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1. INTRODUCTION

1.1 HISTORICAL BACKGROUND

Continuous minimal-variance filtering is a form of
sequential stochastic estimation, and, as such, has its roots in the
early least-squares differential correction schemes for orbit
determination. A fairly extensive account of the development of
orbit determination methods can be found in Deutsch [11] and in
Mowery [30]. Continuous optimal filtering, per se, dates back to
Wiener [38] , wherein the minimal-variance stochastic estimation
problem is solved for the linear filtering of stationary random
signals. For many years thereafter, the terms '""optimal filtering"
and '"Wiener filtering' were used interchangeably. The first
investigations into the problem of the optimal filtering of nonsta-
tionary signals and nonlinear filtering were reported about a
decade later; e.g., Laning [27], Zadeh [42], Zadeh and Ragazzini
[43] and Booton [5]. The feature common to the early filtering
studies is the derivation of an integral equation for the optimal
filter. In the special case of 1ine.;:1r filtering for stationary sta-
tistics, the integral equation can be solved in a useful form for
many applications; unfortunately, the same cannot be said for the

more general cases, although Booton [5] does refer to some

applications.




In 1958* Wiener [39] suggested an approach to solving the
filtering problem for the general stationary-statistics case which is
mechanizable and has been developed further at M. 1. T. (e.g., Chesler
[8], Hause [17], and Schetzen [31]) under Y. W. Lee. There are
related investigations by Balakrishnan [1] and others; see Fisher
[13] for further discussion. However, the nonstationary-statistics
case remained essentially unsolved in a practical sense, until the
revolutionary works of Kalman [22] and Kalman and Bucy [23],
and the pioneering papers by Stratonovich [35, 36], all between
1959 and 1961,

Kalman and Bucy published a practical solution to the opti-
mal linear filtering of random processes with nonstationary sta-
tistics. In order to obtain their solution, they abandoned the
nearly fruitless integral equation approach and reformulated the prob-
lem so that the filter is specified by a differential equation which can be
mechanized on a computer. Because of the utility of the approach the
term '""Kalman filter' replaced '"Wiener filter'" as a synonym to "opti-
mal filter. " In fact, the finite dimensional Wiener filter is just a
special case of the Kalman filter. However, the Kalman filter is
rigorously valid only for linear filtering, even though successful
nonlinear extensions were developed heuristically for orbit deter-

mination and space navigation programs.

*Apparently, the original announcement was made in 1949 in an
internal M.I.T. memorandum.




The true nonlinear minimal-variance filter follows from the
suggestion of Stratonovich that the fundamental entity in sequential
estimation is the conditional probability density function of the
message process given the measurement process. It is elementary
to show that the minimal-variance estimate of a random variable
given a set of measurements is simply the conditional expectation,
which, in turn, is the first moment of the conditional density.

Thus, if the density isknown as a function of time, so is the minimal-
variance estimate. The first efforts to exploit the idea by deriving a
partial differential equation for the density, Stratonovich [36], Kashyap
[24], and Wonham [41], all contained errors, and the first correct
formulation is due to Kushner [26] in 1964, though his derivation is
nonrigorous and incomplete and contains a mistake in the filter deri-
vation. About a year later Bucy [7] published a note presenting an
alternate and apparently more rigorous derivation including a deriva-
tion containing an algebraic mistake for an approximate filter for a
scalar example. Later the same year Bass, Norum and Schwartz [2] cor-
rected Bucy's example and extended the approximate filter equa-
tions to the vector case; an independent similar investigation was
conducted by Swerling [37]. In early 1966 Jazwinsky [21] presented

a derivation for a similar approximation assuming the measure-
ments are taken at discrete points in time, and Schwartz and Bass
[32] derived a filter for a different approximation from that used

by Bucy [7). The last paper in the sequence stemming from




Kushner [26] is also by Kushner™® in which he points out that the
derivation by Bucy [7] of the exact filter equation is not completely
rigorous; he also proves a theorem giving sufficiency conditions for
the validity of the exact filter equation, which is a total differential
equation for the conditional mean.

There are two closely related works not in the rﬁainstream
outlined in the preceding paragraph: Mortensen [29] and Fisher
[13] . In the first part of his derivation, Mortensen derives an
integral equation for a quantity related to the conditional density
function under fairly restrictive conditions. In his analysis he,
too, questions the rigor in Bucy [7]. The approach taken by
Fisher is more like that of Kushner [26]; he employs nonrigorous
limiting arguments to construct a partial differential equation for
the conditional density, but for a more general class of stochastic
processes than are considered by the previous authors. He also
derives a set of filter equations based on a somewhat different
representation of the conditional density function; his filter equa-
tions contain those in Schwartz and Bass [32] as a special case.

In addition, there are alternative approaches to nonlinear
filtering based on other criteria, for example: Bryson and
Frazier [6], Cox [9], Bellman, Kagiwada, Kalaba, and Sridhar
[3] , Detchmendy and Sridhar [10], as well as others concerned

with more specialized problems.

*Dynamical Equations for Optimum Nonlinear Filtering: Unpub-
lished memorandum.




1.2 PROBLEM CONSIDERED

The problem considered in this dissertation is the rigorous
validation of the approximate filter equations. An outline of the
steps in the derivation is essential to set the stage for the follow-
ing discussion. The first step in the analysis of any physical situa-
tion is the specification of a mathematical model; the choice should
be made carefully, since the whole analysis depends upon the
characteristics of the model. For minimal variance, which is a
probabilistic criterion of optimality, the manipulations leading to the
filter equations are made particularly simple by assuming that the
random processes are white noises. * On the other hand, the white-
noise assumption adds a certain amount of complication in the
interpretation of the mathematical results in light of reality. In
the present investigation the white-noise assumption is made.

If the criterion of optimality is statistical, rather than
probabilistic, the white-noise assumption is not germane; in fact,
no particular form is postulated for the random processes.

The original least-squares estimation is such a statistically opti-
mal approach. The recent studies of Cox [9] and Detchmendy and
Sridhar [10] are modern versions of the statistically optimal filter.
The analytical portion of this dissertation does not consider the

non-probabilistic filters, but both types of filters are simulated.

*The definition of white noise is presented in Chapter 2.




Given the probabilistic criterion and the white-noise
assumption, a natural mathematical model is the stochastic dif-
ferential equation. Of course, the problem must be such that the
stochastic differential equation satisfies existence and uniqueness
conditions, which are different from those pertaining to non-
stochastic differential equations. The essential difference stems
from the fact that for white-noise models there is no bound on the
forcing function and global conditions must be satisfied. From the
stochastic differential equations for the system and the measure-
ment, it is possible to derive a stochastic partial differential
equation for the conditional density function; but there are no con-
ditions yet established for the validity of the equation for the density.
From the stochastic partial differential equation inturn, it is possible to
derive a stochastic differential equation for the expected value of any
scalar function of the state of the system; this last equation is the one
which Kushner considers in his unpublished memorandum. Since the
approximate filter equations arederived from the stochastic differen-
tial equations for the expectation, thelack of rigor inthe derivation of
the equation for the density causes no real difficulty.

The exact equation for the filter requires the instantaneous
evaluation of the conditional expectation of several functions of the
state of the system. To simplify the problem, the original model
can be replaced by an approximating stochastic differential equation,
from which an approximate filter can be derived more simply. Itseems

reasonable to require that the approximate model equations also




satisfy existence and uniqueness conditions, particularly
uniqueness; if not, the solution to the approximate system may in
no way approximate the solution to the original problem. Since in
no previous derivation does the approximation satisfy such condi-
tions, the first part of the validation of the filter equations is to
derive an approximation that does satisfy the desired conditions,
and to find the resulting filter.

Guaranteeing existence and uniqueness for the approximate
system does not quite do the same for the filter, but slightly
stronger conditions on the equations suffice. At this point, one step
remains in the validation: that of relating the stochastic differential
equation for the filter to an ordinary differential equation for the actual
mechanization. In doing so, it is shown that nonvalid filter equations
similar to those previously derived by Schwartz and Bass [32] and by
Fisher [13] for white-noise processes can be made computationally
identical to valid filter equations if mechanized on a digital

computer.

1.3 OUTLINE OF THE DISSERTATION

Chapters 2 and 3 are included for completeness, and may
be skipped without loss of continuity by readers familiar with the
material. Chapter 2 is an outline of the definition of stochastic
differential equations, the conditions for existence and uniqueness,
and related topics. Chapter 3 is a review of the derivation of the
filter equations as presented in Bass, Norum and Schwartz [2] as

modified by Schwartz and Bass [32].



The new theoretical results, as outlined in the preceding
section, are given in Chapter 4, while the analysis pertaining to
the computer simulations and the results thereof comprise
Chapter 5. The discussion of the filter simulations is not intended
to be exhaustive, in any sense of the word; rather it is an explor-
atory introduction to the ill-defined area of the dynamic characteris-
tics of and computational considerations for nonlinear filters.

The final conclusions and recommendations for further

work are presented in Chapter 6.




2. MATHEMATICAL MODEL

2.1 INTRODUCTION
The usual mathematical formulation for a dynamical problem
is a differential equation, nowadays most generally written in state-

vector form:
E = il xw,uw) (1)

where x and f are n-vectors, u is an m-vector, and t is a scalar.
The meaning of (1) is well known for most input functions u, but the
ensuing analysis deals with white-noise input functions, and
(1) must be reinterpreted. The present chapter explains the prob-
lems associated with white-noise inputs, and outlines the develop-
ment of the necessary calculus of stochastic processes. The reader
should be familiar with probability theory and random processes,
The stochastic calculus began essentially with Wiener in
the early 1920's, although stochastic differential equations were
first studied by Bernstein [4] a decade later. The foremost con-
tributor to the theory of stochastic differential equations is It6 [18,
12,20] , though the present exposition follows the approach of

Skorokhod [34] , which is easier to follow.

*See Koval'chik [25] for further details.
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The presentation opens with a discussion of white noise

from an engineering point of view to help motivate the subsequent
mathematical analysis, which might otherwise seem somewhat con-
trived. The following mathematical discussion avoids appeals to
measure theory as much as possible despite the fact that probability
theory is often treated as a branch of measure theory. It is hoped
that the approach used allows the results to reach a larger audience.
Also, the various theorems and the properties of stochastic inte-
grals and differential equations are stated without proof; the proofs

are available elsewhere, and the appropriate references are cited.

2.2 WHITE NOISE

A typical engineering treatment of white noise can be found
in Laning and Battin [28] , p. 136ff, wherein it is stated that a white
noise is a random process with a power spectral density which is
a constant, or, equivalently, an autocorrelation function which is
a Dirac 6-function, It is further noted that such a process has no
physical meaning since it would require infinite signal power. The
foregoing definition is valid for stationary white noise, though the
autocorrelation-function definition can be extended to the nonsta-
tionary case by allowing a time-varying coefficient for the
6 -function.

The nonrealizability of white-noise processes is no reason
to discard them; they occupy a place with respect to the family of

stochastic processes analogous to the place of the Dirac §-function




with respect to functions. Just as the §-function can pragmatically
be regarded as a limit, in some sense, of a sequence of unit-area
pulses of decreasing width, a white-noise process can be con-
sidered as the limit, in a similar sense, of a sequence of processes
which are step functions. Moreover, ‘both are useful only when
their integrals are considered; indeed, both can be made mathe-
matically rigorous only in terms of their integrals. To be some-
what imprecise, the §-function may be considered as the derivative
of a unit step; with similar imprecision Laning and Battin [28]
show that white noise is the derivative of Brownian motion, which
they define as a one-dimensional random walk.

The practical reason for being concerned with white-noise
processes is that, when differential equations are forced by white
noise, the solutions are Markov processes, i.e., the future is inde-
pendent of the past. In other words, the solutions to differential
equations forced by white noise exhibit the stochastic analogue of the
property of solutions to differential equations forced by ordinary func-
tions: given the state of the solution at some time and the forcing
function from that time on, the subsequent evolution of the solution is
stochastically independent of the previous history.

The mathematical problem associated with white noise is
somewhat similar to that associated with the §-function: the mean-
ing of the integral. The 6-function is not really a function in the
ordinary sense of the word, and no theory of integration can re-

00}
sult in a value other than zero for J_oo6(t) dt if the §-function is

11
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assumed to be an ordinary function of t. However, by notascribing
values to 8(t) and considering only its integral, itis possible to con-
struct a meaningful theory. For example, see Friedman [14] p. 136ff.
Similary, no ordinarytheory of integration can make sense of/w(t)dt,
wherew is a white-noise process. Here again, ifno instantaneous
value is given to w(t), a useful theory of stochastic integration is

possible; that theory is outlined in the following section.

2.3 STOCHASTIC INTEGRALS

The exposition in this section is merely an outline of the
mathematical derivation of the stochastic integral; and it does not
include any discussion of stochastic integrals of discontinuous ran-
dom processes, A complete discussion of stochastic integration
can be found in Skorokhod [34] . The underlying idea is the de-
scription of a white-noise process as the derivative of a Brownian
motion; the major difficulty lies in the fact that a Brownian motion
is almost nowhere differentiable, almost surely.* Thus, if b is a
Brownian motion db/dt has no meaning and /g(t)(db/dt) dt is gen-
erally not defined, even for continuous functions g. But, if db is
an increment of b, it has a well-defined stochastic description,
and the Stieltjes integral ]g(t)db(t) is a possibly meaningful alter-
nate form. However, b is not a function of bounded variation, and
even the Stieltjes integral is not defined. The stochastic integral

is a stochastically meaningful generalization of the Stieltjes integral,

*In essence, the Brownian motion fails to be differentiable some-
where in every interval of nonzero length, with probability one.




in which the approximating sums are required to converge in
probability to the integral, rather than to converge in the ordinary
sense.

For definiteness, consider fttfg(t)dw(t) for a vector pro-

o

cess g(t) and a Wiener process w(t), where a Wiener process is
a unit Brownian motion, i.e., fort>s §&[w(t) - w(s)] = 0* and
& [wi(t) - W(s)]2 = t - s; furthermore, for q <r < s < t, w(t) - w(s)
is independent of g(r) and of w(r)- w(q). Let M denote the class
of functions g such that if g is in M, then g can be assigned a
probability; let M denote the set of step functions in M ; let M,
denote the set of functions in M which are mean-square integrable;
let M, denote the set of functions in M which are square
integrable with probability 1. If g is in M, there are points
to <ty < e <t =ty such that g(t) = g(ti) for t,st <ty For
such a function it is natural to define

n-1

gty aw(t) £ Y glt)lwityy) - witp)] . (2)
i=0

tf

rrv\u

The integral defined by (2) is a linear operation on g. From the
aforementioned properties of the Wiener process, it follows that

for g in both M and M;

ty
5ft g(t)dw(t) = O (3)
o .

*The symbol & denotes expectation.

13



14

and™
2 2 tf 2
g| [ fewawe [* = [Tglem) at. (4)
&l &
o

The integral in (2) is meaningful only because of the special
form of the functions in Mo; the next step is to extend the definition

to all of M;. Itcanbe shown™* that for every g in M, and every ¢> 0,

there exists a function g in the intersection of M, and M, such

that
t

f -2
ft &le(t) - B(0)|2dt < e (5)

(o]

From (5), it follows that for every g in Ml’ there exists a

sequence {gn} in the intersection of M and M, such that

lim i 2 _
. &lglt) - g,(t)|“dt = O, (6)

N == ©
(o]

But, by linearity and (4), (6) implies

t t
im ][ fgumaw) - [ F g maww]® = o, (7)
n-» @ tO to

me-—» ©

*The vertical bars denote the Euclidean norm.
*%*Skorokhod [34] , p. 16,




and (7), in turn, implies that the sequence of random variables
J f = (t) dw(t) converges in probab111ty to some random variable,
wh1ch is taken as J f g(t)dw(t). The integral thus defined for g
in M1 is unique W1th probability one, is linear, and satisifies
(3) and (4).

The final step in the definition is its extension to all of
Mjp. Let fN be defined as follows: fN(x) = 1 for |x| = N and

fN(x) = 0 for |x|> N. Then for gin M,, the function

t

en® = g0 iy ([ 1 le(s)1? as)

t
0

is in Ml' It follows™™ thatT for N'> N

t
P{|/tng(t)dW(t) -f:f gN,(t)dw(t)i >0} < P{/ . 3g(t)}2 dt = N}
(o] [e] o]
and that
t

1im p{f f {g(t)]zdtZN} - 0.

N —»© tO

Thus, J gN(t) dw(t) converges in probability to some random
variable Wthh is taken asj f g{t)dw(t). This integral exhibits the

‘%
properties ascribed to the previous integrals.

*A sequence g converges in probability to g if the limit as n—o
of the probability that |gn-gl>e is zero for any €>0.

#%Skorokhod [34] , p.18-19.

$The symbol P{ } denotes the probability of the event in the
braces.

15
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2.4 STOCHASTIC DIFFERENTIAL EQUATIONS
The discussion contained in this section is limited to the
following special case of (1):

dx

I - fexm) + gltx(®)uct), (8)

where x and f are n-vectors, t is a scalar, u is an m-vector unit
white-noise process with independent elements,” and g is an nXm
matrix. While (8) is less general than (1), it is sufficient for most
practical applications, Let gi denote the ith column of g and w, the
ith row of the vector Wiener process from which u is derived. Then

by formal multiplication of (8) by dt and integration of the resulting

expression, (8) can be rewritten as

t m ot
x(t) - x(tg) = f f(s,x(s)) ds + Z f gl(s,x(s)) dw; (s). (9)
to i=1 to

In (9), the first integral is an ordinary integral, and the remaining
m integrals are stochastic integrals. For simplicity, if the sto-
chastic integral equation is satisfied by a process x with probability

one, then (9) is written in the form
dx = f(t,x)dt + g(t,x)dw(t). (10)

The simplified form (10) is referred to as a stochastic differential
equation, and is understood to be a shorthand notation for (9). It

is assumed that f and all the g1 evaluated along x(t) are in MZ'

*That is, elements of u are derived from independent Wiener
processes,
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The fundamental existence and uniqueness theorem for the
analysis in Chapter 4 is a modification of Theorem 4 on page 56 of

Skorokhod [34] :

Theorem. Suppose that x(t;) is independent of the processes w; (t)

and that f(t,x) and gi(t,x) are defined for t; = t = t; and for all

n-vectors x, are measurable™ with respect to all variables,

and that they satisfy the following conditions:

1. For every C > 0, there exists an L_. such that

C
m
(ty - to)lftx) - £(6,9) |2+ > Jgitx) - gite.y)]? = LZ |x-y|?
i=1

_i_f_lxlscﬂlylsc.

2. There exists a K at which

m
(tf-to)lf(t,x)|2+z lgitt. )2 = K(]x|% + 1).

i=l

In such a case, (9) has a bounded continuous solution

with probability one; also, if there are two solutions,

with probability one both coincide at all points t.

The proof is essentiallythat inthe reference; boundedness still follows
from Theorem 3, p.51 of the reference, but continuity follows from
Theorem 3, p.21 of the reference. For simplicity inthe sequel, condi-
ionl is referred to asthelocal Lipschitz condition, and condition 2 as

sublinearity.

* Measurability is a regularity condition that functions of engineering
interest will satisfy.



The next result is necessary for the derivation of stochastic
differential equations for functions of solutions of other stochastic
differential equations. The scalar version of the formula is proved
in Skorokhod [34] on p. 24ff; the vector version follows quite simply.
Let x satisfy (10) for tg = t < t;, with each {j, 8ijr and g1j8Ke belong-
ing to M. If a scalar function ¢(t,x) is defined and continuous and
has a continuous derivative with respect to t and continuous second
cross partial derivatives with respect to the Xy for ty;= t <ty and
for all x, then the process y(t) = ¢(t,x(t)) satisfies the relation

96 84, 1 s 0% 96
dy = (W-)ré_;f-*-i 5;—2g)dt+-a—xgdw, (11)
where 8( )/8x denotes the gradient (row) vector, 982( )/ 8x2 denotes

the Hessian (matrix of cross partials), and the asterisk denotes

matrix transpose.

2.5 RELATION TO THE PHYSICAL PROBLEM

There are two interfaces between the physical situation and
the mathematical model in the filtering problem: The reduction of
the dynamicsto a stochastic differential equation and the interpreta-
tion and mechanization of the stochastic differential equation for
the filter as a computational algorithm., The second interface is
considered first., The interpretation of the stochastic integral in
the context of the actual estimation environment is not at all a tri-

vial matter. The filtering algorithm will be a finite-difference

18
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approximation to (8), with u represented by a sampled
measurement, not a white noise, The problem of the interpretation
of (8) and the approach to use for the integration is discussed at
length in Gray and Caughey [16]; they specify two approaches and
propose a list of four pragmatic rules for choosing between the

two approaches based on the interpretation of (8). Another treat-
ment of the difference between the two approaches is given in Wong
and Zakai [40] .

The real difference between the approaches is in the choice
of whether to use the ordinary calculus or the stochastic calculus.
In the nomenclature of Gray and Caughey [16] the former choice
is the physical approach and the latter choice is the mathematical
approach. In contrasting the two approaches, the authors are quick
to state that neither approach is inherently correct; the choice
should be made according to their pragmatic rules:

1. If g(t,x) is not actually a function of x, both approaches

provide identical results,

2. If the problem is a strictly mathematical one, the

mathematical approach must be used,

3, If (8) is either an approximation to or a limit of the

discrete problem [x(tk+1) - x(tk)] /(tk+1 - tk)
f(tk,x(tk)> + gty x(tk)) u(t,), then the

mathematical approach must be used.
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4, If (8) is either an approximation to a white-noise
problem or the limit of a problem with short corre-
lation time, then the physical approach must be used.

The computational effect of the difference between the two

approaches is stated by Wong and Zakai [40] as follows: Let
{wP} be a sequence of piecewise linear approximations to the
Wiener process in (10) such that wl — w; then if {x®} denotes the
sequence of corresponding solutions, x® - z, where z is the solu-

tion to

1 8g
dz; = f;(t,=(t)) dt + z ng (t. 2(t)) 5= (t.x () at
J.k b

+ z gij (t, z(t)) dw
j

(12)

They state some reservations about the correctness of (12) in the
vector case, but the same form is implied by the results of Gray
and Caughey [16].

There is also a problem in relating the statistics of the
real data to the statistics of the white noise used in the model; this
problem exists at both interfaces, and is really the only one at the
first., For simplicity, consider the following special case: Let
u(t) denote a sequence of pulses of width At and of random height
given by a Gaussian distribution of zero mean and variance a2,

The autocorrelation function for u is a triangular spike of width

2At and height o2; the area under the spike is then o2At. It then




seems reasonable that the equivalent white noise be specified by
an impulse of weight c2At. The foregoing conclusion can also be
implied for more general situations by considering the limit pro-
cess of a sequence of Markov cha.ins?< for example, see

Skorokhod [34] , Chapter 6. The general result is as follows: If
an n-dimensional white noise is given by a covariance of the form
S(t)6(t-T), an n-dimensional pulse-sequence approximating the pro-
cess should be chosen from a population given by a covariance of
S(tj)/ Ot for t; = t < tj+ At. The case of continuous u is not quite so
direct, though an equivalent formulation can be obtained by using
the concept of a correlation time T, which is a time interval such
that u(t) can be considered uncorrelated with u(t+ 7).

Since the mathematical model is constructed under the
assumption that the Wiener process has independent elements, one
final step is required to model a noise with correlated elements.
Let S(t)6(t - T) be the desired covariance, which implies S(t) is
positive semi-definite for allt. Then there exists a matrix(which

/2 1/2,.1/2

may be taken as symrnetric)S1 such that S )* =S, If

dv é Sl/2

(S
dw, the white noise derived from v has the proper co-

12y

variance. For notational simplicity it may be assumed that S
is incorporated into g(t,x), and the formalism of (8), (9), and (10)

is still valid.

*Random sequences exhibiting the Markov property.

21



22

It should be mentioned, in conclusion, that the strong
conditions for existence and uniqueness are required by the mathe-
matical model for white noise, and not by the equations for the
actual physical situation. For an ordinary differential equation,
local conditions suffice, However, a stochastic differential is
forced by functions that cannot be bounded, and global conditions

are required.




3. REVIEW OF PRESENT APPROXIMATE
FILTER EQUATIONS
3.1 INTRODUCTION

In this chapter, the derivation of the filter equations in
Schwartz and Bass [32] is outlined, using the approach of Bucy [7]
to obtain the formula for the exact estimator. Bucy's approach is
used because it provides a good example of the use of the stochastic
calculus. This chapter is included for completeness, since some
of the work is not easily accessible, In particular, Bucy's note is
quite sketchy and the report by Schwartz and Bass was not widely
distributed.

The derivation consists of two separate parts: the first part
treats the exact estimation problem, and the second considers the
development of practical approximate estimators. The questions of
mathematic rigor of the second part are deferred to Chapter 4,

where the new theoretical results are presented.

3.2 PROBLEM STATEMENT
Let the dynamic equation of the system be given by (8), and

let the measurement be given by

y(t) = h(t,x(t)) + r(t)v(t), (13)
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where h is an £ -vector, £ < n, v is an £ -dimensional unit white
noise and r is a nonsingular symmetric £ X £ matrix relating the
unit white noise to the modeled white noise (equivalent to the matrix
Sl/2 in Section 5 of Chapter 2). Since the mathematical model can-

not handle white noise directly, it is assumed that the measurement

is derived from a process z given by
dz = h(t,x(t)) dt + r(t)db(t) (14)

where b is an { -dimensional Wiener process. The mathematical
model of the system consists of the two vector equations (10) and
(14). The problem is to find the minimal-variance estimate of

x(t) given the process z(s) for t,s 8= t, that is to find the esti-

mate Q(t) such that the matrix given by
& (x -X)(x -X)* - 0x - R)(x - )

is positive semi-definite, where X is any estimate of x, and the
processes are evaluated at t.

It is a simple exercise to show that the minimal-variance
estimate of a random variable given a related quantity is simply

the conditional expectation, so that
A
x(t) = &(x(t)|z(s), t_ ssst), (15)

and the problem is to find an equation for the conditional

expectation.
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3.3 STOCHASTIC DIFFERENTIAL EQUATION FOR
THE CONDITIONAL EXPECTATION:

The approach adopted for the derivation of the exact filter
equation requires the existence of the appropriate conditional proba-
bility density function p(x(t)[z(s), tO < s< t), which, for simplicity,
is denoted p(x]|z). Let p(x| zn) denote p(x(t) l Z(Sl)’ z(sz), cee z(sn)),
where no particular ordering is assumed among the si, but each si
is in the interwval [to, t]; the expression for p(x|z) is found as
lim p(xlzn). The first step is to show that the limit makes sense.
n —ow

Let £ 2 6(a|z(s },z(s,) z(s )) for some random

n 1 » 2 3 ece g n »
variable a assuming §(a) exists, It is shown in Doob [12], P.293,
that the random variables gl, 62, ...,a constitute a martingale**;
furthermore, by Theorem 1,1(ii) of Chapter VII in Doob, the random
variables IE"I [, l‘c:z l,....lal| form a semi-martingale. Assume that
x(t) is bounded with probability one, and let a = x(t), then {5|§n| is
uniformly bounded. By Doob, Chapter VII, Theorem 3.1 (i), él ﬁl l B
& |§2| < +-+, so that the sequence {5‘&11!} is bounded and monotone,
which implies that there exists a K such that 1lim &l¢ | =K<= . By
n —o n
Doob, Chapter VII, Theorem 4.1, lim gn = § , exists with proba-
N —e o
bility one and &l¢_| = K.

Now, let A be a Borel set in a Euclidean n-space and let

QA denote the set of elementary events w such that x(t, w) is in A.

*This section may be skipped without loss of continuity by
readers not interested in the mathematical details of the derivation.

**For the definition and properties of martingales and semi-
martingales, see Doob [12], Chapter VII
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Let IA denote the indicator of QA; then*
Plx(t) « A|Z(sl)' I z(sn)} - 6{1Alz(51), e z(Sn)} . (16)

Let gn denote the right hand side of (16). Since IA is either zero or

one, 0 < & < land lim § = £ exists as a number between zero
n n —»© n 23]

and one. Thus, (16)‘implies that the sequence of probabilities on
the left-hand side converges as n —w». Then, if the conditional
probability measures have densities p(x| zn), p(x|z) exists with
probability one if the limit of (16) has a density.

The existence of the densities is guaranteed by the fact that
the noise on the measurement is a non-degenerate £ ~-dimensional

white-noise process, as is demonstrated by the following construc-

tion. The Bayes' rule for conditional densities is

p(z_Ix)p(x)
p(z )

p(x|z,) (17)

Note that p(zn|x)p(x) = p(zn, x) and that both p(zn) and p(zn, x) can
A
be computed from p(zn, Xn) = p(z(sl), cee z(sn), x(sl), ey x(t)) ,

where now it is assumed that to = 8, < 0 < s, = t. Indeed™*

P(Zns x) = 4 R p(zn, xn)dx(sl)‘-- dx(sn_l)
n Bn
(18)

plz) = fR plz_, x) dx(t)

n

*See Doob [12] Chapter I, Section 7.
*%Rp is Euclidean n-space.




Also,
plz %) = plz [x )p(x)). (19)
From the definition of stochastic integrals and (14)
51 Si
z(s.) - z(s. ) = f h(t, x(t))dt + f r(t) db(t) . (20)
i i-1 si-1 s :
i- i-1
Let Az ‘*—A—z(s } - z(s.), Ab éb(s ) - b(s.), and As. = s -5
i i+l i”? i i+l i”? i i+l i
Then
Azi = h(si,x(si))Asi + r(si)Abi + 6i , (21)

where 6i is implicitly defined by requiring the right-handsides of (20)
and (21) to be equal. An expression for p(xlz) can be derived under
the assumption that 6i is O(Asi); the validity of the resulting expres-

sion can then be verified.

For simplicity, let hi é h(si,x(si)), r, é r(si), and
z, 2 z(si). Then ignoring terms of o(Asi),
p(zlz Zl’ z2 = ZZ’ e s Z, = Zn|x1=X1,x2=X2, ,xn:Xn) =
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Since zq is independent of the Abi and since the Abi are increments

of a Wiener process, (22) can be rewritten as

n-1
1 1 -1 2
p(z_|x ) = plzy) ][] ———-exp{- It (Az, -h.As )% (23)
n'n 1 21 As- 2As, ' i i
i=1 ! !

where
Ir: Az, -h.as) [P = Az ¥r %Az, + b r%h, As
i i it i1 i i1 i
(24)
-2h*r: Az As, .
i'i iT7
Substituting (24) into (23), the resulting expression into (19), and
using (18) provides
nl:[l 1 1 Azi*r-iZAzi
p(z_,x) = plz.) ———— exp|-5 —0— X
n o 1\/211Ts'1 2 Asi
i=
n—-1 n-1
1 % -2 k =2
XL expl5 > hXr “hAs + hr %Az, x  (25)
i1 it i’i i
n - n i=1 i=1

X p(xn)dx(si)“- dx(sn_l) )

Let

>

n-1 n-1
-1 z h*r%h.As, + 2 h*r %Az, .
2 i"1 11 i1 i

i=1 i=1
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D
By definition the integral in (25) is simply 6(e n|x_) ; whence,

using (25), (18), and (17),

g(eén'x) p(x) ' (26)

g(eén)

pix|z) -

Since <I>n—— ® in probability, where

t t
[h*r_zh ds + [ h*r_z dz ,
to t

o

>

® = -

o —

it is tempting to postulate that

p(xfz) :m) , (27)

& (e2)

where the expectations are now functionspace integrals over the set
of functions {x(t)}. The theory of functionspace integration is dis-
cussed in Koval'chik [25] and in Shilov [33], although for present pur-
poses a more specialized paper by Getoor [15] is more to the point.
Specifically, he constructs the conditional expectations in (27) for a
class of functionals that includes eé if & is bounded. Since ® is a
solution to a stochastic differential equation, boundedness conditions
are given by the theorem in Chapter 2.

For the derivation of the partial differential equation for the
density, the equality in (27) may be relaxed; all that is needed is

that (27) holds in the following sense:




For arbitrary € > 0

|

Consider the following plausibility argument for (28): let q(x l zn)

&
o |z) - Ble X Pb)

& (%)

>€] = 0 . (28)

denote the right-hand side of (26) and q(xlz) denote the right-hand
side of (27). Then
lp(x|z) - alx]z)| = |p(x|z) - pixlz ) + |p(x]z ) - alx]z )|

(29)
+ la(x]z ) - alx|z)] .

It has already been established that p(xlzn) — p(xlz) with proba-
bility one by a martingale argument. Moreover, the results in
Getoor [15] imply q(xlzn) — q(x|z) in probability. It remains to
show that q(xlzn) — p(x|zn) in probability.

If the term 6i in (21) is not neglected, (24) becomes

|r: Az, -has, - 6.5 = AzFrilAz. + h¥r %h.as’ + %1 %6,
1 1 1 1 1 1 1 1 1 1 1 1 1 1

- 2h¥ r:%Az.As, - 26% r %0z, (30)
1 1 1 1 1 1 1

+ 26% rTZh.As. .
1 1 1 1

which results in a new functional for (26)

n-l G’i"r-.ZAz n-1

n-1 % -2
1 b7 & i 2% « -2
A P D N cen D VL AL R

i=1 i=1 i=1
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The desired result obtains if v -2 - 0 in probability as n— w,

Substituting (21) into (31) provides

1n-l 6>fr;26i o 6:ikr—ilAbi
\I/n - q)n 3 Z As. + z As. : (32)
. i . i
i=1 i=1

Now, from the definition of the stochastic integral

n-1
P[|26i>e]—>0 (33)
i=1
From (33), the independence of the 61, and the uniformity
of the convergence of (21) to (20), it seems reasonable that (32)
vanishes in probability, although no direct proof is apparent in
the literature. As noted earlier™, the manipulations resulting
from the assumption that (28) holds have been rigorized by
Kushner, so that it is not necessary to verify directly that (32)
does indeed vanish,
The next step is to formally derive an expression for the
stochastic differential of p(xlz). Following Bucy [7], let
p(x|z) 2 Q/P. Also, let 6 2 é(e(blx). Then Q is explicitly a func-
tion of 6 and p(x), and 6 is explicitly a function only of a random

process & given by

h*r %hdt + h*r ldb. (34)

o,
o

tl
N —

*On p. 4.
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In addition p(x(t)) is a function of t, while x(t) and z are assumed

fixed. Then, using (11) and (34)

_@Q @ l 5 -2 3% -1 \
dQ = S2dt + oo(zh*r Thdt + h¥rT db)
+7—% ®hat .
L

Now,

80 _ 86 aplx(t
% - Qpx(t)) + o g’t‘( )

_ 6Fp(x(t)) - fa .

~

where £ is the forward diffusion operator

a(t, - " 8%(lgg*] .. ")
- __l_
z Z ax 8x ’
i: 1, =
Also
00 _ 2% _
92 pg°

Substituting (36) and (38) into (35) provides

dQ = £0dt + Qm*r %hdt + h*r L db)

fQdt+ Qh*r %4z .

(35)

(36)

(37)

(38)

(39)
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Using (18) and (15), and the definition of Q/P

dp = d(f de): f (dQ) dx
R R
n n
:p[é[ (%)dx]dt +[ % dx]dz] (40)
R R_
n
/?z '2 /\'< '2 /;< ‘1
= Ph*r "dz = Ph*r hdt + Ph*r db .
/\
Using (11) with x 2P, ¢ 2P, £ 2ph¥*r h, gAPh 1 and w2b,
-1 -17 A |
aety = cp*rim-hyat - PR L an .
. _ B A
Finally, using (11) with x2 @ LQ)* 62ap"!, £2 (P r2m.h),
~ RIS o 1%
£Q+Qh*r‘2)', gé (-P 1h"‘r 1, Qh'r 1) , and w 2 b,
Q _ =1Q sl -2, Q ES -1,0
d(?.) = (g(f)) + h¥r hf,)dt+h r(3) b
“.-2 AR To-1Q Q
h*r “(h -h)(F) dt - b¥r T (5)db - T h(I—D) (41)

§(2)ot+ b-hyr (D) (az -har) |

At this point all the operations on Q/P have been formal, assuming
that the conditional density has the necessary differentiability.
Actually, (41) will be used only in terms of its integral, and the
rigorous conditions of validity need be applied only to the integral,
which is the stochastic differential equation for conditional

expectations,
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Let ¢ be any scalar function, twice continuously differentiable

in x:
& - /q;(x)p(x'z)dx
Rn
and
AN
db =fR o(x) (dp(x]|2))dx . (42)
n

Substituting (41) into (42) provides

db = f ¢(x)(§3p(x|z)+(h-ﬁ)’*‘fzp(xlz)(dz-ﬁdt))dx. (43)

R
n

~

Let £ denote the formal adjoint of £

n n 5
9 1 ” 0
Zfi ox, T 2 z [gg ]ij 0x,0x. (44)
i=1 g, 5=1 o
Then (43) becomes
A P ~ AN -2 A
dé = L£odt + (dh-oh)*r “(dz -hdt) . (45)

In Kushner's unpublished note, he presents a proof showing
that under certain as sump‘cionsﬂ< (45) is meaningful. For the pur-
pose of this dissertation, (45) can be considered only formally
correct. In any case, (45) is the key equation from which the

approximate filter is derived.

* 12 of them!




3.4 APPROXIMATE FILTER EQUATIONS

The use of (45) as a differential equation for { results in

P
x.h

A ANy n
ax, = fidt+(xh-%h)r %(dz -hat) (46)

i
which is not very practical because é\i’ }/;, and gl\h are needed con-
tinuously. As the first step in the approximation, let f and h be
approximated by a second-degree expansion about xzé\c; also, for
notational simplicity, suppress the explicit appearance of t as an
argument of f, g, and h, since their dependence on time is inciden-

tal to the following manipulations, Then, adopting the summation

convention

) = @+ 60 %) « 208 Qe - X -5 @)

where f(l) = Bf /8x and f(z) = azfilaxjaxk. A similar expression

holds for h. From (47)

A /\
e = g6+ 3 R - R -4 (48)

/\

where (xj - Qj )(xk - )/ék) is the conditional covariance of x and is

denoted Pij . Similarly

-
[

LaasY
i,

L A
(x) = fjk (x)Pki + xifj(X) . (49)
Using (48) and (49) for f and h in (46) provides

ax, = f£(Rat+ 4 (2)(X)P dt

(50)

PJh(l)(x)r [dz2 W h(z) J&p )dt],
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The next step is to find a differential equation for P.
In general, even with a second-degree expansion for the nonlinear-
ities, an infinite sequence of differential equations is required,
because all the moments are needed to describe the conditional
density. * However, by assuming an appropriate form for p(xlz),
the sequence stops at P. The first assumption, used by Bucy [7],
is that third and fourth central conditional moments be neglected.
In Schwartz and Bass [32], it is shown that the assumption is
reasonable for a distribution with most of the probability mass suf-
ficiently close to the mean. If it is assumed that p(x l z) is Gaussian,
the sequence also stops at P, and there is no restriction on the
size of the moments,
N AN
- X.X,

Since Pij can be written (x.x . dPij is derived in two

iy i
parts. Let ¢ = Xixj and use (45) to find dx/i;j' Since
£ X%, = fixj + fjxi t 88k -

it follows that

(51)

* Equivalently, quasi-moments may be used, see Fisher (13].
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Next, let ¢ = Qié\(j and use (11) and (46) to obtain

A a(QIQ) R
dxixj :—-———J—aﬁk [f dt + (xkhﬂ th )r (dzm-hmdt)]
(52)
f&.8)
1 9555 N A A 2 N AA
+ 5 (h_x, -h_x,)r (hx -h x )dt
28A8§ mk mk'"mn ‘' nyg n
K%
Combining (51) and (52) provides
AN OAN AN AN A
dPij = (fixj-fixj+fjx1-fjxi+gikgjk)dt
NN AN -2, AA
-(x; -xihk)rkz (xjhl-xjhz)dt (53)
. NA AN AN AAAT 2 }/; 4
+l:xixjhk—xixjhk-xj xi-xihkxj+ 2xixjhk]rk£(dz£— 2 t),

which is an exact equation. The derivation of the approximate form
of (53) is a tedious algebraic exercise, and is covered in Bass,
Norum and Schwartz [2]. For completeness, several intermediate

results follow: For either assumption about the conditional density,

xixj(xk—)/c\k) - xi(xk-éék)ééj - xj(xk—%()xi - 0.

For the first assumption,

fxbh -%xh X+ 25850 ——P((Z)() ). 54
50k ijhk'jhkxi'ihkj ijhk =2 by %) By ) -
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For the other assumption, the right-hand side of (54) is

1 (2) A
Z(Pilpmj + P1n”1 ll)hklm( x) . (55)

For simplicity, let the term in parentheses in (55) be denoted by
Tijkl . Then, if gg* is also expanded in a second-degree approxi-

mation, the following equations are obtained:

ap; = lkf(li)(x)dt+ f(l)(x)P dt - ]kh(ei()( x)r zmhr(nlri g Gt

T 8,k8; k(x)dt+2[g1kg)k]( )( )P mn dt (56)

-2B, h(z)z(x)r (az_-n_®) - h(z)() )

2 npq ij

and

dB; = P, f?”(Q)dHfgli)(Q)ij it - . W&y 2 h(”( )P, dt

ik7jk ik gk

+ gy gy () dt + zgy 80 )0 ) B (57)
1 (2) A 1.(2) A

3 2 Tl]kl mk/{ (x) ( n’ hn(x) B 7hnpq(x) qu) )

where (56) uses (54) and (57) uses (55).
The problems associated with the above formulation for the

filter equations are discussed in the next chapter.
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4. DERIVATION OF VALID FILTER EQUATIONS

4.1 INTRODUCTION

This chapter begins with a critical re-evaluation of the
approximation procedure used in Chapter 3 to generate the filter
equations. No matter how rigorous the derivation is through (45),
the resulting filter equations are unsatisfactory from the stand-
point of mathematical validity. A modification to the approximation
is made which results in a set of filter equations that are valid in
the sense that they satisfy existence and uniqueness conditions (if
the system nonlinearities satisfy certain assumptions) and that
they are derived from an approximate system that also satisfies
these conditions. The new equations, which contain a parameter
k such that they are valid for any k > 0, and are almost identical
to the previous equations when k = 0; this fact leads to a definition
of computational validity which is satisfied by a slightly modified

version of the previous equations,

4.2 CRITICISMS OF PREVIOUS DERIVATIONS
The first step in the approximation procedure is the replace-

ment of the exact system model by a power series expansion about
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the instantaneous value of the conditional mean. The resulting
differential equation cannot satisfy the conditions of the existence
and uniqueness theorem given in Chapter 2, because a polynomial
of degree 2 or more is inherently not sublinear. To put the
problem in its proper perspective, it should be noted that the con-
ditions of the theorem are only sufficient conditions, and it is not
claimed that they are necessary. Moreover the problem stems
from the white-noise model; it is not inherent in the physical
problem. However, given that the original mathematical system
equations have a unique, bounded, continuous solution with proba-
bility one, it is highly desirable that the approximate system also
exhibit the same characteristics.

For the filtering problem, uniqueness in any of the equations
is more than a desideratum, it is a necessity. If the approximate
system of equations with a given set of initial conditions can be
satisfied by an infinitude of solutions, in what sense can a solution
be considered an approximation to the solution of the original sys-
tem with the same initial conditions? Obviously, then, it is neces-
sary to guarantee the uniqueness of the solution of the approximating
equations. Moreover, for the same reason, it is equally necessary
to guarantee that the filter equations themselves possess a unique
solution, while the present filters do not satisfy the presently

known existence and uniqueness conditions.
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4.3 MODIFIED APPROXIMATION

The first requirement noted in the previous section is that
the approximate system equations satisfy existence and uniqueness
conditions. One difficulty arises in relating the filter equations to
a set of system equations: the expansion of gg* in a second-degree
power series to obtain the equation for dP may not correspond to
any real coefficient matrix for dw in an approximate equation for dx.
To avoid the aforementioned difficulty, a linear expansion for g in
the system equation is assumed. The change in the approximation
to g is the slight modification alluded to in Section 4.1. The effect
of the change can be inferred from the following: the quadratic

o A
expansion of gg" about x is given by

A A
og; (%) 0g, (%)
8X£ BXm

(xq - Qz)(xm- }/}m)

+

For simplicity, let agij/axk be denoted by gi(jL).




To meet the existence and uniquess conditions, the
following expansion* is suggested to replace (47), for k > O:
A
-k Ix-x |2[f

fli‘(x) . fi(§)+ e gjl)(;é)(xj-g\cj)+%—f§j2£)(§)(xj-Qj)(xl—ﬁe)], (58)

plus the following expansion for g:

k —k|x—>/é|2
g

L) = g+ e gl B, %)) (59)

Clearly, fk and gk are sublinear and satisfy a local Lipschitz

condition, therefore the approximate joint system

dx fk(x) gk(x) 0 dw
= dt + (60)
dz 1 (x) 0 r(t)|{ | db

satisfies existence and uniqueness conditions. Note that (58)
approaches (47) as k — 0, so that the approximations can be made
arbitrarily close to each other, in a sense that is made precise
later in this chapter.

The filter equations, derived in the coming section, are
based on the assumption that the conditional density may be ade-

quately approximated by a Gaussian density.

* Note: (47) and (58) are close in a neighborhood of Q, but have
different asymptotic behaviors.
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4.4 MODIFIED FILTER
The following definition will be useful in the derivation of

the filter equations:

m A
[“'k(P)]il...im =
A k| x-%|? - . exp [—%—(x -}’;\):::P'I(X-Q)]
= f € H (X. - X, ) " dx . (61)
i i n/2 1/2
Rn jo1 303 @m%(det P

The right-hand side of (61) can be written as

1/2
[det (2kI_+ pHh f = A )(x-;’éﬂ
172 IT & -%) Ty dx

1. i. n/Z
an:1 j j (2w) [det(2k1n+P)

1 b -
exp[-g(x-ﬁ) (2kI_+P L

(det P)

so that the tensor whose components are given by (61)

-1/2
KRP) = [det(ZkP+In)] u(r)n[(ZkIner‘l)’l]. (62)

k 4

For simplicity, let P HIE (P) and i 2 [det (2kP + In)]_l/z-

The basic steps in deriving the filter equations are those

outlined in Chapter 3. From (58) and (61)

A A1 @)A1k

Lo = &)+ 31 (P (63)
and

L) = (IR PR 4 £ x) (64)

ij je 0 1]




Then (50) becomes

N (2) n
ax, = £ )dt+-fJ & )ngZ dt
B . (65)
(1) A [ ) A 1.(2) Aok
+P by e (97, (hm(x)+—2—hmnp(x)Pnp)dt .
To compute Pk, which is needed for (65), note that (62) implies
L
= [det(ZkP+ In)] 2(2kln+ p) ! (66)
Thus, it suffices to compute P, as before.

The derivation of the expression for dP also follows the
pattern established in Chapter 3, and (53) still holds. The new
expression for (55) is

ek e pypR 4 BE PR 4 PR pR n(E) (& (67)
2 557k 5) Fpa ¥ Fiq Tpy * Tip aj| "mpq
To prove (67), the following manipulations are useful
4 4 -1,-1
p,k (P) = Cx }.LO[(ZkIn+P ) ] . (68)
But it is shown in Laning and Battin [28] p. 83 that
1. _ 2 2 2
[l-lo ijpq [“0]13[“0]pq + [“OJiq[“O]pj + [”o ip[po]pj (69)

where the argument, (2k1n+ P—l)-l’ has been suppressed.
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Also

|

2 -1.-1 -1 2
Ty [(2k1n+P ) ]— ¢y My (P)
(70)

Repeated substitution of (70) into (69), and substitution of (69) into

(68) provides

€ k| x -2 A A A A ') _
(e (xi-xi)(xj -xj)(xz-xﬂ)(xm-xm) z) =

(71)

It

c—l(P.k.Pk +P.kP.k +1:>k P )
k \"ij Im il " jm im " j4

The remaining manipulations are straightforward, but tedious.

For simplicity, let the bracketed factor in (67) be denoted

T1.<. . The modified version of (57) is then
1jpq
_ k (1),A (1)yA, =k
dPij = Pilfjﬂ (x)dt + fii (X)Pﬂj dt
(1) A, -2 . (1),A, ok A A
P h ( X)r hnp (X)Ppj dt + giz(x) gjl(x)dt

(72)

rglpr Rl GBS at

1 -1k ,(2) [ A 1.(2) A ok ]
t>Cp Tlﬂm nlm( )r dzp (hp(x)+7hpqr(X)qu)dt .
To determine if the filter system (65) and (72) satisfies existence

and uniqueness conditions, it is convenient to recast the equations

in the form of a single vector equation, as follows:
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Let s be the vector of dimension n(n+ 3)/2 with components

defined by S; :;\(i for i=1,...,n; and s, = qu where i=q+np -p(p-1)/2
forq=1,...,p; p=1,...,n. Itis easy to verify that s contains each
element of Q and each nonredundant element of P. It is more con-
venient to use the notation qu in place of h for 1 > n. The f{ilter

system can then be rewritten in the form

ds = a“(t, s)dt+ b (t, s)dz , (73)

where, restoring t as an explicit argument, from (65), for i=1,...,n

ali‘(t,s) = f(t,s)+ ——f(z)(t s)P *(s) - P} (s)h(l)(t $)T,~ (h_(t,s)
_% Pf;(s)hg )(t,s)r-lfn(t)hg;p(t,s)Prll(p(s)
(74)
bE(t,s) = Pf;(s)hg)(t,s)r}fn(t)
and, from (72) and (59), for i >n
ali(j(t,s) - pii(s)fﬁ)(t,s) ¥ P!};(s)fg)(t,s)
- Py (1P e sn] ies)e 2 0 + g, 6008 (t0)
Pos(s)el ) (ts)el) (t.s) (752)

_-lz-c-kl(s)T (s )h(z) (t,5)r (t)h (t,s)

ekt o et
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and

1. ]
b‘,fj(t,s) - —2-ckl(s)Til;fm(s)h;izn(t,s)rni(t) ) (75b)

Note: If any of the terms in (74) and (75) include a factor of sij
with j > 1, by symmetry, Sji may be substituted so that only the
upper triangular elements of P are used.

The validity of the filter, in the sense adopted herein,
depends upon the characteristics of a.k and bk, which, in turn,
are given by (74) and (75). A certain amount of preliminary
analysis is required to determine if ak and bk satisfy existence
and uniqueness conditions. The quantity Pk occurs quite often in
the expanded equations. From (66), Pk can be seen to be bounded
for nonnegative definite P; since P is a covariance matrix, it is

required to be nonnegative definite. The quantity S is

essentially of degree n/2 in s, atleast when |P| becomes large*,
and violates sublinearity, but the product CI{ITk is sublinear, as

is implied by (70). Then, by inspection, the following conditions

are sufficient for validity:

1. f is twice differentiable everywhere, such that
eachf{., f(.l), and f(.z) is sublinear.
i’ Tij ijk
2. h is twice differentiable everywhere, such that

h(l), h(z), and lhl : lh(?‘)l are bounded.

* |P| is the norm of P.
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3. g is differentiable everywhere such that each

(1) (1)
8;i8ky 379 8451 Eymn

is sublinear.
It is assumed from this point on that conditions 1-3 are met, so that
(73) is a valid stochastic differential equation for the filter.

One of the conditions required in the derivation is that P
be nonnegative definite. If the filter equation were exact and the
solution to the P equation were truly the conditional covariance,
the condition would be met automatically, as noted above, because
of the properties of a covariance matrix. However, in the present
case, the solution to the P equation is merely an approximation to
the conditional covariance, and is not guaranteed to be semi-
definite. At this point in the state of knowledge of stochastic
differential equations, the problem of determining conditions
under which the computed value of P is nonnegative definite is
unsolved. The following pragmatic rule is suggested: If, in the
course of an actual computation, P should fail to be nonnegative

definite, the approximation must be considered improper.

4.5 COMPUTATIONAL VALIDITY

It has just been shown that the modified filter is valid for
any k > 0; for k =0, the equations are essentially the previous
invalid filter equations. The results to this point are true for
the mathematical problem derived from the physical situation.
It is shown in this section that when the mathematical solution is

transformed into a computational algorithm for use on a digital
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computer, the equation for k =0 is also valid in the sense that
there is an equation for some k > 0 that computes the same values
of ds/dt as the equation for k =0,

It is interesting to note that while the vector s was con-
structed to allow the use of the vector form of the theorem in
Chapter 2, an actual computer program would probably be coded
in terms of the vector s, since most differential equation inte -
gration routines are designed to integrate a first-order vector
equation, and since it is inefficient to compute the redundant ele-
ments of P. The formal conversion of (73) to a computer algorithm

would entail writing the related ordinary differential equation

ds

el ak(t,s)+bk(t,s)y , (76)

where, as in Section 3.2 dz/dt is taken as y,since y is now a
physically measured signal.

It can be seen with little difficulty that for k = 0 the filter
equation (73) reduces to the vector form of (50) and (57) except
that g(l)g(l):ﬁ replaces [gg*](z}z, as discussed earlier in this
chapter. Also, for fixed t and s, ak and bk are continuous func-
tions of k. Furthermore, for a computer mechanization y is
bounded and there is a difference threshold within which two
numbers are considered identical. Let Y be the bound

on y and let ¢ be the difference threshold. By the continuity of

ak and bk, for a given t and s there exists a k>0 such that
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|a"(t,s) - a%(t, s)| + | BN (t,8) - bO(t, 8)| Y < € . (77)

Moreover, since t and s are also bounded for computer applications,
there exists a k > 0 such that (77) holds for all attainable t and s.
Thus, the value of ds/dt computed for 0 <k =< k is identical to that

computed for k = 0.




5. SIMULATIONS

5.1 INTRODUCTION

There are a number of reasons for the simulation study.
First of all, despite the strong flavor of basic mathematics in the
research into nonlinear filtering, the technique is essentially com-
putational and is useless if it is not mechanizable. Secondly, the
excuse for studying nonlinear minimal-variance filtering is the
hope that it is an improvement over other filtering approaches in
the computational environment. Finally, there is still some
question about how to mechanize the integration. In particular,
if the integral is mechanized as an ordinary algorithm like
Runge-Kutta or Adams, should the mathematical approach still
be used, or is the mathematical approach good only for rectangu-
lar rule integration ’.;:<

The numerical investigation was conducted for eight dif-
ferent approaches to filtering, for two sets of dynamics, for two
measurement schemes each. The two systems were chosen such

that one satisfied existence and uniqueness conditions for stochastic

differential equations while the other did not. No difficulties were

* Recall the discussion beginning on page 18.
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anticipated in connection with filtering for the second system in the

actual computer environment,” and none were encountered.

5.2 FILTER EQUATIONS

Because of the large number of cases involved in the study,

only first-order systems are considered,

| (p1) &
| (M11) y
(M12) y

where v and w are white noises.

The first system is

X
- + v
1 + x
-1
tan  x + W (78)
X+ wW

With either measurement scheme

(M11) or (M12), the overall system satisfies existence and unique-

ness.

dx

(D2) ar
(M21) y
(M22) y

i

The second system, which does not, is given by

=X + v
x+x3+w

(79)

X+ w

The filtering schemes are outlined below. For the outline,

f and h are the system nonlinearities as in (8) and (13).

The

*Because of the boundedness noted in Section 4.5, the nonlinear
functions are forced to be sublinear as mechanized; therefore the
apparent violation of existence and uniqueness conditions does not

really occur.




white -noise processes, v and w, are assumed stationary with
covariances o_f and UWZ, respectively so that g = o, andr = ¢

The subscript 'n' denotes nominal, 9{ is the estimate of x, p is the
approximate covariance, and a prime denotes differentiation. Note
that for linear measurements, Mi2 and M22, certain terms vanish

and there are only three different filters.

1. Linear
The linear filtering algorithm can be applied to a set of
equations linearized about an a priori nominal motion. The

equations, derived by Kalman and Bucy [23] are

dx 1 -2 1A
Fral fnx to, phn(y -hnx) ,
(80)
dp _ -2 2,12 2
I - 2pf —crwphn+
2. Quasi-Moment Minimal-Variance
This is the filter derived by Schwartz and Bass [32], ana
independently by Fisher [13].
R
s f(x)+ f (x)p + cr ph (x)[ h(x)- ph (x)]
(81)
d 1A 22 12.A -2 2.1 A U LY
P = 2pf (%) - (x) + o “p“h (x)[y-h(x)-—zph (x)] +o
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3. Truncated Minimal-Variance

This is the filter derived by Bass, Norum, and Schwartz [2].

A
d A 1 1A -2 WA Al 1A
= - R+ LD+ o Zon By -nd) -Serd)]

(82)
dp _ YN -2.2.02,a 1 -2 2vA [ A1 n/\] 2
92 2pf' () - 0 2pPH AR - 30 2PN A) [y - neh) -Lp' )] 4 02

4., Modified Minimal-Variance

This filter is a compromise between (81) and (82) which is
based on the difference in the driving terms in the p equation. By
dropping the driving term, the filter is simpler, yet the response

falls between the responses for the two preceding filters.

A
d A1 A -2 1A Al
o= 1)+ 5t Rp + o ph'(x)[y-h(x»;ph“(é)] :
(83)
dp B t,A _ -2 2, 12,A 2
I - 2pf (%) o, P h (x)+ov .

5. Maximum-Principle Least Squares

This filter is derived by Detchmendy and Sridhar [10] for
minimizing an integral -square-estimation-error criterion, using
deterministic techniques. By the use of Pontriagin's maximum
principle the minimization is "reduced' to a two-point boundary-
value problem which is solved by an invariant imbedding technique

using an approximation to one boundary condition.




A
S = @)+ o ph Ry -h@)]
(84)
Lo o2pr' @) - 0Zp%n 2@ + o 2PN Ry - )] + o2

Actually, (84) is a special case of the derivation in Detchmendy and
Sridhar [10]; they used arbitrary weighting functions in the criterion
integrand, while (84) corresponds to the particular set of weight-

ing functions that result in the Kalman filter for linear dynamics.

6. Dynamic Programming Least Squares

This filter is derived by Cox [9] for a criterion which is
similar to that used for the previous filter. The minimization is
effected by dynamic programming using a quadratic approximation

to the cost function.

A
dx A -2 LA A
T = fx)+ o "ph(x)y-h(x)] .
(85)
dp _ v =2 2,124 2
I ° 2pf (x) O P h (x)+c7V

A look at (85) shows that this filter is essentially equivalent to
using linear filtering about the computed mean, a technique that

had been used heuristically previously.

7. Discrete-Measurement Minimal-Variance

This filter is derived by Jazwinsky [21] for a minimal-

variance criterion under the assumption that the measurements
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arrive at isolated instants. The form presented here is the

limiting form for continuous measurements.

A
S = 1@ + 3" Ap + o ph' Ry - b A

(86)
& - 2p6'R) - 0% 0 R - o Ry -]+ 0l

Since the evolution of the system itself is considered continuous,
the portion of the equations related to updating the estimate in the
absence of measurements agrees with (81), (82), and (83). The
loss of the term in h”(>/<\) is due to the difference between the physi-
cal and mathematical approaches discussed in Chapter 2. In the
derivation of (86), Jazwinsky uses the approximation to the condi-

tional density that is used to derive (82).

8. Modified Discrete-Measurement Minimal-Variance

This filter is related to (86) in the same way that (81) is
related to (82), i.e., the conditional density is assumed to be

Gaussian.

d}/é 1 u,A A A
el f(x) + f (x)p + 0 ph (x)y - h(x)],

(87)
P = 2p'(R) - 0 2p7h 2R + 0 2R Ry - h®)] + o

The application of (80)-(87) to (78) and (79) is straight-

forward and is not carried out herein.
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5.3 SIMULATION DETAILS

The first simulation program was used for familiarization
and preliminary investigation of certain basic questions. For
example, the analysis discussed on p. 20 relating the white-noise
model to the simulated white-noise sequence was substantiated by
showing that the filter performance deteriorates drastically if the
factor of At is ignored. Also, it did not seem to make an essential
difference if the integration was performed by a Runge-Kutta
scheme or rectangular rule.

The computer program that was finally used for the simu-
lation study included a simple rectangular-rule integration with
constant step-size. The use of constant step-size allows each
filter to be compared on the basis of the same pseudo-random
sequence. The random number generator is a combination of a
standard uniform random sequence routine plus an approximate
transformation to a Gaussian random sequence. The program has
two modes of operation: in one mode, only a single estimation is
made with a prespecified initial condition for the state; in the other
mode, several runs are made for random initial conditions, and
the statistics of the estimation errors are computed. The output
from the program is a computer-prepared plot showing the time-
history of the filter response or the error statistics. The plots

show every 20th point with linear interpolation between.




5.4 RESULTS

As noted earlier, the simulation study was not intended to
be a complete investigation of the computational characteristics of
nonlinear filters. Two standard cases were used, which were com-
putationally docile when used with the step-size chosen. For both
dynamical equations (D1) of (78) and (D2) of (79), the standard run
consists of 5000 points 0.001 second apart for a total problem
time of five seconds, with cri = 1 and Uvi = 10. Only the initial
condition differs, Figures 1 and 2 show the state x and the meas-
urement y for the two standard cases. The figures show the non-
linear measurement, but the noise is so large that there is not too
much apparent difference between the linear and nonlinear
measurements.

In the response to the standard inputs, there is a large
difference between the response of the linear systems and the non-
linear systems, while the various nonlinear systems are remark-
ably similar. Figures 3 and 4 show the estimation error for the
two standard cases. As might be expected, linear measurements
help the linear system. What might not be expected is that the
relative error performance of the nonlinear filters within the shaded
region is different for the two cases. To show that the results in
Figures 3 and 4 are not peculiar to the particular initial condition
and pseudo-random sequences, three representative filters were
chosen for a set of ten runs. The mean and mean-square errors are

shown in Figures 5 and 6 for initial conditions with variance one for
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the first case and variance 1/4 for the second case. It can be seen
that the error statistics are still quite close, practically indis-
tinguishable from a mean-square error point of view. Moreover,
the relative error performance of the chosen filters is qualitatively
unchanged.

While on the topic of statistical runs, it is interesting to
note the comparison between the output of the p equation for an
initial condition of one standard deviation and the mean-square
error for ten runs for one case, as shown in Figure 7 for filter 2,
dynamics D1, and measurement M11l, Moreover, it was found that
the change in the mean-square error for a larger number of cases,
up to 50, while noticeable, was relatively small.

The effects of changing the statistics of the random sequences
are similar for all the filters, and are intuitively reasonable.
Changing o, has little effect on the initial response, though the
higher ¢, the worse the ultimate following. Contrariwise, increas-

ing @

w Slows the response noticeably without affecting the ultimate

tracking. The error responses for filter 2 with D1 and M11 are
shown in Figures 8 and 9.

The runs, mentioned earlier, demonstrating the correct-
ness of the noise model, show the effects of improperly matching
the filter parameters to the noise statistics. The effect of the
mismatch on x-% and p are shown in Figures 10 and 11. For all
the curves shown, the actual pseudo-random inputs were taken

from identical populations, only the filter parameters varied.
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Evidently a statistical mismatch can seriously affect the performance
of the filter. It also appears that the value of p generated by the
filter is a good index of the performance, even when the statistics
are poorly matched.

The final aspect that was studied on the computer is the
effect of sampling the data. Two approaches to sampling were
considered: sample-and-hold and pulse sampling. For the sample-
and-hold runs, the effective noise variance was obtained using a At
equal to the sampling period, rather than the computation interval.
For the pulse-sampling runs, crv;l was made zero for those inter-
vals during which no measurements were made. Both types of
sampling were applied to filter Zwith dynamics D1 and measurements
M1ll., The response plots are shown in Figure 12. As should be
expected, sampling is detrimental to the initial response of the
filter, though ultimately the estimate settles in to the proper value.
From the one case considered, sample-and-hold appears some-
what better than impulse sampling, which may be due to the
smoothing effect of the zero-order hold.

There is one problem in mechanizing the filters, which has
not yet been discussed, that requires much more investigation: the
effects of the filter parameters and the step-size on computational
stability. For some combinations of parameters o, and T and
initial covariance p (to), the step-size must be made small to
stabilize the computation during the initial portion of the run. The

reason for the instability is the large value of the derivatives and
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the consequent large truncation errors introduced in the integration.

A particularly insidious form of computational instability arose in
the course of the simulation study: it is possible to be in a condi-
tionally stable region such that one pseudo-random sequence with
a given statistical description results in a stable response, while
another sequence drawn from the same population does not. How-
ever, because of the nature of the computational stability problem,
it is most effectively studied for a particular equation; general

results are difficult to find.
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6. SUMMARY AND SUGGESTIONS FOR FURTHER WORK

6.1 SUMMARY AND CONCLUSIONS

The preceding treatment of the problem of the construction
of approximate continuous nonlinear minimal-variance filters can
be divided into three parts. The first three chapters are intro-
ductory in nature, and cover a general background of the problem,
the mathematical preliminaries required for the analysis, and a
detailed account of the previous work leading up to the dissertation.

Chapter 4 constitutes the second part, which is the con-
struction of a mathematically valid filter. Here, the term
"mathematically valid' implies that the stochastic differential
equation for the filter satisfies existence and uniqueness condi-
tions, and also that the filter is derived on the basis of an approx-
imate dynamical representation that satisfies the same conditions.
Since previous derivations violate the requirements for validity,
certain modifications are necessary, particularly in the way the
differential equation for the system is approximated. Then, given
a valid formulation for the filter, it is shown that in the actual
computational environment the nonvalid quasi-moment minimal-
variance filter is also valid in the sense that there exist mathe-

matically valid filters that are computationally identical to it.
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The final part, presented in Chapter 5, is a computational
investigation of nonlinear filtering, including filters derived by
different techniques and for other criteria. Apparently, nonlinear
filtering is superior to linear filtering, although no one nonlinear
filter offers any clear-cut advantage over any other from a per-
formance point of view. It also appears that the filters derived
from a continuous model are quite amenable to sampled-data use.

The mathematical problem solved in Chapter 4 arises from
the probabilistic criterion and the white-noise model; it does not
appear in the statistical approaches which use a deterministic
criterion and which need no postulate about the form of the noise.
There does exist the problem of choosing a weighting matrix in the
criterion integrand, but that is not at all a theoretical problem.
Moreover, in view of the success of the heuristic nonlinear filter
obtained by continuously updating the nominal for the linearization
in the p equation and using a nonlinear updating in the 2 equation, it
is difficult to justify from a practical point of view all the mathe-
matical difficulties that arise using the probabilistic nonlinear
approach. Granted, the computer investigation reported in Chapter 5
is insufficient evidence to support any final conclusion, but it does

offer food for thought.

*It appears that the covariances of the equivalent white-noise pro-
cesses are a good choice for the weighting matrices, even though
the white-noise assumption is not made.




6.2 FURTHER WORK

The derivation in Chapter 4 used a truncated quasi-moment
expansion for the conditional density, in which only the mean and
covariance were included, plus a modified second-degree expansion
for the system nonlinearity. It would be interesting to extend the
derivation to include higher quasi-moments and higher-degree
expansions for the system, should the probabilistic approach still
be of interest.

No derivation, probabilistic or statistical, seems to allow
for a state-dependent measurement noise, yet there are practical
situations in which the noise is state-dependent, The variation of
the noise with state could be included heuristically, but it would be
desirable to include the effect in a theoretical derivation,

In view of the comments at the end of the previous section,
an attempt should be made to compare the various approaches
analytically, It is not at all satisfying to base a general conclusion
on a limited sample of computer runs.

A number of areas are open for numerical investigation,
the most important being the numerical stability of the equations.
Another problem is the simulation of higher order problems, and

a third is a study of the effects of modeling errors.
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