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1. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI HISTORICAL BACKGROUND 

Continuous minimal-variance fi l tering is a fo rm of 

sequential stochastic estimation, and, as  such, has its roots in the 

ear ly  least-squares dif ferential correction schemes for orbi t  

determination. 

orb i t  determination methods can be found in  Deutsch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 113 and in 

Mowery [3OI. Continuous optimal f i l ter ing, per se ,  dates back to 

Wiener [ 381, wherein the minimal-variance stochastic est imation 

A fa i r ly  extensive account of the development of 

problem is solved for the l inear f i l ter ing of stat ionary random 

signals. Fo r  many years  thereafter, the terms "optimal f i l tering" 

and "Wiener fi l tering" were used interchangeably. The f irst 

investigations into the problem of the optimal f i l ter ing of nonsta- 

t ionary signals and nonlinear fi l tering were reported about a 

decade la ter ;  e. g. , Laning [27] ,  Zadeh [42], Zadeh and Ragazzini 

[43] and Booton [5 ] ,  The feature common to the ear ly  f i l ter ing 

studies is the derivation of an integral equation for  the optimal 

f i l ter. In the special case of l inear f i l ter ing for stat ionary s ta -  

t is t ics ,  the integral equation can be solved in a useful f o r m  for 

many applications; unfortunately, the same cannot be said for the 

m o r e  general cases,  although Booton [5] does refer  to some 

applications . 

1 
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In 1958::: Wiener zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 391 suggested an approach to solving the 

fi l tering problem for the general stationary -stat ist ics case which is 

mechanizable and has been developed further a t  M. I. T.  (e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg .  , Chesler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 8 ] ,  Hause [17], and Schetzen [31])  under Y.  W. Lee. 

related investigations by Balakrishnan [ 11 and others;  see  F i she r  

[ 131 for further discussion. However, the nonstationary-statistics 

case remained essential ly unsolved in a pract ical  sense, unti l the 

revolutionary works of Kalman [22]  and Kalman and Bucy [23], 

and the pioneering papers by Stratonovich [ 35, 361, a l l  between 

1959 and 1961. 

There a r e  

Kalman and Bucy published a pract ical  solution to the opti- 

mal l inear fi l tering of random processes with nonstationary s ta -  

t ist ics. In order to obtain their solution, they abandoned the 

nearly f ru i t less integral equation approach and reformulated the prob- 

lem so that the f i l ter  is specified by a differential equation which can be 

mechanized on a computer. Because of the utility of the approach the 

t e r m  "Kalman f i l ter"  replaced "Wiener f i l ter"  as  a synonym to "opti- 

mal f i l ter .  

special case of the Kalman f i l ter. 

r igorously valid only for  l inear f i l ter ing, even though successful  

nonlinear extensions were developed heurist ical ly for orb i t  deter  - 

mination and space navigation programs.  

In fact, the f ini te dimensional Wiener f i l ter  is just  a 

However, the Kalman f i l ter  is 

:%Apparently, the original announcement was made in 1949 in an 
internal  M. I. T. memorandum. 
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The true nonlinear minimal-var iance f i l ter  follows f rom the 

suggestion of Stratonovich that the fundamental entity in sequential 

estimation is the conditional probability density function of the 

message process given the measurement  process.  

to show that the minimal-variance est imate of a random var iable 

given a set  of measurements is simply the conditional expectation, 

which, in turn, is the first moment of the conditional density. 

Thus, if the density is known as a function of t ime, so is the minimal-  

variance est imate.  The first efforts to exploit the idea by deriving a 

part ia l  dif ferential equation for the density, Stratonovich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 361, Kashyap 

[24], and Wonham [41I, a l l  contained e r r o r s ,  and the f i rs t  cor rec t  

formulation is due to Kushner [ 261 in 1964, though his derivation is 

nonrigorous and incomplete and contains a mistake in the f i l ter de r i -  

vation. About a year la ter  Bucy [7] published a note presenting an 

alternate and apparently m o r e  r igorous derivation including a der iva- 

tion containing an algebraic mistake for an approximate fi l ter for a 

sca la r  example. Later  the same year Bass, Norum and Schwartz [2]  co r -  

rected Bucy's example and extended the approximate f i l ter  equa- 

tions to the vector case;  an independent s imi lar  investigation was 

conducted by Swerling [37]. 

a derivation for  a s imi lar  approximation assuming the measure-  

ments a re  taken at discrete points in t ime, and Schwartz and Bass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 3 2 ]  derived a f i l ter for  a different approximation f rom that used 

by Bucy [ 7 ] .  

It is elementary 

In ear ly  1966 Jazwinsky [21]  presented 

The las t  paper in the sequence stemming f r o m  
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Kushner [Z6] is also by Kushner”’ i n  which he points out that the 

derivation by Bucy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7] of the exact f i l ter equation is not completely 

r igorous; he also proves a theorem giving sufficiency conditions for 

the validity of the exact f i l ter  equation, which is a total differential 

equation for  the conditional mean. 

There a r e  two closely related works not in  the mainst ream 

outlined in the preceding paragraph: Mortensen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 9 ]  and Fisher  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 133. 

integral  equation for a quantity related to the conditional density 

function under fa i r ly  restr ict ive conditions. 

too, questions the r igor in Bucy [ 7 ] .  

Fisher  is more  like that of Kushner [26] ; he employs nonrigorous 

l imiting arguments to construct a part ial  differential equation for  

the conditional density, but for a more general  c lass of stochastic 

processes than a r e  considered by the previous authors. 

der ives a se t  of f i l ter equations based on a somewhat different 

representation of the conditional density function; h is  f i l ter  equa- 

tions contain those in Schwartz and Bass [32] as  a special case. 

In the f i rs t  par t  of his derivation, Mortensen der ives an 

In h is  analysis he, 

The approach taken by 

He also 

In addition, there a r e  alternative approaches to nonlinear 

fi l tering based on other cr i ter ia ,  for example: Bryson and 

F raz ie r  [6] , Cox [ 9 ]  , Bellman, Kagiwada, Kalaba, and Sr idhar 

[3] , Detchmendy and Sridhar [ 103, as well as others concerned 

with more  specialized problems. 

+Dynamical Equations for Optimum Nonlinear Fi l ter ing: Unpub- 
l ished memorandum. 
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1.2 PROBLEM CONSIDERED 

The problem considered i n  this dissertat ion is  the r igorous 

validation of the approximate f i l ter  equations. 

s teps in the derivation is essential to se t  the stage for the follow- 

ing discussion. 

tion is the specification of a mathematical model; the choice should 

be made carefully, since the whole analysis depends upon the 

character is t ics  of the model. F o r  minimal variance, which is a 

probabil ist ic cr i ter ion of optimality, the manipulations leading to the 

filter equations a r e  made part icularly simple by assuming that the 

random processes a r e  white noises. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'# 

noise assumption adds a certain amount of complication in the 

interpretat ion of the mathematical resul ts  in l ight of reality. 

the present investigation the white-noise assumption is made. 

If the cr i ter ion of optimality is stat ist ical ,  ra ther  than 

An outline of the 

The first step in the analysis of any physical si tua- 

On the other hand, the white- 

In 

probabil istic, the white-noise assumption is not germane; in fact, 

no part icular form is postulated for  the random processes.  

The original least -squares estimation is such a stat ist ical ly opti- 

mal approach. The recent  studies of Cox zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 9 ]  and Detchmendy and 

Sr idhar [ 101 a r e  modern versions of the stat ist ical ly optimal filter. 

The analytical portion of this dissertat ion does not consider the 

non-probabil istic f i l ters ,  but both types of f i l ters  a r e  simulated. 

::The definition of white noise is presented in Chapter 2. 
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Given the probabil istic cr i ter ion and the white-noise 

assumption, a natural mathematical model is the stochastic dif zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

ferential equation. Of course, the problem must be such that the 

stochastic differ ential equation sat is  fie s existence and uniquene s s 

conditions, which a r e  di f ferent f rom those pertaining to non- 

s to chas ti c d i f f e r  ential equations. The e s s en tial difference s t ems  

f rom the fact that for  white-noise models there  is no bound on the 

forcing function and global conditions mus t  be satisfied. 

stochastic differential equations for the system and the measure  - 

ment,  it i s  possible to der ive a stochastic part ia l  differential 

equation for the conditional density function; but there a r e  no con- 

ditions yet established for the validity of the equation for the density. 

F r o m  the stochastic part ia l  differential equation in turn, it is possible to 

derive a stochastic differential equation for the expected value of any 

scalar  function of the state of the system; this las t  equation is the one 

which Kushner considers in his unpublished memorandum. Since the 

approximate f i l ter equations a r e  derived f rom the stochastic dif feren- 

t ia l  equations for  the expectation, the lack of r igor in the derivation of 

the equation for the density causes no r e a l  difficulty. 

F r o m  the 

The exact equation for the f i l ter requi res the instantaneous 

evaluation of the conditional expectation of severa l  functions of the 

state of the system. To simplify the problem, the or ig inal  model 

can be replaced by an approximating stochastic differential equation, 

f rom which an approximate f i l ter can be derived more  simply. It seems 

reasonable to require that the approximate model equations also 
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sat is fy  existence and uniqueness conditions, part icularly 

uniqueness; i f  not, the solution to the approximate system may  in 

no way approximate the solution to the original problem. Since in 

no previous derivation does the approximation satisfy such condi- 

t ions, the f i rst par t  of the validation of the f i l ter  equations is to 

der ive an approximation that does sat isfy the des i red conditions, 

and to find the resulting f i l ter. 

Guaranteeing existence and uniqueness for the approximate 

sys tem does not quite do the same for the f i l ter ,  but slightly 

s t ronger  conditions on the equations suff ice. 

remains in the validation: that of relat ing the stochastic differential 

equation f o r  the f i l ter  to an ordinary di f ferent ia l  equation for the actual 

mechanization. In doing so, it is shown that nonvalid f i l ter equations 

s imi lar  to those previously derived by Schwartz and Bass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 321 and b y  

Fisher  [ 131 fo r  white-noise processes can be made computationally 

identical to valid f i l ter  equations if mechanized on a digital 

computer . 

At this point, one step 

1.3 OUTLINE O F  THE DISSERTATION 

Chapters 2 and 3 a r e  included for completeness, and m a y  

be skipped without loss  of continuity by readers  fami l iar  with the 

mater ia l .  

differential equations, the conditions for existence and uniqueness, 

and related topics. Chapter 3 i s  a review of the derivation of the 

f i l ter  equations a s  presented i n  Bass,  Norum and Schwartz [2] a s  

modified by Schwartz and Bass [32]. 

Chapter 2 i s  an outline of the definition of stochastic 
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The new theoretical resul ts,  a s  outlined in the preceding 

section, are given in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, while the analysis pertaining to 

the computer simulations and the resul ts  thereof comprise 

Chapter 5. 

to be exhaustive, in any sense of the word; ra ther  it is an explor- 

atory introduction 

t ics of and computational considerations for nonlinear f i l ters .  

The discussion of the f i l ter simulations is not intended 

to the ill-defined a r e a  of the dynamic character is  

The final conclusions and recommendations for fur ther 

work a r e  presented in Chapter 6. 



2. MATHEMATICAL MODEL 

2.1 INTRODUCTION 

The usual  mathematical formulation fo r  a dynamical problem 

is a differential equation, nowadays most general ly writ ten in state- 

vector form:  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and f a r e  n-vectors,  u is an m-vector,  and t is a scalar .  

The meaning of (1) is well known f o r  most input functions u, but the 

ensuing analysis deals with white -noise input functions, and 

(1) must  be reinterpreted. 

lems associated with white-noise inputs, and outl ines the develop- 

ment of the necessary calculus of stochastic processes.  

should be fami l iar  with probability theory and random processes.  

The present chapter explains the prob- 

The reader  

The stochastic calculus began essential ly with Wiener in 

the ear ly  1920's, although stochastic differential equations were  

first studied by Bernstein zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] a decade la ter .  

t r ibutor to the theory of stochastic differential equations is It6 [18, 

12,201 , though the present exposition follows the approach of 

Skorokhod [34]  , which is e a s i e r  to follow. 

The foremost  con- 

:::See Koval'chik [25]  for further details. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 
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The presentation opens with a discussion of white noise 

f rom an engineering point of view to help motivate the subsequent 

mathematical analysis, which might otherwise s e e m  somewhat con- 

trived. 

measure  theory a s  much as  possible despite the fact that probabil ity 

theory is often treated as  a branch of measure  theory. 

that the approach used allows the resul ts  to reach a l a rger  audience. 

Also, the various theorems and the propert ies of stochastic inte- 

grals and differential equations a r e  stated without proof; the proofs 

a r e  available elsewhere, and the appropriate re fe rences  a r e  cited. 

The following mathematical discussion avoids appeals to 

It is hoped 

2.2 WHITE NOISE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A typical engineering t reatment 6f white noise can be found 

in Laning and Battin [28]  , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. 136ff, wherein it is stated that a white 

noise is a random process with a power spect ra l  density which is 

a constant, o r ,  equivalently, an autocorrelat ion function which is 

a Dirac 6-function. It is fur ther noted that such a process has no 

physical meaning since it would require infinite signal power. 

foregoing definition is valid for stat ionary white noise, though the 

autocorrelation-function definition can be extended to the nonsta- 

t ionary case by allowing a t ime -varying coefficient for  the 

6 -function. 

The 

The nonrealizabil ity of white-noise processes  is no reason 

to d iscard them; they occupy a place with respect to the family of 

stochastic processes analogous to the place of the Dirac &-function 



with respect to functions. Just  as the 6 -function can pragmatical ly 

be regarded as  a limit, in some sense, of a sequence of uni t -area 

pulses of decreasing width, a white-noise process can be con- 

s idered as  the limit, in a s imi lar  sense,  of a sequence of processes 

which a r e  step functions. Moreover, both a re  useful only when 

the i r  integrals a r e  considered; indeed, both can be made mathe- 

matical ly r igorous only in t e r m s  of the i r  integrals. To be some- 

what imprec ise,  the &-function may be considered a s  the derivative 

of a unit step; with s imi lar  imprecision Laning and Battin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[28] 

show that white noise is the derivative of Brownian motion, which 

they define a s  a one-dimensional random walk. 

The pract ical  reason fo r  being concerned with white-noise 

processes i s  that, when differential equations a r e  forced by white 

noise, the solutions a r e  Markov processes ,  i.e., the future is inde- 

pendent of the past. 

equations forced by white noise exhibit the stochastic analogue of the 

In other words, the solutions to differential 

property of solutions to differential equations forced by ordinary func- 

tions: given the state of the solution at some t ime and the forcing 

function f rom that time on, the subsequent evolution of the solution is 

stochastically independent of the previous history. 

The mathematical problem associated with white noise is 

somewhat s imi lar  to that associated with the 6-function: the mean- 

ing of the integral. The 6-function is not real ly a function in the 

ord inary sense of the word, and no theory of integration can re -  

sul t  in a value other than zero forJ-m6(t)dt if the 6-function is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa3 



assumed to be an ordinary function of t. However, by not ascr ib ing 

values to 6(t) and considering only i t s  integral ,  i t  i s  possible to con- 

s t ruc t  a meaningful theory. F o r  example, see  Fr iedman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141 p. 136ff. 

Simi lary,  no ordinary theory of integration can make sense of/w(t)dt, 

where w i s  a white-noise process .  Here  again, i f  no instantaneous 

value i s  given to w(t), a useful theory of stochastic integration is 

possible; that theory is outlined in the following section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 . 3  STOCHASTIC INTEGRALS 

The exposition in this section is  mere l y  an  outl ine of the 

mathematical derivation of the stochastic integral ;  and it does not 

include any discussion of stochastic integrals of discontinuous ran-  

dom processes.  

can  be found in  Skorokhod [34]  . 
scr ipt ion of a white-noise process  as the derivative of a Brownian 

motion; the major  difficulty l ies  in the fact that  a Brownian motion 

is almost  nowhere differentiable, a lmost surely.<'' Thus, if b is a 

Brownian motion db/dt has  no meaning and /g(t)(db/dt) dt is gen- 

e ra l l y  not defined, even for continuous functions g. But, i f  db is 

an increment of b,  it has a well-defined stochast ic descript ion, 

and the Stielt jes integral  

nate fo rm.  However, b is not a function of bounded variat ion, and 

even the Stielt jes integral  is not defined. 

is a stochastically meaningful general izat ion of the Stielt jes integral ,  

A complete discussion of stochastic integration 

The underlying idea is the de- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. 

g(t)db(t) is a possibly meaningful a l t e r -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
The stochastic in tegra l  

12  

:::In essence,  the Brownian motion fails to  be differentiable some-  
where in every interval  of nonzero length, with probabil ity one. 
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in  which the approximating sums a re  required to converge i n  

probabil ity to the integral,  rather than to converge in the ordinary 

sense. 

For  definiteness, consider Jt2 g(t) dw(t) for  a vector pro- 

c e s s  g(t) and a Wiener process w(t), where a Wiener process is  

a unit Brownian motion, i.e., for t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> s 

&[w(t) - w(s)]' = t - s; fur thermore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor q < r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 s < t ,  w(t)  - w ( s )  

is independent of g ( r )  and of w ( r )  - w(q). Let M denote the class 

& [w(t) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(s) ]  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0" and 

of functions g such that if g is in M,  then g can be assigned a 

probability; let Mo denote the set of step functions in M : let MI 

denote the set  of functions in M which a r e  mean-square integrable; 

let  M2 denote the set  of functions i n  M which are square 

integrable with probabil ity 1. 

to < t l  < ..- < tn = tf such that g(t) = g(t i)  for  ti I t < t i f l .  

such a function it is natural to define 

If g is in Mo, there  a r e  points 

F o r  

J 

i = O  

The integral defined by (2 )  is a l inear operation on g. F r o m  the 

aforementioned propert ies of the Wiener p rocess ,  it follows that 

f o r  g in both Mo and M1 

:::The symbol & denotes expectation. 
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LO L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

The integral in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 )  is meaningful only because of the special  

f o r m  of the functions in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMo; the next step is to extend the definition 

to al l  of MI. It canbe shown'"' that for every g in M1 and every 

there exists a function; in the intersection of Mo and M1 such 

that 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  

F r o m  (5),  it follows that for every g in M1, there ex is ts  a 

sequence {g,} in  the intersection of Mo and MI such that 

lim lttf &lg(t) - gn(t)l' dt = 0. 
n-a  

0 

But, by l inearity and (4), (6)  implies 

*The vert ical  b a r s  denote the Euclidean norm. 

*:kSkorokhod [34]  , p. 16. 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 ) ,  in turn,  implies that the sequence of random var iables 

Jt2 gn(t) dw(t) converges in probability"' to some random var iable,  

which is taken a s  

in M1 is unique with probabil ity one, is l inear ,  and sat is i f ies 

( 3 )  and (4). 

g(t)dw(t) .  The integral  thus defined for g Ittf 0 

The f inal s tep in the definition is i ts  extension to a l l  of 

M2. Let f be defined as follows: f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 f o r  1x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 N and 

f 

N N 

(x) = 0 for  1x1 > N. Then f o r  g in M2, the function 
N 

is in M1. It follows'":: that? fo r  N '  > N 

and that 

Thus, Jttf g,(t) dw(t) converges in probabil ity to some random 

var iable which is taken a s  

proper t ies ascr ibed to the previous integrals.  

1" 0 
g(t) dw(t). This integral  exhibits the 

0 

:::A sequence g, converges in  probability to g if the limit a s  n+m 
of the probabil ity that lgn-gl>c is zero f o r  any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc > O .  

'kWkorokhod [34] , p. 18-19. 

?The symbol P{ } denotes the probabil i ty of the event in the 
braces.  
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2.4 STOCHASTIC DIFFERENTIAL EQUATIONS 

The discussion contained in th is section is l imi ted to the 

following special case of (1): 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and f a r e  n-vectors ,  t is a sca la r ,  u is an m-vector  unit 

white-noise process  with independent elements;" and g is an nXm 

matr ix.  

p rac t ica l  applications. 

i 

by fo rmal  multiplication of (8) by dt and integration of the result ing 

expression, (8) can be rewri t ten as 

.I, 

While (8) i s  l ess  general  than ( l ) ,  it is sufficient for  most  

Let gi denote the i column of g and wi the 

row of the vector Wiener p rocess  f rom which u is derived. 

th 

th Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L m L  
L L .  

x( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- x(to) = / f(s,xjs)) ds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt / g'(s,x(s)) dwi(s). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9  1 
t0 i= l  to 

In ( 9 ) ,  the f i rs t  integral  is an ord inary integral ,  and the remaining 

m integrals a r e  stochastic integrals.  F o r  simplici ty, i f  the sto- 

chast ic integral equation is  sat isf ied by a process  x with probabil i ty 

one, then (9) is wri t ten in the f o r m  

dx = f( t ,x) dt t g(t,x) dw(t). (1 0) 

The simplif ied fo rm (10) is r e f e r r e d  to as a stochastic dif ferential 

equation, and i s  understood to be a shorthand notation f o r  (9). It 

i is assumed that f and all the g evaluated along x( t )  a r e  in  M2. 

*That i s ,  elements of u a r e  der ived f rom independent Wiener 
p rocesses .  



The fundamental existence and uniqueness theorem for the 

analysis in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is a modification of Theorem 4 on page 56 of 

Skorokhod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[34]  : 

Theorem. 

and that f ( t ,x)  and gl(t,x) a r e  defined fo r  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 tf and for al l  

Suppose that x( to)  is independent of the processes wi(t) 

- 
n-vectors x, a r e  measurable'' with respect to al l  var iables,  

and that they satisfy the following conditions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. F o r  every C > 0, there exists an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALc such that 

if 1x1 5 C and Iyl r C. - - 
2. There exists a K at  which 

m 

i = l  

In such a case,  (9) has a bounded continuous solution 

with probability one; a lso,  i f  there a r e  two solutions, 

with probability one both coincide at al l  points t. 

The proof is essential ly that in the reference; boundedness st i l l  follows 

f rom Theorem 3, p.51 of the reference,  but continuityfollows f rom 

Theorem 3, p.21 of the reference. F o r  simplici ty in the sequel, condi- 

ion 1 is re fe r red  to as  the local Lipschitz condition, and condition 2 a s  

sublinearity. 

:: Measurabil ity is a regular i ty condition that functions of engineering 
interest  will satisfy. 
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The next resul t  is necessary  fo r  the derivation of stochast ic 

differential equations for functions of solutions of o ther  stochast ic 

dif ferential equations. 

in Skorokhod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[34] on p. 24ff; the vector vers ion  follows quite simply. 

Let  x satisfy (10) for  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t f ,  with each f i ,  gij, and gijgkl belong- 

ing to  M2. If a sca la r  function +(t,x) is defined and continuous and 

has a continuous derivative with respect  to t and continuous second 

c r o s s  par t ia l  der ivat ives with respec t  to the xi fo r  tor  t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 tf and 

fo r  all x,  then the process  y( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= +(t,x(t)) sat isf ies the relat ion 

The sca la r  vers ion  of the formula is proved 

where a (  ) /ax  denotes the gradient (row) vector ,  a2( ) /ax2 denotes 

the Hessian (matr ix  of c r o s s  par t ia ls ) ,  and the as te r i sk  denotes 

mat r ix  t ranspose. 

2.5 RELATION TO THE PHYSICAL PROBLEM 

There a r e  two interfaces between the physical si tuation and 

The reduction of the mathematical  model i n  the f i l ter ing problem: 

the dynamics to a stochastic dif ferential equation and the in terpreta-  

t ion and mechanization of the stochastic dif ferential equation fo r  

the filter as  a computational algori thm. The second in ter face is 

considered first. 

the context of the actual  est imat ion environment is not at all a tri- 

vial  matter.  

The interpretat ion of the stochast ic in tegra l  i n  

The f i l ter ing algor i thm wi l l  be  a f ini te-dif ference 
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approximation to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8), with u represented by a sampled 

measurement ,  not a white noise. The problem of the interpretat ion 

of (8) and the approach to use for  the integration is discussed at 

length in Gray and Caughey [16] ; they specify two approaches and 

propose a l is t  of four pragmatic rules fo r  choosing between the 

two approaches based on the interpretation of (8). Another treat- 

ment of the difference between the two approaches is given in Wong 

and Zakai [40]. 

The rea l  difference between the approaches is in the choice 

of whether to use the ordinary calculus o r  the stochastic calculus. 

In the nomenclature of Gray and Caughey [I61 the f o r m e r  choice 

is the physical approach and the la t ter  choice is the mathematical 

approach. In contrasting the two approaches, the authors a r e  quick 

to state that neither approach is  inherently correct ;  the choice 

should be made according to their pragmatic rules: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. I f  g(t,x) is not actually a function of x ,  both approaches 

provide identical results. 

2. If the problem is a str ict ly mathematical one, the 

mathematical approach must be used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. If (8) is either an approximation to o r  a limit of the 

discrete problem [x( tkt l )  - x(t  k ]  ) / (tkt - tk) = 

f(tk9 X(tk)) t g(tk, x(tk)) u(tk)y then the 

mathematical approach must be used. 



4. If (8) is either an approximation to a white-noise 

problem o r  the limit of a problem with shor t  co r re -  

lation t ime,  then the physical approach must  be used. 

The computational ef fect  of the di f ference between the two 

approaches i s  stated by Wong and Zakai [40] Let 

{w"} be a sequence of piecewise l inear approximations to the 

Wiener process in (10) such that wn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw; then i f  {x"} denotes the 

a s  follows: 

sequence of corresponding solutions, xn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ z, where z is the solu- 

tion to 

They state some reservat ions about the correctness of (12) in the 

vector case, but the same form is implied by the resul ts  of Gray 

and Caughey [16]. 

There is also a problem in relat ing the stat ist ics of the 

rea l  data t o  the stat ist ics of the white noise used in the model; this 

problem exists at both interfaces, and is rea l ly  the only one at the 

first. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor simplicity, consider the following special case: Let 

u(t )  denote a sequence of pulses of width A t  and of random height 

given by a Gaussian distribution of zero mean and var iance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr 2 . 
The autocorrelation function for u is a tr iangular spike of width 

2 A t  and height r2; the a r e a  under the spike is then cr2At. It then 

20 
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seems reasonable that the equivalent white noise be specified by 

an impulse of weight (r24t. The foregoing conclusion can also be 

implied fo r  more  general situations by considering the limit pro- 

c e s s  of a sequence of Markov chains? fo r  example, see 

Skorokhod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[34] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, Chapter 6. 

an n-dimensional white noise is given by a covariance of the fo rm 

S(t )6 (t- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ) ,  an n-dimensional pulse- sequence approximating the pro-  

c e s s  should be chosen f r o m  a population given by a covariance of 

S ( t i ) / A t  fo r  ti zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 t < t i t  A t .  

di rect ,  though an equivalent formulation can be obtained by using 

the concept of a correlat ion time T ,  which is a t ime interval such 

that u(t) can be considered uncorrelated with u(t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT). 

The general  resul t  is a s  follows: If 

The case of continuous u is not quite so 

Since the mathematical model is constructed under the 

assumption that the Wiener process has independent elements,  one 

final step is required to model a noise with corre la ted elements. 

Let  S(t)6(t - T )  be the des i red covariance, which implies S(t) is 

positive semi-definite for  a l l  t. Then 

m a y  be taken a s  symmetric)S1/‘  such 

dv 2 S1’2dw, the white noise derived 

there exists a matrix(which 

1 / 2  1 / 2  that S (S )*’* = S. If 

f r om v has the proper co- 
. I ?  

variance. 

is incorporated into g(t,x), and the fo rmal ism of (8), (S),  and (10) 

is still valid. 

F o r  notational simplicity it may be assumed that SI’ ‘(t) 

::Random sequences exhibiting the Markov property. 
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It should be mentioned, in  conclusion, that  the s t rong 

conditions for existence and uniqueness a r e  requi red by the mathe- 

mat ica l  model for  white noise, and not by the equations fo r  the 

actual physical situation. 

local conditions suffice. However, a stochast ic dif ferential is 

forced by functions that cannot be bounded, and global conditions 

a r e  required. 

F o r  an ord inary dif ferential equation, 



3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAREVIEW OF PRESENT APPROXIMATE 
FILTER EQUATIONS 

3.1 INTRODUCTION 

In this chapter, the derivation of the f i l ter  equations in 

Schwartz and Bass [ 3 Z I  i s  outlined, using the approach of Bucy [71 

to obtain the formula for  the exact est imator .  BUCY'S approach is 

used because it provides a good example of the use  of the stochastic 

calculus. This chapter is included for completeness, since some 

of the work is not easi ly accessible. In part icular,  BUCY'S note is 

quite sketchy and the repor t  by Schwartz and Bass was not widely 

distributed. 

The derivation consists of two separate par ts :  the f i r s t  par t  

t rea ts  the exact est imation problem, and the second considers the 

development of pract ical  approximate est imators .  

mathematic r igor of the second par t  a r e  deferred to Chapter 4, 

where the new theoretical results a r e  presented. 

The questions of 

3.2 PROBLEM STATEMENT 

Let the dynamic equation of the system be given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8), and 

le t  the measurement  be given by 
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where h is an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP -vector, I 5 n, v i s  an I -dimensional unit white 

noise and r is a nonsingular symmetr ic  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX P matr ix  relat ing the 

unit white noise to the modeled white noise (equivalent to the mat r ix  

S1’2 in Section 5 of Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2).  Since the mathematical  model can-  

not handle white noise direct ly,  it is assumed that the measurement  

is derived f rom a process  z given by 

dz = h( t ,  x(t)) dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt r ( t )  db(t)  (14) 

where b i s  an P -dimensional Wiener p rocess .  The mathematical  

model of the sys tem consists of the two vector equations (10) and 

(14). 

x( t )  given the process z ( s )  for t 

mate  x ( t )  such that the mat r ix  given by 

The problem i s  to find the minimal-var iance est imate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 t ,  that is to find the es t i -  

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

& (x - X)(x - ,):> - &(x - A x) (x  - A x)  ::: 

is positive semi-definite, where X is any est imate of x, and the 

processes  a re  evaluated a t  t .  

It is  a simple exerc ise to show that the minimal-var iance 

est imate of a random var iable given a related quantity is simply 

the conditional expectation, so that 

and the problem is to find an equation for  the conditional 

expectation. 



25 

3.3 STOCHASTIC DIFFERENTIAL EQUATION F O R  
THE CONDITIONAL EXPECTATION':' 

The approach adopted for the derivation of the exact f i l ter 

equation requires the existence of the appropriate conditional proba- 

bil i ty density function p (x(t)( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz (s ) ,  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 s 5 t ) ,  which, for simplici ty, 

is denoted p(x I z). Let p(xl zn)  denote p(x(t) 1 z (s l ) ,  z (s2 ) ,  . .. , z(sn) )  , 

where no part icular order ing is assumed among the s., but each s i  

is in  the interval [ t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

t]; the expression for p(x I z )  i s  found a s  
0, 

lim p(x(  zn). The f irst step is to show that the l imit makes sense. 
n + O D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 
Let 5, = &(a I z(s,),z(s,), ... , z(sn))  , for some random 

var iable a assuming & ( a )  exists. It is shown in Doob [121, p. 293, 

that the random variables 5 5 a constitute a martingale':"':"; 

fur thermore,  by Theorem l . l ( i i )  of Chapter VI1 in Doob, the random 

var iables I c l l ,  1 €,, 1 , ... , 1 a1 form a semi-mart ingale.  Assume that 

x ( t )  is bounded with probability one, and let a = x(t) ,  then € 1  cnl i s  

uniformlybounded. ByDoob, Chapter VII, Theorem 3.1 ( i) ,  € 1  5, 1 5 
& IE2l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .* '  , so that the sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E ]  

1' 2 ' " '  

} is bounded and monotone, 

. By which implies that t he re  exists a K such that lim 
n- 

Doob, Chapter VII, Theorem 4.1, 

bil i ty one and E 1 5 K. 

€lcn1 = K< 

exists with proba- lim C n  = 
ndco  

Now, let A be a Bore1 set in a Euclidean n-space and let 

Q A  denote the set of elementary events w such that x( t ,  a) is in A. 

':'This section m a y  be skipped without loss of continuity by 
readers  not interested in the mathematical detai ls of the derivation. 

*"For the definition and 
mdt ingales,  see  Doob [12 f , Chapter VII. 

ropert ies of mart ingales and semi- 
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.lr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Let I denote the indicator of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52 then-'. A A; 

Let 5, denote the r ight hand side of (16). Since I is ei ther ze ro  o r  

one, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1 and lim 5, = 

and one. 

the left-hand side converges a s  n-a. Then, i f  the conditional 

probabil ity measures  have densit ies p(x I z ), p(x I z)  exists with 

probabil ity one i f  the l imi t  of (1 6)  has a density. 

A 

exists as a number between ze ro  
n -00 5 3  

Thus, (16) ' impl ies that the sequence of probabil i t ies on 

n 

The existence of the densi t ies is guaranteed by the fact that  

the noise on the measurement  i s  a non-degenerate P -dimensional 

white-noise process,  a s  is demonstrated by the 

tion. The Bayes' ru le  for  conditional densi t ies 

following const ruc-  

is 

Note that p(zn I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx)  p(x) = p(zn, x )  and that both p(zn) and p(zn, x )  can 

be computed f r o m  p(zn, xn) = p(z(s,),  ... , z(sn) ,  x(sl) ,  . . .  , x(t)) , 

where now it is assumed that t = s < < s = t. Indeed** 

A 

0 1 n 

Wee Doob [ 121 Chapter I, Section 7. 
Y6*Rn is Euclidean n-space. 
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Also, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(ZnY Xn) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P ( Z n l X n ) P ( X n ) .  

F r o m  the definition of stochastic integrals and (14) 

’i ‘i 

S i  -1 S i  -1 
Z ( S i )  - z(si- l  ) = [ h(t, x( t ) )dt  t [ r ( t )db ( t )  . 

A A Let Az. = z(s  

Then 

) - z(si) ,  Ab. = b(sit l)  - b(s i ) ,  and As = s - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs.. 
1 it1 1 i i t 1  1 

Azi  = h(si,x(si))Asi t r(s.)Ab. 1 1  t di , (21) 

where 6 .  is implicit ly defined by requiring the right-hand s ides of (20) 

and (21 )  to be equal. An expression fo r  p(x 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  can be derived under 

the assumption that 6. is o(As.); the validity of the resulting expres-  

sion can then be verif ied. 

1 

1 1 

For  simplicity, let h .  4 h(si, x(s i ) ) ,  r i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe r ( s . ) ,  and 
1 1 

z. z(si).  Then ignoring t e r m s  of o ( A s . ) ,  
1 1 

P(Z1 = Z1’ z 2  = z2, ... , zn - - zn 1 xl= X1’ x2 = X2’ . . . , xn = x n 

= p(zl= Z1, . . . , zn= Zn -1 t hn - lAsn- l  t rn-lAbn-l 1 x1 = X1, . . . , xn = X n )  
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S ince  z i s  independent  of the Ab. and s i n c e  the Ab. are i n c r e m e n t s  

of a Wiener  process, (22)  c a n  be r e w r i t t e n  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 1 

n -  1 

w h e r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 1  2 - 2  

\ r i  (Azi  - hiAsi) l  = Az:ri Az. 1 

- 2hi"ri2Az zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ, - 2 2 
t hi*'.ri hiAs.  1 

As i  . 

Subst i tu t ing (24)  in to  (23) ,  the r e s u l t i n g  e x p r e s s i o n  in to  (19) ,  and 

u s i n g  (18) provides 

Az. : ' :~ -~  Azi]) 
x 1 i i  

P(Z,,X) = Phi) Asi  

n- 1 n -  1 
J. - 2 :;: - 2 

h."*r. 1 1 1  h. As .  1 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 hi ri 

1 =  1 i =  1 

Let 

n - 1  n - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. - 2 

@n -; 2 h:r:2hiAsi 1 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 h:r. 1 1  Azi  . 
i =  1 i =  1 



2 9  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
By definition the integral in (25) is simply &(eQn\,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; whence, 

using (25), (18), and (17),  

Since an-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ in probability, 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 Jh'''r-'h ds + 

2 

it is tempting to postulate that 

where 

t 

where the expectations a r e  now functionspace integrals over the se t  

of functions (x( t ) }  . 
cussed in Koval'chik [25] and in Shilov [33I ,  although for present pur-  

poses a more  specialized paper by Getoor [ I51 is m o r e  to the point. 

Specifically, he constructs the conditional expectations in (27) for  a 

c lass  of functionals that includes e@ i f  

solution to a stochastic differential equation, boundedness conditions 

a r e  given by the theorem in Chapter 2. 

The theory of functionspace integration is dis- 

is bounded. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACP i s  a 

For the derivation of the part ia l  differential equation for  the 

density, the equality in (27) may b e  relaxed; a l l  that is needed is 

that (27)  holds in the following sense: 
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F o r  a rb i t ra ry  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 

'n 
Consider the following plausibil i ty argument  fo r  (28): le t  q(x I 
denote the r ight-hand side of (26)  and q(x I z )  denote the right-hand 

s ide of (27). Then 

It has already been establ ished that p (x lzn)  -. p(x1z) with p roba-  

bil i ty one by a mart ingale argument. Moreover,  the resu l ts  in  

Getoor [15] imply q(xl 

show that q(x Izn)  -.) p(x lz  ) in probabil ity. 

- q ( x l z )  in probabil ity. It rema ins  to Zn )  

n 

If the t e r m  6. in (21) is not neglected, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(24)  becomes 
1 

Irf 1 (Az i -hAs i -  6.)12 = ~Iz'!r:~Az. t h'!r:2h.As2 t 6 r r f 2 6 i  
1 1 1  1 1 1 1  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 3 0 )  
-2  

1 - 2 h r r i  AziAsi - 26'!r12Az 
1 1  

t 26?r:'hiAsi 1 1  . 

which resul ts  in a new functional fo r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 6 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1 i =  1 i =  1 i =  1 
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The desired resul t  obtains i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXl? 

Substituting (21) into (31) provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-r 0 in probability a s  n--co. n - % 

i =  1 1 i =  1 1 

Now, f rom the definition of the stochastic integral 

F r o m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 3 ) ,  the independence of the 6 and the uniformity i' 

of the convergence of (21) to (ZO) ,  it seems reasonable that (32) 

vanishes in  probabil ity, although no d i rect  proof is apparent in 

the l i terature.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs noted earlier", the manipulations result ing 

f r o m  the assumption that (28) holds have been r igorized by 

Kushner, so that it is not necessary to veri fy direct ly that (32 )  

does indeed vanish. 

The next step is to formally derive an expression for the 

stochastic differential of p(x  ( z ) .  Following Bucy [7], l e t  

p(x1z) = Q/P. Also, l e t  8 = €(e Ix). Then Q is explicitly a func- 

tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 and p(x), and 8 i s  explicitly a function only of a random 

process given by 

A A @  
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In addition p(x(t))  is a function of t, while x ( t )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz a r e  assumed 

fixed. Then, using (11) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 4 )  

( 3 5 )  

Now, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

where 9 is the forward diffusion operator  

I i =  1 i , j = l  

Also 

Substituting ( 3 6 )  and ( 3 8 )  into ( 3 5 )  provides 

dQ = S Q  dt t Q(h''r-2hdt t h'"cr-' db) 

= f Q  dt t Q h ' ' ~ - - ~ d z  . 
(39 )  
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Using (18) and (15), and the definition of Q / P  

d P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d(/ Q d x ) =  /- (dQ)dx 

Rn Rn 

Final ly, using (11) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = (P-',Q)", CJI A =QP -1 , f A = (-p - lA Hkr - 2  (h -h ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

-1 Q 
P d(p)  Q -  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAei%, t h"r dt t h':'r (p )  db 

A A 
= S ( F ) d t t  - Q  (h -hpr  -2( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg) (dz - h d t )  . 

At this point all the operations on Q / P  have been formal,  assuming 

that the conditional density has the necessary differentiability. 

Actually, (41) will be used only in t e r m s  of its integral, and the 

r igorous conditions of validity need be applied only to the integral,  

which is the stochastic differential equation for  conditional 

expectations. 
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Let be any scalar function, twice continuously differentiable 

in x: 

and 

Subs ti tu t i  (41) into (42) provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

(43) 
d$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d~(x)(!?p(xlz) t (h-h)':r A -2 p(xIz)(dz - h d t ) ) d x .  

Rn 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 denote the formal  adjoint of 

Then (43) becomes 

In Kushner's unpublished note, he presents  a proof showing 

Fo r  the pu r -  that under certain assumptions" (45) is meaningful. 

pose of this dissertat ion, (45) can be considered only formally 

correct .  

approximate f i l ter is derived. 

In any case,  (45) is the key equation f rom which the 

*' 12 of them! 
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3 . 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAPPROXIMATE FILTER EQUATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 
The use of (45) as a differential equation for x resul ts  in 

A A A A A  - A 

dx i = f . d t t  1 ( x i h - x . h ) r  1 2 ( d z - h d t )  , 

A A  n 
which is  not very  practical because f 

i' 1 

tinuously. As the first step in the approximation, l e t  f and h be 

approximated by a second-degree expansion about x = x; also, for 

h, and x.h a r e  needed con- 

A 

notational simplicity, suppress the explicit appearance of t a s  an 

argument of f ,  g, and h, since their dependence on t ime is inciden- 

ta l  to the following manipulations. Then, adopting the summation 

conv ent ion 

f i (X)  = f i (X )  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt f ! .y2)(Xj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x.) A t A f ! 2 ' ( 2 , ( X j  -x j ) (% A -%) ,  A (47) 
1 J  J 2 1Jk 

(2 )2  a'f.1ax.a . A s imi lar  expression where f!f, 6 af,/ax. and fijk 
1J J 

holds for  h. F r o m  (47) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 J %  

A A A A 
f i (X )  = f i (X) t J - f F  2 ijk ("̂ ""j - X j ) ( r ,  - \ )  

A 
A A where (x. - x )( - x ) is the conditional covariance of x and is  

denoted P.. . Similarly 

J j %  k 

1J 

A 

1 J  
(49 

Using (48) and (49) for f and h in (46) provides 

A A 
dxi = f i (x )dt  t i f !2)( i )P 2 ijk jk dt 

(50) 
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The next step is to find a di f ferent ia l  equation for P. 

In general, even with a second-degree expansion fo r  the nonlinear- 

i t ies, an  infinite sequence of differential equations is  required, 

because all the moments a r e  needed to descr ibe the conditional 

density. 

the sequence stops at  P. 

is that third and fourth central  conditional moments be neglected. 

In Schwartz and Bass [32I, it is shown that the assumption is  

reasonable for a distribution with most of the probability mass  suf- 

ficiently close to the mean. If i t  is assumed that p(x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 z)  i s  Gaussian, 

the sequence also stops at P, and there is no restr ict ion on the 

s ize of the moments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3. 

However, by assuming an appropriate form for p (x lz ) ,  

The f i rs t  assumption, used by Bucy [7] , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A A A  

Since P.. can be writ ten (x.x -x.x.) ,  dP.. i s  derived in two 
13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 j  1~ 13 

n 

1 J  l 3  

par ts .  Let = X.X .  and use (45) to find dx.x.. Since 

2 x . x .  = f .x. t f.x. t g g 
i j  J 1 i k j k '  1 3  

i t  follows that 

n n n 
dx.x = f.x. dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt f .x.  d t  t g / g \  dt 

1 j  1 3  3 1  ik jk 

A A A  - 2  A 
t (x.x \- X.X. \ )  rkp (dzp - hp dt )  . 

l j  1 3  

'$ Equivalently, quasi-moments may be used, see F isher  [13]. 
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A A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Next, l e t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ = x.x and use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  1) and (46) to obtain 
l j  

A A  

A A A A  - 2  
a (x.x .) 

A A  
dx.x = >Pk dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (\ha - \ha ) rem (dz, - hmdt)l 

1 j  8% 

Combining (51) and (52)  provides 

A A A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe A A  A 
dP.. = ( f . x .  - f . x .  t f .x - f . x .  t g g )d t  13 i j  i j  j i  1 1  i k j k  

A A A  - 2 -  A A  
- (x i \ -x i%)r  kf (x.h j f  - x h  j f  ) d t  (53) 

n A  A / \  A- A A A  -2  A 

+ ["';'"k - x i j k  x h - x j \xi - x.h i k j  x .  t 2x.x.h i j k  ]rka(dzf - he d t )  , 

which is an exact equation. 

of (53) is a tedious algebraic exerc ise,  and i s  covered in Bass,  

Norum and Schwartz [ 21. F o r  completeness, severa l  intermediate 

resu l ts  follow: Fo r  e i ther  assumption about the conditional density, 

The derivation of the approximate fo rm 

F o r  the f i r s t  assumption, 
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For  the other assumption, the right-hand side of (54) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 2 )  ( C )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. (55) 
-(P 1 P 
2 i P  mj ' PimPli)hktm 

For  simplicity, let  the t e r m  in parentheses in (55) be denoted by 

T.. Then, i f  gg'" is also expanded in a second-degree approxi- 
i jke ' 

mation, the following equations a r e  obtained: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 

where (56)  u s e s  (54) and (57) uses (55). 

The problems associated with the above formulation for  the 

f i l ter  equations a r e  discussed in the next chapter. 



4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADERIVATION O F  VALID FILTER EQUATIONS 

4.1 INTRODUCTION 

This chapter begins with a cr i t i ca l  re-evaluat ion of the 

approximation procedure used in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 to generate the f i l ter  

equations. 

the result ing f i l ter  equations a r e  unsat isfactory f rom the stand- 

point of mathematical  validity. 

is made which resul ts  in a se t  of f i l ter  equations that a r e  valid in 

the sense that they satisfy existence and uniqueness conditions ( i f  

the sys tem nonlinearit ies satisfy cer ta in  assumptions) and that 

they a r e  derived f rom an approximate sys tem that also sat isf ies 

these conditions. The new equations, which contain a parameter  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k such that they a r e  valid for  any k > 0, and a r e  almost identical 

to the previous equations when k = 0; th is fact leads to a definition 

of computational validity which is satisf ied by a slightly modified 

vers ion of the previous equations. 

No mat te r  how rigorous the derivation is  through (45), 

A modification to the approximation 

4.2 CRITICISMS OF PREVIOUS DERIVATIONS 

The f i r s t  step in the approximation procedure is the rep lace-  

ment of the exact sys tem model by a power s e r i e s  expansion about 

39 
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the instantaneous value of the conditional mean. 

differential equation cannot satisfy the conditions of the existence 

and uniqueness theorem given in Chapter 2, because a polynomial 

of degree 2 o r  more  is  inherently not subl inear.  

problem in i t s  proper  perspective, i t  should be noted that the con- 

ditions of the theorem a r e  only sufficient conditions, and it is not 

c la imed that they a r e  necessary.  

f rom the white-noise model; i t  is  not inherent i n  the physical 

problem. However, given that the original mathematical  sys tem 

equations have a unique, bounded, continuous solution with proba-  

bil i ty one, it is  highly des i rab le that  the approximate sys tem a lso 

exhibit the same character is t ics .  

For  the f i l ter ing problem, uniqueness in any of the equations 

The resul t ing 

To put the 

Moreover the problem s tems  

is m o r e  than a desideratum, it is a necessi ty.  

sys tem of equations with a given se t  of init ial conditions can be 

satisf ied by an  infinitude of solutions, in what sense can a solution 

be considered an approximation to the solution of the or ig inal  sys-  

t em with the s a m e  init ial conditions? Obviously, then, it i s  neces- 

s a r y  to guarantee the uniqueness of the solution of the approximating 

equations. Moreover,  fo r  the same reason,  i t  is equally necessary  

to guarantee that the f i l ter  equations themselves possess  a unique 

solution, while the present f i l ters  do not sat isfy the present ly 

known existence and uniqueness conditions. 

If the approximate 



4.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMO DIFIE D APPRO XIMA T IO N 

The first requirement noted i n  the previous section i s  that 

the approximate system equations satisfy existence and uniqueness 

conditions. One difficulty a r i s e s  in relat ing the f i l ter equations to 

a set of system equations: 

power se r ies  to obtain the equation for d P  may not correspond to 

any rea l  coefficient matr ix  for dw in  an approximate equation for dx. 

To avoid the aforementioned difficulty, a l inear expansion for g in 

the system equation is  assumed. The change in the approximation 

to g is the slight modification alluded to in Section 4.1. The effect 

of the change can be inferred from the following: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

expansion of gg" about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is given by 

the expansion of gg':' in a second-degree 

the quadratic 

where a s  the product of the l inear approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

to g is 

(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 F o r  simplicity, le t  ag. . /a \  be denoted by g.. ijk * 
1J 
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To meet  the existence and uniquess conditions, the 

following expansion'" i s  suggested to replace (47) ,  f o r  k > 0: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  A A A 
A 2  

A -k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI x-x I [f!1 )($)(xj - x. ) t - f . .  (x)(x. -x. )(xi -xn)] , (58) ft((x) = f i(x) t e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1J J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1JP J J  

plus the following expansion for g: 

A 
A 2  k A -k lx-x(  (1)  A 

gij(x) = g..(x)  1J t e gije o(x,- X e )  

Clear ly,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 and gk a r e  subl inear and satisfy a local Lipschitz 

condition, therefore the approximate joint s y s tem 

(59) 

sat is f ies existence and uniqueness conditions. Note that (58) 

approaches (47) as  k - 0, so that the approximations can be made 

arb i t ra r i l y  c lose to each other, in a sense that is made prec ise 

later in this chapter. 

The f i l ter  equations, der ived in the coming section, a r e  

based on the assumption that the conditional density may be ade-  

quately approximated by a Gaussian density. 

A * Note: (47) and (58)  a r e  close in a neighborhood of x, but have 
dif ferent asymptotic behaviors. 
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4.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMODIFIED FILTER 

The following definit ion will be useful in the derivation of 

the f i l ter  equations: 

m 
exp [ - i ( x  - x )  A ::: P - l ( x - ~ j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-k/  x - 2  l 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

dx . (61) 1 / 2  
e j - e  ( X i  - x i  ) 

Rn j = 1  j j ( 2 7 ~ ) ~ '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (  det P ) 

The r ight-hand side of (61) can be wri t ten as 

-1 -1 
exp [-$( x -2 ) ( 2k In t P -' ) (x -2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

A 
[det (2kInt  P ) 3 

j 'j (27~)~/ ' [det  (2kI t P  -1 ) -1 J 1/2dx 
n j = 1  n 

R (det P)  1 /2  

so that the tensor  whose components a r e  given by (61) 

-1 /2 ] pm[(2k1 0 n tP- ')- ' ]  . ( 6 2 )  

For simplici ty, le t  P k A  = p 2 (P) and ck A = [ de t (2kP t  I )] -1 /2 . 
k n 

The basic s teps in deriving the f i l ter  equations a r e  those 

outl ined in Chapter 3. F r o m  (58) and (61) 

A A 1 (2 )  A k 
f i ( X )  = f . (x )  t - f . .  ( x )P  

1 2 1Je ja 
and 

x . f . (x)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA =: f( l )(2)Pk t x. f . (x)  A A  . 
l j  l J  1 J  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
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Then (50) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A A 
dxi =. f i (x)dt  t ; f !2)($)pk 11 Q iQ dt 

t P..h k (1) (x)r lm[dzm A - 2  - ( h m ( x ) t - h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 1 (2 )  A k 1J Q j  2 mnp(x)Pnp 
- _- 

To compute Pk, which is needed for (65), note that (62 )  implies 

1 

Pk = [de, (2kP t I n )]-'(2kI n t P)- '  . 

Thus, it suffices to compute P, a s  before. 

The derivation of the expression for d P  also follows the 

The new pattern established in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, and (53) st i l l  holds. 

expression for (55) is 

To prove (67), the following manipulations a r e  useful 

But it is shown in  Laning and Battin [28] p. 83 that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 6 9 )  

2 2 2 2 2 2 
1J P9 19 PJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1P 

= [cl0I..[p 1 t [pol. [p 1 . t [p 1. [polpj , 

- 1  -1 where the argument, (2kI t P ) , has been suppressed. 
n 
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Also 

p2 LZkI t P-’)-’] = ck -1  pk 2 (P) 
0 n 

Repeated substitution of (70 )  into (69), and substitution of (69) into 

(68 ) provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A A A 

(Xi - x.)(x. - x.)(x - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx )(xm 
l J J a e  m 

P.k) . - -1  k k k k  
- ‘k plm ‘iiePjm pim 

The remaining manipulations a re  straightforward, but tedious. 

For  simplicity, le t  the bracketed factor in (67 )  be denoted 

The modified version of (57) i s  then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATk 
ijpq’ 

k (1) A ( 1 ) A  k 
13 14 J &  (3 

dP.. = P. f .  (x) dt t fie (x) P . dt 

z c k  -’ Tijlm h(’) nlm ( A  x, rnp -2  [ d z p - ( h p ( ~ ) t ~ h ( z )  2 Pqr ($)Pk q r  )dt]. 

To determine if the f i l ter  system (65) and (72) sat isf ies existence 

and uniqueness conditions, it is convenient to recast  the equations 

in  the form of a single vector equation, as follows: 
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Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs be the vector of dimension n(n t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) /  2 with components 

definedby s i = x .  for i=1, ..., n; and s . = P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1 P9 

for q = 1, ... , p; p = 1, ... , n. 

element of x and each nonredundant element of P. 

venient to use the notation s in  place of s for  i > n. The f i l ter  

system can then be rewri t ten in the fo rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

where i = q t n p - p ( p - 1 ) / 2  

It i s  easy  to verify that s contains each 

A 
It is more con- 

Pq i 

( 7 3  1 
k k 

ds = a ( t , s ) d t t  b ( t , s ) d z  , 

where, restoring t a s  an explicit argument, f rom(65) ,  f o r  i=l, . . . ,n 

k k k (1) - 2  
ai (t ,s) = f i ( t ,s)  t -If!2)(t,s)P. ( s )  - P. . (s )h  (t,s)rPm(t)h,(t,s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 1JP 3-4 1~ 4 

k k (1) - 2  
bi (t,s) = P. . (s)h ( tys ) rPm( t )  

1J aj 

and, f rom (72) and ( 5 9 ) ,  for  i > n  
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and 

Note: 

with j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1, by symmetry, s may be substituted so that only the 

upper triangular elements of P are used. 

The validity of the f i l ter, in the sense adopted herein, 

If any of the te rms  in (74 )  and (75) include a factor of s. .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
13 

j i  

k depends upon the character is t ics  of ak and b , which, in turn, 

a r e  given by (74) and (75). 

analysis is required to determine i f  a 

and uniqueness conditions. The quantity P occurs quite often in 

the expanded equations. F r o m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 6 6 ) ,  P can be seen to be bounded 

for nonnegative definite P; since P is a covariance matr ix,  it is  

requi red to be nonnegative definite. The quantity c is 

essential ly of degree n /2  in s, at l eas t  when 

and violates sublinearity, but the product c T i s  sublinear, as  

is implied by (70). Then, by inspection, the following conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A certain amount of prel iminary 

k k 
and b satisfy existence 

k 

k 

-1  
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J. I P 1 becomes la rge ” ,  

-1  k 
k 

a r e  sufficient for  validity: 

1. f is twice differentiable everywhere, such that 

each fi, f!1), and f !2) is sublinear. 
1J 1J k 

2. h i s  twice differentiable everywhere, such that 

h ( l ) ,  h“), and Ihl ( h  (2 )  1 a r e  bounded. 

::: 1 p 1 is the norm of P. 
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3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg is differentiable everywhere such that each 

( ' )g ( ' )  is sublinear. gijgke and g ijk pmn 

It is assumed f rom this point on that conditions 1-3  a r e  met, so that 

( 7 3 )  is a valid stochastic differential equation for the f i l ter .  

One of the conditions required in the derivation is that P 

be nonnegative definite. 

solution to the P equation were truly the conditional covariance, 

the condition would be met  automatically, a s  noted above, because 

of the propert ies of a covariance matr ix.  However, in the present 

case,  the solution to the P equation is  mere ly  an approximation to 

the conditional covariance, and is  not guaranteed to be semi -  

definite. At this point in the state of knowledge of stochastic 

differential equations, the problem of determining conditions 

under which the computed value of P is nonnegative definite is 

unsolved. The following pragmatic rule is suggested: If, in the 

course of an  actual computation, P should fail to be nonnegative 

definite, the approximation must be considered improper.  

If the f i l ter  equation were exact and the 

4.5 COMPUTATIONAL VALIDITY 

It has just  been shown that the modified f i l ter  is valid for 

any k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0; for  k = 0, the equations a r e  essential ly the previous 

invalid f i l ter equations. The resul ts  to this point a r e  t rue for 

the mathematical problem derived f rom the physical situation. 

It is shown in this section that when the mathematical solution is 

transformed into a computational algori thm for use on a digital 
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computer, the equation for  k = 0 is  a lso valid in the sense that 

there  is an equation for some k > 0 that computes the same values 

of d s / d t  as the equation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 0. 

It is interesting to note that while the vector s was con- 

structed to allow the use of the vector fo rm of the theorem in 

Chapter 2, an actual computer program would probably be coded 

in t e r m s  of the vector s, since most differential equation inte- 

grat ion routines a r e  designed to integrate a f i rs t -order  vector 

equation, and since it is inefficient to compute the redundant e le-  

ments of P. 

would entail writing the related ordinary differential equation 

The fo rmal  conversion of (73) to a computer algori thm 

k k - _  ds - a ( t , s )  t b ( t , s ) y  
dt 

where, as  in Section 3.2 dz /d t  is  taken as  y,since y is now a 

physically measured signal. 

It can be seen with l i t t le difficulty that for  k = 0 the f i l ter  

equation (73 )  reduces to the vector f o r m  of (50)  and (57)  except 

::< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 ) 
replaces [gg ] / 2 ,  a s  discussed ear l ie r  in  this that g (1),(1)0 

k k chapter. Also, for fixed t and s, a and b a r e  continuous func- 

tions of k. Furthermore,  for a computer mechanization y is 

bounded and there is a difference threshold within which two 

numbers are considered identical. Let  Y be the bound 

on y and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE be the difference threshold. 

ak and b , for a given t and s there exists a K > 0 such that 

By the continuity of 

k 
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la" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t, s )  - ao(t, s ) l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

Moreover, since t and s a r e  

bK( t ,  s )  - bo(t, s ) l Y  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf . ( 7 7 )  

also bounded for computer applications, 

there exists a K > 0 such that (77)  holds for all attainable t and s. 

Thus, the value of ds/d t  computed for 0 < k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP K is identical to that 

computed for k = 0. 



5. SIMULATIONS 

5.1 INTRODUCTION 

There a r e  a number of reasons for the simulation study. 

F i r s t  of all, despite the strong flavor of basic mathematics in the 

research  into nonlinear f i l ter ing, the technique is essential ly com- 

putational and is  useless i f  it i s  not mechanizable. 

excuse for studying nonlinear minimal -variance f i l ter ing is the 

hope that i t  is an improvement over other f i l ter ing approaches in 

the computational environment. Finally, there is still some 

question about how to mechanize the integration. In part icular,  

i f  the integral is mechanized as an ordinary algori thm like 

Runge -Kutta o r  Adams, should the mathematical approach st i l l  

be used, o r  is the mathematical approach good only for rectangu- 

l a r  rule integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?” 

Secondly, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.Ir 

The numerical investigation was conducted for eight dif- 

ferent  approaches to fi l tering, for two se ts  of dynamics, for  two 

measurement  schemes each. The two systems were chosen such 

that one satisf ied existence and uniqueness conditions for stochastic 

dif ferential equations while the other did not. No difficulties were 

‘’ Recall  the discussion beginning on page 18. 

51 
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anticipated in connection with fi l tering for the second system in the 

actual computer environment,”’ and none were encountered. 
.*, 

5.2 FILTER EQUATIONS 

Because of the large number of cases  involved in the study, 

only f i rs t -order  systems a r e  considered. The f i r s t  system is 

dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX - =  - 7 t v  
l t x  (D1) dt 

-1  (M11) y = tan x i -  w 

where v and w a r e  white noises. With ei ther measurement  scheme 

(M11) o r  (M12), the overal l  system sat isf ies existence and unique- 

ness. The second system, which does not, is given by 

The fi l tering schemes are outlined below. F o r  the outline, 

f and h a r e  the system nonlinearit ies as  in (8) and (13). 

’“Because of the boundedness noted in Section 4.5,. the nonlinear 
functions are  forced to be sublinear a s  mechanized; therefore the 
apparent violation of existence and uniqueness conditions does not 
real ly occur. 

The 



white-noise processes ,  v and w, a r e  assumed stat ionary with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2 

V V W' 
covar iances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACJ and ow, respectively so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = CJ and r = CJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 
The subscr ipt  In1 denotes nominal, x is the est imate of x, p is the 

approximate covariance, and a prime denotes differentiation. Note 

that  for l inear measurements,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMlZ and M22, cer ta in  t e r m s  vanish 

and there a r e  only three different f i l ters .  

1. Linear 

The l inear f i l ter ing algorithm can be applied to a s e t  of 

equations l inear ized about an a pr ior i  nominal motion. 

equations, derived by Kalman and Bucy [23] a r e  

The 

-2 I A  - - f 1  2 t cW phh(y -hnx)  , 
dt - n 

- _  
dt 

2. Quasi-Moment Minimal-Variance 

This is the f i l ter  derived by Schwartz and Bass [32], and 

independently by F isher  [13I. 

A 1 1 i A  -2ph'(P)[y - h(2) -$phl'($)l, 
A 

dx = f(x) t Tf (x)p t CJw dt 
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3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATruncated Minimal -Variance 

This is the f i l ter derived by Bass,  Norum, and Schwartz [2]. 

4. Modified Minimal -Variance 

This f i l ter i s  a compromise between (81) and (82) which is 

based on the difference in the driving t e r m s  in the p equation. By 

dropping the driving te rm,  the f i l ter is simpler,  y e t  the response 

fal ls between the responses for the two preceding filters. 

dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 1 f i A  -2  t i  A 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- = f(x) t Tf (x)p t ow ph (x)  [y - h(2) - ~ p h " ( G ) ]  , 
dt 

A 

I A  -2 2 12 A 2 dp - 2pf (x) - aW p h (x) t oV . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  

5. Maximum-Principle Least  Squares 

This f i l ter  is derived by Detchmendy and Sridhar [lo] for  

minimizing an  integr a1 -square -e s t imat ion-er r o r  cr i ter ion,  using 

determinist ic techniques. 

principle the minimization is "reduced" to a two -point boundary- 

value problem which is solved by an invariant imbedding technique 

using an  approximation to one boundary condition. 

By the use of Pontr iagin 's maximum 
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Actually, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(84) is a special case of the derivation in Detchmendy and 

Sr idhar [lo]; 

integrand, while (84) corresponds to the part icular se t  of weight- 

ing functions that resul t  in the Kalman f i l ter for  l inear dynamics. 

they used arb i t ra ry  weighting functions in the cr i ter ion 

6. Dynamic Programming Least Squares 

This fi l ter i s  derived by Cox zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 9 ]  for a cr i ter ion which is 

s imi lar  to that used for the previous f i l ter. The minimization is 

effected by dynamic programming using a quadratic approximation 

to the cost function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A -2  2 12 A 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp = 2pf1(x) - uw p h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) f oV . 

dt 

A look at (85) shows that this fi l ter i s  essential ly equivalent to 

using l inear f i l ter ing about the computed mean, a technique that 

had been used heurist ical ly previously. 

7.  Discrete -Measurement Minimal -Variance 

This f i l ter i s  derived by Jazwinsky [21] for a minimal-  

var iance cr i ter ion under the assumption that the measurements 



ar r i ve  at isolated instants. 

l imiting f o r m  for continuous measurements.  

The fo rm presented here is the 

Since the evolution of the system itself i s  considered continuous, 

the portion of the equations related to updating the est imate in  the 

absence of measurements agrees with (81), (82), and (83). The 

loss of the t e r m  in h ( x )  is due to the difference between the physi- 

cal  and mathematical approaches discussed in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 

derivation of (86), Jazwinsky uses the approximation to the condi- 

tional density that is used to derive (82). 

I I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Modified Discrete -Measurement Minimal -Variance 

This filter is related to (86) in the same way that (81) is 

related to (82), i. e . ,  the conditional density is assumed to be 

Gaussian. 

The application of (80)-(87) to (78) and (79) is straight-  

forward and is not ca r r i ed  out herein. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 6  
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5.3 SIMULATION DETAILS 

The first simulation program was used for famil iar izat ion 

and prel iminary investigation of certain basic questions. 

example, the analysis discussed on p. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 relat ing the white-noise 

model to the simulated white -noise sequence was substantiated by 

showing that the f i l ter  performance deter iorates drast ical ly i f  the 

factor of At is ignored. 

difference if the integration was performed by a Runge-Kutta 

scheme o r  rectangular rule. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For 

Also, i t  did not seem to make an essent ia l  

The computer program that was finally used for the s imu-  

lation study included a simple rectangular - ru le  integration with 

constant step-size. The use of constant step-size allows each 

f i l ter  to be compared on the basis of the same pseudo-random 

sequence. The random number generator i s  a combination of a 

standard uniform random sequence routine plus an approximate 

t ransformat ion to a Gaussian random sequence. 

two modes of operation: in one mode, only a single estimation is 

made with a prespecified init ial condition for the state: in the other 

mode, severa l  runs a r e  made for random init ial conditions, and 

the stat ist ics of the estimation e r r o r s  a r e  computed. The output 

f rom the program is a computer-prepared plot showing the t ime-  

history of the f i l ter  response or the e r r o r  stat ist ics.  

show every 20th point with l inear interpolation between. 

The program has 

The plots 
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5.4 RESULTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As noted ear l ie r ,  the simulation study was not intended to 

be a complete investigation of the computational character is t ics  of 

nonlinear f i l ters.  Two standard cases  were used, which were com- 

putationally docile when used with the step-size chosen. F o r  both 

dynamical equations ( D l )  of (78) and (D2)  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 9 ) ,  the standard run 

consists of 5000 points 0.001 second 

t ime of five seconds, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = 10. Only the init ial 

condition differs. 

urement  y for  the two standard cases.  

l inear measurement,  but the noise is so la rge that there is not too 

much apparent difference between the l inear and nonlinear 

measurements.  

apar t  for  a total problem 

2 2 
V W 

Figures 1 and 2 show the state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and the meas-- 

The f igures show the non- 

In the response to the standard inputs, there is a la rge  

difference between the response of the l inear systems and the non- 

l inear  systems, while the var ious nonlinear systems a r e  remark -  

ably s imi lar .  

two standard cases. As might be expected, l inear measurements 

help the l inear system. 

relat ive e r r o r  performance of the nonlinear f i l ters within the shaded 

region is different for the two cases .  To show that the resul ts  in 

F igures  3 and 4 a r e  not pecul iar to the part icular initial condition 

and pseudo-random sequences, three representat ive f i l ters were 

chosen for a se t  of ten runs. 

shown in Figures 5 and 6 for  init ial conditions with var iance one for 

F igures 3 and 4 show the estimation e r r o r  for the 

What might not be expected is that the 

The mean and mean-square e r r o r s  a r e  
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I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe f i r s t  case and variance 1 / 4  for the second case.  

that the e r r o r  stat ist ics a r e  st i l l  quite close, practical ly indis- 

tinguishable f rom a mean-square e r r o r  point of view. 

the relat ive e r r o r  performance of the chosen f i l ters is qualitatively 

unchanged. 

It can be seen 

Moreover, 

While on the topic of stat ist ical runs,  it is interesting to 

note the comparison between the output of the p equation for an 

init ial  condition of one standard deviation and the mean-square 

e r r o r  fo r  ten runs fo r  one case,  a s  shown in Figure 7 for  f i l ter 2, 

dynamics D1, and measurement  M11. Moreover, it was found that 

the change in the mean-square e r ro r  for  a la rger  number of cases,  

up to 50, while noticeable, was relatively smal l .  

The effects of changing the stat ist ics of the random sequences 

a r e  s imi lar  for  al l  the f i l ters,  and a r e  intuitively reasonable. 

Changing uv has l itt le effect on the init ial  response, though the 

higher uv the worse the ultimate following. 

ing uw slows the response noticeably without affecting the ultimate 

tracking. 

shown in F igures  8 and 9. 

Contrariwise, inc reas-  

The e r r o r  responses for f i l ter  2 with D1 and M11 a r e  

The runs, mentioned ear l ie r ,  demonstrat ing the cor rec t -  

ness  of the noise model, show the effects of improper ly matching 

the f i l ter  parameters  to the noise stat ist ics. 

mismatch on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-x and p a r e  shown in F igures  10 and 11. 

the curves shown, the actual pseudo-random inputs were taken 

f rom identical populations, only the f i l ter  parameters  varied. 

The effect of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

F o r  al l  
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Evidently a stat ist ical mismatch can ser iously affect the performance 

of the f i l ter. 

f i l ter  is a good index of the performance, even when the stat ist ics 

a r e  poorly matched. 

It also appears that the value of p generated by the 

The final aspect that was studied on the computer is the 

Two approaches to sampling were effect of sampling the data. 

considered: sample-and-hold and pulse sampling. For  the sample - 

and-hold runs, the effective noise variance was obtained using a At 

equal to the sampling period, rather than the computation interval. 

F o r  the pulse-sampling runs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 

vals during which no measurements were made. 

sampling were applied to f i l ter  Zwith dynamics D1 and measurements 

M11. 

expected, sampling i s  detr imental to the init ial response of the 

f i l ter ,  though ultimately the estimate set t les in to the proper value. 

F r o m  the one case considered, sample-and-hold appears some- 

what better than impulse sampling, which may be due to the 

smoothing effect of the zero-order hold. 

-1 
was made zero for those in ter -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W 

Both types of 

The response plots a r e  shown in Figure 12. As should be 

There is  one problem in mechanizing the f i l ters ,  which has 

not yet been discussed, that requires much more  investigation: the 

effects of the f i l ter parameters  and the step-size on computational 

stability. F o r  some combinations of parameters  u and rW and 

init ial covariance p (t ), the step-size must  be made smal l  to 

stabi l ize the computation during the init ial  portion of the run. 

reason for the instabil ity i s  the la rge  value of the derivatives and 

V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the consequent large truncation e r r o r s  introduced in the integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A part icular ly insidious fo rm of computational instabil ity a rose  in 

the course of the simulation study: it is possible to be in a condi- 

t ionally stable region such that one pseudo-random sequence with 

a given stat ist ical  descript ion resul ts in a stable response, while 

another sequence drawn f rom the same population does not. How- 

ever ,  because of the nature of the computational stabil ity problem, 

it is most  effectively studied for  a part icular equation; general  

resu l ts  a r e  difficult to find. 



6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASUMMARY AND SUGGESTIONS FOR FURTHER WORK 

6.1 SUMMARY AND CONCLUSIONS 

The preceding treatment of the problem of the construction 

of approximate continuous nonlinear minimal-var iance f i l ters  can 

be divided into three parts.  

ductory in nature, and cover a general background of the problem, 

the mathematical p re l im inar ies  required for the analysis, and a 

detailed account of the previous work leading up to the dissertat ion. 

The f i rs t  three chapters a r e  intro- 

Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 constitutes the second part ,  which is the con- 

struct ion of a mathematical ly valid f i l ter. Here,  the t e r m  

"mathematically valid" implies that the stochastic differential 

equation for the fi l ter satisf ies existence and uniqueness condi- 

t ions, and also that the f i l ter i s  derived on the basis of an approx- 

imate dynamical representation that sat isf ies the same conditions. 

Since previous derivations violate the requirements for validity, 

certain modifications a r e  necessary,  part icularly in the way the 

differential equation for the system is approximated. Then, given 

a val id formulation for the f i l ter ,  i t  is shown that in the actual 

computational environment 

var iance fi l ter is also valid in the sense that there exist  mathe- 

matical ly valid f i l te rs  that a r e  computationally identical to it. 

the nonvalid quasi  -moment minimal - 

74 
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The final part,  presented in Chapter 5, i s  a computational 

investigation of nonlinear fi l tering, including f i l ters  derived by 

dif ferent techniques and for other cr i ter ia .  Apparently, nonlinear 

fi l tering is super ior  to l inear fi l tering, although no one nonlinear 

f i l ter  offers any clear-cut  advantage over any other f rom a per -  

formance point of view. 

f rom a continuous model a re  quite amenable to sampled-data use. 

It also appears that the f i l ters derived 

The mathematical problem solved in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ar i ses  f rom 

the probabil istic cr i ter ion and the white-noise model; i t  does not 

appear in the stat ist ical  approaches which use  a determinist ic 

cr i ter ion and which need no postulate about the form of the noise. 

There  does exist the problem of choosing a weighting matr ix  in the 

cr i ter ion integrand, but that is not a t  a l l  a theoretical problem. ::: 

Moreover, in view of the success of the heurist ic nonlinear f i l ter  

obtained by continuously updating the nominal for the l inearization 

i n  the p equation and using a nonlinear updating in  the x equation, it 

is difficult to justify f rom a practical point of view al l  the mathe- 

matical difficulties that a r i se  using the probabil istic nonlinear 

approach. Granted, the computer investigation reported in Chapter 5 

is insufficient evidence to support any final conclusion, but it does 

offer food for thought. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

“It appears that the covariances of the equivalent white -noise pro-  
cesses  a r e  a good choice fo r  the weighting matr ices,  even though 
the white-noise assumption is not made. 
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6.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFURTHER WORK 

The derivation in Chapter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 used a truncated quasi-moment 

expansion for the conditional density, in which only the mean and 

covariance were included, plus a modified second-degree expansion 

for the system nonlinearity. It would be interesting to extend the 

derivation to include higher quasi-moments and higher -degree 

expansions for the system, should the probabil ist ic approach still 

be of interest. 

No derivation, probabil istic o r  stat ist ical ,  seems to allow 

for a state-dependent measurement noise, yet there a r e  pract ical  

situations in which the noise is state-dependent. The variat ion of 

the noise with state could be included heurist ical ly, but i t  would be 

desirable to include the effect in a theoretical derivation. 

In view of the comments a t  the end of the previous section, 

an attempt should be made to compare the various approaches 

analytically. 

on a l imited sample of computer runs! 

It i s  not a t  all satisfying to base a general conclusion 

A number of a reas  a r e  open fo r  numerical  investigation, 

the most  important being the numerical stabil ity of the equations. 

Another problem is the simulation of higher o rde r  problems, and 

a third i s  a study of the effects of modeling e r r o r s .  
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