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Approximate controllability of a semi-discrete 1-D wave
equation

Sorin Micu and Marius Tucsnak

Abstract. This article deals with the approximate boundary controllability problem for a
semi-discrete 1-D wave equation. By using a Fourier method, we show that there exists a

sequence of approximate controls for the semi-discrete wave equation which remains uniformly
bounded when the mesh size tends to zero. These approximate controls will be explicitly

constructed and estimates for their norms will be given in function of the discretization step.
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1. Introduction

The approximate boundary controllability problem for the 1-D wave equation reads
as follows: given T ≥ 2, ε > 0 and (u0, u1) ∈ L2(0, 1)×H−1(0, 1) there exists a control
function v ∈ L2(0, T ) such that the solution of the equation






u′′ − uxx = 0 for x ∈ (0, 1), t > 0
u(t, 0) = 0 for t > 0
u(t, 1) = vε(t) for t > 0
u(0, x) = u0(x) for x ∈ (0, 1)
u′(0, x) = u1(x) for x ∈ (0, 1)

(1)

satisfies

||(u, u′)(T, ·)||L2(0,1)×H−1(0,1) ≤ ε. (2)

By ′ we denote the time derivative.
This problem has been studied and solved some decades ago and several approaches

are now available. In section 2 we briefly describe the variational method which
consists on obtaining a control v by minimizing a cost functional. However, the
method we shall be mainly concerned with is based on Fourier analysis. The explicit
construction of an appropriate biorthogonal sequence will give a control v.

The argument used to prove the approximate controllability of the continuous wave
equation will be applied to the case we are interested in, that of a semi-discrete wave
equation. Let us briefly describe the problem and our main results.

We consider N ∈ N
∗, a step h = 1

N+1 and an equidistant mesh of the interval

(0, 1), 0 = x0 < x1 < ... < xN < xN+1 = 1, with xj = jh, 0 ≤ j ≤ N + 1 and we
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introduce the following finite-difference semi-discretization of (1)





u′′
j (t) − uj+1(t)+uj−1(t)−2uj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
u0(t) = 0 for t > 0
uN+1(t) = vε(h, t) for t > 0
uj(0) = u0

j , u′
j = u1

j for 1 ≤ j ≤ N

(3)

We study the following approximate controllability problem: given T > 0, ε > 0
and (u0

j , u
1
j )1≤j≤N ∈ C

2N , there exists a control function vε(h) ∈ L2(0, T ) such that
the solution u of (3) satisfies

||(uj , u
′
j)1≤j≤N (T )||−1 ≤ ε. (4)

The norm || ||−1 is the discrete version of the norm from L2(0, 1) × H−1(0, 1) and
it is defined in the following way

‖U‖−1 = sup
W∈C2N

‖W‖=1

|< U,W >| (5)

where < , > is a duality product defined by

< U,W >= h

N∑

j=1

(ujwN+j −uN+jwj), ∀U = (uj)1≤j≤2N , W = (wj)1≤j≤2N ∈ C
2N .

The norm || || will denote the discrete version of the norm in H1
0 (0, 1) × L2(0, 1)

and it is given by the inner product

(f, g) = h

[
N−1∑

k=1

fk+1 − fk

h

gk+1 − gk

h
+

1

h2
(f1g1 + fNgN )

]
+ h

N∑

k=1

fN+kgN+k (6)

where f = (fk)1≤k≤2N y g = (gk)1≤k≤2N are two vectors from C
2N .

System (3) consists of N linear differential equations with unknowns u1, u2, ..., uN .
uj(t) is an approximation of the solution u of (1) in (t, xj), provided that (u0

j , u
1
j )1≤j≤N

approximates the continuous initial datum (u0, u1).
In (3), vε(h) is a control which forces the solution to fulfill (4). vε(h) will be called

discrete control. Our interest is to see if vε(h) may converge to a control vε for the
continuous equation (1) when the discretization step h tends to zero.

In the last years many works have dealt with the numerical approximations for the
control problem. For instance, in [2], [4] and [3], by using Hilbert Uniqueness Method,
some numerical algorithms have been proposed. In these articles a bad numerical
behavior of the discrete controls has been observed. Frequently, the sequence of
discrete controls is not even bounded in L2, let alone convergent. This phenomenon
is due to the fact that the numerical schema introduces spurious high frequency
vibrations that are not observed in the continuous problem. More precisely, as it
was pointed out in [5] (see also [3]), the differences between the discrete and the
continuous systems become significant for the modes of order of N .

Whereas all the works mentioned above deal with the exact controllability problem,
we shall be mainly interested in the approximate controllability one.

In section 3 we explicitly construct a biorthogonal sequence and obtain a discrete
control vε(h) for (3). Like in the case of the continuous wave equation, this control will
let untouched the high frequencies (with wave number greater that n(ε)) and will lead
to zero the low ones (with wave number smaller that n(ε)). n(ε) is a positive integer
determined by the initial data (u0, u1) and the parameter ε. In order to obtain an
uniformly bounded sequence of discrete controls (vε(h))h>0, the step size h should be
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sufficiently small, depending of n(ε). Hence, the techniques we use allow to determine
an explicit relation between ε and h in order to have a uniformly bounded sequence
of discrete controls.

This approach is similar and related to the one we have used in [8]. In that case,
the exact controllability problem is considered and an uniformly bounded sequence
of controls is obtained by eliminating from the very beginning the short wave length
components of the initial datum. Like in the case of the the approximate controlla-
bility problem, the number of frequencies of the initial data uniformly controllable to
zero depends on the step size h.

A variational treatment of the problem is used in [11] and [12] where the existence
of a bounded sequence of controls is proved. However, based on Fourier analysis, our
approach is different and shows the relation between the step size, the controllability
of a given number of nodes and the norm of the approximate controls.

The rest of the paper is organized in the following way. Section 2 deals with
the continuous wave equation. Whereas the variational approach is only mentioned,
a detailed description of the Fourier method is given. The same ideas are used in
section 3 for the semi-discrete problem. The main result of the paper, Theorem 3.2,
gives a sequence of uniformly bounded discrete controls.

Acknowledgements. This work was done with the financial support of Grant 17
of the Egide-Brancusi Program. The first author is grateful to Enrique Zuazua for
stimulating discussions on the subject of this paper.

2. Continuous wave equation

In this section we consider the approximate controllability problem for the linear
1-D continuous wave equation (1)-(2).

2.1. Variational approach. It is known that the approximate controllability holds
if the following unique continuation principle is true

ϕx(t, 1) = 0 for t ∈ (0, T ) ⇒ ϕ(t, x) = 0 for (t, x) ∈ (0, T ) × (0, 1) (7)

where ϕ is the solution of the adjoint homogeneous equation





ϕ′′ − ϕxx = 0 for x ∈ (0, 1), t > 0
ϕ(t, 0) = ϕ(t, 1) = 0 for t > 0
ϕ(0, x) = ϕ0(x) for x ∈ (0, 1)
ϕ′(0, x) = ϕ1(x) for x ∈ (0, 1)

(8)

with (ϕ0, ϕ1) ∈ H1
0 (0, 1) × L2(0, 1).

This may be simply seen by considering the minimization of the functional

J : H1
0 (0, 1) × L2(0, 1) −→ R,

J(ϕ0, ϕ1) =
1

2

∫ T

0

|ϕx(t, 1)|2dt− < (u0, u1), (ϕ0, ϕ1) >−1,1 +

+ε||(ϕ0, ϕ1)||H1
0 (0,1)×L2(0,1)

(9)

where < · , · >−1,1 is the duality product between L2(0, 1)×H−1(0, 1) and H1
0 (0, 1)×

L2(0, 1),

< (u0, u1), (ϕ0, ϕ1) >−1,1=

∫ 1

0

u0ϕ1− < u1, ϕ0 >H−1(0,1),H1
0 (0,1)
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and ϕ is the solution of (8) with initial data (ϕ0, ϕ1).
The functional J is continuous and convex. Moreover, property (7) implies that J

is coercive. Hence, J has a minimum (ϕ̂0, ϕ̂1) ∈ H1
0 (0, 1) × L2(0, 1) which will give

an approximate control v(t) = ϕ̂x(t, 1) for equation (1) (ϕ̂ is the solution of (8) with
initial data (ϕ̂0, ϕ̂1)). More details may be found in [7].

2.2. Fourier approach. If the Fourier decomposition of the solution ϕ of (8) is con-
sidered, we can see that (7) is related to the completeness property of the exponential
functions whose exponents are the eigenvalues of the wave operator (see, for instance,
[1]). Our aim is to use an explicit biorthogonal sequence to construct an approximate
control v.

2.2.1. Spectral analysis. The eigenvalues of (8) are iλn with λn = nπ, n ∈ Z
∗, and

the corresponding eigenfunctions are

Φn(x) =

(
1

nπ
, i

)
sin(nπx), n ∈ Z

∗.

Proposition 2.1. The set (Φn)n∈Z∗ forms an orthonormal basis in H1
0 (0, 1)×L2(0, 1)

and an orthogonal basis in L2(0, 1) × H−1(0, 1) and ||Φn||L2×H−1 = 1/λn.

Each element (ϕ0, ϕ1) ∈ H1
0 (0, 1) × L2(0, 1) has an expansion

(ϕ0, ϕ1)(x) =
∑

n∈Z∗

an Φn(x)

with (an)n∈Z∗ ∈ ℓ2 and the corresponding solution of (8) is given by

(ϕ,ϕ′)(t, x) =
∑

n∈Z∗

an Φn(x)eiλnt.

Remark 2.1. We obtain that (7) is equivalent to
∑

n∈Z∗

an (−1)neiλnt = 0 for t ∈ (0, T ) ⇒ an = 0, ∀n ∈ Z
∗. (10)

If the exponential family
(
eiλnt

)
n∈Z∗ has a biorthogonal sequence in L2(0, T ) then

it is minimal in L2(0, T ) (no element is obtained as linear combination of the others)
and (10) holds (see [1] and [10]). Remark that, although the existence of a biorthogonal
is a sufficient condition for (10), it is not a necessary one. Nevertheless, the construc-
tion of a biorthogonal sequence will allow no only to prove directly the approximate
controllability result for (1) but also to give an explicit approximate control.

In what follows we construct a biorthogonal sequence to the exponential family(
eiλnt

)
n∈Z∗ in L2(0, T ) and prove the approximate controllability result with an ex-

plicit approximate control.

2.2.2. An explicit biorthogonal. The existence of a biorthogonal is not difficult to
prove if T = 2. Note that it is sufficient to limit ourselves to the case T = 2. Indeed,
if T > 2 we simply extend the functions by zero in (2, T ) and obtain a biorthogonal
in L2(0, T ) for any T ≥ 2.

Given any n ∈ Z
∗, take

Θn(z) =
sin(z)

z − nπ
, z ∈ C.
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Θn is an entire function of exponential type 1 and Θn(x) ∈ L2(R) for each n ∈ Z
∗.

From the Paley-Wiener Theorem it follows that the Fourier transform of Θn,

Θ̂n(t) =
1

2π

∫

R

Θ(x)e−ixt,

belongs to L2(−1, 1). Nextly, define

Ψn(t) = Θ̂n(t − 1)e−iλn . (11)

(Ψn)n∈Z∗ is a biorthogonal sequence in L2(0, 2) for the family of exponential func-
tions

(
eiλnt

)
n∈Z∗ . Indeed, we have

• Ψ ∈ L2(0, 2) since Θ̂n ∈ L2(−1, 1).

•
∫ 2

0

Ψn(t)eiλmtdt = ei(λm−λn)

∫ 1

−1

Θ̂n(t)eiλmtdt = ei(λm−λn)Θn(λm) = δnm.

We now return to the approximate controllability property of (1).

2.2.3. An approximate controllability result. The following result is a consequence of
the existence of the biorthogonal from the previous section.

Theorem 2.1. Let T ≥ 2, ε > 0 and (u0, u1) ∈ L2(0, 1) × H−1(0, 1) with

(u0, u1)(x) =
∑

n∈Z∗

a0
n Φn(x).

There exists a control vε ∈ L2(0, T ) such that the solution (u, u′) of (1) satisfies (2).

Proof. Since (u0, u1) ∈ L2(0, 1) × H−1(0, 1), there exists n(ε) ∈ N such that
∑

|n|>n(ε)

|a0
n/λn|2 < ε2.

We consider

(w0, w1)(x) =
∑

1≤|n|≤n(ε)

a0
nΦn(x), (z0, z1)(x) =

∑

|n|>n(ε)

a0
nΦn(x)

and we solve the following equations





w′′ − wxx = 0 for x ∈ (0, 1), t > 0
w(t, 0) = 0 for t > 0
w(t, 1) = vε(t) for t > 0
w(0, x) = w0(x) for x ∈ (0, 1)
w′(0, x) = w1(x) for x ∈ (0, 1)

(12)






z′′ − zxx = 0 for x ∈ (0, 1), t > 0
z(t, 0) = z(t, 1) = 0 for t > 0
z(0, x) = z0(x) for x ∈ (0, 1)
z′(0, x) = z1(x) for x ∈ (0, 1).

(13)

Evidently, u = w + z where w and z are the solution of (12) and (13) respectively.
Moreover,

(z, z′)(t, x) =
∑

|n|>n(ε)

a0
nΦn(x)eiλnt

and

||(z, z′)(T, · )||2L2(0,1)×H−1(0,1) =
∑

|n|>n(ε)

|a0
n/λn|2 < ε2. (14)

On the other hand, let us consider that (w,w′)(t, x) =
∑

n∈Z∗ an(t)Φn(x).
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Given any (ϕ0, ϕ1) ∈ H1
0 (0, 1) × L2(0, 1), if we multiply (12) by ϕ, the solution of

(8) with initial data (ϕ0, ϕ1), and we integrate by parts we obtain
∫ T

0

v(t)ϕx(t, 1)dt− < (w0, w1), (ϕ0, ϕ1) >−1,1 + < (w,w′)(T )), (ϕ,ϕ′)(T )) >−1,1= 0.

If (ϕ0, ϕ1) has the expansion (ϕ0, ϕ1)(x) =
∑

n∈Z∗ αn Φn(x), it follows that

∫ T

0

v(t)

(
∑

n∈Z∗

(−1)nαneiλnt

)
dt −

∑

1≤|n|≤n(ε)

1

λn

a0
nαn +

∑

n∈Z∗

1

λn

an(T )αn = 0. (15)

Now, if (Ψn)n∈Z∗ is the biorthogonal sequence given by (11), we define the control

vε(t) =
∑

1≤|m|≤n(ε)

(−1)m

λm

a0
mΨm(t). (16)

Evidently, vε ∈ L2(0, T ). Moreover, (15) implies that

∑

n∈Z∗

1

λn

an(T )αn = 0. (17)

Since (ϕ0, ϕ1) is arbitrary it follows that an(T ) = 0 for all n ∈ Z
∗. Hence,

w(T, · ) = w′(T, · ) = 0. (18)

From (14) and (18) it follows that the initial data (u0, u1) is approximately con-
trolled with a control v given by (16). �

Remark 2.2. The control give by (16) does not affect the high modes. Indeed, the
initial data (w0, w1) has the property

((w0, w1),Φn) = 0, ∀n > n(ε)

and the same is true for the solution (w,w′)(T ) at time T . Hence v leads to zero
the modes with 1 ≤ |n| ≤ n(ε) but does not affect the modes with |n| > n(ε). This
property is due to the particular form of our control obtained from the biorthogonal
(Ψn)n∈Z∗ .

Remark 2.3. The biorthogonal (Ψn)n∈Z∗ is bounded in L2(0, T ) and

||v||L2(0,T ) ≤ C
∑

1≤|n|≤n(ε)

|a0
n|

|λn|
. (19)

Hence, the sequence {v(ε)}ε>0 is uniformly bounded in ε if the last series is conver-
gent. In this case, an exact control of the wave equation may be obtained by passing
to the limit when ε goes to zero.

3. Semi-discrete wave equation

Let us now pass to the controllability problem for the discrete system (3)-(4).
Suppose that the continuous initial data (u0, u1) is given by

(u0, u1)(x) =
∑

n∈Z∗

a0
nΦn(x) (20)

where Φn(x) = ( 1
i nπ

,−1) sin(nπx) and (a0
n)n∈Z∗ is such that

∑
n∈Z∗

|a0
n|2

n2π2 < ∞.
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The corresponding discrete initial data of (3), (u0
j , u

1
j )1≤j≤N , is given by

(u0
j , u

1
j )1≤j≤N =

∑

n∈Z∗

a0
nΦn(nπjh) (21)

and it is obtained by simply discretizing the eigenfunctions Φn(x) in (20).

Remark 3.1. In order to ensure the convergence of the series in (21) a more re-
strictive condition must be imposed on the coefficients of (u0, u1). Hence, we shall
consider that there exists r > 1 such that

∑

n∈Z∗

nr|a0
n|2 < ∞. (22)

Condition (22) implies that

∑

n∈Z∗

|a0
n sin(nπjh)| ≤

(
∑

n∈Z∗

|a0
n|2nr

) 1
2
(
∑

n∈Z∗

| sin(nπjh)|2
nr

) 1
2

< ∞

and the series from (21) is absolutely convergent.
On the other hand, note that (22) implies also that

∑

n∈Z∗

|a0
n| ≤

(
∑

n∈Z∗

|a0
n|2nr

) 1
2
(
∑

n∈Z∗

1

nr

) 1
2

< ∞. (23)

3.1. Fourier analysis. The eigenvalues of the operator from (3) are i λn(h), where

λn(h) =
2

h
sin(

nπh

2
), −N ≤ n ≤ N, n 6= 0,

and the corresponding eigenvectors are

Φn(h) =

(
h

2i sin( nπh
2 )

ϕn(h)

−ϕn(h)

)
=

( 1
iλn(h)ϕ

n(h)

−ϕn(h)

)
, −N ≤ n ≤ N, n 6= 0

where ϕn(h) = (sin(jnπh))1≤n≤N . We have that

Proposition 3.1. The set of vectors (Φn(h))|n|≤N
n 6=0

⊂ C
2N forms an orthonormal basis

in C
2N with respect to the inner product (6).

Remark 3.2. The initial data of (3) given by (21) may be written as

(u0
j , u

1
j )1≤j≤N =

∑

|n|≤N
n 6=0

a0
n(h)Φn(h) (24)

where a0
n(h) = 1

2

(
λn(h)

nπ
+ 1
)

a0
n + 1

2

(
λn(h)

nπ
− 1
)

a0
−n.

Evidently,

|a0
n(h)| ≤ |a0

n| + |a0
−n|, 1 ≤ |n| ≤ N. (25)

The adjoint of (3) is given by





w′′
j (t) − wj+1(t)+wj−1(t)−2wj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
w0(t) = wN+1(t) = 0 for t > 0
wj(0) = w0

j , w′
j = w1

j for 1 ≤ j ≤ N.

(26)

We can now give a Fourier decomposition of the solutions of (26).
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Let us denote Z(t) = (W (t),W ′(t)) = ((wj(t))1≤j≤N , (wj(t))1≤j≤N ) ∈ C
2N . If the

initial datum Z0 = (W 0,W 1) of (26) is such that

Z0 =
∑

|n|≤N
n 6=0

α0
nΦn(h) (27)

then the corresponding solution, Z(t) = (W (t),W ′(t)), is

Z(t) =
∑

|n|≤N
n 6=0

α0
nei λn(h)tΦn(h). (28)

3.2. A biorthogonal sequence. Let Λ be the family of the exponential functions(
eiλn(h)t

)
|n|≤N

j 6=0

. The following result is proved in [8].

Theorem 3.1. If T > 0 is sufficiently large (but independent of N), there exists a
sequence (Θm(h))|m|≤N

m 6=0

, biorthogonal in L2(0, T ) to Λ, such that

||Θm(h)||L2(0,T ) ≤ C|λm(h)| exp

(
α
|λm(h)|2

N

)
, for m = ±1,±2, ...,±N (29)

where C and α are two positive constants which do not depend on m and N .

Remark 3.3. Let us remark that Theorem 3.1 implies that there exists a biorthogonal
sequence (Θm(h))|m|≤N

m 6=0

, such that

||Θm(h)||L2(0,T ) ≤ C ′|λm(h)|, for any 1 ≤ |m| ≤
√

N (30)

where C ′ is a constant which does not depend on N . Indeed, since

|λm(h)| =

∣∣∣∣
2

h
sin

(
mπh

2

)∣∣∣∣ ≤
2

h

|m|πh

2
= |m|π

from (29) follows that, for any 1 ≤ |m| ≤
√

N ,

||Θm(h)||L2(0,T ) ≤ C|λm(h)| exp

(
απ2 |m|2

N

)
≤ C|λm(h)|.

3.3. Fourier approach for the approximate controllability. By using the bi-
orthogonal sequence given in Theorem 3.1 an approximate control for (3) will be
constructed.

Theorem 3.2. Let T > 0 sufficiently large (as in Theorem 3.1), ε > 0 and a continu-
ous initial data (u0, u1) ∈ L2(0, 1)×H−1(0, 1) as in (20) with the Fourier coefficients
(a0

n)n∈Z∗ satisfying (22) for some r > 1.
There exists n(ε) ∈ N

∗ such that for any N ≥ (n(ε))2, if (u0
j , u

1
j )1≤j≤N is the initial

data of (3) given by (24), there exists a control vε(h) ∈ L2(0, T ) for (3). Moreover,
there exists a constant C > 0, independent of N , such that

||vε(h)||L2(0,T ) ≤ C, for all h =
1

N + 1
with N ≥ (n(ε))2. (31)

Proof. If the initial data is given by (24), the corresponding solution of (3) is

U(t) =
∑

|n|≤N
n 6=0

an(h, t)ei λn(h)tΦn(h). (32)
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There exists n(ε) ∈ N such that

∑

|n|>n(ε)

∣∣∣∣
a0

n

nπ

∣∣∣∣
2

≤ ε2π2

4
. (33)

From (25) it follows that

∑

|n|>n(ε)

∣∣∣∣
a0

n(h)

λn(h)

∣∣∣∣
2

≤ ε2. (34)

We chose

vε(h) =
∑

|n|≤n(ε)
n 6=0

a0
n(h)

λn(h)

i (−1)n+1

cos(nπh
2 )

Θn(h) (35)

where (Θm(h))|m|≤N
m 6=0

is the biorthogonal sequence given by Theorem 3.1.

We write U0 = X0 + Y 0 where

X0 =
∑

|n|≤n(ε)
n 6=0

a0
n(h)Φn(h), Y 0 =

∑

|n|>n(ε)

a0
n(h)Φn(h).

The corresponding solution U of (3) may be written as

U = X + Y

where X(t) = (xj(t), x
′
j(t))1≤|j|≤N is the solution of the equation






x′′
j (t) − xj+1(t)+xj−1(t)−2xj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
x0(t) = 0 for t > 0
xN+1(t) = vε(h, t) for t > 0
(xj , x

′
j)1≤|j|≤N (0) = X0

(36)

and Y (t) = (yj(t), y
′
j(t))1≤|j|≤N is the solution of the equation






y′′
j (t) − yj+1(t)+yj−1(t)−2yj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
y0(t) = 0 for t > 0
yN+1(t) = 0 for t > 0
(yj , y

′
j)1≤|j|≤N (0) = Y 0.

(37)

It is easy to see that the solution Y of (37) is given by

Y (t) =
∑

|n|>n(ε)

a0
n(h)ei λntΦn(h) (38)

and

||Y (T )||2−1 =
∑

|n|>n(ε)

∣∣∣∣
a0

n(h)

λn(h)

∣∣∣∣
2

≤ ε2. (39)

Let us analyze the solution X of (36). If (wj(t), w
′
j(t))1≤|j|≤N is the solution of






w′′
j (t) − wj+1(t)+wj−1(t)−2wj(t)

h2 = 0 for 1 ≤ j ≤ N, t > 0
w0(t) = wN+1(t) = 0 for t > 0
wj(0) = w0

j , w′
j(0) = w1

j for 1 ≤ j ≤ N.

(40)
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and we multiply equation j of (36) by wj , integrate by parts and add the relations,
we obtain that

h
∑

1≤j≤N

(x0
jw

1
j −x1

jw
0
j )−h

∑

1≤j≤N

(xj(T )w′
j(T )−x′

j(T )w′
j(T )) =

1

h

∫ T

0

vε(h, t)wN (t)dt.

(41)
If the Fourier expansion of the initial data of (40) is considered,

(w0
j , w1

j )1≤j≤N =
∑

|n|≤n(ε)
n 6=0

αnΦn(h),

it follows from (41) and (35) that

∑

|n|≤n(ε)
n 6=0

1

λn(h)
a0

n(h)αn −
∑

|n|≤N
n 6=0

1

λn(h)
a0

n(h, T )αne−iλn(h)T =

=
1

h

∫ T

0

vε(h, t)wN (t)dt =

=
1

h

∫ T

0




∑

|n|≤n(ε)
n 6=0

a0
n(h)

λn(h)

i (−1)n+1

cos(nπh
2 )

Θn(t)








∑

|n|≤N
n 6=0

αnΦ
n

N (h)e−iλn(h)t



 =

=
1

h

∑

|n|≤n(ε)
n 6=0

a0
n(h)

λn(h)

i (−1)n+1

cos(nπh
2 )

αn

h

2i sin(nπh
2 )

(−1)n+1sin(nπh) =
∑

|n|≤n(ε)
n 6=0

a0
n(h)

λn(h)
αn.

Hence,

−
∑

|n|≤N
n 6=0

1

λn(h)
a0

n(h, T )αne−iλn(h)T = 0.

Since (w0
j , w1

j )1≤j≤N ∈ C
2N is arbitrary it follows that solution X of (36) satisfies

X(T ) = 0. (42)

From (39) and (42) we obtain that (4) is satisfied if the control vε(h) is given by
(35). Moreover,

||vε(h)||L2(0,T ) ≤
∑

|n|≤n(ε)
n 6=0

|a0
n(h)|

|λn(h)|
1

| cos(nπh
2 )|

||Θn(h)||L2(0,T ).

Until now N was arbitrary in N
∗. In order to obtain an uniformly bounded sequence

of discrete controls, we shall take N sufficiently large and more precisely,

n(ε) <
√

N. (43)

It follows from Theorem 3.1 that ||Θn(h)||L2(0,T ) ≤ C|λn(h)| for any n with 1 ≤
|n| ≤ n(ε). Consequently,

||vε(h, t)||L2(0,T ) ≤ C
∑

|n|≤N
n 6=0

|a0
n(h)| (44)

where C is a constant independent of N .
From (23) it follows that the sequence (vε(h))h>0 given by (35) under the assump-

tion (43) is uniformly bounded when h tends to zero. �
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Remark 3.4. Theorem 3.2 ensures the existence of an uniformly bounded sequence
of discrete controls if the condition (43) is satisfied. Note that, (43) tells us how to
choose the step size if we want to control to zero the first n(ε) modes.
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