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Abstract: The concept of an approximate multiplier (integrating factor) is introduced. Such multipliers are
shown to give rise to approximate local conservation laws for differential equations that admit a small
perturbation. We develop an explicit, algorithmic and efficient method to construct both the approximate
multipliers and their corresponding approximate fluxes. Our method is applicable to equations with
any number of independent and dependent variables, linear or nonlinear, is adaptable to deal with any
order of perturbation and does not require the existence of a variational principle. Several important
perturbed equations are presented to exemplify the method, such as the approximate KdV equation.
Finally, a second treatment of approximate multipliers is discussed.
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1. Motivation

The last three decades have seen the development of approximate Lie symmetries [1–3] and their
subsequent applications to differential equations admitting a perturbation term. This of course led
to a significant extension to approximate Noether symmetries [4] and their associated approximate
conservation laws. Naturally, these methods then instigated numerous investigations into the approximate
symmetry properties of perturbative equations across all scientific spheres [5–11]. Recently, we have
explored the connection between geometry and approximate metrics [12] in the context of heat conduction,
and in [13] we proved that approximate symmetries exist if and only if the metric that defines Kinetic
energy admits a nontrivial Homothetic algebra. Following this, we established explicit and generalized
geometric conditions for a family of Lagrangians that occupy a special place in the literature surrounding
perturbation theory [14].

In contemporary analysis, conservation laws are fundamental mathematical expressions that have far
and wide applicability. In the context of partial differential equations, they feature in the construction of
robust numerical schemes, contribute to questions about existence and uniqueness of solutions and are
effective predictors of linearization [15–17]. The investigation of conservation laws of the Korteweg-de
Vries (KdV) equation initiated a discovery of several methods, namely the Miura transformation, inverse
scattering and bi-Hamiltonian structures [18]. In consequence, a significant problem is how to determine
the conservation laws for given differential equations in general, and in particular, for equations that do
not possess variational principles and/or include perturbative terms.

There are now several techniques widely applied in the literature that systematically derive
conservation laws, inter alia, the direct construction method, the first homotopy (integral) formula,
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the second homotopy formula and the scaling formula—all of which have been successfully automated by
a symbolic program in Maple [19].

Generally speaking, there is no specific criterion, which deals with approximate conservation laws
of perturbative nonvariational equations, i.e., approximate equations that do not possess a Lagrangian.
The premise of the approximate conservation laws reported above, depends on the application of Noether’s
theorem [20], where the existence of a Lagrangian is essential. Noether proved that for self-adjoint
or variational partial differential equation systems, conservation laws arise from Noether symmetries.
However, multitudes of partial differential equations that model natural phenomena are not variational,
including those that are perturbative.

For unperturbed differential equations without a variational principle, the available methods for
obtaining conservation laws are, but not limited to: solving the divergence expression by integration,
the standard multiplier approach [21,22], the multiplier approach on the solutions of the equation [23],
the partial Noether approach [24], a direct construction method [25] and very significantly, the newly
proposed mixed method [26]. The latter can characterize which symmetry, if any, is accountable for
a given conservation law. The multiplier approach in particular, has played a crucial role in several
contexts [27–31]. Moreover, some recent studies of exact multipliers and conservation laws can be found
in [32–36] and references therein.

We seek to formulate a direct and schematic method—one without the involvement of an action
principle to find the conservation laws of a given system of perturbed differential equations. To achieve
this we prove that nontrivial approximate conserved quantities on the solution space of a given differential
equation can be constructed from approximate multipliers (analogous to integrating factors), where the
approximate multiplier depends on a predetermined set of variables and derivatives. At the forefront,
the distinguishing property of the multipliers is that they must be a divergence expression for all functions
of the dependent variable(s) and not just on the solutions of the differential system.

Consider the generalized KdV equation (the original KdV equation was presented in [37])

ut + uux + uxxx = 0. (1)

The KdV equation has been discussed extensively in the literature, especially because of its
conservation laws that arise by virtue of a recursion operator [38]. It is therefore only appropriate that
we demonstrate the importance of our work with the KdV equation, coupled with a small perturbation,
to address the problem of approximate conservation laws. This equation, without any perturbation, admits
the multipliers [25]

Λe1 = 1, Λe2 = u, Λe3 =
1
2

u2 + uxx, (2)

Λe4 = ut − x. (3)

Each of these multipliers give rise to a nontrivial conservation law. For example, if u is regarded as
wave amplitude in the KdV equation, then the multipliers Λe1 − Λe3 give rise to conserved quantities
representing the physical principles of mass, momentum and energy [39]. Of course, some conservation
laws do not have a physical interpretation, but may have mathematical relevance, such as the conserved
vector admitted by the multiplier (3).

If the KdV equation is perturbed with the addition of a small dissipative term,

ut + uux + uxxx − εuxx = 0, (4)
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at first sight it is natural to proceed with the standard multiplier approach, which assumes that ε is simply
a constant. More precisely, this assumption leads to only one multiplier, namely Λe1. The remaining
multipliers (and their associated conservation laws) are lost!

Indeed, as illustrated later in the examples of this paper, if Equation (4) is treated as a perturbed
equation with perturbation parameter ε and subjected to our proposed method, we not only recover the
lost multipliers and conservation laws, but find additional approximate conservation laws.

At this stage, we emphasize that the most prominent characteristic of multipliers is that they may
be derived for equations that may or may not possess a variational principle and, each multiplier will
generate a nontrivial conservation law. In this paper, we stipulate that multipliers involve a perturbation,
expanded into a series, to a specified order of a perturbative parameter.

Our proposed method may be categorized into three steps: firstly, compute multipliers of the given
equation by setting the perturbed term as zero, i.e., we refer to this step as the establishment of multipliers
in the classical sense, and secondly, solve a divergence expression involving the multiplier of step one and
a different multiplier that arises from a perturbation series to some specified order in the perturbation
parameter. This procedure results in a number of approximate multipliers. Thirdly, to demonstrate
the advantages of approximate multipliers, we connect these multipliers to approximate nonvariational
conservation laws. Essentially, the calculation of approximate conservation laws is reduced to solving
a divergence expression in terms of approximate multipliers.

We note that preliminary studies have shown that there exists a formal relationship between
multipliers and (adjoint) symmetries, explained as follows: multipliers can be characterized as adjoint
symmetries that satisfy an adjoint invariance condition [25], and in turn, if the adjoint symmetry
determining equation is identical to the symmetry determining equation, then adjoint symmetries are
symmetries. If this is the case, the given partial differential equation must possess a variational principle.

Hence this contribution provides a method to construct multipliers and conservation laws of
approximate equations. To this date, the only other method in this regard is the approximate Noether’s
theorem—which only applies to approximate equations that possess a Lagrangian. Our method has no
such limitations. The paper is structured as follows: in the next section we propose the relevant theory
on approximate multipliers and some important properties. Section 3 is devoted to the construction of
approximate conservation laws, whereby the approximate multipliers of Section 2 are integral to this task.
Concluding remarks are given in Section 4. In the Appendix A, we discuss an alternate formulation of
multipliers for perturbative equations.

2. Theoretical Formulation of Approximate Multipliers

Firstly, for the reader’s convenience, we present the existing theory concerning the multiplier approach
and thereafter introduce our method, for approximate multipliers. The indices α and i sum over 1, . . . , m

and i = 1, . . . , n respectively, unless otherwise stated. Consider an rth-order (in derivatives) system of
partial differential equations of n independent variables x = (x1, x2, . . . , xn) and m dependent variables
u = (u1, u2, . . . , um),

Gα(x, u, u(1), . . . , u(r)) = 0, (5)

where u(1), u(2), . . . , u(r) denote the collections of all first, second, . . ., rth-order partial derivatives.

Definition 1. The total differentiation operator Di with respect to xi is given by

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . , (6)



Mathematics 2019, 7, 574 4 of 14

Definition 2. The Euler operator or variational derivative is given by

δ

δuα
=

∂

∂uα
+ ∑

s≥1
(−1)sDi1 · · · Dis

∂

∂uα
i1···is

. (7)

Definition 3. A current T = (T1, . . . , Tn) is conserved if it satisfies

Di Ti = 0, (8)

along the solutions of (5). Equation (8) is called a local conservation law.

2.1. Classical Multipliers

The theory of multipliers, and their application in determining evolutionary symmetries and
conservation laws for differential equations, has been concretized in the literature [21,22]—we outline the
method here.

Definition 4. The multipliers Λα of (5) satisfies the relation

Di Ti = ΛαGα, (9)

for all functions uα.

In Equation (9), the conservation law is written in characteristic form and the Λα are also referred to
as characteristics.

Definition 5. The overdetermined equations for Λα are

δ

δuα

[

ΛαGα
]

= 0. (10)

Thus, this method relies on the fact that the variational derivative annihilates a total divergence.

Example 1. Amongst ordinary differential equations of second-order, consider a type of oscillation equation with

a small parameter,

u′′ + ω2u + εM (x, u, ux) = 0, u = u(x). (11)

Such an equation encompasses many important perturbative equations, such as the approximate

Ermakov-Pinney equation, van der Pol equation, Duffing equation, etc. Suppose we first neglect the perturbative

term and apply the classical multiplier approach. We choose the dependence of Λ to be Λ = Λ (x, u). Thus, by the

application of Definition 5, and separation by equating the coefficients of u, we find the determining system:

Λuu = 0, 2Λu = 0, 2Λut = 0,
Λuω2u + Λω2 + Λtt = 0.

(12)

The above system is overdetermined in the unknown function Λ, and elementary solving of (12) provides that

the multipliers of (11), to the specified form of Λ, are

Λ (x, u) = C1 sin (ωx) + C2 cos (ωx) , (13)
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where C1−2 are arbitrary constants.

We may split (13) as follows: Λa = sin (ωx) , Λb = cos (ωx) .

Example 2. Let us consider the nonlinear wave equation with a small perturbation

�u + λu3 + εF(u) = 0, (14)

where � is the d’Alembertian, λ is an arbitrary constant, u = u(x, t) and F(u) is an arbitrary smooth function.

As before, we choose to ignore the perturbation term.

Suppose we select the dependence of Λ to be Λ = Λ (x, t, u, ut, ux). Thus, by the application of Definition 5,

we find the determining system:

Λuxux − Λutut = 0,
−λu3Λutut + Λuux ux − Λuut ut − Λtut + Λxux − 2Λu = 0,
−2λu3Λuxut − 2Λuux ut + 2Λuut ux − 2Λtux + 2Λxut = 0,
−λu3Λuxux + Λuux ux − Λuut ut − Λtut + Λxux + 2Λu = 0,

−λu3uxΛuux − λu3utΛuut − λu3Λtut − λu3Λxux +
(

u2
x − u2

t

)

Λuu

−2Λtuut + 2Λxuux − Λtt + Λxx + λu3Λu − 3Λux λu2ux

−3Λut λu2ut + 3Λλu2 = 0.

(15)

Proceeding in the same way as described in Example 1, we find the solution of (15) provides that the multipliers

of (14), to the specified form of Λ, are

Λ (x, t, u, ut, ux) = (C1 t + C3) ux + (C1 x + C2) ut, (16)

where C1−3 are arbitrary constants.

We may split (16) as follows Λc = tux + xut, Λd = ut, Λe = ux.

Results, by way of the above method, will be referred to as exact multipliers since they are calculated
from an unperturbed system (as defined below).

2.2. Approximate Multipliers

We begin this subsection by proposing the necessary theory in order to define approximate multipliers.
In addition to the method developed below, a second treatment of approximate multipliers is exhibited
in Appendix A.

To start with, the multiplier Λ is expanded in a perturbation series, that is, we shall discuss
deformations of the multiplier up to first-order in the perturbation parameter ε, but the theory is easily
generalized to higher-order perturbations.

Consider the system of approximate partial differential equations, perturbed up to first-order of
precision in the perturbation parameter ε,

Ḡα ≡ Gα
0 (x, u, u(1), . . . , u(r)) + εGα

1 (x, u, u(1), . . . , u(r)) ≈ 0, α = 1, . . . , m. (17)

Definition 6. A current T = (T1
0 + εT1

1 , . . . , Tn
0 + εTn

1 ) is conserved if it satisfies

Di Ti = o(ε), (18)

along the solutions of (17).
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Theorem 1. The multipliers

Λ̄α = Λα
0 + εΛα

1 + O
(

ε2
)

, (19)

of (17) satisfies the relation

Di Ti
0 = Λα

0 Gα
0 , (20)

Di Ti
1 = Λα

0 Gα
1 + Λα

1 Gα
0 , (21)

for all functions uα.

Proof. Equation (20) and (21) are obtained by substituting (17) and (19) into the determining Equation (9)
and considering the result in the first-order of precision with respect to ε.

Corollary 1. The conservation law (18) is equivalent to

Di

(

Ti
0 + εTi

1

)

= ε2 (−Λα
1 Gα

1 ) (22)

Proof. A substitution of Equation. (20) and (21) of Theorem 1 into the LHS of Equation (22), followed by
a replacement of Gα

0 with −εGα
1 from Equation (17), yields the desired result.

It should be clear that Equation (22) is zero, up to order ε.
Comparing Equation (20) with the expression of exact multipliers Equation (9), we obtain the following.

Theorem 2. If Equation (17) admits an approximate multiplier Λ̄α = Λα
0 + εΛα

1 , where Λα
0 6= 0, then the multiplier

Λα
0 is an exact multiplier of the equation

Gα
0 (x, u, u(1), . . . , u(r)) = 0. (23)

Remark 1. Based on Equation (20) and (21), if Λα
0 is an exact multiplier of Equation (23), then the multipliers (19)

satisfying Equation (21) are called first-order approximate multipliers admitted by Equation (17). If Ti
0 is an exact

conserved quantity of Equation (23), then the Ti = Ti
0 + εTi

1 are called first-order approximate conserved quantities

of Equation (17).

Accordingly, application of the variational derivative, analogous to Equation (10), provides the
determining equations for the multipliers, viz.

δ

δuα

[

Λ̄αḠα
]

= o(ε). (24)

Hence, Theorem 1 and Equation (24) provide a scheme for calculating approximate multipliers (19)
for differential equations with a small parameter. Implementation of the method requires the following
two steps.

1st step. Calculation of the exact multipliers Λα
0 of the unperturbed equation Equation (23), by solving the

determining equation:

δ

δuα

[

Λα
0 Gα

0

]

= 0, (25)
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2nd step. Calculation of the Λα
1 by solving the determining equation for deformations:

δ

δuα

[

Λα
0 Gα

1 + Λα
1 Gα

0

]

= 0. (26)

Definition 7. Equation (23) and (17) are termed as the unperturbed equation and the perturbed

equation, respectively.

Mimicking the terminology from approximate symmetry theory, we establish the following definitions.

Definition 8. Λ̄α = Λα
0 + εΛα

1 is a trivial multiplier if Λα
0 = 0.

Definition 9. If the approximate multiplier Λ̄α = Λα
0 + εΛα

1 , is such that the exact multiplier Λα
0 6= 0, we say

that the multiplier Λα
0 of the unperturbed equation is stable with respect to the perturbation considered. Hence,

the perturbed Equation (17) inherits the multipliers of the unperturbed Equation (23).

Examples of Approximate Multipliers

Example 3. Consider the introductory example, the perturbed KdV Equation (4). The exact multipliers (2)–(3)

admitted by this equation may be written in the form
(

B1−4 are arbitrary constants
)

,

Λ0 (x, t, u, ux, ut, uxx) = B1 ut + 1
2 B2 u2 + B2 uxx − B1 x + B3 u + B4. (27)

Using (26), we have the determining equation for Λ1 (x, t, u, ux, ut, uxx):

δ

δu

[

Λ0 (−uxx) + Λ1 (ut + uux + uxxx)
]

= 0,

which is equivalent to the determining system:

Λ1,ut
= 0, Λ1,uxxuxx = 0,

−uxxΛ1,uxuxx − uxΛ1,u ,uxx − 2Λ1,ux − Λ1,xuxx = 0,
−4 uxxΛ1,xuxuxx − 4 uxΛ1,x,u ,uxx − 2 u2

xxΛ1,uxuxuxx − 2 Λ1,xxuxx

−4 uxxΛ1,uxux − 4 Λ1,xux − 4 uxΛ1,uux − 2 uxxΛ1,uuxx = 0,
−Λ1,uxuxux u3

xx − 4 uxx (−1/2 uux − 1/2 ut)Λ1,xuxuxx

−2 u2
xx (−1/2 uux − 1/2 ut)Λ1,uxuxuxx − 3 Λ1,xuxux u2

xx − B2 ux
2

−3 Λ1,uu uxuxx + 3 Λ1,uxx uxuxx − 6 Λ1,xuux uxuxx − Λ1,xxx − 3 Λ1,xuu u2
x

+
(

2 uuxx + 2 ux
2
)

Λ1,xuxx − 3 Λ1,xxux uxx − 4 ux (−1/2 uux − 1/2 ut)Λ1,xuuxx−

Λ1,xu + (−2 B1 t − 2 B2 u − 2 B3) uxx + (uux + ut)

Λ1,xxuxx + (−uuxuxx − utuxx)Λ1,uxux + (−uux − ut)Λ1,xux

+
(

−uu2
x − utux − 3 u2

xx

)

Λ1,uux +
(

2 uu2
xx + 2 u2

xuxx

)

Λ1,uxuxx

+
(

3 uuxuxx + 2 u3
x + utuxx

)

Λ1,uuxx +
(

−2 uuxx − u2
x

)

Λ1,ux − Λ1,t

−3Λ1,uxuxx − Λ1,uuuu3
x − 3Λ1,uxxux = 0.

(28)

The solution of this system is possible if B2 = 0, which leads us to

Λ1 (x, t, u, ux, ut, uxx) = 1
2

(

2 B1 t2 + 4 B3 t + C1

)

u2

+ 1
2 ((−4 B1 x − 2 C2) t − 4 xB3 + 2 C3) u

+2 B1 t2uxx + 4 B3 tuxx + B1 x2 + C1 uxx

+C2 x + C4,

(29)
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where C1−4 are arbitrary constants. Thus, the first-order nontrivial approximate multipliers are

Λ̄a1 = u + ε
(

2tu2 − 2xu + 4tuxx

)

,
Λ̄a2 = ut − x + ε

(

t2u2 − 2uxt + 2t2uxx + x2
)

,
(30)

while the trivial first-order approximate multipliers are

Λ̄a3 = ε,
Λ̄a4 = εu,
Λ̄a5 = ε (ut − x) ,

Λ̄a6 = ε
(

1
2 u2 + uxx

)

.

(31)

Example 4. Consider an equation that arises in various applied problems [40],

utt + εut = (φ (u) ux)x . (32)

Following the classification given in [1] (some variations of this model exist and can be found in,

for instance [41]), the approximate symmetry algebra may be enlarged according to various functions of φ(u).

We are interested to see if the number of approximate multipliers increase with these choices of φ(u), and if so,

what are these approximate multipliers explicitly. Application of the method described above and as illustrated in

the previous examples, the results of this example are summarized in Table 1, i.e., multipliers of Equation (32) in

exact and approximate constituents are displayed. For example, for φ(u) = ku−4, Equation (32) admits two exact

multipliers Λ0 = tx, Λ0 = x; three approximate parts that are Λ1 = tx, Λ1 = x, and Λ1 = 1
2 t2x, so that the

first-order nontrivial approximate multiplier, corresponding to B1 is

Λ̄b1 = tx + ε
1
2

t2x,

and the trivial approximate multipliers are

Λ̄b2 = εtx and Λ̄b3 = εx.

The remaining cases in Table 1 are analyzed similarly but the lengthy details are omitted. Additionally,

we observe that Equation (32) with φ(u) arbitrary, admits the approximate multipliers if B5 = 0.

Table 1. Comparative table of exact and approximate multipliers (k, σ, Cfl, Bˇ are arbitrary parameters).

φ(u) Λ0 Λ1

1
Arbitrary (B1t + B2) x + tB3 + B4

(

1
2 B1 t2 + C1 t + C2

)

x + 1
2 B3 t2

function + uxutB5

(−u2
xφ(u)+u2

t )
2 +C3 t + C4 +

utC5 ux

(−ux
2φ(u)+ut

2)2

2 kuσ (B1x + B3) t + xB2 + B4

1
2 (B1x + B3) t2 + (C1x + C3) t

+xC2 + C4

3 ku−4/3 (B1x + B2) t t
2 [(B1x + B2) t + 2C1x + 2C2]

4 ku−4 (B1t + B2) x
(

1
2 B1t2 + C1t + C2

)

x

Example 5. Recall the nonlinear wave Equation (14) with exact multipliers (16). Ultimately, the above procedure

shows that Equation (14) only admits trivial first-order approximate multipliers.
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3. Approximate Conserved Quantities

As previously stated, every multiplier gives rise to a conservation law. Likewise, every approximate
multiplier Λ̄α = Λα

0 + εΛα
1 will give rise to an approximate conservation law (18), see Definition 6. In order

to calculate the approximate conservation laws, we have to compute Ti
1. To this end, it is the solution of

Equation (21), from Theorem 1 that provides Ti
1, a solution that is obtainable by integration. In situations

of complicated integration, it is fruitful to adopt an ansatz concerning the functional dependence of the
conserved fluxes, i.e., if the maximal order of derivatives present in the multipliers is l and the maximal order
of the given equation is h, then without loss of generality, one may assume that the fluxes contain derivatives
up to order p, where p = max(l, h) [42].

To exemplify the construction of our approximate conservation laws, a particular case is
discussed below.

Example 6. Suppose we revisit the KdV Equation (4) to illustrate the admitted approximate conservation laws.

For the first-order nontrivial approximate multiplier Λ̄a1 in (30), Equation (21) becomes

DtT
t
1 + DxTx

1 = −uuxx +
(

2tu2 − 2xu + 4tuxx

)

(ut + uux + uxxx) . (33)

For the solution of Equation (33), we may use the ansatz described above or in this example, manipulation and

standard integration of (33) easily provides the Ti
1 components:

Tt
1 = −2tu2

x +
2
3 tu3 − xu2,

Tx
1 = 2tu2uxx − 2xuuxx + 2tu2

xx + uux + 4tuxut + xu2
x +

1
2 tu4 − 2

3 xu3.

The exact components of the conservation laws are given by solving Equation (20),

DtT
t
0 + DxTx

0 = u (ut + uux + uxxx) , (34)

for which we find

Tt
0 =

1
2

u2 + u2tux,

Tx
0 = uuxx −

1
2

u2
x − u2tut.

Together, they form the approximate conserved vector I(a1) :
(

Tt
0 + εTt

1, Tx
0 + εTx

1

)

. A quick check of Corollary

1, verifies that

Dt

(

Tt
0 + εTt

1

)

+ Dx (T
x
0 + εTx

1 ) = ε2
(

uxx

(

2tu2 − 2xu + 4tuxx

) )

≈ 0,

up to order ε, along the solutions of Equation (4).
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Similarly for Λ̄a2 in (30), the approximate conserved vector components are

I(a2) : Tt = −
1
2

u2t2ux + ux + uuxxt + ε

(

−t2u2
x +

1
3

t2u3 − xtu2 + x2u

)

,

Tx =
1
2

u2
xt + uxxx − ux − utxut − uuxxt +

1
2

u2t2ut

+ ε

(

t2u2uxx − 2xtuuxx + t2u2
xx + x2uxx + tuux − xux + 2t2uxut

+ xtu2
x +

1
4

t2u4 −
2
3

xtu3 +
1
2

x2u2 + u

)

,

and for the trivial approximate multipliers (31) we find, respectively,

I(e1) : Tt = ε (uuxt + u) ,

Tx = ε (−uutt + uxx) ,

I(e2) : Tt = εTt
0,

Tx = εTx
0 ,

I(e3) : Tt = ε

(

1
6

u3 +
1
2

uxtu3 −
1
2

u2
x

)

,

Tx = ε

(

1
2

u2uxx + uxut +
1
2

u2
xx −

1
2

u3utt

)

,

I(e4) : Tt = ε

(

−
1
2

u2t2ux + ux + uuxxt

)

,

Tx = ε

(

1
2

u2
xt + uxxx − ux − utxut − uuxxt +

1
2

u2t2ut

)

.

as conserved quantities.

4. Summary and Concluding Remarks

The conservation laws or quantities left dynamically invariant form important foundations at
a mathematical and physical level in describing model dynamics. The chief motivation of this work
was to develop a systematic procedure to obtain approximate conservation laws of differential equations
that admit a small perturbation, without the requirement of a variational principle. One of the basic
reasons of obtaining multipliers is to derive conservation laws of classical equations—in essence, this idea
led us to the notion of an approximate multiplier of their perturbed counterpart.

Once established, the knowledge of an approximate multiplier, because of its connection to the total
divergence, allowed us to derive a construction formula for approximate conservation laws. This formula,
in the determination of approximate conservation laws requires standard integration. The method,
benchmarked with a procedure for first-order perturbations, in principle, is applicable to problems with
arbitrarily many equations, functions, variables and perturbations.

We highlight that approximate multipliers may be more useful as compared to approximate Noether
symmetries—in the sense that they may be applied to equations that may or may not possess Lagrangians.
In addition, the presence of a perturbation in a differential equation can lead to an increase in the
complexity of the multiplier computations. However, in terms of practical application of the method,
due to its algorithmic nature, it may be easily implemented into symbolic software. Indeed, we have
designed an interactive Maple worksheet that automates many of the computations [43].
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As a final comment, we observe that there is a second approach to approximate multipliers, which we
discuss in Appendix A.

Funding: This work has received financial support from the National Research Foundation of South Africa (99279).
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Appendix A. Approximate Multipliers via Perturbed Dependent Variable/s

The approximate method proposed by Fushchych and Shtelen [2] uses a perturbative technique
whereby the dependent variable/s are expanded in a perturbation series before being substituted
into the given equation; this results in a coupled system. As expected, this makes for some tedious
computations. This section is aimed at providing explicit examples of extending this method to multipliers.
In this regard, the approximate multipliers of a given differential system are the exact multipliers of the
new coupled system.

Example A1. Consider the van der Pol equation, which has been used historically to illustrate many methods of

perturbation theory in the literature, that is, let ω = 1 and M =
(

1 − u2
)

u′ in (11), i.e.,

u′′ + u − ε
(

1 − u2
)

u′ = 0. (A1)

Expanding the dependent variables to the 1st order in ε, we have u = u0 + εu1, and substituting into (A1) gives

O (1) : u′′
0 + u0 = 0,

O (ε) : u′′
1 + u1 − u′

0 + u′
0u2

0 = 0,
(A2)

by the separation of order ε. The approximate multipliers of the differential Equation (A1) are the exact multipliers of

the coupled system (A2). We select the dependency of the multipliers to be

Λ1 = Λ1 (x, u0, u1)

and

Λ2 = Λ2 (x, u0, u1) .

The next step is to apply the classical multiplier method, Equations (9) and (10),

δ
δu0

[

Λ1 (u
′′
0 + u0) + Λ2

(

u′′
1 + u1 − u′

0 + u′
0u2

0

)

]

= 0, (A3)

and

δ
δu1

[

Λ1 (u
′′
0 + u0) + Λ2

(

u′′
1 + u1 − u′

0 + u′
0u2

0

)

]

= 0, (A4)

which produces a determining system by Definition 5 (we omit the details since this type of calculation has been

exemplified above). Once solved, we find the multipliers

Λ1 (x, u0, u1) = −u1C1 + sin(x)C2 + cos(x)C3,

Λ2 (x, u0, u1) = u0C1,

where C1−3 are arbitrary constants.
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Example A2. Recall the nonlinear wave Equation (14) of Example 2. Expanding the dependent variables to the 1st

order in ε, we have u = u0 + εu1, and substituting into (14), gives

O (1) : �u0 − λu3
0 = 0,

O (ε) : �u1 − 3λu2
0u1 − F(u0) = 0,

(A5)

once we separate by order of ε. The approximate multipliers of the differential Equation (14) are the exact multipliers

of the coupled system (A5). Suppose, we let the multipliers be of the form

Λ1 = Λ1 (x, t, u0, u0,x, u0,t, u0,tt, u1, u1,x, u1,t, u1,tt)

and

Λ2 = Λ2 (x, t, u0, u0,x, u0,t, u0,tt, u1, u1,x, u1,t, u1,tt) ,

where uµ,ν =
∂uµ

∂ν .
The application of the classical multiplier method gives

δ
δu0

[

Λ1
(

�u0 − λu3
0

)

+ Λ2
(

�u1 − 3λu2
0u1 − F(u0)

)

]

= 0, (A6)

and

δ
δu1

[

Λ1
(

�u0 − λu3
0

)

+ Λ2
(

�u1 − 3λu2
0u1 − F(u0)

)

]

= 0, (A7)

which produces a determining system by Definition 5 as before. Once solved, we find the multipliers

Λ1 = x (u0,tC2 + u1,tC1) + tC2u0,x + C6u0,t + C3u0,x + C4u1,t

+ (C1t + C5) u1,x,

Λ2 = (C1t + C5) u0,x + (C1x + C4) u0,t,

where C1−6 are arbitrary constants.

Conservation laws corresponding to these multipliers correspond to Equation (8) in Definition 3,
and such calculations are straightforward.
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