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Intro
Introduction

Let A be the harmonic operator on R

A:%<78§X+x2).

Properties of A

This operator is self-adjoint, with compact resolvent.

The spectrum of A is explicit

Ad; = \;®;, (®;) = Hermite functions, \;=j+1/2.
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The model

Model of a single trapped ion:
, Q
/at¢eZWA¢e+§¢e+(u+U*)wga (t,X) S (07 T) XRa

1Oy = whihg — g@bg YUt u e (LX)e(0,T)xR, (1
1/}6(07 X) - ¢2(X)7 ¢g(0a X) = wg(x)v x eR.

@ w,Q arelarge real numbers ! Q> w > 1.
@ u is the control function, superposition of 3 lasers:

u(t, x) = Lo/ (Q=v2m0%) 1y l(-w)t=v2nrx) 1) oi(Qtw)t=v2nmpx)
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The model

Physical constraints on the control function:

u(t, x) = uo e/(Q=v2n0x) 4 1} oi(Q-w)t=v2nex) 4 Up ei((Q—i-w)t—\/ﬁnbx)’

@ (ug, up, uy) € C3.

@ t— (up(t), up(t), ur(t)) is piecewise constant.

@ at each time t, there is at most one control “on".

@ n are the Lamb-Dicke parameters, assumed small

n <.
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Intro
The model, main assumptions

idutre = WAV + e+ (Ut U Mg, (LX) (0.T) < B,
iOphg = wApg — %T/}g +(Uu+u e, (t,x)e(0,T) xR,
ve(0,X) = ¥a(x), ¥g(0,x) =¢9(x), xeR.

Q>w>1, <1,

u(t, x) = U /(U=v2m0x) |y oi(Q=)t=v2mrx) 4 ), i (2Fw)t=v2npx),

Problem
Can we control this systems with such controls ?
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Intro

Our result: Approximate controllability

Theorem

Let (43, 49) and (1§, 1§) of unit (L?)2 norm.
Then Vé > 0,3(X, no, po), such that for all (w, ) with 2Q > 3w
and

wr)
n < 1o, KT:N/”? 72/)07

there exists a control u(t, x) as above, furthermore satisfying

sup{|uo(t)], [ur(D)], lup(t)[} < K,

such that the solution (te, 1g) of (1) with initial data (43, v/9)
satisfies, for some 5 of modulus 1,

|we(T).we(1) = BEL WY, <0
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Intro
Comments

e Many different interpretations of the conditions
n<m, KT=N/n % =>po
@ Kfixed,thenn <1, T=T"/n,and w > w*/n.
o Tfixed:n <1, K=K*"/n, w>uw"/n?
o w Qfixed:n<« 1, n/K>1, T=T"/(Kn).
o K=mn<1,w>1, T=T"/r4

e We always have w > K.

e If, at time T, the control is turned off, the solution stays ina ¢
neighborhood of the target trajectory.

e Can be generalized for all norms ||(-, )|, « x> S€€ later.
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below.

e Exact controllability:

@ Negative results: Ball, Marsden, Slemrod, Turinici,
Mirrahimi, Rouchon.
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The Cauchy problem

Vi) € D(AK/?)

el = 4%y
_ 2\1/2 k/2y2
I@r Vo)l = (ol + llally ) ) V(wr,2) € D(ARS2)

[2(R)

iazwe:CUA@ZJe‘F%d)e"‘fng, (t,X) € (O, T) x R
Dy = wAg — g+ e, (tX)€(0.T) xR, @
we(ov X) = wg(x)v 1/’9(07 X) = wg(x)v xeR.

Here f = f(t, x) is real valued.
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Cauchy

The Cauchy problem

Theorem

Let T> 0. Letf: (0,T) xR — R, f € L=((0, T); CA(R)).
Then, for all initial data (¥/2,9) € L?(R)?, there exists a unique
solution (ve,g) of (2) in C([0, T]; L3(R)?), and Vt > 0,

el Yo (D)oo = |3 4D, -

Moreover, if (43, ) € D(AK/2)2 and f € L>((0, T); C£(R)),
then (ve, ¥g) € C([0, T]; D(AK/2)2).
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Sketch of the proof

@ Step 1: Prove that the map
Ve(ve, 1hg)(t) = S(t)e™ /2y + i / S(t — s)e " N=I/2f(s)yq(s) ds,
0

. t .
Wg(te, bg)(t) = S(t)e™/2pg + i/ S(t — 5)e ™92 f(s)ye(s) ds,
0
on Y = C([0, T]; D(A¥/?)?) endowed with the norm

el = svp {&[(we(t) Vol }

is a contraction, for a good choice of A. (S(t) = exp(—itwA)
is the free Schrddinger semigroup).

@ Step 2. A priori estimates for smooth solutions.
@ Step 3. Limit for low-regularity data.
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Approximations Law-Eberly Formally

An approximate system: Law-Eberly

Let us consider the approximate system

Orde = (us +via+ vgaT)qﬁg, (t,x) € (0, T) xR,
@)
irpg = (o + via' + vba)de,  (1.X) € (0,T) x R,

with

a:\1@(x+8x>, aT:\;é<x—ax).

Here v, and v, respectively correspond to —inu, et —inup.
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Approximations Law-Eberly Formally

An approximate system: Law-Eberly

Let us consider the approximate system

06 = (us Fviadt vgaf)¢>g, (t,x) € (0,T) x R, ;
iO1pg = (uo +val + vba>¢e, (t,x) € (0, T) x R, ©
with ’ 1
a:\TZ(XJrax), aT:ﬁ<x—ax).

Here v, and v, respectively correspond to —inu, et —inup.

Advantage: This system is exactly controllable !
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Approximations Law-Eberly Formally

Some spectral theory

The operators a and a' respectively are the annihilation and
creation operators.

1 1
A—a' _ —aal — —
ala+; =aa -

ad, =0 {a¢n+1 =vn+19o,
0= afo, =vn+1o,.,

Notations: For M € N, we define

vn e N.

VM:span{CDj; 0 §j§M}.
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Approximations Law-Eberly Formally

Law-Eberly, a refined version

Theorem (Law Eberly revisited)
For all (¢2, 43), (%, ¢3) € V§; of same (L2)2-norm, there exist
T > 0 and a control t — (up(t), v¢(t), vp(t)) such that
@ (¢e, ¢g) solution of (3) with initial data (¢2, ¢3) satisfies
(¢e(T), dg(T)) = B(¢s, ¢y) for some 3 € C of unit modulus.
° Vte [0, T], (de(t), dg(t)) € V-
@ There is at most one control “ON"
@ There are at most 2M switching times.

@ Imposing |up| < Ko and |v;|, |vp| < Kj, then one can take
any Ts.t. T > T*, with

. (M+1
r Ko K1Z
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Approximations Law-Eberly Formally

Sketch of the proof

e if Ug is the only active control:
[Otpe = Uydg, [0tpg = Upde, (t,X) € (0,T)xR.

The ratio of populations < ¢e, ®, > and < ¢4, ®, > oscillate at
frequency |up].

e If v, is the only active control:
iat¢e == V;-ka¢g, lat(bg == VraTgbe, (t, X) S (07 T) x R.

The ratio of populations < ¢e, ®, > and < ¢4, ®,41 > oscillate
at frequency |v,|v/n.

~+ ldea: Put everything on (¢e, ¢g) = (0, ®g), and use
reversibility to conclude.
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Approximations Law-Eberly  Formally

Formal derivation : Lamb-Dicke approximation

~ Step 1:p < 1 = e V21X ~ 1 — /2inx:
u;p(t, x) = (eriQt + u,e’m‘“)’ + ube’(Qer)t) (1- i\@nx).

— Approximate system (e, ¢q).

~ Step 2: Interaction frame. Let )
de = S(—1)e" /24, g = S(—t)e~/2¢),. The system
becomes

iOrde = €MS(~t)(urp +Ujp)S(t)dg,  (t,x) € (0,T) xR,
i0dg = e MS(—t)(uLp + ujp)S(t)de, (t,x) € (0,T) xR,
(;Nﬁe(O,X) = ¢2(X)’ Qgg(oa X) = 1/18(X)a xeR.
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Approximations Law-Eberly  Formally

Formal derivation: the averaging approximation

~ Computation of S(—t)xS(t). Remark that Vv2x =a+af and
that e™4(a + af)e ™A = e~/»!a 4+ e“!al. Hence
e US(—t)(uLp + ujp)S(t)
— uer’Q’(1 —in (e"“’ta + e’“”aT)> + U (1 + in<e"°"ta + e’“’taT>>
_*_Urei(Zwa)t(.] _ in(efiwta 4 eiwtaT)>

+u;keiwt<1 4 I‘77<efiwta+ eiwta‘[>>

+Ubei(29+w)t(1 _ l'n<e—iwta i eiwtaT>)
+u;';e—"“’t(1 + in(e—’“”a + e’WfaT)).
~» Averaging: Cancel all oscillatory terms !

Yields Law-Eberly equations by setting vy, = —inup, v, = —inuy
as announced.
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Justification In V2 In(L2)72 InD(AK/2)2

Our approach

Our approach is as follows:

@ To precisely measure the error done in the previous
approximations for initial and target data in V,\z,,.

@ To truncate initial and target data to go back to the
previous item
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Justification InVZ In(L2)? InD(A"/2)?

Approximate controllability in V2,

Let M € N.

From Law-Eberly’s theorem, the time should be

. (M—|—1
T>T —
> E \/

under the constraints |ug| < Kp et |vp|, |v/| < K.

We want to consider the constraints |ug|, |url, |up| < K. Since
Vp = —inup and v, = —inu,, we take Ky = K and Ky = nK : for

n < 1/2V/M,
3mvM

n

TK =

Fix T as above.
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Justification InVZ In(L2)? InD(AK

Approximate controllability in V2,

Let (43, 49) and (4, 45) in VE of unit (L2)2-norm.
Define (62, ¢g) = (v, g) and

(de: 0g) = (S(=T)exp(iQT /2w, S(—T) exp(—iQT /2)v,g)

Then Law-Eberly’s theorem provides a control u that steers
solutions of Law-Eberly approximate equations (3) from (¢2, ¢9)

to B(¢g, ¢g), for B € C of unit modulus.

In the sequel, we always consider this control !
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Justification InVZ In(L2)? InD(A

Approximate controllability in V2,

Theorem

Let (43, 49) and (14, ¥]) in VZ and the above control:
Vo > 0,dng = 770(5, M), Jpo = p0(5, M), s. t. VK, V(w, Q) with
2Q > 3w and

3rvM  wy

< TK = — >
= No, n 5 K = P0,

the solution of the complete system (1) with initial data (¢/2,v/9)
satisfies

| we(T,we(T) - 8L}, <
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Justification InVZ In(L2)? InD(A

Sketch of the proof

In the interaction frame:
o= S(—1)e Py, £g = S(—t)e M 2y,
Compare these with the functions (¢e, ¢g)-

In the interaction frame, the equations read as follows:

iOie = U S(—t)(u + u*)S(1)¢g,
i01g = € S(~1)(u + u*)S(t)ée,

Sylvain Ervedoza Approximate controllability for a single trapped ion



Justification InVZ In(L2)? InD(AK

Sketch of the proof

We set eg(t, X) = e — de, €g(t, X) = £g — ¢g, and we have to
study

(with f = u +u*, f.p = u p + uj with Lamb-Dicke

approximation, and f £ Law-Eberly approximation)

iOree = € US(—1)f(t,X)S(t)eg + €M S(—1)(f — f1p)S(t)dg
+(e’Q’S( HfpS(t) — fe(t, x)* )@g, (t,x) € (0, T) xR,

idreg = e US(—1)f(t,x)S(t)ee + € M S(—1)(f — fip)S(t)de
+(e " S(—)fpS(t) — fe(t, X)) og,  (£,%) € (0,T) x R

69(0) = O, 69(0) = O

@ blue: Error coming from the Lamb-Dicke approximation.
@ red: Error coming from the averaging approximation.
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Justification InVZ In(L2)? InD(A"/2)?

Sketch of the proof

Can be put under the form
{ idree = €M S(—1)f(t, x)S(t)eg + hrpe(t, X) + Dthmel(t, X),
idreg = " MS(~t)f(t,X)S(t)ee + hipg(t,X) + Ithmg(t, X).
with
huoe(t, x) = € S(=)(F(t) = fo(1)) S()dg(1).
e(tx) = [ (€7S(=8)uols)S(5) ~ he(s. 20" ) () .-

We prove ||h;plly < Cn?K(M + 1) and
K
| hmelly < Cm(M‘*‘ 1)3/2,

Then, by energy techniques, supyc(o. 7 ||(ce(t), eg(t)) || iS
small for n small and wn/K large.
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Justification InVZ In(L2)? InD(A

In (L2)?

For > 0, we set M large enough so that dist((«2,v9), V) and
dist((v3,1}), V&) are small. We then look at (43, 99), (13, 04)
in (V2)? of unit norm s.t.

[ ) I [ D i) [

o.)\o)

We then apply the previous theorem to (43, ¥3), (¥4, ), with
the parameters as in the previous theorem

|we(T).vo(1) = 8L wY)| , <o

Indeed, the truncature error stays constant.
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Justification InVZ In(L2)? InD(AK/2)?

In D(AK/2)?

Again, two main steps:
@ In Vl\zﬂ for H(? ')”kxk

@ For data in D(A/2), a truncation argument with M large
enough.
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Justification InVZ In(L2)? InD(AK/2)?

For (¢2,¢8) and (We,%) in VZ, and the control constructed
above:
Vo > 0, E|77k = nk(é, M), Hpk = ,Ok(5, M), s.t. VK, V(w, Q) with
2Q) > 3w and
3rvM  w
n<nk TK= ; %Zpk,
n

the solution of the exact system (1) with initial data (¢/2,vJ)
satisfies

|we(D.w(T) = B4, <o
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Justification InVZ In(L2)? InD(AK/2)?

Sketch of the proof

We do as before, except that we need stronger estimates on
the error terms:

lheo(t, x) |, < C (k)fr)zK(M_lr_ 1)(/‘+2)/27

K
(w—K)

[[Am(t, X) ][ < Ca(k) (M + 1)(+2)/2,

~ Yields the proof similarly by standard energy estimates.
(induction on k).
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Justification InVZ In(L2)? InD(AK/2)?

In D(AK/2)

Theorem

Let ()3, 49) and (14, 7) in D(A¥/2)2 of unit (L2)?-norm.
Then Vé > 0, 3(X, nk, pk), such that for (w, ) with 2Q > 3w
and o

77§77ka KT:N/Th szka

there exists a control u(t, x) as above, satisfying the additional
constraints

sup{|uo(t)], lur(D)], [up(t)]} < K.

such that the solution (te, 1g) of (1) with initial data (43, v/9)
satisfies, for some 5 € C of modulus 1,

e vo() = BEL WY, <&
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Justification InVZ In(L2)? InD(AK/2)?

A word on the proof

Again, we do a truncation argument, but this is more subtle !
~~ The truncature (ee, €g) is solution of

iOree = € US(—1)f(t, x)S(t)eg, iOreg = e~ US(—1)f(t, x)S(t)ee.
But the equation is not isometric on D(AK/2)? |

One shall do a commutator estimate

< F(t, X))y, Afepp >=< f(t, x)AK/2epy, AX/24p5 > 4 a reminder.
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Justification InVZ In(L2)? InD(AK/2)?

To bound the reminder

To bound the reminder, we use
SUP{ 0%l oo (0, Ty x) >~ 5 Oxf
VM

But the time is given T ~ Kn'
We then obtain

tes[‘;PT] [(ce(t), eg(D) ] < CVM tes[‘éf’r] [[(ee(®)s gDl (s 1y o1y

4 H(ee(O), Eg(o))HzxZ :

<CK
LOO((O,T)XR)} < CKu,

Miracle !

VM sup [[(ee(t), (D) 11

te[0,T] 5

[(€e(0), g(0)) || 1 = M=z

)
(1) = =02’



Conclusion
Conclusion

@ Constructive method in the limits

n<1, KT =R/n, wT(n>>1,

based on the finite dimension.

@ Remark: We have estimates on X when the initial and
target states are in D(AK/?)2 and we control approximately
in D(A!/?)? pour ¢ < k.
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Conclusion
Conclusion

@ Can we do better than Law Eberly on the simplified model
? For instance, we used only two controls.
~» Problem in combinatorics and graph theory.
Cf Brockett's talk

@ More intricate models ? Two ions coupled through
oscillations...
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Conclusion
Conclusion

@ Can we do local exact controllability ?
Preliminary question : Consider

100 = (=0 + X2) + H(On(x)w,  (t,x) € (0,T) xR.
Local exact controllability of this equation around the
ground state trajectory exp(—i\gt)W¥o?

Can we choose a profile function n = n(x) such that any
initial data g near Wy, there exists a real valued control
function f = f(t), such that the solution ¢ satisfies

Y(T) =exp(—irgT)Vp ?
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Conclusion
Thanks

Thank you for the attention !

Based on

S. Ervedoza and J.-P. Puel. Approximate controllability for a
system of Schrédinger equations modeling a single trapped
ion. Ann. Inst. H. Poincaré Anal. Non Linéaire,
26(6):2111-2136, Nov.—Dec. 2009
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