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1. Introduction

Controllability is an essential and fundamental issue that must be addressed in control
systems operating in both finite and infinite-dimensional spaces. Infinite-dimensional
systems can be classified into several controllability notions, which include exact controlla-
bility, approximate controllability and null controllability. Exact controllability allows for
steering the system towards an arbitrary final state; however, this concept is usually too
stringent and therefore limited in applicability in infinite-dimensional spaces (see [1–6] and
references therein). On the other hand, approximate controllability is often sufficient for
most infinite-dimensional systems in applications as it permits steering the system towards
a small neighborhood of the final state (see [1] and references therein).

Bashirov and Mahmudov demonstrated in article [7] that the approximate control-
lability of semi-linear systems is indicated by the approximate controllability of its linear
element under the right conditions on a resolvent operator. Since it is practical for ap-
plications, several articles have examined the approximative controllability of nonlinear
differential equations using this resolvent condition (see [1,8]).

Impulsive events, which frequently occur in both nature and human activity, are the
results of a sudden change in a system’s state brought on by external disturbance. The
phenomena of this type are split into two groups depending on the duration of the change.
One is that this alteration only lasts for a brief period of time in comparison to the entire
process, known as the instantaneous impulse, and when the effects are continuous, this
means they can begin at any fixed point and last for a set amount of time. It is known as a
non-instantaneous impulse. The theory of instantaneous impulsive differential equations
has experienced significant advancements and has played a crucial role in modern applied
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mathematical models for real-world phenomena. Current research on impulsive evolution
equations can be found in [9–11] and the related literature. However, there are scenarios
where the dynamics of certain evolution processes cannot be accurately described by
instantaneous impulses. For instance, the introduction of drugs into the bloodstream and
their subsequent absorption by the body during hemodynamic equilibrium is a gradual
and continuous process. Another example of non-instantaneous impulses is the sudden
introduction of insulin into the bloodstream, followed by a gradual absorption over a
finite period. Non-instantaneous impulses have been extensively studied by researchers, as
demonstrated by works such as [2,12–19].

In several areas of practical mathematics, impulsive neutral integro-differential equa-
tions are encountered. For example, the system of rigid heat conduction with finite wave
speeds, investigated in [20], can be described in the form of integrodifferential equations of
neutral type with delay. As a result, these equations have attracted a lot of attention (see for
instance, [14,21]). On the other hand, due to their frequent appearance in applications as
equation models, functional-differential equations with delays have drawn a lot of interest
in recent years; see, for instance, [3,10] and the references therein.

In [13], the authors studied the attractivity and exact controllability of the following
impulsive integrodifferential equation with unbounded delay:

x′(θ) = ℵx(θ) + Ψ(θ, xθ , (Kx)(θ)) +
∫ θ

0 Λ(θ − s)x(s)ds +Wu(θ), if θ ∈ I,  ∈ Nm
0 ,

x(θ) = Υ

(
θ, x
(

θ−
))

, if θ ∈ f,  ∈ Nm
1 ,

x(θ) = Φ(θ), if θ ∈ R−.

(1)

Our work in this paper is a direct continuation of the research mentioned in [13],
where we build on the existing framework to address the approximate controllability for
a system (1) by applying the technique concerning the resolvent condition. Furthermore,
we aim to extend the results to the case of neutral partial functional integro-differential
equations with unbounded delay described in the form:

d
dθ (x(θ)− G(θ, xθ)) = ℵ(x(θ)− G(θ, xθ)) + Ψ(θ, xθ , (Kx)(θ))

+
∫ θ

0 Λ(θ − s)(x(s)− G(s, xs))ds +Wu(θ), if θ ∈ I,  ∈ Nm
0 ,

x(θ) = Υ

(
θ, x
(

θ−

))
, if θ ∈ f,  ∈ Nm

1 ,

x(θ) = Φ(θ), if θ ∈ R−,

(2)

where I0 = [0, θ1], I =
(
s, θ+1

]
and f =

(
θ, s

]
, Nm

1 = {1, . . . , m}, and Nm
0 = Nm

1 ∪ {0}
with 0 = s0 < θ1 ≤ s1 ≤ θ2 < . . . < sm−1 ≤ θm ≤ sm ≤ θm+1 = T, f = [0, T], f̃ = (−∞, T],
and ℵ : D(ℵ) ⊂ z→ z is the infinitesimal generator of a strongly continuous semigroup
{T(θ)}t≥0, Λ(θ) is a closed linear operator with domain D(ℵ) ⊂ D(Λ(θ)), the operator K
is defined by

(Kx)(θ) =
∫ T

0
g(θ, s, x(s))ds,

the nonlinear terms Ψ : f× k×z → z, G : f× k → z, Υ : f ×z → z,  ∈ Nm
1 ,

Φ : R− → z, are given functions, and the control function u is given in L2(f, U) a Banach
space of admissible controls with U as a Banach space. W is a bounded linear operator
from U into z, and (z, ‖ · ‖) is a Banach space. This is a significant expansion because the
system under consideration has additional complications that necessitate new methods to
solve. Our work adds to current knowledge and techniques while also introducing new
perspectives and methods to the study of controllability in this class of systems.

The rest of this work is organized as follows: in the next section, we mention some
results and notations referents resolvent of operators, abstract phase spaces, and measures
of noncompactness needed to establish our results. The approximate controllability of the
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system (1) is studied in Section 3. We present and prove the existence and approximate
controllability of solutions for the problem (2) in Section 4. Finally, an example is given to
show the applications of the obtained results.

2. Preliminaries

Let C(f,z) be the Banach space of continuous functions ϑ mapping f := [0, T] into
z, with

‖ϑ‖∞ = sup
θ∈f
‖ϑ(θ)‖.

Let us denote by L1(f,z) the Banach space of measurable functions ϑ : f→ z which are
Bochner integrable [22], with the norm

‖ϑ‖L1 =
∫ T

0
‖ϑ(θ)‖dθ.

We consider the following Cauchy problem:{
x′(θ) = ℵx(θ) +

∫ θ
0 Λ(θ − s)x(s)ds; for θ ∈ f,

x(0) = x0 ∈ z.
(3)

The existence and properties of a resolvent operator has been discussed in [23,24]. The
underlying assertions are assumed in what precedes:

(H1)ℵ is the infinitesimal generator of a uniformly continuous semigroup {T(θ)}θ>0,
(H2)For all θ ≥ 0, Λ(θ) is closed linear operator from D(ℵ) to z and Λ(θ) ∈ Λ(D(ℵ),z).

For any ϑ ∈ D(ℵ), the map θ → Λ(θ)ϑ is bounded, differentiable and the derivative
θ → Λ′(θ)ϑ is bounded uniformly continuous on R+.

Theorem 1 ([24]). Suppose that (H1)− (H2) hold. Then, there exists a unique resolvent operator
for the Cauchy problem (3).

Let us introduce the following space:

ẑ = PC(f̃,z) =

{
ϑ : f̃ → z : ϑ|R− ∈ k, ϑ|f

= Υ;  ∈ Nm
1 , ϑ|I

;  ∈ Nm
0 ,

is continuous, ϑ
(

s+
)

, ϑ
(

θ−

)
and ϑ

(
θ+

)
exists with

ϑ(s+ ) = Υ(s, ϑ(s− )) and ϑ(θ− ) = Υ(θ, ϑ(θ− ))

}
,

with
‖ϑ‖PC = sup

θ∈f̃
{‖ϑ(θ)‖}.

Let the state space (k, ‖ · ‖k) be a seminormed linear space of functions mapping (−∞, 0]
into R, and verifying the following [25]:

(A1) If ϑ ∈ PC and ϑ0 ∈ k, then for every θ ∈ f, the following hold:

(i) ϑθ ∈ k,
(ii) There exists ℘ > 0 such that |ϑ(θ)| ≤ ℘‖ϑθ‖k,
(iii) There exist two functions ℘̃(·) and ℘̂(·) : R+ → R+independent of ϑ with ℘̃

continuous and bounded and ℘̂ locally bounded where:

‖ϑθ‖k ≤ ℘̃(θ) sup{|ϑ(s)| : 0 ≤ s ≤ θ}+ ℘̂(θ)‖ϑ0‖k.

(A2)For the function ϑ in (A1), ϑθ is a k-valued continuous function on R+ \f.
(A3)The space k is complete.
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Denote
℘̃∗ = sup{℘̃(θ) : θ ∈ f},

℘̂∗ = sup{℘̂(θ) : θ ∈ f},

and
∇ = max{℘̃∗, ℘̂∗}.

Now, let p ∈ Nm
0 and (ε )∈Nm

1
be a sequence defined by

ε  =

{
εp+1 − θ, if  = 2p + 1, θ ∈ R−,
sp − θ, if  = 2p, θ ∈ R−.

Then, for Iε = R− \ {ε  :  ∈ Nm
1 }, we define the space

PCε(R−,z) =
{

ϑ : R− → z : ϑ|Iε is continuous and

ϑ(ε− ), ϑ(ε+ ) exist with ϑ(ε− ) = ϑ(ε )
}

,

and the space
Cε := {x ∈ PCε(R−,z) : lim

ε→−∞
x(ε) exist in z},

endowed with the norm
‖x‖ε = sup{|x(ε)| : ε ≤ 0}.

Then, the axioms (A1)− (A3) are verified in the space Cε. Let k = Cε.

Definition 1 ([26]). Let z̃ be a Banach space and Ωz̃ the bounded subsets of z̃. The Kuratowski
measure of noncompactness is the map χ : Ωz̃ → [0, ∞] defined by

χ(Θ) = inf{ι > 0 : Θ ⊆ ∪n
i=1Θi and diam(Θi) ≤ ι}; here Θ ∈ Ωz̃,

where
diam(Θi) = sup{‖ϑ−κ‖z : ϑ,κ ∈ Θi}.

Lemma 1 ([27]). If E is a bounded subset of a Banach space z̃, then for each ι > 0, there is a
sequence

{
ϑ

}∞
=1 ⊂ E such that

χ(E) ≤ 2χ
({

ϑ

}∞
=1

)
+ ι.

Lemma 2 ([26,28]). If {ϑ}∞
=0 ⊂ L1 is uniformly integrable, then the function t→ α({ϑ(θ)}∞

=0)
is measurable and

χ

({ ∫ θ

0
ϑ(s)ds

}∞

=0

)
≤ 2

∫ θ

0
χ
(
{ϑ(s)}∞

=0

)
ds.

Theorem 2 (Darbo’s fixed point theorem [29]). Let Ω be a nonempty, bounded, closed and
convex subset of a Banach space z̃ and let P : Ω→ Ω be a continuous mapping. Assume that there
exists a constant  ∈ [0, 1), such that

χ(P(M)) ≤ χ(M),

for any nonempty subset M of Ω. Then, P has a fixed point in set Ω.

3. Integro-Differential Equations with Infinite Delay
Existence and Controllability Results

For a nonempty bounded subset S of the space ẑ and κ ∈ S, ι > 0, ν1, ν2 ∈ [−κ, κ]
such that |ν1 − ν2| ≤ ι, we denote µκ(κ, ι) the modulus of continuity of the function κ on
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the interval [−κ, κ], namely,

µκ(κ, ι) = sup{‖e−ν1κ(ν1)− e−ν2κ(ν2)‖ ; ν1, ν2 ∈ [−κ, κ]},
µκ(S, ι) = sup{µκ(κ, ι) ; κ ∈ S},
µ0(S) = limι→0{µκ(S, ι)}.

See [30], for more information. Let χPC be given on the family of subset of ẑ by

χPC(S) = µ0(S) + sup
θ∈f̃
{χ(S(θ))}.

Similar to the proof presented in [31], it can be demonstrated that the function χPC repre-
sents a sublinear measure of noncompactness on the space ẑ = PC(f̃,z).

Definition 2. x ∈ ẑ is a mild solution of (1) if it verifies

x(θ) =



Q(θ)Φ(0) +
∫ θ

0 Q(θ − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds; if θ ∈ I0,

Q(θ − s)
[
Υ(s, x(θ− ))

]
+
∫ θ

s
Q(θ − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds; if θ ∈ I,  ∈ Nm

1 ,

Υ(θ, x(θ− )); if θ ∈ f,  ∈ Nm
1 ,

Φ(θ); if θ ∈ R−.

To guarantee the existence of mild solutions, we need the following assumptions:

(C1) Ψ : f× k×z → z is a Carathéodory function and there exist pΨ > 0, qΨ > 0 and
continuous nondecreasing functions ψ1, ψ2 : f→ (0,+∞) such that

||Ψ(θ, x1, x2)|| ≤ pΨψ1(‖x1‖k) + qΨψ2(‖x2‖), for x1 ∈ k, x2 ∈ z.

Additionally, there exists a positive constant lΨ, such that for any bounded set Θ ⊂ ẑ,
and Θθ ∈ k we have

χ(Ψ(θ, Θθ ,K(Θ(θ)))) ≤ lΨχ(Θ(θ)).

(C2) The function g : Dg ×z→ z is continuous and there exists αg > 0, such that

‖g(θ, s, x1)− g(θ, s, x2)‖ ≤ αg‖x1 − x2‖, for each (θ, s) ∈ Dg and x1, x2 ∈ z.

sup
Dg

{‖g(θ, s, 0)‖} = g∗0 < ∞.

(C3) Υ : f ×z→ z are continuous and there exist functions LΥ
> 0,  ∈ Nm

1 , such that

‖Υ(θ, x1)− Υ(θ, x2)‖ ≤ LΥ
‖x1 − x2‖, for all x1, x2 ∈ z,  ∈ Nm

1 ,

and
Υ0

 = ‖Υ(θ, 0)‖, max
∈Nm

1

{LΥ
,  ∈ Nm

1 } = L∗Υ
< +∞.

(C4) Assume that (H1)− (H2) hold, and there exist KQ ≥ 1, χ ≥ 0, and MW > 0, such that

‖Q(θ)‖D(z) ≤ KQe−χθ , ‖W‖ = MW .

Theorem 3. Suppose that (C1)–(C4) are verified. If KQL∗Υ
< 1, then (1) admit at least one mild

solution.
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Proof. The proof of this theorem is analogous to that of Theorem 2 and Theorem 4 in [13],
and hence, we shall omit it here.

Next, we investigate the controllability of system (1). First, we provide a definition of
the approximation controllability idea.
Let x(κ; Φ, ϑ) be the state-value of (1) at terminal time κ corresponding to Φ ∈ k. To define
the notion of approximate controllability, we introduce the following set:

R(κ, Φ) =
{

x(κ, Φ, ϑ), ϑ(·) ∈ L2(f; U)
}

,

which is called the reachable set of system (1) at terminal time κ. Its closure in z is denoted
byR(κ, Φ).

Definition 3. System (1) is said to be approximately controllable on the interval f = [0, κ] if
R(κ, Φ) is dense in z, i.e.,R(κ, Φ) = z.

To study the approximate controllability of system (1) we introduce the following
operators

Γ
θ+1
s =

∫ θ+1

s

Q(θ+1 − s)WW∗Q∗(θ+1 − s)ds, R
(

λ, Γ
θ+1
s

)
=
(

λI + Γ
θ+1
s

)−1
,

where s0 = 0, θ+1 = κ;  = 0, . . . , m,W∗ and Q∗ denote the adjoints of the operatorsW
and Q, respectively. It is straightforward to see that the operator Γ

θ+1
s is a linear bounded

operator. So, we assume that for all  ∈ Nm
0 , the operator R

(
λ, Γ

θ+1
s

)
satisfies

(C0) λR
(

λ, Γ
θ+1
s

)
−→ 0 as λ −→ 0+ in the strong operator topology.

From [32], hypothesis (C0) is equivalent to the fact that the linear control system corre-
sponding to system (1) is approximately controllable on [0, κ].

Theorem 4. The following statements are equivalent:

(i) The linear control system corresponding to system (1) is approximately controllable on [0, κ].
(ii) IfW∗Q∗(θ)z = 0 for all θ ∈ [0, κ], then z = 0.
(iii) The condition (C0) holds.

Proof. The proof of this theorem is similar to that of ([7], Theorem 2) and ([32], Theorem
4.4.17), so we omit it here.

Let us now study the approximate controllability of (1).
For any given δθ+1 ∈ z and λ ∈ (0, 1], we take the control function ϑλ(θ) as follows:

ϑλ(θ) =W∗Q∗(θ+1 − s)R
(

λ, Γ
θ+1
s

)
∆(δθ+1 , θ),

where

∆(δθ+1 , θ) = δθ+1 − ∆(θ)−
∫ θ

s

Q(θ − s)Ψ(s, xs, (Kx)(s))ds,

and

∆(θ) =


Q(θ)Φ(0); if  = 0,

Q(θ − s)
[
Υ(s, x(θ− ))

]
; if  ∈ Nm

1 .

Theorem 5. Assume that the hypotheses (C0)–(C4) are satisfied and in addition, the function f is
uniformly bounded. Then, Equation (1) is approximately controllable on [0, κ].
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Proof. According to Theorem 3, we can know that system (1) has at least one mild solution
xλ. Then, we have

xλ(θ+1) = ∆(θ+1) +
∫ θ+1

s

Q(θ+1 − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds

= ∆(θ+1) +
∫ θ+1

s

Q(θ+1 − s)(Ψ(s, xs, (Kx)(s)))ds

+
∫ θ+1

s

Q(θ+1 − s)
(
W∗Q∗(θ+1 − s)R

(
λ, Γ

θ+1
s

)
∆(δθ+1 , θ+1)

)
ds

= δθ+1 + (Γ
θ+1
s

R
(

λ, Γ
θ+1
s

)
− I)∆(δθ+1 , θ+1)

= δθ+1 + λR
(

λ, Γ
θ+1
s

)
∆(δθ+1 , θ+1).

Thus,

‖xλ(θ+1)− δθ+1‖ ≤
∥∥∥∥R
(

λ, Γ
θ+1
s

)[
δθ+1 − ∆(θ+1)

]∥∥∥∥
+

∥∥∥∥R
(

λ, Γ
θ+1
s

)[ ∫ θ+1

s

Q(θ+1 −κ)Ψ(κ, xκ , (Kx)(κ))dκ
]∥∥∥∥.

We infer from the uniform boundedness of Ψ(·, ·, ·) that there exists MΨ > 0, such that∫ κ

0
‖Ψ(s, xλ

s , (Kxλ)(s))‖2ds ≤ κ(MΨ)
2.

Therefore, the sequence
{

Ψ(s, xλ
s , (Kxλ)(s))

}
λ

is bounded in L2(f,z). Then, there exists

subsequence still denoted by
{

Ψ(s, xλ̃
s , (Kxλ)(s))

}
λ

that weakly converge to the limit Ψ̃(s)

in L2(f,z). Further, we have∫ κ

0
‖Ψ(s, xλ

s , (Kxλ)(s))− Ψ̃(s)‖ds −−→
λ→0

0.

So,

‖xλ(θ+1)− δθ+1‖ ≤
∥∥∥∥R
(

λ, Γ
θ+1
s

)[
δθ+1 − ∆(θ+1)

]∥∥∥∥+ ∥∥∥∥R
(

λ, Γ
θ+1
s

)
×
[ ∫ θ+1

s

Q(θ+1 − s)
(

Ψ(s, xs, (Kx)(s))− Ψ̃(s)
)

ds
]∥∥∥∥

+

∥∥∥∥R
(

λ, Γ
θ+1
s

)[ ∫ θ+1

s

Q(θ+1 − s)Ψ̃(s)ds
]∥∥∥∥ −−→λ→0

0.

Thus, xλ(θ+1)→ δθ+1 holds, and consequently, we obtain the approximate controllability
of system (1).

4. Neutral Functional Integro-Differential Equations
4.1. Existence Result

Definition 4. A function x ∈ ẑ is called a mild solution of problem (2) if it satisfies

x(θ) =



Q(θ) (Φ(0)− G(0, Φ)) + G(θ, xθ)

+
∫ θ

0 Q(θ − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds; if θ ∈ I0,

Q(θ − s)
[
Υ(s, x(θ− ))− G(s, xs )

]
+ G(θ, xθ)

+
∫ θ

s
Q(θ − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds; if θ ∈ I,  ∈ Nm

1 ,

Υ(θ, x(θ− )); if θ ∈ f,  ∈ Nm
1 ,

Φ(θ); if θ ∈ R−.
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We introduce the following assumptions:

(C5) (i) G : f× k→ z is continuous and for any bounded set Θ ∈ k, {θ → G(θ, xθ), x ∈
Θ} is equicontinuous. Also let LG > 0, where

‖G(θ, x1)− G(θ, x̂1)‖ ≤ LG‖x1 − x̂1‖k, for all x1, x̂1 ∈ k,

with
G∗ = ‖G(0, w0)‖.

(ii) There exists ε > 3, such that εKQ(L∗Υ
+ LG) < 1.

Theorem 6. Suppose that (C1)− (C5) are met. Then, (2) admit at least one mild solution.

Proof. First we define on ẑ measures of non compactness by

χPC(Π) = µ0(Π) + sup
θ∈f̃

{
e−εΣ(θ)χ(Π(θ))

}
,

with ε > 3, Σ(θ) = 4KQlΨθ and Π(θ) = {x(θ) ∈ z ; x ∈ Π}.
Transform the problem (2) into a fixed point problem and consider the operator Ξ : ẑ→ ẑ
defined by:

Ξx(θ) =



Q(θ) (Φ(0)− G(0, Φ)) + G(θ, xθ)

+
∫ θ

0 Q(θ − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds; if θ ∈ I0,

Q(θ − s)
[
Υ(s, x(θ− ))− G(s, xs )

]
+ G(θ, xθ)

+
∫ θ

s
Q(θ − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds; if θ ∈ I,  ∈ Nm

1 ,

Υ(θ, x(θ− )); if θ ∈ f,  ∈ Nm
1 ,

Φ(θ); if θ ∈ R−.

Let x(·) : (−∞, κ]→ z be the function defined by:

x(θ) =


Q(θ) (Φ(0)− G(0, Φ)), if θ ∈ I0,

0, if θ ∈ (θ1, κ],

Φ(θ), if θ ∈ R−.

Then, x0 = Φ, and for each v ∈ ẑ, with v(0) = 0, we denote by v the function

v(θ) =


v(θ), if θ ∈ f,

0, if θ ∈ R−.

If x verifies Definition 4, then we can decompose it as x(θ) = v(θ) + x(θ), which implies
xθ = vθ + xθ , and the function v(·) satisfies

v(θ) =



∫ θ
0 Q(θ − s)(Ψ(s, vs + xs,K(v + x)(s)) +Wϑ(s))ds
+G(θ, vθ + xθ), if θ ∈ I0,

Q(θ − s)
[
Υ(s, v(θ− ))− G(s, vs + xs)

]
+ G(θ, vθ + xθ)

+
∫ θ

s
Q(θ − s)(Ψ(s, vs + xs, (Kv)(s)) +Wϑ(s))ds; if θ ∈ I,  ∈ Nm

1 ,

Υ(θ, v(θ− )); if θ ∈ f,  ∈ Nm
1 .
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Set
Ω = {v ∈ ẑ : v(0) = 0}.

Let the operator Ξ̂ : Ω→ Ω defined by:

Ξ̂v(θ) =



∫ θ
0 Q(θ − s)(Ψ(s, vs + xs,K(v + x)(s)) +Wϑ(s))ds
+G(θ, vθ + xθ), if θ ∈ I0,

Q(θ − s)
[
Υ(s, v(θ− ))− G(s, vs + xs)

]
+ G(θ, vθ + xθ)

+
∫ θ

s
Q(θ − s)(Ψ(s, vs + xs, (Kv)(s)) +Wϑ(s))ds; if θ ∈ I,  ∈ Nm

1 ,

Υ(θ, v(θ− )); if θ ∈ f,  ∈ Nm
1 .

We will use Theorem 2 to demonstrate that Ξ̂ has a fixed point.
Let Ωρ = {v ∈ Ω : ‖v‖Ω ≤ ρ}, with

0 < max
{

ρ∗1 , ρ∗2 , ρ∗3
}
≤ ρ,

such that

ρ∗1 = LGδ∗1 + G∗ + KQ
(

pΨκψ1(δ
∗
1 ) + qΨκψ2(δ

∗
2 ) + MWκ

1
2 ‖ϑ‖L2

)
,

ρ∗2 =

(
LG δ̃∗1 + G∗

)
(1 + KQ) + KQ(Υ0

 + pΨκψ1(δ̃
∗
1 ) + qΨκψ2(δ̃∗2 ) + MWκ

1
2 ‖ϑ‖L2)

1− KQL∗Υ

,

ρ∗3 = L∗Υ
ρ + Υ0

 ,

and δ∗1 , δ∗2 , δ̃∗2 , δ̃∗1 are to be given later.
The set Ωρ is bounded, closed, and convex.

Step 1 : Ξ̂(Ωρ) ⊂ Ωρ.
For θ ∈ I0, v ∈ Ωρ and from (C1)− (C3), it follows that

‖vθ + xθ‖k ≤ ‖vθ‖k + ‖xθ‖k
≤ ℘̃(θ)|v(θ)|+ ℘̃(θ)(KQ(‖Φ(0)‖+ G∗)) + ℘̂(θ)(‖Φ‖k)
≤ ∇(ρ + (KQ + 1)‖Φ‖k + G∗) = δ∗1 ,

and
‖K(v + x)(s)‖ ≤ κ(αg(ρ + KQ(‖Φ‖k + G∗)) + g∗0) = δ∗2 .

Then, we have

‖Ξ̂v(θ)‖ ≤ LGδ∗1 + G∗ + KQ
∫ θ

0
(pΨψ1(δ

∗
1 ) + qΨψ2(δ

∗
2 ) + ‖Wϑ(s)‖)ds

≤ LGδ∗1 + G∗ + KQ
(

pΨκψ1(δ
∗
1 ) + qΨκψ2(δ

∗
2 ) + MWκ

1
2 ‖ϑ‖L2

)
≤ ρ.

Now, if θ ∈ I and for each v ∈ Ωρ, by (C1), (C2) and (C3), we obtain

‖Υ(θ, ϑ(.))‖ ≤ LΥ
(θ)‖ϑ(θ)‖+ Υ0

 .

Hence, for
δ̃∗2 = (αgρ + g∗0)κ and δ̃∗1 = ∇(ρ + ‖Φ‖k),
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we obtain

‖Ξ̂v(θ)‖ ≤
(

LG δ̃∗1 + G∗
)
(1 + KQ)

+ KQ
[

L∗Υ
ρ + Υ0

 + pΨκψ1(δ̃
∗
1 ) + qΨκψ2(δ̃∗2 ) + MWκ

1
2 ‖ϑ‖L2

]
≤ ρ.

If θ ∈ f and v ∈ Ωρ, then from (C3), we obtain

‖Ξ̂v(θ)‖ ≤ L∗Υ
ρ + Υ0



≤ ρ.

Thus,
‖Ξ̂z‖Ω ≤ ρ.

Consequently, Ξ̂(Ωρ) ⊂ Ωρ and Ξ̂(Ωρ) is bounded.

Step 2 : Ξ̂ is continuous.
Let {vn}n∈N be such that vn → v∗. Then, for θ ∈ I0, we have

‖(Ξ̂vn)(θ)− (Ξ̂v∗)(θ)‖ ≤ ‖G(θ, vn
θ + xθ)− G(θ, v∗θ + xθ)‖

+ KQ
∫ θ

0
‖Ψ(s, vn

s + xs,K(vn + x)(s))

−Ψ(s, (v∗s + xs),K(v∗ + x)(s))‖ds.

By the continuity of g and Ψ, we obtain

g(θ, s, (vn
s + x)(s))→ g(θ, s, (v∗ + x)(s)) as n→ +∞,

and
‖g(θ, s, (vn + x)(s))− g(θ, s, (v∗ + x)(s))‖ ≤ αg‖vn −v∗‖Ω.

By Lebesgue dominated convergence theorem, we obtain∫ θ

0
g(θ, s, (vn + x)(s))ds→

∫ θ

0
g(θ, s, (v∗ + x)(s))ds, as n→ +∞.

Hence, from the continuity of G and Ψ, we obtain

‖(Ξ̂vn)(t)− (Ξ̂v∗)(t)‖ → 0, as n→ +∞.

If θ ∈ I, we obtain

‖Ξ̂(vn)(θ)− Ξ̂(v∗)(θ)‖
≤ KQ‖Υ(s, (vn)(θ− ))− Υ((s, (v∗)(θ− )))‖
+ KQ‖G(s, vn

s
+ xs)− G(s, v∗s

+ xs)‖+ ‖G(θ, vn
θ + xθ)− G(θ, v∗θ + xθ)‖

+ KQ
∫ θ

s

‖Ψ(s, (vn
s + xs)(s),K(vn)(s))−Ψ(s, (v∗s + xs),K(v∗)(s))‖ds.

As in Case 1, since G, h, f , and Υ are continuous, we obtain

‖(Ξ̂vn)(t)− (Ξ̂v∗)(t)‖ → 0, as n→ +∞.
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Now, for θ ∈ f, we have

‖(Ξ̂(vn))(θ)− Ξ̂(v∗)(θ)‖ ≤ ‖Υ(θ, (vn)(θ− ))− Υ(θ, (v∗)(θ− ))‖.

By the continuity of Υ, we obtain

‖(Ξ̂vn)(t)− (Ξ̂v∗)(t)‖ → 0, as n→ +∞.

Thus, Ξ̂ is continuous.

Step 3: Ξ̂ is χPC-contraction.
For Π ⊂ Ωρ, v ∈ Π, and ν1, ν2 ∈ I0, with ν2 > ν1, we have

‖Ξ̂v(ν1)− Ξ̂v(ν2)‖
≤ ‖G(ν1, vν1 + xν1)− G(ν2, vν2 + xν2)‖

+
∫ ν1

0
‖Q(ν1 − s)−Q(ν2 − s)‖(pΨψ1(δ

∗
1 ) + qΨψ2(δ

∗
2 ) + ‖Wϑ(s)‖)ds

+
∫ ν2

ν1

‖Q(ν2 − s)‖(pΨψ1(δ
∗
1 ) + qΨψ2(δ

∗
2 ) + ‖Wϑ(s)‖)ds

≤
∫ ν1

0
‖Q(ν1 − s)−Q(ν2 − s)‖(ψ1(δ

∗
1 )pΨ + ψ2(δ

∗
2 )qΨ)ds

+ MW

(∫ θ

0
‖Q(ν1 − s)−Q(ν2 − s)‖2

) 1
2

ds‖ϑ‖L2

+ KQ(ψ1(δ
∗
1 )pΨ + ψ2(δ

∗
2 )qΨ)(ν2 − ν1) + KQMW (ν2 − ν1)

1
2 ‖ϑ‖L2 .

By the strong continuity of Q(·) and (C1), we have

‖Ξ̂v(ν1)− Ξ̂v(ν2)‖ → 0, as ν1 → ν2.

Now, for ν1, ν2 ∈ I, we obtain

‖Ξ̂v(ν1)− Ξ̂v(ν2)‖
≤ ‖Q(ν1 − s)−Q(ν2 − s)‖‖Υ(s, (v)(θ− ))‖

+
∫ ν1

s

‖Q(ν1 − s)−Q(ν2 − s)‖
(

pΨψ1(δ̃
∗
1 ) + qΨψ2(δ̃∗2 ) + ‖Wϑ(s)‖

)
ds

+
∫ ν2

ν1

‖Q(ν2 − s)‖
(

pΨψ1(δ̃
∗
1 ) + qΨψ2(δ̃∗2 ) + ‖Wϑ(s)‖

)
ds

≤ ‖Q(ν1 − s)−Q(ν2 − s)‖(L∗Υ
ρ + Υ0

 )

+
(

ψ1(δ̃
∗
1 )pΨ + ψ2(δ̃∗2 )qΨ

) ∫ ν1

s

‖Q(ν1 − s)−Q(ν2 − s)‖ds

+ MW

(∫ θ

0
‖Q(ν1 − s)−Q(ν2 − s)‖2

) 1
2

ds‖ϑ‖L2

+ KQ(ν2 − ν1)
(

ψ1(δ̃
∗
1 )pΨ + ψ2(δ̃∗2 )qΨ

)
+ KQMW (ν2 − ν1)

1
2 ‖ϑ‖L2 .

By the strong continuity of Q(·) and assumption (C1), we obtain

‖Ξ̂v(ν1)− Ξ̂v(ν2)‖ → 0, as ν1 → ν2.

For ν1, ν2 ∈ f, we obtain

‖Ξ̂v(ν1)− Ξ̂v(ν2)‖ = ‖Υ(ν1, v(θ− )− Υ(ν2, v(θ− )‖.
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From (C3), the set
{

Υ(θ, v(θ− ))
}k0

=1 is equicontinuous, then

‖Ξ̂v(ν1)− Ξ̂v(ν2)‖ → 0, as ν1 → ν2.

Hence, the set Ξ̂(Π) is equicontinuous, then µ0(Ξ̂(Π)) = 0.
Now for $ > 0, there exist {v }∞

=0 ⊂ Π where for θ ∈ I0, and we obtain

χ(Ξ̂(Π)(θ))

≤ χ

({
G(θ, vθ + xθ) +

∫ θ

0
Q(t− s)Ψ(s, vs + xs,K(v + x)(s))ds ; v ∈ Π

})
≤ L∗Gχ(Π(θ)) + 2χ

({ ∫ θ

0
Q(t− s)Ψ(s, v


s + xs,K(v  + x)(s))ds ; v ∈ Π

})
+ $

≤ L∗Gχ(Π(θ)) + 4
∫ θ

0
KQlΨχ({Π(s)})ds + $

≤ L∗Gχ(Π(θ)) +
∫ θ

0
eεΣ(s)e−εΣ(s)Σ′(s)χ(Π(s))ds + $

≤ L∗Gχ(Π(θ)) +
∫ θ

0
Σ′(s)eεΣ(s) sup

s∈[0,t]
e−εΣ(s)χ(Π(s))ds + $

≤ 1
ε

χ(Π(θ)) + χPC(Π)
∫ θ

0

(
eεΣ(s)

ε

)′
ds + $

≤ 2eεΣ(θ)

ε
χPC(Π) + $.

Since $ is arbitrary, we obtain

χ(Ξ̂(Π)(θ)) ≤ 2eεΣ(θ)

ε
χPC(Π).

Thus,

χPC(Ξ̂(Π)) ≤ 2
ε

χPC(Π).

Now, if θ ∈ I, we obtain

χ(Ξ̂(Π)(θ)) ≤ KQ χ
({

Υ(s, v(θ− )); v ∈ Π
})

+ (KQ + 1)χ({G(θ, vθ + xθ) ; v ∈ Π})

+ χ

({∫ θ

0
Q(t− s)Ψ(s, vs + xs,K(w)(s))ds ; w ∈ Π

})
≤ 2

ε
χ(Π(θ)) + 4

∫ θ

0
KQlΨχ({Π(s)})ds + $

≤ 3eεΣ(θ)

ε
χPC(Π) + $.

Therefore,

χPC

(
Ξ̂(Π)

)
≤ 3

ε
χPC(Π).
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If θ ∈ f, by (C3), we obtain

χ
(

Ξ̂(Π)(θ)
)
= χ

({
Υ(θ, v(θ− )); v ∈ Π

})
≤ 1

KQε
χ(Π(θ))

≤ eεΣ(θ)

ε KQ
χPC(Π).

Then,

χPC

(
Ξ̂(Π)

)
≤ 1

ε KQ
χPC(Π).

Theorem 2 implies that Ξ̂ has at least one fixed point w∗. Consequently, x∗ = w∗ + x is a
fixed point of Ξ, which represents a mild solution of (2).

4.2. Approximate Controllability

In this section we investigate the approximate controllability for System (2).
For any given ηθ+1 ∈ z and λ ∈ (0, 1], we take the control function ϑλ(θ) as follows:

ϑλ(θ) =W∗Q∗(θ+1 − s)R
(

λ, Γ
θ+1
s

)
∆̃(δθ+1 , θ);  = 0, . . . , m,

where

∆̃(ηθ+1 , θ) = ηθ+1 − ∆̃(θ)− G(θ, xθ)−
∫ θ

s

Q(θ − s)Ψ(s, xs, (Kx)(s))ds,

and

∆̃(θ) =


Q(θ) (Φ(0)− G(0, Φ)); if  = 0,

Q(θ − s)
[
Υ(s, x(θ− ))− G(s, xs)

]
; if  ∈ Nm

1 .

Theorem 7. Assume that the hypotheses (C0)− (C4) are satisfied and in addition, the function f
is uniformly bounded. Then, Equation (2) is approximately controllable on [0, κ].

Proof. According to Theorem 6, we can know that system (2) has at least one mild solution
ϑλ ∈ Ωρ. Then, we obtain

ϑλ(θ+1) = ∆̃(θ+1) + G(θ+1, xθ+1)

+
∫ θ+1

s

Q(θ+1 − s)(Ψ(s, xs, (Kx)(s)) +Wϑ(s))ds

= ∆̃(θ+1) + G(θ+1, xθ+1) +
∫ θ+1

s

Q(θ+1 − s)(Ψ(s, xs, (Kx)(s)))ds

+
∫ θ+1

s

Q(θ+1 − s)
(
W∗Q∗(θ+1 − s)R

(
λ, Γ

θ+1
s

)
∆(ηθ+1 , θ+1)

)
ds

= ηθ+1 + (Γ
θ+1
s R

(
λ, Γ

θ+1
s

)
− I)∆(ηθ+1 , θ+1)

= ηθ+1 + λR
(

λ, Γ
θ+1
s

)
∆(ηθ+1 , θ+1).
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Thus,

‖ϑλ(θ+1)− ηθ+1‖ ≤
∥∥∥∥R
(

λ, Γ
θ+1
s

)[
ηθ+1 − ∆̃(θ+1)− G(θ+1, xθ+1)

]∥∥∥∥
+

∥∥∥∥R
(

λ, Γ
θ+1
s

)[ ∫ θ+1

s

Q(θ+1 −κ)Ψ(κ, xκ , (Kx)(κ))dκ
]∥∥∥∥.

From the uniform boundedness of Ψ(·, ·, ·) and similar to the proof of Theorem 5, we obtain∫ κ

0
‖Ψ(s, xλ

s , (Kxλ)(s))− Ψ̃(s)‖ds −−→
λ→0

0.

Then,

‖ϑλ(θ+1)− ηθ+1‖

≤
∥∥∥∥R
(

λ, Γ
θ+1
s

)[
ηθ+1 − ∆̃(θ+1)− G(θ+1, xθ+1)

]∥∥∥∥
+

∥∥∥∥R
(

λ, Γ
θ+1
s

)[ ∫ θ+1

s

Q(θ+1 −κ)
(

Ψ(s, xs, (Kx)(s))− Ψ̃(s)
)

dκ
]∥∥∥∥

+

∥∥∥∥R
(

λ, Γ
θ+1
s

)[ ∫ θ+1

s

Q(θ+1 −κ)Ψ̃(s)ds
]∥∥∥∥ −−→λ→0

0.

Thus, ϑλ(θ+1) → ηθ+1 holds. Therefore, we obtain the approximate controllability of
system (2), and the proof is complete.

5. An Example

Let

= := L2(0, π) =

{
ϑ : (0, π) −→ R :

∫ π

0
|ϑ(x)|2dx < ∞

}
,

be the Hilbert space with the scalar product 〈ϑ,κ〉 =
∫ π

0 ϑ (x)κ(x)dx, and the norm

‖ϑ‖2 =

(∫ π

0
|ϑ(x)|2dx

)1/2
.

The phase space k = BUC(R−,=) is the space of bounded uniformly continuous functions
endowed with the following norm: ‖ψ‖k = sup−∞<ε≤0 ‖ψ(ε)‖L2 , ψ ∈ k. It is well known
that k satisfies the axioms (A1) and (A2) with K = 1 and ℘̃(θ) = ℘̂(θ) = 1 (see [33]).
Let ℵ be induced on = as follows:

ℵz = z′′, and D(ℵ) = H2(0, π) ∩ H1
0(0, π).

Additionally, we have

ℵz =
∞

∑
n=1

n2〈z, zn〉zn, z ∈ D(ℵ),

where zn(s) = −
√

2
π sin ns; n = 1, 2, . . ., is the orthogonal set of eigenvectors of ℵ. It is well

known that ℵ is the infinitesimal generator of a C0 semigroup {T(θ), θ ≥ 0} in the Hilbert
space = and

T(θ)z =
∞

∑
n=1

exp
(
−n2θ

)
〈z, zn〉zn, z ∈ =.

We define the operators Λ(θ) : D(ℵ) ⊂ = 7→ = as follows:

Λ(θ)z = Γ(θ)ℵz, f or θ ≥ 0, z ∈ D(ℵ).
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More appropriate conditions on operator Λ, (C4) holds. Furthermore, the above C0 semi-
group {T(θ), θ ≥ 0} is compact for θ > 0 and thus it is operator-norm continuous for θ > 0,
and so the resolvent operator for θ > 0. More details about these facts can be seen from the
monograph [34].
Consider the following system:

∂ν(θ,ζθ)(x)
∂θ = ∂2ν(θ,ζθ)(x)

∂2x −
∫ θ

0 Γ(θ − s) ∂2ν(s,ζs)(x)
∂2x ds +

∫ −θ
−∞

eε‖ζ(θ+ε,x)‖2
77((θ+ε)2+1)dε

− e
π
2
√

sinh(π)

77(θ2+1) +
∫ 1

0
sin(θ) ln(1+e−θ2

)(1+ζ(s,x))
133(1+2θ2+s2)eθ ds + L(θ, x),

if θ ∈ I1 ∪ I2 ∪ I3 and x ∈ (0, π),

ζ(θ, 0) = ζ(θ, π) = 0, for θ ∈ [0, 1],

ζ(θ, x) = 1
63+θ6 ‖(ζ(−, x))‖2, if θ ∈ f1 ∪f2, x ∈ (0, π),

ζ(θ, x) = Φ(θ, x), if θ ∈ R− and x ∈ (0, π),

(4)

where k1 = 1
16 , k2 = 1

9 , k3 = 1
8 , k4 = 1

4 , I1 = (0, k1], I2 = (k2, k3], I3 = (k4, 1], f1 =
(k1, k2], f2 = (k3, k4], L : [0, 1]× [0, π]→ [0, π].
The function ν is defined by

ν(θ, ζθ)(x) = ζ(θ, x)−
∫ 0

−∞

a0(θ)a1(s)
63

‖ζ(s, x)‖2ds,

where a0 ∈ C([0, 1],R+) and a1 ∈ L1(R−,R+) such that ‖a0‖‖a1‖L1 < 34
5 .

LetW : U → = be defined byWϑ(θ)(x) = L(θ, x), x ∈ [0, π], ϑ ∈ U, where L : [0, 1]×
[0, π]→ = is continuous.
We put ζ(θ)(x) = ζ(θ, x), for θ ∈ [0, 1], and define

Ψ(θ, x1, x2)(x) =
∫ −θ

−∞

eε‖x1(θ + ε, x)‖2

77((θ + ε)2 + 1)
dε− e

π
2
√

sinh(π)

77(θ2 + 1)
+

sin(θ)x2(θ)(x)
eθ

,

x2(θ)(x) = K(x1)(x) =
∫ 1

0

ln(1 + e−θ2
)(1 + x1(s, x))

133(1 + 2θ2 + s2)
ds,

Υ(θ, x(θ, x)) =
1

63 + θ6 ‖(x(−, x))‖2,

G(θ, x̂(θ, x)) =
∫ 0

−∞

a0(θ)a1(s)
63

‖x̂(s, x)‖2ds.

These definitions allow us to depict the system (4) in the abstract form (2).
Now, for θ ∈ [0, 1], we have

|Ψ(θ,κ1(θ),κ2(θ))| ≤
e

π
2
√

sinh(π)

77(θ2 + 1)
(1 + ‖κ1‖k) + sin(θ)e−θ(|κ2(θ)|).

So, ψi+1(θ) = t + i; i = 0, 1 are continuous nondecreasing functions, and we have

pΨ =
e

π
2

77
√

2

√(
π

1 + π2 + tan−1(π)

)
sinh(π), and qΨ =

√
8−1(1− e−2π).

Additionally, for any bounded set Π ⊂ =, and Πθ ∈ k, we obtain

χ(Ψ(θ, Πθ ,K(Π(θ)))) ≤ (pΨ + qΨ)χ(Π).
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Now, regarding g and Υ, we obtain

‖g(θ, s,κ1)− g(θ, s,κ2)‖2 ≤ ln(2)
133
‖κ1 −κ2‖2,

‖Υ(θ,κ1)− Υ(θ,κ2)‖2 ≤ 1
63
‖κ1 −κ2‖2,

‖G(θ, κ̃1)− G(θ, κ̃2)‖2 ≤ ‖a0‖‖a1‖L1

63
‖κ1 −κ2‖k.

Then εKQ(L∗Υ
+ LG) < 1, so we can take ε = 7, and for p3 = ‖κ1‖k, p4 = ‖κ2‖2, we obtain

‖Ψ(·,κ1(·),κ2(·))‖2 ≤ e
π
2

√
sinh(π)(1 + p3 + p4), for all κ1 ∈ k, κ2 ∈ =.

For reasoning similar to that in [8], the linear control system corresponding to system (4) is
approximately controllable on [0, 1]. Hence, (C0) holds. After verifying all the requirements
of Theorems 6 and 7, we can conclude that (4) is approximately controllable.

6. Conclusions

In this paper, we have presented an analysis of the approximate controllability for a
class of abstract neutral integro-differential equations with non-instantaneous impulsions
and state-dependent delay. Our approach utilizes resolvent operators and Darbo’s type
fixed point theorem to obtain the results. Through our analysis, we have shown that the
system is approximately controllable under certain conditions. Furthermore, we have
illustrated the practical applications of our results through a specific example. We hope
that our analysis can inspire further research in this area and contribute to the development
of more complex systems. In our future work, we aim to study the approximate and
exact controllability, attractivity and Ulam stability for second-order impulsive differential
evolution equations with different types of delay.
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