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1 Introduction
The impulsive differential systems are used to describe processes which are subjected to
abrupt changes at certain moments. The impulsive effects exist widely in the different
areas of the real world such as mechanics, electronics, telecommunications, neural net-
works, finance and economics, etc. (see [–]). On the other hand, it is well known that
the stochastic control theory is a stochastic generalization of classical control theory. As
one of the fundamental concepts in mathematical control theory, controllability plays an
important role both in deterministic and stochastic control theory. Controllability gener-
ally means that it is possible to steer a dynamical control system from an arbitrary initial
state to an arbitrary final state using the set of admissible controls (see [–]). More-
over, the approximate controllability means that the system can be steered to arbitrary
small neighborhood of final state. Approximate controllable systems are more prevalent
and very often approximate controllability is completely adequate in applications (see [–
]).
The purpose of this paper is to investigate the approximate controllability problem for

the class of impulsive neutral stochastic functional differential equations with finite delay
and fractional Brownian motion in a Hilbert space of the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d[x(t) + g(t,x(t – r(t)))] = [Ax(t) + f (t,x(t – ν(t))) + Bu(t)]dt + σ (t)dBH(t),
 ≤ t ≤ T , t �= tk ,

�x|t=tk = Ik(x(t–k )), k = , , . . . ,m,
x(t) = ϕ(t), –τ ≤ t ≤ ,

(.)
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where A is the infinitesimal generator of an analytic semigroup of bounded linear op-
erators, S(t)t≥, in a Hilbert space X, BH is a fractional Brownian motion on a real
and separable Hilbert space Y , the initial data ϕ ∈ C([–τ , ],L(�,X)) and the control
function u(·) is given in L([,T],U), the Hilbert space of admissible control functions
with U a Hilbert space. The symbol B stands for a bounded linear from U into X.
The functions r,ν : [, +∞) → [, τ ] (τ > ) are continuous, �x|t=tk = Ik(x(t–k )), where
x(t+k ) and x(t–k ) represent the right and left limits of x(t) at t = tk , respectively, and f , g :
[, +∞)×X → X, σ : [, +∞)→ L(Y ,X), are appropriate Lipschitz type functions. Here
RT := C([–τ ,T],L(�,X)) be the Banach space of all continuous functions ξ from [–τ ,T]
into L(�,X), equipped with the supremum norm ‖ξ‖RT = supy∈[–τ ,T](E‖ξ (y)‖)/.

2 Fractional Brownianmotion
Fix a time interval [,T] and let (�,F ,P) be a complete probability space.
Suppose that {βH (t), t ∈ [,T]} is the one-dimensional fractional Brownianmotion with

Hurst parameter H ∈ (/, ). That is, βH is a centered Gaussian process with covariance
function RH(s, t) = 

 (t
H + sH – |t – s|H ) (see []).

Moreover, βH has the following Wiener integral representation:

βH (t) =
∫ t


KH (t, s)dβ(s),

where β = {β(t), t ∈ [,T]} is a Wiener process, and KH (t, s) is the kernel given by

KH (t, s) = cHs

 –H

∫ t

s
(u – s)H– 

 uH– 
 du

for s < t, where cH =
√

H(H–)
β(–H,H– 

 )
and

β(p,q) =
∫ 


tp–( – t)q–, p > ,q > .

We put KH (t, s) =  if t ≤ s.
We will denote by ζ the reproducing kernel Hilbert space of the fBm. In fact ζ is the

closure of set of indicator functions {[,t], t ∈ [,T]} with respect to the scalar product
〈[,t], [,s]〉ζ = RH (t, s).
Themapping [,t] → βH (t) can be extended to an isometry from ζ onto the firstWiener

chaos and we will denote by βH (ϕ) the image of ϕ under this isometry.
We recall that for ψ ,ϕ ∈ ζ their scalar product in ζ is given by

〈ψ ,ϕ〉ζ =H(H – )
∫ T



∫ T


ψ(s)ϕ(t)|t – s|H– dsdt.

Let us consider the operator K∗ from ζ to L([,T]) defined by

(
K∗
Hϕ

)
(s) =

∫ T

S
ϕ(r)

∂K
∂r

(r, s)dr.
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Moreover, for any ϕ ∈ ζ , we have

βH (ϕ) =
∫ T



(
K∗
Hϕ

)
(t)dβ(t).

Let X and Y be two real, separable Hilbert spaces and let L(Y ,X) be the space of bounded
linear operators from Y to X. For the sake of convenience, we shall use the same notation
to denote the norms in X, Y and L(Y ,X). Let Q ∈ L(Y ,Y ) be an operator defined by Qen =
λnen with finite trace trQ =

∑∞
n= λn < ∞, where λn ≥  (n = , , . . .) are non-negative real

numbers and {en} (n = , , . . .) is a complete orthonormal basis in Y .
We define the infinite-dimensional fBm on Y with covariance Q as

BH (t) = BH
Q (t) =

∞∑
n=

√
λnenβH

n (t),

where βH
n are real, independent fBm’s. The Y -valued process is Gaussian, starts from ,

has mean zero and covariance:

E
〈
BH (t),x

〉〈
BH(s), y

〉
= R(s, t)

〈
Q(x), y

〉
for all x, y ∈ Y and t, s ∈ [,T].

In order to define Wiener integrals with respect to the Q-fBm, we introduce the space
L := L(Y ,X) of all Q-Hilbert Schmidt operators ψ : Y → X. We recall that ψ ∈ L(Y ,X)
is called a Q-Hilbert-Schmidt operator, if

‖ψ‖L :=
∞∑
n=

‖√λnψen‖ <∞

and that the space L equipped with the inner product 〈ϕ,ψ〉L =
∑∞

n=〈ϕen,ψen〉 is a sep-
arable Hilbert space.
Let φ(s); s ∈ [,T] be a function with values in L(Y ,X), the Wiener integral of φ with

respect to BH is defined by

∫ t


φ(s)dBH (s) =

∞∑
n=

∫ t



√
λφ(s)en dβH

n

=
∞∑
n=

∫ t



√
λK∗(φen)(s)dβn(s), (.)

where βn is the standard Brownian motion.

Lemma . (see []) If ψ : [,T] → L(Y ,X) satisfies
∫ T
 ‖ψ(s)‖

L
< ∞ then the above

sum in (.) is well defined as X-valued random variable and we have

E
∥∥∥∥
∫ t


ψ(s)dBH(s)

∥∥∥∥


≤ HtH–
∫ t



∥∥ψ(s)
∥∥
L
ds.
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3 Approximate controllability
Let A : D(A) → X be the infinitesimal generator of an analytic semigroup, (S(t))t≥, of
bounded linear operators on X. It is well known that there existM ≥  and λ ∈ R such that
‖S(t)‖ ≤ Meλt for every t ≥ .
If (S(t))t≥ is uniformly bounded and analytic semigroup such that  ∈ ρ(A), where

ρ(A) is the resolvent set of A, then it is possible to define the fractional power (–A)α for
 < α ≤ , as a closed linear operator on its domain D(–A)α . Furthermore, the subspace
D(–A)α is dense in X and the expression ‖h‖α = ‖(–A)αh‖ defines a norm inD(–A)α . If Xα

represents the space D(–A)α endowed with the norm ‖ · ‖α , then the following properties
are well known.

Lemma . ([])
() Let  < α ≤ , then Xα is a Banach space.
() If  < β ≤ α, then the injection Xα ↪→ Xβ is continuous.
() For every  < α ≤  there existsMα >  such that

∥∥(–A)αS(t)∥∥ ≤Mαt–αe–λt , t > ,λ > .

Now, we present the mild solution of the problem (.):

Definition . AnX-valued process {x(t), t ∈ [–τ ,T]} is called amild solution of equation
(.) if

(i) x(·) ∈ C([–τ ,T],L(�,X)),
(ii) x(t) = ϕ(t), –τ ≤ t ≤ ,
(iii) for arbitrary t ∈ [,T], we have

x(t) = S(t)
[
ϕ() + g

(
,ϕ

(
–r()

))]
– g

(
t,x

(
t – r(t)

))
–

∫ t


AS(t – s)g

(
s,x

(
s – r(s)

))
ds

+
∫ t


S(t – s)f

(
s,x

(
s – ν(s)

))
ds +

∫ t


S(t – s)Bu(s)ds

+
∫ t


S(t – s)σ (s)dBH(s) +

∑
<tk<t

S(t – tk)Ik
(
x
(
t–k

))
. (.)

In this paper, we will make the following assumptions.
(H) The operator A is the infinitesimal generator of an analytic semigroup, (S(t))t≥,

consisting of bounded linear operators on X. Furthermore, there exist constants M and
M–β such that for every t ∈ [,T] the inequalities ‖S(t)‖ ≤ M and t–β‖(–A)–βS(t)‖ ≤
M–β hold.
(H) There exist finite positive constants Ci = Ci(T), i = , , such that the function f :

[, +∞)×X → X satisfies the following Lipschitz conditions: for all t ∈ [,T] and x, y ∈ X
the inequalities ‖f (t,x) – f (t, y)‖ ≤ C‖x – y‖ and ‖f (t,x)‖ ≤ C

( + ‖x‖) are valid.
(H) The function g is Xβ-valued, and there exist constants 

 < β < ,Ci = Ci(T), i = ,,
such that for all t ∈ [,T] and x, y ∈ X the following inequalities are satisfied:

(i) ‖(–A)βg(t,x) – (–A)βg(t, y)‖ ≤ C‖x – y‖;
(ii) ‖(–A)βg(t,x)‖ ≤ C

( + ‖x‖);
(iii) C‖(–A)–β‖ < .

http://www.advancesindifferenceequations.com/content/2014/1/113
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(H) The function (–A)βg is continuous in the quadratic mean sense: for all x ∈
C([,T],L(�,X)), the equality

lim
t→s

E
∥∥(–A)βg(t,x(t)) – (–A)βg

(
s,x(s)

)∥∥ = 

is true.
(H) The function σ : [,∞)→ L(Y ,X) satisfies

∫ T
 ‖σ (s)‖L ds <∞.

(H) The functions Ik : X → X are continuous and there exist finite positive constants
Ci = Ci(T), i = ,, such that for all t ∈ [,T] and x, y ∈ X the inequalities ‖Ik(x(t)) –
Ik(y(t))‖ ≤ C‖x – y‖ and ‖Ik(x(t))‖ ≤ C

( + ‖x‖) are valid.
In order to study the approximate controllability for the system (.), we introduce the

following linear differential system:

{
dx(t)
dt = Ax(t) + Bu(t), t ∈ [,T],

x() = x.
(.)

The controllability operator associated with (.) is defined by

�T
 =

∫ T


S(T – s)BB∗S∗(T – s)ds,

where B∗ and S∗ denote the adjoint of B and S, respectively.
Let x(T ;ϕ,u) be the state value of (.) at terminal state T , corresponding to the control

u and the initial value ϕ. Denote by R(T ,ϕ) = {x(T ;ϕ,u) : u ∈ L([,T],U)} the reachable
set of system (.) at terminal time T , its closure in X is denoted by R(T ,ϕ).

Definition . The system (.) is said to be approximately controllable on the interval
[,T] if R(T ,ϕ) = L(�,X).

Lemma . (see []) The linear control system (.) is approximately controllable on
[,T] if and only if z(zI + �T

 )– →  strongly as z → +.

Lemma . For any x̄T ∈ L(�,X) there exists ϕ̄ ∈ L(�;L([,T];L)) such that

x̄T = Ex̄T +
∫ T


ϕ̄(s)dBH(s).

Now for any δ >  and x̄T ∈ L(�,X), we define the control function in the following form:

uδ(t,x) = B∗S∗(T – t)
(
zI + �T


)–

× {
Ex̄T – S(T)

[
ϕ() – g

(
,ϕ

(
–r()

))]
+ g

(
T ,x(T)

)}
+ B∗S∗(T – t)

∫ t



(
zI + �T


)–

ϕ̄(s)dBH (s)

– B∗S∗(T – t)
∫ t



(
zI + �T


)–AS(T – s)g

(
s,x

(
s – r(s)

))
ds

– B∗S∗(T – t)
∫ t



(
zI + �T


)–S(T – s)f

(
s,x

(
s – ν(s)

))
ds
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– B∗S∗(T – t)
∫ t



(
zI + �T


)–S(T – s)σ (s)dBH(s)

– B∗S∗(T – t)
∑
<tk<t

(
zI + �T


)–S(T – tk)Ik

(
x
(
t–k

))
.

Lemma . There exists a positive real constant MC such that, for all x, y ∈ RT , we have

E
∥∥uδ(t,x) – uδ(t, y)

∥∥ ≤ MC

z

∫ t


E
∥∥x(s) – y(s)

∥∥ ds, (.)

E
∥∥uδ(t,x)

∥∥ ≤ MC

z

(
 +

∫ t


E
∥∥x(s)∥∥ ds

)
. (.)

Proof The proof of this lemma similar to the proof of the Lemma . (see []). �

Theorem . Assume assumptions (H)-(H) are satisfied. Then, for all T > , the system
(.) has a mild solution on [–τ ,T].

Proof Fix T >  and let us consider ϒT = {x ∈ RT : x(s) = ϕ(s), for s ∈ [–τ , ]}.
ϒT is a closed subset of RT provided with the norm ‖ · ‖RT . For any δ > , consider the

operator �δ on RT defined as follows:

(�δx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ [–τ , ],
S(t)[ϕ() + g(,ϕ(–r()))] – g(t,x(t – r(t)))

–
∫ t
 AS(t – s)g(s,x(s – r(s)))ds

+
∫ t
 S(t – s)f (s,x(s – ν(s)))ds +

∫ t
 S(t – s)Buδ(s,x)ds

+
∫ t
 S(t – s)σ (s)dBH(s) +

∑
<tk<t S(t – tk)Ik(x(t–k )), t ∈ [,T].

(.)

It will be shown that, for all δ > , the operator �δ has a fixed point. This fixed point is
then a solution of equation (.). To prove this result, we divide the subsequent proof into
two steps.
Step : For arbitrary x ∈ ϒT , let us prove that t → �δ(x)(t) is continuous on the interval

[,T] in the L(�,X)-sense.
Let  < t < t + h < T , where t, t + h ∈ [,T]\{t, t, . . . , tm}, and let |h| be sufficiently small.

Then for any fixed x ∈ ϒT , it follows from Holder’s inequality and the assumptions on the
theorem that

E
∥∥(�δx)(t + h) – (�δx)(t)

∥∥

≤ 
{
E
∥∥(
S(t + h) – S(t)

)(
ϕ() + g

(
,ϕ

(
–r()

)))∥∥

+ E
∥∥g(t + h,x

(
t + h – r(t)

))
– g

(
t,x

(
t – r(t)

))∥∥

+ E
∥∥∥∥
∫ t


A

(
S(t + h – s) – S(t – s)

)
g
(
s,x

(
s – r(s)

))
ds

∥∥∥∥


+ E
∥∥∥∥
∫ t+h

t
(–A)–βS(t + h – s)(–A)βg

(
s,x

(
s – r(s)

))
ds

∥∥∥∥


+ E
∥∥∥∥
∫ t



(
S(t + h – s) – S(t – s)

)
Buδ(s,x)ds

∥∥∥∥


+ E
∥∥∥∥
∫ t+h

t
S(t + h – s)Buδ(s,x)ds

∥∥∥∥


http://www.advancesindifferenceequations.com/content/2014/1/113


Ahmed Advances in Difference Equations 2014, 2014:113 Page 7 of 11
http://www.advancesindifferenceequations.com/content/2014/1/113

+ E
∥∥∥∥
∫ t



(
S(t + h – s) – S(t – s)

)
σ (s)dBH(s)

∥∥∥∥


+ E
∥∥∥∥
∫ t+h

t
S(t + h – s)σ (s)dBH(s)

∥∥∥∥


+
∑
<tk<t

E
∥∥(
S(t + h – tk) – S(t – tk)

)
Ik

(
x
(
t–k

))∥∥

+
∑

t<tk<t+h

E
∥∥S(t + h – tk)Ik

(
x
(
t–k

))∥∥
}

≤ 
{
E
∥∥(
S(t + h) – S(t)

)(
ϕ() + g

(
,ϕ

(
–r()

)))∥∥

+ E
∥∥g(t + h,x

(
t + h – r(t)

))
– g

(
t,x

(
t – r(t)

))∥∥

+ t
∫ t


E
∥∥A(

S(t + h – s) – S(t – s)
)
g
(
s,x

(
s – r(s)

))∥∥ ds

+
C
M

–β

β – 
(t + h – t)β–

∫ t+h

t

(
 + E‖x‖)ds

+ t
∫ t


E
∥∥(
S(t + h – s) – S(t – s)

)
Buδ(s,x)

∥∥ ds

+ (t + h – t)M‖B‖
∫ t+h

t
E
∥∥uδ(s,x)

∥∥ ds

+ HtH–
∫ t


E
∥∥(
S(t + h – s) – S(t – s)

)
σ (s)

∥∥
L
ds

+ H(t + h – t)H–M
∫ t+h

t
E
∥∥σ (s)

∥∥
L
ds

+
∑
<tk<t

E
(∥∥(

S(t + h – tk) – S(t – tk)
)∥∥∥∥Ik(x(t–k ))∥∥) +M

∑
t<tk<t+h

E
∥∥Ik(x(t–k ))∥∥

}
.

Hence using the strong continuity of S(t) and Lebesgue’s dominated convergence theorem,
we conclude that the right-hand side of the above inequalities tends to zero as h→ . Thus
we conclude�δ(x)(t) is continuous from the right in [,T]. A similar argument shows that
it is also continuous from the left in (,T]. Thus �δ(x)(t) is continuous on [,T] in the L-
sense.
Step : Now, we are going to show that �δ is a contraction mapping in ϒT with some

T ≤ T to be specified latter. Let x, y ∈ ϒT , we obtain for any fixed t ∈ [,T]

∥∥�δ(x)(t) –�δ(y)(t)
∥∥

≤ 
∥∥g(t,x(t – r(t)

)
– g(t, y

(
t – r(t)

)∥∥ + 
∥∥∥∥
∫ t


S(t – s)B

[
uδ(s,x) – uδ(s, y)

]
ds

∥∥∥∥


+ 
∥∥∥∥
∫ t


(–A)–βS(t – s)

(
(–A)βg(s,x

(
s – r(s)

)
– (–A)βg

(
s, y

(
s – r(s)

)))
ds

∥∥∥∥


+ 
∥∥∥∥
∫ t


S(t – s)

(
f
(
s,x

(
s – ν(s)

))
– f

(
s, y

(
s – ν(s)

)))
ds

∥∥∥∥


+ 
∥∥∥∥ ∑
<tk<t

S(t – tk)
(
Ik

(
x
(
t–k

))
– Ik

(
y
(
t–k

)))∥∥∥∥


.
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By the Lipschitz property of (–A)βg and f combined with Holder’s inequality, we obtain

E
∥∥�δ(x)(t) –�δ(y)(t)

∥∥ ≤ E
∥∥x(t – r(t)

)
– y

(
t – r(t)

)∥∥

+
M‖B‖MC

z

∫ t


E
∥∥x(s) – y(s)

∥∥ ds

+ C
M


–β

Tβ–

β – 

∫ t


E
∥∥x(s – r(s)

)
– y

(
s – r(s)

)∥∥ ds

+ TC
M


∫ t


E
∥∥x(s – ν(s)

)
– y

(
s – ν(s)

)∥∥ ds

+ mMC
E

∥∥x(t) – y(t)
∥∥.

Hence

sup
t∈[–τ ,T]

E
∥∥�δ(x)(t) –�δ(y)(t)

∥∥ ≤ γ (T) sup
t∈[–τ ,T]

E
∥∥x(t) – y(t)

∥∥,

where

γ (T) = 
[
 +

M‖B‖MC

z
T +

C
M

–β

β – 
Tβ +MC

T
 +mMC



]
.

Then there exists  < T ≤ T such that  < γ (T) <  and �δ is a contraction mapping
on ST and therefore has a unique fixed point, which is a mild solution of equation (.)
on [–τ ,T]. This procedure can be repeated in order to extend the solution to the entire
interval [–τ ,T] in finitely many steps. This completes the proof. �

Theorem . Assume that (H)-(H) are satisfied. Further, if the functions f and g are
uniformly bounded, and S(t) is compact, then the system (.) is approximately controllable
on [,T].

Proof Let xδ be a fixed point of �δ . By using the stochastic Fubini theorem, it can easily
be seen that

xδ(T) = x̄T – z
(
zI + �T


)–{Ex̄T – S(T)

[
ϕ() – g

(
,ϕ

(
–r()

))]

+ g
(
T ,xδ(T)

)
+

∫ T


ϕ̄(s)dBH(s)

}

+ z
∫ T



(
zI + �T


)–AS(T – s)g

(
s,xδ

(
s – r(s)

))
ds

+ z
∫ T



(
zI + �T


)–S(T – s)f

(
s,xδ

(
s – ν(s)

))
ds

+ z
∫ T



(
zI + �T


)–S(T – s)σ (s)dBH(s)

+
∑

<tk<T

z
(
zI + �T


)–S(T – tk)Ik

(
xδ

(
t–k

))
.
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It follows from the assumption on f and g that there exists D̄ >  such that

∥∥f (s,xδ

(
s – ν(s)

))∥∥ +
∥∥g(s,xδ

(
s – r(s)

))∥∥ ≤ D̄ (.)

for all (s,ω) ∈ [,T] × �. Then there is a subsequence still denoted by {f (s,xδ(s –
ν(s))), g(s,xδ(s – r(s)))} which converges weakly to, say, {f (s), g(s)} in X × L.
From the above equation, we have

E
∥∥xδ(T) – x̄T

∥∥

≤ E
∥∥∥∥z(zI + �T


)–{x̄T – S(T)

[
ϕ() – g

(
,ϕ

(
–r()

))]

+ g
(
T ,xδ(T)

)
+

∫ T


ϕ̄(s)dBH (s)

}∥∥∥∥


+ E
(∫ T



∥∥z(zI + �T

)–∥∥∥∥AS(T – s)

[
g
(
s,xδ

(
s – r(s)

))
– g(s)

]∥∥ds)

+ E
(∫ T



∥∥z(zI + �T

)–AS(T – s)g(s)

∥∥ds)

+ E
(∫ T



∥∥z(zI + �T

)–∥∥∥∥S(T – s)f

(
s,xδ

(
s – ν(s)

))
– f (s)

∥∥ds)

+ E
(∫ T



∥∥z(zI + �T

)–S(T – s)f (s)

∥∥ds)

+ HTH–
∫ T



∥∥z(zI + �T

)–S(T – s)σ (s)

∥∥
L
ds

+ E
∥∥∥∥ ∑
<tk<T

z
(
zI + �T


)–S(T – tk)Ik

(
xδ

(
t–k

))∥∥∥∥


.

On the other hand, by Lemma ., the operator z(zI +�T
 )– →  strongly as z → + for all

 ≤ s ≤ T , and, moreover, ‖z(zI + �T
 )–‖ ≤ . Thus, by the Lebesgue dominated conver-

gence theorem the compactness of S(t) implies that E‖xδ(T) – x̄T‖ →  as z → +. This
gives the approximate controllability of (.). �

4 Example
In this section, we present an example to illustrate our main result.
Let us consider the following stochastic control partial neutral functional differential

equation with finite variable delays driven by a fractional Brownian motion:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d[x(t, ξ ) –G(t,x(t – r(t)), ξ )] = [ ∂x(t,ξ )
∂ξ

+ F(t,x(t – ν(t)), ξ ) +μ(t, ξ )]dt
+ σ (t)dBH(t),  ≤ ξ ≤ π , ≤ t ≤ T , t �= tk ,

x(t, ) = x(t,π ) = , t ≥ ,
x(t+k , ξ ) – x(t–k , ξ ) = Ik(x(t–k , ξ )), k = , , . . . ,m,
x(t, ξ ) = ϕ(t, ξ ), t ∈ [–τ , ], ≤ ξ ≤ π ,

(.)

where BH is a fractional Brownianmotion and F ,G : R+×R→ R are continuous functions.
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To study this system, letX = Y =U = L([,π ],R) and let the operatorA :D(A)⊂ X → X
be given by Ay = y′′ with

D(A) =
{
y ∈ X : y′′ ∈ X, y() = y(π ) = 

}
.

It is well known that A is the infinitesimal generator of an analytic semigroup {T(t)}t≥

on X. Furthermore, A has discrete spectrum with eigenvalues –n, n ∈ N and the corre-
sponding normalized eigenfunctions are given by

en =
√


π
sinnx, n = , , . . . .

In addition (en)n∈N is a complete orthonormal basis in X and

T(t)x =
∞∑
n=

e–n
t〈x, en〉en

for x ∈ X and t ≥ . It follows from this representation that T(t) is compact for every t > 
and that ‖T(t)‖ ≤ e–t for every t ≥ .
In order to define the operatorQ : Y → R, we choose a sequence {λn}n∈N ⊂ R+, setQen =

λnen, and assume that

tr(Q) =
∞∑
n=

√
λn < ∞.

Define the fractional Brownian motion in Y by

BH (t) =
∞∑
n=

√
λnβ

H (t)en,

where H ∈ (  , ) and {βH
n }n∈N is a sequence of one-dimensional fractional Brownian mo-

tions mutually independent.
Define x(t)(·) = x(t, ·), f (t,x)(·) = F(t,x(·)), and g(t,x)(·) = G(t,x(·)). Define the bounded

operator B : U → X by Bu(t)(ξ ) = μ(t, ξ ),  ≤ ξ ≤ π , u ∈ U . Therefore, with the above
choice, the system (.) can be written into the abstract form (.) and all conditions of
Theorem . are satisfied. Thus by Theorem ., the stochastic partial neutral functional
differential equation with finite variable delays driven by a fractional Brownian motion is
approximately controllable on [,π ].
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