scalable effort classifiers.

Figure 5.3 shows the conceptual view of a scalable effort classifier. Given any classi-

fication algorithm, different models are learnt using the same algorithm and training

data. These models are then connected in a sequence such that the initial stages are

computationally efficient but have lower classification accuracies, while the later ones

have both higher complexities and accuracies. Further, each stage in the cascade is

also designed to implicitly assess the hardness of the input. During test time, data

is processed through each stage, starting from the simplest model, to produce a class

label. The stage also produces a confidence value associated with the class label. This

value determines whether the input is passed on to the next stage or not. Thus, class

140

labels are produced earlier in the chain for easy input instances and later for the hard

ones. If an instance reaches the final stage, the output label is used irrespective of

the confidence value. Next, we present more details on how each stage of Figure 5.3

is designed.

5.2.1 Design of Scalable effort Classifier Stage

�
������������
��������� �������

������

�

���
������

��	��
�����
������������

�	

�� � � � �

�	 � � � �

�� � �� �� �

��	

������

��

�

��

�

�

�
������
������

(a)

���!�������

�
�
�
!�
��

��
��

	�

�����������
���	
�

�

�
� �

��
�

�
�

�
�

�
�
�
�
�

�
�
� �

� �� ��� �
�

� ��

�

� �

�

� ��� ��� � �

�
�� �

�
�

�

�
�
�

�

�
�

��

��

��
��
����
���	
�

(b)

Fig. 5.4.: Design of scalable effort classifier stage

First, we consider the case of a binary classifier with two possible class outcomes +

and -. Figure 5.4a shows the block diagram of a classifier stage. In such a scenario,

each stage is composed of two biased classifiers, which are trained to detect one

particular class with high accuracy. For instance, if a classifier is biased towards class

+ (denoted by C+), it frequently mispredicts inputs from class - but seldom from class

+. Besides the biased classifiers, the stage also contains a consensus module, whose

functionality is shown in Figure 5.4a. The consensus module utilizes the output of the

biased classifiers to determine if the input should get classified in the current stage

or passed on to the next stage. This decision is based on the following two criteria:

141

1. If the biased classifiers predict the same class i.e., ++ or - -, then the corre-

sponding label i.e., + or - is produced as output.

2. If the biased classifiers produce no consensus (NC) i.e., +- or -+, the input is

deemed to be difficult to classify by the stage and is passed along to the next

stage.

To better understand how each stage functions, consider the example shown for a

binary SVM in Figure 5.4b. The two biased classifiers used (i.e., C+ and C−) are linear

SVMs, which are computationally efficient. Observe how the decision boundaries for

the two classifiers are located such that they do not misclassify instances from the

class towards which they are biased. For all input test instances that lie in the hatched

region, both biased classifiers provide identical class labels (i.e., consensus). However,

there is no consensus on input instances that lie in the grayed-out region. Test

instances in this latter region are thus passed on to the next stage. In summary, the

biased classifiers define a region around the original decision boundary that separates

the easy vs. hard inputs. The consensus operation determines which region an input

lies in, and selectively classifies the input or passes it to the next stage.

5.2.2 Efficiency and Accuracy Optimization

As scalable effort classifiers are composed of many individual stages in a sequence,

the following two factors determine their overall efficiency and accuracy: (1) the

number of connected stages and (2) the fraction of inputs that is processed by each

stage. These factors present a fundamental tradeoff in the design of scalable effort

classifiers, which is discussed in this subsection.

Adding Stages to a Scalable effort Classifier

First, we analyze when it is desirable to add a new stage to the scalable effort cas-

cade. Consider a classifier stage i, with computational cost γi per instance. Let Ii be

142

the fraction of inputs that reach stage i. The stage classifies a subset of these inputs,

while passing a smaller fraction (Ii+1) to the next stage. The condition described in

Equation 5.1 should be satisfied for stage i to improve the overall efficiency of the

scalable effort cascade.

(γi+1 − γi) · (Ii − Ii+1) > γi · Ii+1 (5.1)

The left-hand side of Equation 5.1 represents the improvement in efficiency due to

the stage, which is the product of the fraction of inputs it classifies (Ii-Ii+1) and the

reduction in complexity compared to the next stage. This should be greater than

the right-hand side of Equation 5.1, which quantifies the penalty the stage imposes

on inputs that it fails to classify i.e. if the stage were not present then those inputs

(Ii+1) could be directly classified by stage i+ 1.

Consensus Threshold

The consensus operation described in Section 5.2.1 also influences the efficiency and

accuracy of the scalable effort classifier. Most classification algorithms, in addition

to the class output, provide a measure of confidence (e.g. class probabilities, distance

from decision boundary etc.) in the prediction. We combine the class outputs of

the biased classifiers along with their confidence measures to define a new consensus

operation (Equation 5.2) that allows us to more directly control the efficiency and

accuracy of the cascade.

ConsOut =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

C+ if C+ == C−, δ ≥ 0, |C+| and |C−— > δ

C+ if C+ == C−, δ < 0

C+ if C+ �= C−, δ < 0, |C+| and |C−| > δ, |C+| ≥ |C−|

C− if C+ �= C−, δ < 0, |C+| and |C−| > δ, |C−| > |C+|

NC otherwise

(5.2)

As shown in Equation 5.2, the consensus operation contains a parameter called the

consensus threshold (denoted by δ) that the defines the degree to which the biased

143

Consensus Threshold (δ) �

δ < 0 δ = 0 δ > 0

�����������
���	
�

��
��
����
���	
����
	������

�
�
�

	
��

��
��

δ

δ
�

��� �
�
�

�
�

� �
�

�
�

� �

�

�

�

��

�
� � �

�
�

�
�

�

�

�

�

�

�

�

���
	������

�
�
�

	
��

��
��

�
��� �

�
�

�
�

� �
�

�
�

� �

�

�

�

��

�
� � �

�
�

�
�

�

�

�

�

�

�

�

���
	������

�
�
�

	
��

��
��

δ

δ

�
��� �

�
�

�
�

� �
�

�
�

� �

�

�

�

��

�
� � �

�
�

�
�

�

�

�

�

�

�

�

Fig. 5.5.: δ controls the fraction of inputs classified by a stage.

classifiers should agree (or contradict) for the input to be classified (or passed on) by

the stage. A positive δ makes the consensus operation more stringent, i.e., an input

is classified by the stage only if the biased classifiers agree on their decisions and

their respective confidence measures are greater than δ. For a positive δ, fewer inputs

will be classified by the stage, but the accuracy of its classifications is improved. On

the other hand, a negative δ relaxes the consensus threshold, as an input is classified

by the stage even if the biased classifiers disagree, provided their confidence in the

contradictory predictions is lower than δ. Figure 5.5 illustrates the impact of different

choices of δ for the binary SVM classifier considered in Section 5.2.1. In this case, we

observe that modulating δ grows or shrinks the region separating the easy vs. hard

inputs, resulting in the stage classifying a correspondingly smaller or larger fraction

of inputs. For computational efficiency, we choose the smallest value of δ at training

time that yields no misclassifications.

144

Building the Component Classifiers

The final factor that determines the efficiency and accuracy of the scalable effort

cascade is how the biased classifiers in each stage are built. We employ the following

methods to build the component classifiers.

Modulating complexity through algorithmic knobs: Many classification algo-

rithms inherently contain parameters that modulate their complexity and accuracy.

Some examples include changing the kernel function of SVM, and the number of neu-

rons and layers in a neural-network. We modulate these parameters to progressively

increase complexity as new stages are added.

Biasing classifiers by asymmetric weighting, resampling and sub-sampling:

To bias classifiers, we assign larger misclassification penalties to training instances of a

given class. Alternatively, biasing can be implicitly achieved by generating additional

instances for a class by adding some noise to the existing instances, or by sub-sampling

instances from the opposite class. Note that biasing also influences the complexity of

the classifier.

5.2.3 Multi-way Scalable effort Classifiers

We extend our approach to multi-class problems by employing a well-known strategy

called one vs. rest classification, which reduces the computation to multiple binary

classifications. The strategy involves training one classifier per class, with samples

from that class regarded as positive (i.e., +) while the rest are negative (i.e., -). At

test time, the highest confidence value across multiple such one vs. rest classifiers

determines the final class assignment.

Figure 5.6(a) shows the design of a stage of a scalable effort multi-way classifier. It

comprises several binary classification units, each containing a pair of biased classifiers

and a local consensus (LC) module similar to the one shown in Figure 5.4a. It also

contains a global consensus (GC) module, which aggregates outputs from all LC

145

��

��

��
���� ���� …. ���� 	
��
�

��� � � � � � � ���� �

� � � � � � ��� ������

� � ��� � � �� ��

� � ��� � � � � ��

… … … … …

� � �� � � � � ��

������������
������

���

������

���

���		��������������
�	
� �

��

��
��

������

��

��
��

������

��

����

� ��
���
	

���
�

� ��
���
	�������

���		

�����	

�
������������������������������������ ���

Fig. 5.6.: One vs. rest approach is used for multi-way classification. GC can prune

some classes in the next stage.

modules in the stage. The functionality of GC is illustrated in Figure 5.6(b). If there

is positive consensus (i.e., ++) in exactly one LC module, then the GC outputs a

class label corresponding to the consenting binary-classification unit. If more than

one LC module provides consensus, then the next stage is invoked.

Another feature of multi-way scalable effort classifiers is class pruning, i.e., even

if a stage does not classify a given input, it can eliminate some of the classes from

consideration in the next stage. Specifically, if there is no consensus in the GC module

and if the LC output shows negative consensus (i.e., - -) then binary classification

units corresponding to that particular class need to be evaluated in subsequent stages.

Thus, only classes that produce positive consensus or NC are retained down the chain.

This early class pruning leads to increased computational efficiency.

146

5.3 Design Methodology

In this section, we describe the procedure for training and testing scalable effort

classifiers.

5.3.1 Training Scalable effort Classifiers

Algorithm 6 shows the pseudocode for training. The process takes the original clas-

sification algorithm Corig, training data Dtr, and number of classes M as input. It

produces a scalable effort version of the classifier Cse as output, which includes the

biased classifiers C+/− and consensus thresholds δ for each stage.

First, we train Corig on Dtr and obtain its cost γorig (line 1). Then, we iteratively

train each stage of the scalable effort classifier Cstg (lines 2-22). The algorithm ter-

minates if a stage does not improve the overall gain Gstg beyond a certain threshold

ǫ (line 3). Next, we describe the steps involved in designing each stage of Cse.

To compute Cstg, we initialize Gstg to +∞, and a classifier complexity parameter

λstg to its minimum value (line 2). Then, we obtain C+/− (line 5). We follow-up by

assigning the smallest value of δ that yields no misclassifications on Dtr to be the

consensus threshold for the stage δstg (line 6). Once we determine C+/− and δstg for

all classes, we proceed to estimate the number of inputs classified by the stage ∆Istg

by iterating over Dtr (line 9-17). During this time, we compute LC and GC values for

each instance in Dtr (lines 10-11). For any instance, if global consensus is achieved

(line 12), we remove it from Dtr for subsequent stages and increment ∆Istg by one (line

13). If not, we add a fractional value to ∆Istg, which is proportional to the number

of classes eliminated from consideration by the stage (line 15). After all instances

in Dtr are exhausted, we compute Gstg as the difference between the improvement in

efficiency for the inputs it classifies and the penalty it imposes on inputs that it passes

on to the next stage (line 18). We admit the stage Cstg to the scalable effort classifier

chain Cse only if Gstg exceeds ǫ (line 19). Since instances that are classified by the

stage are removed from Dtr used for subsequent stages, one or more classes may be

147

Algorithm 6 Methodology to train scalable effort classifiers

Input: Original classifier Corig, training dataset Dtr, # classes M

Output: Scalable effort classifier Cse (incl. δ and C+/− ∀ stages)

1: Train Corig using Dtr and obtain classifier cost γorig

2: initialize stage gain Gstg = +∞, complexity param. λstg = λmin, and allClass-

esPresent = true

3: while (Gstg > ǫ and allClassesPresent) do

4: for currentClass :=1 to M do // evaluate stage Cstg

5: Train C+/− biased towards currentClass using Dtr and λstg

6: δstg ← minimum δ s.t. no misclassifications in Dtr

7: end for

8: initialize # input instances to stage Istg = # instances in Dtr and # instances

classified by stage ∆Istg = 0

9: for each trainInstance ∈ Dtr do // compute ∆Istg for Cstg

10: Compute local consensus LC ∀ M classes

11: Compute global consensus GC

12: if GC ← true then

13: remove trainInstance from ∈ Dtr and ∆Istg ← ∆Istg + 1

14: else

15: ∆Istg ← ∆Istg + # negative LCs / M

16: end if

17: end for

18: Gstg = (γorig − γstg) · ∆Istg − γstg · (Istg − ∆Istg)

19: if Gstg > ǫ then admit stage Cstg into Cse

20: if any class is absent in Dtr then allClassesPresent ← false

21: λstg ++ // increase classifier complexity for next stage

22: end while

23: append Corig as the final stage of Cse

148

exhausted. In this case, we terminate the construction of additional stages (line 20)

and proceed to append the final stage (line 23). The complexity of the classifier is

increased for subsequent stages (line 21).

5.3.2 Testing Scalable effort Classifiers

Algorithm 7 shows the pseudocode for testing. Given a test instance itest, the process

obtains the class label Ltest for it using Cse. First, the list of possible outcomes is

initialized to the set of all class labels (line 1). Each stage Cstg is invoked iteratively

(lines 2-15) until the instance is classified (lines 2). In the worst case, Corig is employed

in the final stage to produce a class label (lines 3-4). In all other cases, the following

steps are carried out. At each active stage, C+/− are invoked to obtain an estimate

of LC (line 6) and GC (line 7). If global consensus is achieved, i.e., one LC output is

positive and the rest are negative (lines 8-10), then the instance is predicted to belong

to the class with the positive LC value (line 9). If not, the list of active classes is

pruned by removing the classes for which LC is negative (line 11). Subsequent stages

are then invoked with the reduced set of possible outcomes (line 14).

In summary, Cse implicitly distinguishes between inputs that are easy and hard to

classify. Thus, it improves the overall efficiency of any given data-driven classification

algorithm.

5.4 Experimental Methodology

In this section, we describe our experimental setup used to evaluate the performance

of scalable-effort classifiers.

5.4.1 Application Benchmarks

Table 5.1 shows the benchmarks and datasets that we use in our experiments. We

evaluated 8 applications with up to over 9000 features and up to 10 classes. Between

149

Algorithm 7 Methodology to test scalable effort classifiers

Input: Test instance itest, scalable effort classifier Cse, # stages Nse in Cse, and #

possible classes M

Output: Class label Ltest

1: initialize possibleClassesList = {1,2,. . .,M}, currentStage = 1, and instanceClas-

sified = false

2: while instanceClassified = false do

3: if currentStage = Nse then // apply Cse to itest

4: Ltest ← Cse [itest]; instanceClassified ← true

5: else

6: Compute local consensus LC ∀ possibleClassesList

7: Compute global consensus GC

8: if GC ← true then // global consensus achieved

9: Ltest ← label ∈ max (LC); instanceClassified ← true

10: else

11: ∀ LC = -1, delete labels from possibleClassesList

12: end if

13: end if

14: currentStage ← currentStage + 1

15: end while

150

them, they utilize three common supervised machine-learning algorithms, namely

SVM, neural networks, and decision trees (J48 algo. [81]).

Table 5.1.: Application benchmarks used to evaluate scalable effort classifiers

Algorithm Application Dataset [82] Features / Classes

Support Vector machines

Handwriting reco. MNIST [67] 784 / 10

Human activity reco. Smartphones 561 / 6

Eye detection YUV faces 512 / 2

Text classification Reuters 9947 / 2

Neural networks
Enzyme classification Protein 356 / 3

Census data analysis Adult 114 / 2

Decision trees-J48
Game prediction Connect-4 42 / 3

Census data analysis Adult 114 / 2

5.4.2 Energy Evaluation

We implemented scalable-effort versions of each of the applications in C#. We also

integrated WEKA, a machine-learning toolkit, as a backend to our software [83]. This

helped us rapidly train and evaluate different classifiers. We measured runtime for

the applications using performance counters on a commodity Intel Core i5 notebook

with a 2.5 GHz processor and 8 GB of RAM. For the hardware implementation, we

specified each classifier as an accelerator at the register-transfer logic (RTL) level. We

used Synopsys design compiler to synthesize the integrated design to a 45 nm SOI

process from IBM. Finally, we used Synopsys Power Compiler to estimate energy

consumption of the synthesized netlists.

151

5.5 Results

In this section, we present experimental results that demonstrate the benefits of our

approach.

5.5.1 Energy Improvement

Figure 5.7 shows the normalized improvement in efficiency with scalable effort clas-

sifiers designed to yield the same classification accuracy as a single-stage classifier

(which forms the baseline) for all applications. We quantify efficiency in terms of

three metrics: (i) average number of operations (or computations) per input (OPS),

(ii) energy of hardware implementation, and (iii) energy of software implementation.

We observe that scalable effort classifiers provide between 1.2×-9.8× (geometric mean:

2.79×) improvement in average OPS/input compared to the baseline. Note that the

benefits vary depending on the fraction of hard-to-classify inputs in the dataset and

the complexity of the classifier stages. For instance, the CONNECT application, in

which we obtain the least improvement, filters only 25% of the inputs, while the com-

plexity of the stages before the final stage add up to 10% of the original classifier.

On the other extreme, the EYES application classifies 90% of the inputs at a cost

of 0.2% of the baseline. In the case of hardware and software implementations, the

reduction in OPS/input translates on an average to 2.3× and 1.5× improvement in

energy, respectively. While still substantial, due to the control and memory over-

heads involved, the benefits in energy for some applications are lower than that in

OPS/input. In particular, the impact of implementation overheads is pronounced in

the case of applications with smaller feature sizes and datasets.

5.5.2 Impact of Hard Inputs on Efficiency

In this section, we examine the impact of hard-to-classify inputs on the overall ef-

ficiency of scalable-effort classifiers. Towards this end, we identify inputs that are

152

�

���

���

���

���

�

���

���	
 ��� �	
6
 ����
!�� ���
�� ����
!�"# �����
 �����

�
�
��

$�
�
�
�
�
��
%&

��!
!'

��&����� 	���!��	 ��!��� (�!��� (

	
� �� ���

Fig. 5.7.: Improvement in average OPS/input and energy for different applications.

closer to the decision boundary of the original classifier and vary their proportion

in the test dataset. Figure 5.8(a) shows the normalized OPS required for different

fractions of hard inputs for three applications. Naturally, as the fraction of hard

inputs increases, the benefits of scalable-effort execution are lowered. In fact, when

the fraction increases beyond a certain level, scalable-effort classifiers become less effi-

cient than the single-stage baseline depending on the application and the complexity

of the additional classifier stages. Figure 5.8(b) shows the normalized complexities

of the corresponding classifier stages. In the case of EYES, where the complexity of

the added stages (all but the final stage) is only 0.2% of the single-stage classifier,

scalable-effort design is desirable even when more than 99% of the inputs are hard

[dashed vertical line in Figure 5.8(a)]. As the complexity of the added stages increases

to 10% and 26%, as in the case of CONNECT and ADULT-NN, the break-even point

occurs earlier at 85% and 72% of hard inputs, respectively. The observed fraction of

hard inputs in these applications are also marked in Figure 5.8(a), which corresponds

to the benefits reported in Sec. 5.5.1.

153

�����

����

����

�

���

���

���

���

�� �	

�� �����)

�
�
��

!�

�
�
�

��

��

�

���

���

���

��	

�

���

���

� ��� ��� ��� ��	 �

�
��

$�
	
�
�

�)
)*

���"$���������#$��))*

��������

��

�	

��

�����)

	����%������"$���������������

	
���������#$�������$���$

&$+'

&$?,

&$--

��
�

Fig. 5.8.: (a) Normalized OPS consumed by the scalable-effort classifier with increas-

ing fraction of hard inputs. (b) Total complexity of the added classifier stages for

different applications

5.5.3 Optimizing the Number of Classifier Stages

Choosing the right number of stages is critical to the efficiency of scalable-effort clas-

sifiers. We study the impact of this choice by varying the number of stages for the

ADULT-J48 application. The normalized OPS of the overall classifier split amongst

each stage is shown in Figure 5.9(a). When the number of stages is increased to

2, we see a large drop in total OPS, as the first stage adds only a small overhead,

while significantly reducing the OPS contributed by the final stage. When we add

a 3rd stage, we observe only a slight improvement. Although the stage decreases

the number of final stage OPS, its added complexity nearly balances the reduction.

Adding a 4th stage is unfavorable as it increases the overall OPS. To gain additional

insight, consider the normalized stage complexity and the fraction of inputs classified

at each stage shown for the 4-stage classifier in Figure 5.9(b). As expected, stage

1 is quite simple (5% complexity compared to single-stage classifier) and classifies

a disproportionately large number (53%) of inputs. Stage 2 is balanced, with 24%

154

complexity and 29% classification rate. The trade-off is reversed for the third stage,

whose complexity is 53%, but which classifies only 18% of additional inputs. This be-

havior is also reflected in the gain of each stage quantified by our design methodology

in Figure 5.9(b).

�

���

���

���

���

�

� � � �

�
�
��

��
	
�
�

���

���������� ���������������������

�����

�����

�����

�������(�

�����

�

 �!"

 ��#
 � (

 �)

 �$!

 �)*

�

�

��	

��

���

�

��	

��

���

� � � 	

�
�
��

��
�
�
�
%
�
�
��
�

���

�
��
��

��
�
	

��

��
�����������

��	
��

���	������

�����

���� ��	
 ���� ���	� ���

��� ���

Fig. 5.9.: Normalized reduction in OPS with different numbers of classifier stages for

the ADULT-J48 application

5.5.4 Efficiency-Accuracy Tradeoff using δ

���

���

���

���

�

�

��	

��

���

���

�

��	

�� � � 	 �
 �

�
�
��

��
�
��

��
��

���
��

�
�
��

��
	
�
�
��
�

���
��

�������
��������������

������

��������

��&��

���

���

���

���

�

�

��	

��

���

���

�� ��� � ��

�
�
��

��
�
��

��
��

���
��

�
�
��

��
	
�
�
��
�

���
��

�������
��������������

������

��������

	���

Fig. 5.10.: Energy vs. accuracy trade-off by modulating consensus threshold

155

The consensus threshold δ provides a powerful knob to trade accuracy for efficiency.

Figure 5.10 shows the variation in the normalized energy and accuracy of the scalable-

effort classifier with different values of δ for two applications. In the case of MNIST,

when δ = 0, the accuracy is ∼ 5% lower than the baseline, with over 10× improvement

in energy. To reach the same level of accuracy, δ should be increased, but this

comes at the cost of higher energy consumption since now more inputs will reach the

final classifier stage. Decreasing δ improves efficiency, but further degrades accuracy.

For the EYES application, we find that even when δ = 0, the accuracy is on par

with the original classifier and the energy is 3.5× lower. If we lower δ to −0.5,

the energy improvement increases to 9× with minimal loss in accuracy. Further

decreasing δ still leads to only a slight degradation in accuracy (3% lower accuracy

for 30× energy improvement for δ = −1). Thus, the efficiency and accuracy of

scalable-effort classifiers is a strong function of δ, which can be easily adjusted at

runtime to an appropriate value.

5.6 Summary

Supervised machine learning algorithms play a central role in various important ap-

plications and place significant demand on the computational capabilities of mod-

ern computing platforms. In this thesis, we identify a new opportunity to optimize

machine learning classifiers by exploiting the significant variability in the inherent

classification difficulty of inputs. Based on the above insight, we propose the concept

of scalable effort classifiers, or classifiers that dynamically scale their effort to match

the complexity of the input being classified. We develop a systematic methodology

to design scalable effort versions for any given classifier and training dataset. We

achieve this by cascading biased versions of the classifier that progressively grow in

complexity and accuracy. The scalable effort classifier is equipped to implicitly modu-

late the number of stages used for classification based on the input, thereby achieving

scalable effort execution. To quantify the potential of scalable effort classifiers, we

156

build scalable effort versions of 8 recognition and computer vision applications that

utilize 3 popular machine learning classifiers. Our experiments demonstrate 2.79×

reduction in average OPS per input, which translates to 2.3× and 1.5× improvement

in energy over hardware and software implementations of the applications.

157

6. RELATED WORK

A large body of previous work shares the philosophy of exploiting the intrinsic re-

silience of applications to achieve improvements in energy or performance. A wealth

of approximate computing design techniques, spanning different levels of design ab-

straction, have been proposed towards this objective. We provide an overview of such

efforts and illustrate the key aspects unique to the thesis.

6.1 Approximate Computing in Software

At the software level, techniques have been proposed to reduce the run-time com-

plexity or parallel scalability of resilient applications. Towards this goal, techniques

such as loop perforation [15], selective computation skipping [5], replacing expensive

functions with cost effective approximate versions [16, 18], and dependency relax-

ation [17] have been proposed. All these efforts exploit error resilience through soft-

ware techniques that are complementary to the techniques proposed in this thesis.

In addition, several software analysis and profiling frameworks such as [4, 41–43, 84]

to analyze the impact of approximations at the application-level and to verify if the

application level output quality is satisfied have been proposed.

6.2 Hardware Design for Approximate Computing

One of the earliest proposals to advocate error resilience as a means for energy

efficiency was ANT (Algorithmic noise tolerance) [9], which employed voltage over-

scaling along with algorithmic error control schemes for energy-efficient DSP. Simi-

lar design approaches have been proposed for image, video and multimedia applica-

tions [85–94]. The concept of utilizing the inherent resilience of multi-media applica-

158

tions to tolerate defects and improve fabrication yields was proposed in [6], and led to

new approaches to manufacturing test [95–105]. Another effort, Significance driven

computation (SDC) [12], proposed a design methodology in which computations are

selectively approximated based on their significance in shaping the output quality. It

illustrates the importance of confining errors to a subset of non-critical computations

through a voltage-scalable motion estimator. The concept of probabilistic CMOS [10],

wherein transistors and logic gates display a probabilistic rather than deterministic

behavior was proposed as an energy-efficient alternative to always-correct models.

This has led to a significant body of research on probabilistic and approximate com-

putation [106–114]. More recently, scalable-effort design was proposed [7, 8, 115, 116]

as a cross-layer approach to achieve improved energy benefits through approximate

computing. Effort knobs capable of modulating energy expended by hardware were

identified at design time, and co-optimized through a feedback control mechanism at

runtime. While significant energy benefits have been demonstrated using the above

design techniques, their applicability is restricted to design of application-specific

hardware.

In the realm of programmable processors, approximate computing techniques have

been investigated in [11,13,14,40]. Stochastic processors [11] and ERSA [40] consider

multi-core architectures, in which individual processor cores differ in their reliability.

They partition computations across reliable and unreliable cores at the granularity of

tasks based on their criticality to output quality. On the other hand, [14] proposes to

distinguish critical and non-critical instructions statically during compile time using

programmer specified type annotations. Program instructions are then executed in an

accurate or approximate manner with appropriate micro-architectural support [13].

All the above techniques carry a binary notion of quality with no guarantees from

hardware on the error that it may incur during execution. As demonstrated in Fig-

ure 3.1, this significantly limits the extent to which approximate computing can be

employed. Further, these techniques use lower voltage operation to realize approxima-

tions, which typically introduces errors of large magnitude since the most significant

159

bits (MSB) are timing critical and fail first under timing violations caused by sup-

ply voltage reduction. To address this limitation, we propose the notion of quality

programmability in instructions in this research.

6.3 Approximate Circuits

Approximate circuits evaluate a given function with lower hardware complexity

subject to an imposed quality constraint. A number of previous works have focused

on manually approximating specific circuits like adders [19–21, 26, 117] and multipli-

ers [23] by taking advantage of their structural properties and the difference in the

significance of their output bits. However, all these design techniques are confined to

the specific circuits that they target. Automation becomes necessary as circuits grow

functionally complex and the approximations that can be performed on them become

non-intuitive.

One class of automation techniques target synthesizing circuits that trade-off ac-

curacy for power through voltage over-scaling. Traditional synthesis optimizations

result in circuits that contain a large number of near-critical paths and impede ag-

gressive voltage scaling. To ensure a graceful degradation in the number of timing

violations under over-scaling, the path delay distribution of the circuit is reshaped by

increasing the slack of frequently exercised paths through cell sizing [118] or common

case promotion [119]. Techniques are proposed in [120,121] to estimate and analyze

the errors caused due to such approximations.

Improvement in power and performance could be alternatively achieved by sim-

plifying the logic functions to reduce their implementation complexity. The first

automation effort in this direction focused on two-level circuits, by complementing

the output for selected minterms to reduce the sum-of-products implementation [122].

For multi-level circuits, [123] proposes a scheme where a node in the circuit is as-

sumed to have a stuck-at-fault and the circuit is simplified by propagating this re-

dundancy. The resultant errors are then estimated using simulation and a modified

160

automatic test pattern generation (ATPG) algorithm. This process is iterated un-

til the pre-specified bounds are violated. A similar iterative approach is adopted

in [124], however, pruning is instead carried out on paths with lowest path activation

probabilities.

A common attribute of the above techniques is that they require design of a custom

tool to perform the required approximations. In both cases, the quality metric is, in

essence, hardwired into their synthesis procedures i.e., the synthesis tools need to

be substantially modified for using them with different error metrics. Also, these

techniques do not perform any structural modifications to circuits but rather simplify

circuits only through redundancy propagation or by pruning gates exclusive to a path.

Lastly, these techniques mostly rely on simulations to testify if the approximate circuit

adheres to the quality bounds.

In contrast, the proposed methodologies take a systematic approach to approxi-

mate logic synthesis. The problem is reformulated using circuit transformations and

cast in such a manner that existing logic synthesis tools could be leveraged for ap-

proximate logic synthesis. This vastly enhances the extent of approximations applied,

since the full suite of techniques used in logic synthesis tools can be utilized. In addi-

tion to pruning/removing gates, the approaches provide the capability to transform

the functionality of circuit nodes. Also, they decouple the synthesis procedure from

the target error metric, which make the approaches more generic and easily adaptable.

Finally, they provide an inherent guarantee that the synthesized approximate circuit

adheres to the pre-specified quality bounds. We believe that the above distinguishing

traits make SALSA and SASIMI promising approaches to approximate and quality

configurable circuit synthesis.

161

7. CONCLUSION

The efficiency gap created by diminishing benefits from semiconductor technology

scaling on the one hand, and projected growth in computing and data demand on

the other, has created an urgent need to identify new sources of computing efficiency

across the computing stack. Fortunately, the workloads that drive the demand for

computing efficiency also present new opportunities. In data centers and the cloud,

the demand for computing is driven by the need to organize, search through, analyze,

and draw inferences from, exploding amounts of digital data. In mobile and embedded

devices, the need to more naturally and intelligently interact with the physical world,

and process richer media drive much of the computing demand. A common pattern

that emerges from both ends of the spectrum is that these applications are largely

not about calculating a precise numerical answer; instead, “correctness” is defined

as producing results that are good enough, or of sufficient quality, to produce an

acceptable user experience. As a result, these workloads are endowed with a high

degree of intrinsic resilience to their underlying computations being executed in an

approximate or inexact manner.

Approximate computing broadly refers to exploiting the forgiving nature (or in-

trinsic resilience) of applications to design more efficient (faster, lower power) com-

puting platforms. While prior efforts in approximate computing have established

its potential for significant improvements, they have invariably been explored in an

application-specific context – the techniques are often ad hoc and applicable to specific

applications, or the end result is often application-specific custom hardware.

162

7.1 Thesis Summary

To establish approximate computing in a broader context, the thesis develops

an holistic approach that includes automatic frameworks to synthesize approximate

circuit blocks, a model for programmable approximate processors that explicitly cod-

ifies the notion of quality into the HW/SW interface, and finally software techniques

to systematically identify resilient computations within an application and to apply

approximate computing to achieve a favorable quality-efficiency tradeoff. The key

contributions of the thesis are summarized below.

• The thesis proposed a rigorous circuit design framework for approximate com-

puting. It developed two synthesis tools viz. SALSA and SASIMI, which given

an original circuit and quality constraint can automatically generate approx-

imate and quality configurable versions of the circuit. The tools were tested

on a wide range of benchmarks to demonstrate their generality, scalability and

efficiency.

• The thesis addressed the important problem building programmable approxi-

mate computing platforms. It proposed the concept of quality programmable

processors, in which the notion of quality was codified as part of its HW/SW

interface. The ISA was enhanced to facilitate software dictate the quality re-

quirement of instructions and hardware was designed to understand and trans-

late the flexibility into energy efficiency. These concepts were demonstrated for

a range of applications using a quality programmable 1D/2D vector processor,

Quora.

• Finally, in the context of machine/deep learning applications, the thesis pro-

posed software framworks—AxNN and scalable effort classifiers—to systemati-

cally identify which computations are resilient to approximations. These frame-

works leverage domain specific insights to achieve a superior efficiency vs. qual-

ity tradeoff. AxNN adapted backpropgation to charcterize criticality of neurons

163

in DLNs, and incrementally retrained the network with the approximations in

place to partially heal their impact. On the other hand, scalable effort class-

fiers leveraged the inherent heterogentiy in the diffculty of inputs to machine

learning classifiers to improve their efficiency. They comprised of a chain of clas-

sifiers of growing complexity (and accuracy), and the number of stages used for

classification was dynamically modulated based on input difficulty. Such frame-

works are critical to systematically map applications to approximate computing

platforms.

7.2 Research Challenges

While many advances have been made in the area of approximate computing,

much remains to be explored and many challenges need to be addressed. Some of the

open research challenges in approximate computing are described below.

Quality specification, translation and verification. Since both intrinsic re-

silience and approximate computing arise from the notion of acceptable quality of

results, it is important to have a clear, measurable definition of what constitutes

acceptable quality. In addition, it is critical to develop methods to ensure that ac-

ceptable quality is maintained when approximate computing techniques are used.

Broadly speaking, quality specification and verification remains an open challenge.

It is important to note that quality metrics do vary across applications (recognition

or classification accuracy, rele- vance of search results, visual quality of images or

video, etc.). However, the abstractions and methodology used to specify and validate

quality should still be general, and to the extent possible re-use tools and concepts

from functional verification.

Identifying resilient computations. Given an abstraction to specify quality at

the application-level, the next challenge is to identify which computations within

the application can be subject to approximations and by how much. While the

thesis systematically addresses this problem in the context of machine/deep learning

164

applications, a generic methodology applicable to any application remains an open

challenge. This can be achieved in several ways. Profiling tools and auto-tuning

frameworks with in-built approximation models can be developed. Another approach

is to design quality configurable versions of common programming templates and

libraries, which designers can directly utilize in their implementations.

Approximate general purpose scalar processors. The efficacy of approximate

computing varies widely with the implementation context. For example, approxi-

mating algorithm-specific accelerators yield the most benefit as they have the least

control overheads. This thesis proposed the notion of quality programmable proces-

sors and demonstrated it in the context of a vector processor. At the other end of the

spectrum, general purpose scalar processors are challenging to approximate as con-

trol front-ends, such as instruction fetch and decode, inherent to any programmable

processor, have to be performed in an accurate manner. In addition, the absolute

number of control operations are also larger in a general purpose implementations.

Therefore, approximate computing in their context should transcend beyond conven-

tional numerical value-based approximations and explore how sequences of opera-

tions can be approximated together. ISA extensions to express such sequences need

to be developed. Also, the approximations should target real bottlenecks to perfor-

mance/energy to yield disproportionate benefits. This requires utilizing the dynamic

information available during program execution. Thus, general purpose processors

require a rethink of how approximate computing is realized and present interesting

research opportunities.

Approximate memory and I/O subsystems A large majority of research in

approximate computing has focussed on reducing the computation energy expended

in the processing cores. However, the memory and I/O subsystems also constitute a

significant fraction of the overall system energy, and their proportion is expected to

grow at further scaled technologies. The principles of approximate computing can be

applied to benefit energy in their context. Some preliminary research ideas in this

direction include:

165

• Quality-encoded data transfer : There is a need to develop new re-configurable

bus coding schemes that can encode data with different levels of information

loss (and commensurate data-transfer energy) depending on explicit quality

requirements. These quality constraints are derived based on the significance

of the data in the context of the application and the operation that will be

subsequently performed on it.

• Quality-driven data sensing : In many emerging applications, not all data sensed

ends up being useful to the application. Techniques to sense and process data

approximately near the sensors to gauge its relevance and utilize it to drive the

quality of sensing are key to improve sensing efficiency. Such techniques will

have significant impact in the context of distributed applications that continu-

ously interact between multiple mobile/embedded end-points and the cloud.

• Quality-aware data organization and access : Most of the data created and stored

today are unstructured. New approaches to re-organize data in memory at

runtime based on the feedback about its significance from the application can

render data querying and access more efficient.

In addition to the above research challenges, the integration of various approxi-

mate computing techniques proposed at differnt layers of the stack into a cohesive

framework and evaluation of the benefits of approximate computing in real end sys-

tems are also critical to overcome designer mindset and the eventual adoption of

approximate computing.

In summary, the thesis proposed an intergrated cross-layer framework to system-

atically design applications using approximate computig. The contributions of the

thesis broaden the scope of approximate computing, thus promising a significant leap

towards bringing approximate computing closer to the mainstream.

REFERENCES

166

REFERENCES

[1] G. E. Larson, R. J. Haier, L. LaCasse, and K. Hazen, “Evaluation of a
“mental effort” hypothesis for correlations between cortical metabolism and
intelligence,” Intelligence, vol. 21, no. 3, pp. 267 – 278, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0160289695900179

[2] Y.-K. Chen, J. Chhugani, P. Dubey, C. Hughes, D. Kim, S. Kumar, V. Lee,
A. Nguyen, and M. Smelyanskiy, “Convergence of recognition, mining, and
synthesis workloads and its implications,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 790–807, 2008.

[3] P. Dubey, “A platform 2015 workload model recognition, mining and synthesis
moves computers to the era of tera,” White paper, Intel Corp., 2005.

[4] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and char-
acterization of inherent application resilience for approximate computing,” in
Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, 2013,
pp. 1–9.

[5] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel execution
framework for recognition and mining applications,” in Parallel Distributed Pro-
cessing, 2009. IPDPS 2009. IEEE International Symposium on, 2009, pp. 1–12.

[6] M. Breuer, “Multi-media applications and imprecise computation,” in Digital
System Design, 2005. Proceedings. 8th Euromicro Conference on, 2005, pp. 2–7.

[7] V. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. Chakradhar, “Scal-
able effort hardware design: Exploiting algorithmic resilience for energy ef-
ficiency,” in Design Automation Conference (DAC), 2010 47th ACM/IEEE,
2010, pp. 555–560.

[8] V. Chippa, A. Raghunathan, K. Roy, and S. Chakradhar, “Dynamic effort
scaling: Managing the quality-efficiency tradeoff,” in Design Automation Con-
ference (DAC), 2011 48th ACM/EDAC/IEEE, 2011, pp. 603–608.

[9] R. Hegde and N. Shanbhag, “Energy-efficient signal processing via algorithmic
noise-tolerance,” in Low Power Electronics and Design, 1999. Proceedings. 1999
International Symposium on, 1999, pp. 30–35.

[10] K. V. Palem, L. N. Chakrapani, Z. M. Kedem, A. Lingamneni, and K. K.
Muntimadugu, “Sustaining moore’s law in embedded computing through prob-
abilistic and approximate design: Retrospects and prospects,” in Proceedings
of the 2009 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, ser. CASES ’09. New York, NY, USA: ACM, 2009,
pp. 1–10. [Online]. Available: http://doi.acm.org/10.1145/1629395.1629397

167

[11] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable stochastic proces-
sors,” in Design, Automation Test in Europe Conference Exhibition (DATE),
2010, 2010, pp. 335–338.

[12] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven computa-
tion: A voltage-scalable, variation-aware, quality-tuning motion estimator,” in
Proceedings of the 14th ACM/IEEE International Symposium on Low Power
Electronics and Design, ser. ISLPED ’09. New York, NY, USA: ACM, 2009,
pp. 195–200. [Online]. Available: http://doi.acm.org/10.1145/1594233.1594282

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” SIGARCH Comput.
Archit. News, vol. 40, no. 1, pp. 301–312, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2189750.2151008

[14] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI
’11. New York, NY, USA: ACM, 2011, pp. 164–174. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993518

[15] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,” in
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser. ESEC/FSE ’11.
New York, NY, USA: ACM, 2011, pp. 124–134. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025133

[16] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’10. New York, NY, USA: ACM, 2010, pp.
198–209. [Online]. Available: http://doi.acm.org/10.1145/1806596.1806620

[17] S. Byna, J. Meng, A. Raghunathan, S. Chakradhar, and S. Cadambi,
“Best-effort semantic document search on gpus,” in Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units,
ser. GPGPU ’10. New York, NY, USA: ACM, 2010, pp. 86–93. [Online].
Available: http://doi.acm.org/10.1145/1735688.1735705

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” in Microarchitecture (MICRO), 2012
45th Annual IEEE/ACM International Symposium on, 2012, pp. 449–460.

[19] D. Shin and S. K. Gupta, “A re-design technique for datapath modules in error
tolerant applications,” in Proc. ATS, Nov. 2008, pp. 431 –437.

[20] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Impact:
Imprecise adders for low-power approximate computing,” in Low Power Elec-
tronics and Design (ISLPED) 2011 International Symposium on, 2011, pp. 409–
414.

168

[21] A. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, 2012, pp. 820–825.

[22] N. Olivieri, F. Pappalardo, S. Smorfa, and G. Visalli, “Analysis and implemen-
tation of a novel leading zero anticipation algorithm for floating-point arithmetic
units,” Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 54,
no. 8, pp. 685–689, 2007.

[23] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an
underdesigned multiplier architecture,” in VLSI Design (VLSI Design), 2011
24th International Conference on, 2011, pp. 346–351.

[24] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-
scalable meta-functions for approximate computing,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, 2011, pp. 1–6.

[25] P. K. Krause and I. Polian, “Adaptive voltage over-scaling for resilient applica-
tions,” in Proc. DATE, March 2011, pp. 1 –6.

[26] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and synthesis of
quality-energy optimal approximate adders,” in Computer-Aided Design (IC-
CAD), 2012 IEEE/ACM International Conference on, 2012, pp. 728–735.

[27] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed. McGraw-
Hill Higher Education, 1994.

[28] H. Savoj and R. K. Brayton, “The use of observability and external don’t cares
for the simplification of multi-level networks,” in Proc. DAC, 1990, pp. 297–301.

[29] K. H. Chang, V. Bertacco, I. L. Markov, and A. Mishchenko, “Logic synthe-
sis and circuit customization using extensive external don’t-cares,” ACM TO-
DAES, vol. 15, pp. 26:1–26:24, June 2010.

[30] S. Chang and M. M. Sadowska, “Perturb and simplify: optimizing circuits with
external don’t cares,” in Proc. ED TC, mar 1996, pp. 402 –406.

[31] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan,
“Salsa: Systematic logic synthesis of approximate circuits,” in Proceedings
of the 49th Annual Design Automation Conference, ser. DAC ’12.
New York, NY, USA: ACM, 2012, pp. 796–801. [Online]. Available:
http://doi.acm.org/10.1145/2228360.2228504

[32] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2013, 2013,
pp. 1367–1372.

[33] E. Sentovich and K. Singh, “SIS: A system for sequential cir-
cuit synthesis,” EECS, UCB, Tech. Rep., 1992. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html

[34] “Design Compiler Ultra, Synopsys Inc.”

169

[35] L. Benini, E. Macii, and M. Poncino, “Telescopic units: increasing the average
throughput of pipelined designs by adaptive latency control,” in Proc. DAC,
1997, pp. 22–27.

[36] D. Baneres, J. Cortadella, and M. Kishinevsky, “Variable-latency design by
function speculation,” in Proc. DATE, april 2009, pp. 1704 –1709.

[37] S. Ghosh, S. Bhunia, and K. Roy, “Crista: A new paradigm for low-power,
variation-tolerant, and adaptive circuit synthesis using critical path isolation,”
IEEE Trans. on CAD, vol. 26, pp. 1947–1956, nov. 2007.

[38] S. L. Lu, “Speeding up processing with approximation circuits,” Computer,
vol. 37, no. 3, pp. 67 – 73, mar 2004.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[40] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “Ersa: Error resilient
system architecture for probabilistic applications,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2010, 2010, pp. 1560–1565.

[41] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Verified integrity
properties for safe approximate program transformations,” in Proceedings of
the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program
Manipulation, ser. PEPM ’13. New York, NY, USA: ACM, 2013, pp. 63–66.
[Online]. Available: http://doi.acm.org/10.1145/2426890.2426901

[42] ——, “Proving acceptability properties of relaxed nondeterministic approx-
imate programs,” in Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’12.
New York, NY, USA: ACM, 2012, pp. 169–180. [Online]. Available:
http://doi.acm.org/10.1145/2254064.2254086

[43] J. Cong and K. Gururaj, “Assuring application-level correctness against soft
errors,” in Computer-Aided Design (ICCAD), 2011 IEEE/ACM International
Conference on, 2011, pp. 150–157.

[44] “ModelSim, Mentor Graphics Inc.”

[45] K. K. et. al, “Learning convolutional feature hierarchies for visual recognition,”
in NIPS, 2010.

[46] A. K. et. al., “Imagenet classification with deep convolutional neural networks,”
in NIPS, 2012.

[47] G. Rosenberg, “Improving photo search: A step across the semantic gap,” June
2009.

[48] J. D. et. al., “Large scale distributed deep networks,” in NIPS, 2012.

[49] “Scientists See Promise in Deep-Learning Programs, www.nytimes.com
/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-
artificial-intelligence.html.”

170

[50] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[51] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” CoRR, vol. abs/1312.6229, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6229

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[53] “Virgin atlantic introduces google glass in innovation drive to fuel the future
of air travel: http://www.virgin-atlantic.com/in/en/footer/media-centre/press-
releases/google-glass.html.”

[54] “Fraunhofer IIS presents world’s first emotion detection app on Google Glass:
http://www.iis.fraunhofer.de/en/pr/2014/
20140827 BS Shore Google Glas.html.”

[55] “Google glass teardown: http://www.catwig.com/google-glass-teardown/.”

[56] “TI OMAP Datasheet:http://www.ti.com/product/omap3530.”

[57] “Intel xeon phi coprocessor datasheet:
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-
coprocessor-datasheet.html.”

[58] C. F. et al., “Neuflow: A runtime reconfigurable dataflow processor for vision,”
in Proc. CVPRW, 2011, pp. 109–116.

[59] S. C. et. al., “A dynamically configurable coprocessor for convo-
lutional neural networks,” in Proc. ISCA, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815993

[60] E. P. et. al., “Spinnaker: A multi-core system-on-chip for massively-parallel
neural net simulation,” in Proc. CICC, 2012, pp. 1–4.

[61] J. N. et. al., “On optimization methods for deep learning,” in Proc. ICML,
2011, pp. 265–272.

[62] B. R. et. al., “Specifications of nanoscale devices and circuits for neuromorphic
computational systems,” IEEE Trans. on Electron Devices, vol. 60, no. 1, pp.
246–253, 2013.

[63] S. H. J. et. al., “Nanoscale memristor device as synapse in neuromorphic
systems,” Nano Letters, vol. 10, no. 4, pp. 1297–1301, 2010. [Online]. Available:
http://pubs.acs.org/doi/abs/10.1021/nl904092h

[64] K. R. et al., “Beyond charge-based computation: Boolean and non-Boolean
computing with spin torque devices,” in Proc. ISLPED, Sep. 2013, pp. 139–
142.

[65] O. Temam, “The rebirth of neural networks,” in Proc. ISCA. [Online].
Available: pages.saclay.inria.fr/olivier.temam/homepage/ISCA2010web.pdf

171

[66] P. Dubey, “Recognition, mining and synthesis moves computers to the era of
tera,” Intel Tech. Magazine, vol. 9, no. 2, pp. 1–10, Feb. 2005.

[67] L. Deng, “The MNIST database of handwritten digit images for machine learn-
ing research,” IEEE Signal Proc. Magazine, vol. 29, no. 6, pp. 141–142, Nov.
2012.

[68] Y.-T. L. et al., “Low-power variable-length fast fourier transform processor,”
Proc. IEEE Computers and Digital Techniques, vol. 152, no. 4, pp. 499–506,
Jul. 2005.

[69] H. K. et al., “A 1.45 GHz 52-to-162 GFLOPS/W variable-precision floating-
point fused multiply-add unit with certainty tracking in 32nm CMOS,” in Proc.
ISSCC, Feb. 2012, pp. 182–184.

[70] V. C. et al., “Scalable effort hardware design: Exploiting algorithmic resilience
for energy efficiency,” in Proc. DAC, 2010, pp. 555 –560.

[71] ——, “Dynamic effort scaling: Managing the quality-efficiency tradeoff,” in
Proc. DAC, June 2011, pp. 603–608.

[72] H. E. et al., “Architecture support for disciplined approximate programming,”
in Proc. Int. Conf Architectural Support for Programming Languages and Op-
erating Systems, Mar. 2012, pp. 301–312.

[73] S. S.-D. et. al., “Managing performance vs. accuracy trade-offs with loop per-
foration,” in Proc. ACM SIGSOFT Symposium, 2011, pp. 124–134.

[74] S. N. et al., “Scalable stochastic processors,” in Proc. Design Automation and
Test in Europe, 2010, pp. 335–338.

[75] S. V. et al., “Quality programmable vector processors for approximate comput-
ing,” in Proc. MICRO, 2013, pp. 1–12.

[76] R. E. Schapire, “The boosting approach to machine learning: An overview,”
Lect. Notes in Statistics: Nonlinear Estim. and Classification, vol. 171, pp.
149–171, 2003.

[77] J. Gama and P. Brazdil, “Cascade generalization,” J. Machine Learning, vol. 41,
no. 3, pp. 315–343, Dec. 2000.

[78] P. V. et al., “Rapid object detection using a boosted cascade of simple features,”
in Proc. Conf. Comput. Vision & Pattern Reco., Dec. 2001, pp. 511–518.

[79] D. H. et al., “Accelerating Viola-Jones face detection to FPGA-level using
GPUs,” in Symp. Field-Programmable Custom Computing Machines, May.
2010, pp. 11–18.

[80] C. Zhang and P. Viola, “Multiple-instance pruning for learning efficient cascade
detectors,” in Proc. Neural Info. Processing Syst., Dec. 2008, pp. 1681–1888.

[81] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann Publishers, 1993.

[82] K. Bache and M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

172

[83] M. H. et al., “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, Jun. 2009.

[84] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’13.
New York, NY, USA: ACM, 2013, pp. 33–52. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509546

[85] N. Shanbhag, “Reliable and energy-efficient digital signal processing,” in Proc.
Design Automation Conference, 2002, pp. 830–835.

[86] R. Hegde and N. Shanbhag, “A low-power digital filter IC via soft DSP,” in
Proc. IEEE Conf. Custom Integrated Circuits, 2001, pp. 309–312.

[87] G. V. Varatkar and N. R. Shanbhag, “Error-resilient motion estimation archi-
tecture,” IEEE Trans. VLSI Systems, vol. 16, no. 10, pp. 1399–1412, 2008.

[88] L. Wang and N. R. Shanbhag, “Noise-tolerant dynamic circuit design,” in IS-
CAS (1), 1999, pp. 549–552.

[89] R. Hegde and N. R. Shanbhag, “Toward achieving energy efficiency in presence
of deep submicron noise,” IEEE Trans. VLSI Syst., vol. 8, no. 4, pp. 379–391,
2000.

[90] N. R. Shanbhag, K. Soumyanath, and S. Martin, “Reliable low-power design in
the presence of deep submicron noise (embedded tutorial session),” in ISLPED,
2000, pp. 295–302.

[91] L. Wang and N. R. Shanbhag, “Energy-efficiency bounds for deep submicron
vlsi systems in the presence of noise,” IEEE Trans. VLSI Syst., vol. 11, no. 2,
pp. 254–269, 2003.

[92] B. Shim and N. R. Shanbhag, “Performance analysis of algorithmic noise-
tolerance techniques,” in ISCAS (4), 2003, pp. 113–116.

[93] M. Zhang and N. R. Shanbhag, “An energy-efficient circuit technique for single
event transient noise-tolerance,” in ISCAS (1), 2005, pp. 636–639.

[94] R. Hegde and N. R. Shanbhag, “Energy-efficiency in presence of deep submicron
noise,” in ICCAD, 1998, pp. 228–234.

[95] T.-Y. Hsieh, K.-J. Lee, and M. Breuer, “An error rate based test methodology
to support error-tolerance,” Reliability, IEEE Transactions on, vol. 57, no. 1,
pp. 204–214, March 2008.

[96] Z. Pan and M. A. Breuer, “Basing acceptable error-tolerant performance on
significance-based error-rate (sber),” in VTS, 2008, pp. 59–66.

[97] M. A. Breuer and H. H. Zhu, “An illustrated methodology for analysis of error
tolerance,” IEEE Design & Test of Computers, vol. 25, no. 2, pp. 168–177,
2008.

173

[98] T.-Y. Hsieh, K.-J. Lee, and M. A. Breuer, “An error rate based test methodology
to support error-tolerance,” IEEE Transactions on Reliability, vol. 57, no. 1,
pp. 204–214, 2008.

[99] M. A. Breuer and H. H. Zhu, “Error-tolerance and multi-media,” in IIH-MSP,
2006, pp. 521–524.

[100] Second International Conference on Intelligent Information Hiding and Multi-
media Signal Processing (IIH-MSP 2006), Pasadena, California, USA, Decem-
ber 18-20, 2006, Proceedings. IEEE Computer Society, 2006.

[101] T.-Y. Hsieh, K.-J. Lee, and M. A. Breuer, “An error-oriented test methodology
to improve yield with error-tolerance,” in VTS, 2006, pp. 130–135.

[102] M. A. Breuer, “Multi-media applications and imprecise computation,” in DSD,
2005, pp. 2–7.

[103] ——, “Intelligible test techniques to support error-tolerance,” in Asian Test
Symposium, 2004, pp. 386–393.

[104] M. A. Breuer, S. K. Gupta, and T. M. Mak, “Defect and error tolerance in the
presence of massive numbers of defects,” IEEE Design & Test of Computers,
vol. 21, no. 3, pp. 216–227, 2004.

[105] M. A. Breuer, “Determining error rate in error tolerant vlsi chips,” in DELTA,
2004, pp. 321–326.

[106] K. V. Palem, “Computational proof as experiment: Probabilistic algorithms
from a thermodynamic perspective,” in Verification: Theory and Practice, 2003,
pp. 524–547.

[107] ——, “Energy aware algorithm design via probabilistic computing: from al-
gorithms and models to moore’s law and novel (semiconductor) devices,” in
CASES, 2003, pp. 113–116.

[108] ——, “Energy aware computing through probabilistic switching: A study of
limits,” IEEE Trans. Computers, vol. 54, no. 9, pp. 1123–1137, 2005.

[109] P. Korkmaz, B. E. S. Akgul, and K. V. Palem, “Ultra-low energy computing
with noise: Energy-performance-probability trade-offs,” in ISVLSI, 2006, pp.
349–354.

[110] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem, “Probabilistic arithmetic
and energy efficient embedded signal processing,” in CASES, 2006, pp. 158–168.

[111] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem, “Probabilis-
tic system-on-a-chip architectures,” ACM Trans. Design Autom. Electr. Syst.,
vol. 12, no. 3, 2007.

[112] B. E. S. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem, “Probabilistic
cmos technology: A survey and future directions,” in VLSI-SoC, 2006, pp. 1–6.

[113] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V. Palem,
and B. Seshasayee, “Ultra-efficient (embedded) soc architectures based on prob-
abilistic cmos (pcmos) technology,” in DATE, 2006, pp. 1110–1115.

174

[114] L. N. Chakrapani, K. K. Muntimadugu, L. Avinash, J. George, and K. V.
Palem, “Highly energy and performance efficient embedded computing through
approximately correct arithmetic: a mathematical foundation and preliminary
experimental validation,” in CASES, 2008, pp. 187–196.

[115] V. Chippa, H. Jayakumar, D. Mohapatra, K. Roy, and A. Raghunathan,
“Energy-efficient recognition and mining processor using scalable effort design,”
in Custom Integrated Circuits Conference (CICC), 2013 IEEE, 2013, pp. 1–4.

[116] V. K. Chippa, K. Roy, S. T. Chakradhar, and A. Raghunathan, “Managing
the quality vs. efficiency trade-off using dynamic effort scaling,” ACM Trans.
Embed. Comput. Syst., vol. 12, no. 2s, pp. 90:1–90:23, May 2013. [Online].
Available: http://doi.acm.org/10.1145/2465787.2465792

[117] N. Zhu, W.-L. Goh, W. Zhang, K.-S. Yeo, and Z.-H. Kong, “Design of low-power
high-speed truncation-error-tolerant adder and its application in digital signal
processing,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 18, no. 8, pp. 1225–1229, 2010.

[118] A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for grace-
ful degradation under voltage overscaling,” in Design Automation Conference
(ASP-DAC), 2010 15th Asia and South Pacific, 2010, pp. 825–831.

[119] L. Wan and D. Chen, “Ccp: Common case promotion for improved timing
error resilience with energy efficiency,” in Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power Electronics and Design, ser. ISLPED
’12. New York, NY, USA: ACM, 2012, pp. 135–140. [Online]. Available:
http://doi.acm.org/10.1145/2333660.2333695

[120] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco: Modeling
and analysis of circuits for approximate computing,” in Proceedings of
the International Conference on Computer-Aided Design, ser. ICCAD ’11.
Piscataway, NJ, USA: IEEE Press, 2011, pp. 667–673. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2132325.2132474

[121] W.-T. Chan, A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Statistical analysis
and modeling for error composition in approximate computation circuits,” in
Computer Design (ICCD), 2013 IEEE 31st International Conference on, 2013,
pp. 47–53.

[122] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant ap-
plications,” in Proc. DATE, Mar. 2010, pp. 957–960.

[123] D. Shin and S. Gupta, “Approximate logic synthesis for error tolerant applica-
tions,” in Design, Automation Test in Europe Conference Exhibition (DATE),
2010, 2010, pp. 957–960.

[124] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet, “Energy parsi-
monious circuit design through probabilistic pruning,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, 2011, pp. 1–6.

VITA

175

VITA

Swagath Venkataramani received the bachelors degree in Electrical and Electronics

Engineering from the College of Engineering, Anna University, Guindy, India, in 2010,

as the University Gold Medalist. He is currently pursuing the Ph.D. degree with the

School of Electrical and Computer Engineering, Purdue University, West Lafayette,

IN, USA. After his graduation, Swagath will join IBM T.J. Watson Research Center

as a research staff member in the system architecture and design department.

Previously, Swagath was a visiting research scientist with Parallel Computing

Labs, Intel, Bangalore, India. He has also been with the Exa-Scale Computing Group,

Intel, Hillsboro, OR, USA, as part of the U.S. DOE’s FastForward Program, and with

the Sensing and Energy Research Group, Microsoft Research, Seattle, WA, USA.

His current research interests include approximate computing, energy-efficient ma-

chine/deep learning, heterogeneous parallel architectures, computing with spintronic

devices, and computational imaging.

Swagath’s dissertation research was awarded the Intel Ph.D. Fellowship in com-

puting leadership and the Purdue Bilsland Dissertation Fellowship. His research has

received two best paper nominations from DAC 2016 and ISLPED 2014, a best-in-

session award from TECHON 2016, and was adjudged the winner of ACM SIGDA

DAC PhD Forum 2016. It has also been featured in MIT Technology Review, Slash-

dot, Physics Today, and NSF News From the Field.

	Purdue University
	Purdue e-Pubs
	12-2016

	Approximate computing: An integrated cross-layer framework
	Swagath Venkataramani
	Recommended Citation

	10242306.pdf

