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We prove the approximate controllability of the following semilinear impulsive evolution equation: �� = ��+��(�)+�(�, �, �), � ∈	, � ∈ (0, 
], �(0) = �0, �(�+� ) = �(�−� ) + ��(��, �(��), �(��)), � = 1, 2, 3, . . . , 
, where 0 < �1 < �2 < �3 < ⋅ ⋅ ⋅ < �� < 
, 	 and � are

Hilbert spaces, � ∈ �2(0, 
; �), � : � → 	 is a bounded linear operator, ��, � : [0, 
] × 	 × � → 	 are smooth functions, and� : �(�) ⊂ 	 → 	 is an unbounded linear operator in 	 which generates a strongly continuous semigroup {�(�)}�≥0 ⊂ 	. We
suppose that � is bounded and the linear system is approximately controllable on [0, �] for all � ∈ (0, 
). Under these conditions,
we prove the following statement: the semilinear impulsive evolution equation is approximately controllable on [0, 
].

1. Introduction

�ere are many practical examples of impulsive control sys-
tems: a chemical reactor system with the quantities of di	er-
ent chemicals serving as the states variable, a 
nancial system
with two state variables of the amount of money in a market
and the saving rates of a central bank, and the growth of
a population di	using throughout its habitat which is o�en
modeled by reaction-di	usion equation, for which much has
been done under the assumption that the system parameters
related to the population environment either are constant
or change continuously. However, one may easily visualize
situations in nature where abrupt changes such as harvesting,
disasters, and instantaneous stoking may occur.

�is observation motivates us to study the approximate
controllability of the following semilinear impulsive evolu-
tion equation:

�� = �� + �� (�) + � (�, �, �) , � ∈ 	, � ∈ (0, 
] ,
� (0) = �0,

� (�+� ) = � (�−� ) + �� (��, � (��) , � (��)) , � = 1, 2, 3, . . . , 
,
(1)

where 0 < �1 < �2 < �3 < ⋅ ⋅ ⋅ < �� < 
, 	 and � are

Hilbert spaces, � ∈ �2(0, 
; �), � : � → 	 is a bounded
linear operator, ��, � : [0, 
] × 	 × � → 	 are smooth
functions, and � : �(�) ⊂ 	 → 	 is an unbounded
linear operator in 	 which generates a strongly continuous
semigroup {�(�)}�≥0 ⊂ 	.
De�nition 1 (approximate controllability). System (1) is said
to be approximately controllable on [0, 
] if for every �0, �1 ∈	, � > 0 there exists � ∈ �2(0, 
; �) such that the solution�(�) of (1) corresponding to � veri
es (see Figures 1 and 2)

� (0) = �0, �����(
) − �1����� < �. (2)

We assume the following main hypotheses:

(A) � is a bounded function;

(B) linear system without impulses (8) is approximately
controllable on [
 − �, 
] for all 0 < � < 
.

�at is, the Gramian controllability operator

�� = ���∗� = ∫�
0
� (�) ��∗�∗ (�) �� (3)
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satis
es�� > 0 for all 0 < � < 
, which is equivalent, accord-
ing to (13) and Lemma 3(c), to the approximate controllability
of linear system (8) on [
 − �, 
], for all 0 < � < 
.

�is paper has been motivated by the works done in
Bashirov and Ghahramanlou [1], Bashirov and Jneid [2], and
Bashirov et al. [3], where a new technique to prove the con-
trollability of evolution equations without impulses is used
avoiding 
xed point theorems, and the work done in [4].

�e controllability of impulsive evolution equations has
been studied recently by several authors, but most of them
study the exact controllability only; it is worth mentioning
that Chalishajar [5] studied the exact controllability of impul-
sive partial neutral functional di	erential equations with
in
nite delay, Radhakrishnan and Balachandran [6] studied
the exact controllability of semilinear impulsive integrodi	er-
ential evolution systems with nonlocal conditions, and Selvi
and Mallika Arjunan [7] studied the exact controllability for
impulsive di	erential systems with 
nite delay. To our knowl-
edge, there are a few works on approximate controllability of
impulsive semilinear evolution equations worth mentioning:
Chen and Li [8] studied the approximate controllability of
impulsive di	erential equations with nonlocal conditions,
using measure of noncompactness and Monch 
xed point
theorem and assuming that the nonlinear term �(�, �) does
not depend on the control variable, and Leiva andMerentes in
[4] studied the approximate controllability of the semilinear
impulsive heat equation using the fact that the semigroup
generated by Δ is compact.

In this paper, we are not assuming the compactness of the
semigroup {�(�)}�≥0 generated by the unbounded operator�; when this semigroup is compact we can consider weaker
condition on the nonlinear perturbation � and in the linear

part of the system without impulses. Speci
cally, we can
assume the following hypotheses:

(a)

‖� (�, �, �)‖� ≤ "0 ‖�‖
0� + #0 ‖�‖�0� + $0,
������(�, �, �)����� ≤ "� ‖�‖
�� + #� ‖�‖��� + $�,

� = 1, 2, 3, . . . , 
,
(4)

with 1/2 ≤ %� < 1, 1/2 ≤ &� < 1, � = 0, 1, 2, 3, . . . , 
;
(b) the linear system is approximately controllable only

on [0, 
].
�is case is similar to the semilinear impulsive heat

equations studied in [4], where the authors use conditions
(a) and (b), the compactness of the semigroup generated by
the Laplacian operator Δ, and Rothe’s 
xed point theorem to
prove the approximate controllability of the system on [0, 
].

When it comes to the wave equation, the situation is
totally di	erent; the semigroup generated by the linear part is
not compact; it is in fact a group, which can never be compact.
Furthermore, if the control acts on a portion ' of the domainΩ for the spatial variable, then the system is approximately
controllable only on [0, 
] for 
 ≥ 2, which was proved in [9],
where the following system governed by the wave equations
was studied:

4�� = Δ4 + 1�� (�, 5) , on (0, 
) × Ω,
4 = 0, on (0, 
) × 6Ω,

4 (0, 5) = 40 (5) , 4� (0, 5) = 41 (5) , in Ω,
(5)

whereΩ is a bounded domain inR

, ' is an open nonempty

subset of Ω, 1� denotes the characteristic function of the set', the distributed control � ∈ �2([0, 
]; �2(Ω)), and 40 ∈72(Ω) ∩ 710 , 41 ∈ �2(Ω).
However, if the control acts on the whole domain Ω, it

was proved in [10] that the system is controllable [0, 
], for
all 
 > 0. More speci
cally, the authors studied the following
system:

4�� = Δ4 + � (�, 5) , on (0, 
) × Ω,
4 = 0, on (0, 
) × 6Ω,

4 (0, 5) = 40 (5) , 4� (0, 5) = 41 (5) , in Ω,
(6)

where Ω is a bounded domain in R

, the distributed control� ∈ �2([0, 
]; �2(Ω)), and 40 ∈ 72(Ω) ∩ 710 , 41 ∈ �2(Ω).

To justify the use of this new technique [1], in this paper,
we consider as an application the semilinear impulsive wave



Abstract and Applied Analysis 3

equation with controls acting on the whole domainΩ, so that
hypotheses (A) and (B) hold:

4�� = Δ4 + � (�, 5) + � (�, 4, 4�, � (�)) , on (0, 
) × Ω,
4 = 0, on (0, 
) × 6Ω,

4 (0, 5) = 40 (5) , 4� (0, 5) = 41 (5) , in Ω,
4� (�+� , 5) = 4� (�−� , 5)

+ �� (�, 4 (��, 5) , 4� (��, 5) , � (��, 5)) , 5 ∈ Ω,
(7)

where 0 < �1 < �2 < �3 < ⋅ ⋅ ⋅ < �� < 
, Ω is a bounded

domain in R

, the distributed control � ∈ �2([0, 
]; �2(Ω)),40 ∈ 72(Ω)∩710 , 41 ∈ �2(Ω), and ��, � are smooth functions

with � being bounded.

2. Controllability of the Linear Equation
without Impulses

In this section we will present some characterization of
the approximate controllability of the corresponding linear
equations without impulses. To this end, we note that for all�0 ∈ 	 and � ∈ �2(0, 
; �) the initial value problem

�� = �� + �� (�) , � ∈ 	,
� (�0) = �0 (8)

admits only one mild solution given by

� (�) = � (�, �0, �0, �)
= � (�) �0

+ ∫�
�0
� (� − 9) �� (9) �9, � ∈ [�0, 
] , 0 ≤ �0 ≤ 
.

(9)

De�nition 2. For system (8), one de
nes the following con-

cept: the controllability maps ��� : �2(
 − �, 
; �) → 	,�� : �2(0, �; �) → 	, de
ned by

���� = ∫�
�−�

� (
 − 9) �� (9) �9, � ∈ �2 (
 − �, 
; �) ,
��V = ∫�

0
� (9) �V (9) �9, V ∈ �2 (0, �; �) ,

(10)

satisfy the following relation:

���� = ∫�
�−�

� (
 − 9) �� (9) �9
= ∫�
0
� (9) �� (
 − 9) �9

= ��� (
 − ⋅) .
(11)

�e adjoints of these operators �∗�� : 	 → �2(
 − �, 
; �),�∗� : 	 → �2(0, �; �) are given by

(�∗���) (�) = �∗�∗ (
 − �) �, � ∈ [
 − �, 
] ,
(�∗�5) (�) = �∗�∗ (�) �, � ∈ [0, �] . (12)

�e Gramian controllability operators are given by (3) and

��� = ����∗�� = ∫�
�−�

� (
 − �) ��∗�∗ (
 − �) �� = ��. (13)

�e following lemma holds in general for a linear
bounded operator � : A → 	 between Hilbert spaces A
and 	 (see [4, 11, 12]).

Lemma 3. �e following statements are equivalent to the
approximate controllability of the linear system (8) on [
−�, 
].

(a) Range (���) = 	.
(b) Ker(�∗��) = {0}.
(c) ⟨����, �⟩ > 0, � ̸= 0 in 	.
(d) lim
→0+%(%� + ���)−1� = 0.
(e) For all � ∈ 	, one has ����
 = � − %(%� + ���)−1�,

where

�
 = �∗�� (%� + ���)−1 �, % ∈ (0, 1] . (14)

So lim
→0����
 = � and the error E��� of this
approximation is given by the formula

E��� = % (%� + ���)−1 �, % ∈ (0, 1] . (15)

(f) Moreover, if one considers for each V ∈ �2(
 − �, 
; �)
the sequence of controls given by

�
 = �∗�� (%� + ���)−1 �
+ (V − �∗�� (%� + ���)−1 ���V) , % ∈ (0, 1] , (16)

one gets that

����
 = � − % (%� + ���)−1 (� + ���V) ,
lim

→0

����
 = �, (17)

with the error E��� of this approximation given by the
formula

E��� = % (%� + ���)−1 (� + ���V) , % ∈ (0, 1] . (18)

Remark 4. �e foregoing lemma implies that the family of
linear operators Γ
�� : 	 → A, de
ned for 0 < % ≤ 1 by

Γ
��� = �∗�� (%� + ���)−1 �, (19)

is an approximate inverse for the right of the operator A, in
the sense that

lim

→0

���Γ
�� = � (20)

in the strong topology.
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Lemma5. �� > 0 if and only if linear system (8) is controllable
on [
 − �, 
]. Moreover, given an initial state 40 and a �nal

state �1, one can �nd a sequence of controls {��
}0<
≤1 ⊂ �2(
 −�, 
; �):
�
 = �∗�� (%� + ����∗��)−1 (�1 − � (
) 40) , % ∈ (0, 1] ,

(21)

such that the solutions 4(�) = 4(�, 
 − �, 40, ��
) of the initial
value problem

4� = �4 + ��
 (�) , 4 ∈ 	, � > 0,
4 (
 − �) = 40 (22)

satisfy

lim

→0+

4 (
, 
 − �, 40, �
) = �1; (23)

that is,

lim

→0+

4 (
)
= lim

→0+

{� (�) 40 + ∫�
�−�

� (
 − 9) ��
 (9) �9} = �1.
(24)

3. Controllability of the Semilinear
Impulsive System

In this section, we will prove the main result of this paper:
the approximate controllability of the semilinear impulsive
evolution equation given by (1). To this end, for all �0 ∈ 	
and � ∈ �2(0, 
; �), the initial value problem

�� = �� + �� + � (�, �, �) , � ∈ (0, 
] , � ̸= ��, � ∈ 	,
� (0) = �0,

� (�+� ) = � (�−� ) + �� (�, � (��) , � (��)) , � = 1, 2, 3, . . . , 
,
(25)

admits only one mild solution given by

�� (�) = � (�) �0 + ∫�
0
� (� − 9) �� (9) �9

+ ∫�
0
� (� − 9) � (9, �� (9) , � (9)) �9

+ ∑
0<��<�

� (� − ��) �� (��, � (��) , � (��)) , � ∈ [0, 
] .
(26)

Now, we are ready to present and prove themain result of this
paper, which is the approximate controllability of semilinear
impulsive equation (1).

�eorem 6. Under conditions (A) and (B), semilinear impul-
sive system (1) is approximately controllable on [0, 
].

Proof. Given an initial state �0, a 
nal state �1, and L > 0, we
want to 
nd a control ��
 ∈ �2(0, 
; �) steering the system
from �0 to an L-neighborhood of �1 on time 
. Speci
cally,

lim

→0

{� (
) �0 + ∫�
0
� (
 − 9) ���
 (9) �9

+ ∫�
0
� (
 − 9) � (9, �
 (9) , ��
 (9)) �9

+ ∑
0<��<�

� (
 − ��) �� (�
 (��) , ��
 (��))} = �1.
(27)

Consider any � ∈ �2(0, 
; �) and the corresponding solution�(�) = �(�, 0, �0, �) of initial value problem (25). For % ∈(0, 1], we de
ne the control ��
 ∈ �2(0, 
; �) as follows:
��
 (�) = {� (�) , if 0 ≤ � ≤ 
 − �,�
 (�) , if 
 − � < � ≤ 
, (28)

where

�
 (�) = �∗�∗ (
 − �) (%� + ����∗��)−1 (�1 − � (�) � (
 − �)) ,

 − � < � ≤ 
.

(29)

Now, assume that 0 < � < 
 − ��. �en the corresponding

solution ��
(�) = �(�, 0, �0, ��
) of initial value problem (25) at
time 
 can be written as follows:

��
 (
) = � (
) �0 + ∫�
0
� (
 − 9) ���
 (9) �9

+ ∫�
0
� (
 − 9) � (9, ��
 (9) , ��
 (9)) �9

+ ∑
0<��<�

� (
 − ��) ��� (��
 (��) , ��
 (��))

= � (�){{{
� (
 − �) �0 + ∫�−�

0
� (
 − � − 9) ���
 (9) �9

+ ∫�−�
0

� (
 − � − 9) � (9, ��
 (9) , ��
 (9)) �9

+ ∑
0<��<�−�

� (
 − � − ��) ��� (��
 (��) , ��
 (��))}}}
+ ∫�
�−�

� (
 − 9) ���
 (9) �9
+ ∫�
�−�

� (
 − 9) � (9, ��
 (9) , ��
 (9)) �9
= � (�) � (
 − �) + ∫�

�−�
� (
 − 9) ��
 (9) �9

+ ∫�
�−�

� (
 − 9) � (9, ��
 (9) , �
 (9)) �9.
(30)
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So,

��
 (
) = � (�) � (
 − �) + ∫�
�−�

� (
 − 9) ��
 (9) �9
+ ∫�
�−�

� (
 − 9) � (9, ��
 (9) , �
 (9)) �9.
(31)

�e corresponding solution 4�
(�) = 4(�, 
 −�, �(
−�), �
) of
initial value problem (22) at time 
 is given by

4�
 (
) = � (�) � (
 − �) + ∫�
�−�

� (
 − 9) ��
 (9) �9. (32)

�erefore,

�������
 (
) − 4�
 (
)����� ≤ ∫�
�−�

‖� (
 − 9)‖ ������ (9, ��
 (9) , �
 (9))����� �9.
(33)

�en, putting V = sup0≤�≤�‖�(�)‖ and W = sup[0,�]×�×�‖�(�,�, �)‖, we obtain the following estimate:

�������
 (
) − 4�
 (
)����� ≤ VW�. (34)

Hence,

�������
 (
) − �1����� ≤ VW� + �����4�
 (
) − �1����� . (35)

From Lemma 5, there exists % > 0 such that

�����4�
 (
) − �1����� ≤ L2 . (36)

So, taking � < min{
 − ��, L/2VW}, we obtain for the corres-

ponding control ��
 that
�������
 (
) − �1����� ≤ L. (37)

Geometrically, the proof goes as shown in Figure 3.
�is completes the proof of the theorem.

4. Applications

As an application, we will prove the approximate controllabil-
ity of the following control system governed by the semilinear
impulsive wave equation:

4�� = Δ4 + � (�, 5) + � (�, 4, 4�, � (�)) , on (0, 
) × Ω,
4 = 0, on (0, 
) × 6Ω,

4 (0, 5) = 40 (5) , 4� (0, 5) = 41 (5) , in Ω,
4� (�+� , 5) = 4� (�−� , 5) + �� (�, 4 (��, 5) , 4� (��, 5) , � (��, 5)) ,

5 ∈ Ω,
(38)

where Ω is a bounded domain in R

, the distributed control� ∈ �2([0, 
]; �2(Ω)), 40 ∈ 72(Ω)∩710 , 41 ∈ �2(Ω), and ��, �

are smooth functions with � being bounded.

z0

z(� − �)

z(�)

z��(�)

z1

y��(�)

�

Figure 3

4.1. Abstract Formulation of the Problem. In this part, we will
choose the space where this problem will be set up as an
abstract control system in a Hilbert space. Let X = �2(Ω) =�2(Ω,R) and consider the linear unbounded operator � :�(�) ⊂ X → X de
ned by �Y = −ΔY, where

�(�) = 72 (Ω,R) ∩ 710 (Ω,R) . (39)

�en the eigenvalues Z� of � have 
nite multiplicity \� equal
to the dimension of the corresponding eigenspace and 0 <Z1 < Z2 < ⋅ ⋅ ⋅ < Z
 → ∞. Moreover, consider the following.

(a) �ere exists a complete orthonormal set {Y�,�} of
eigenvectors of �.
(b) For all 5 ∈ �(�), we have

�5 = ∞∑
�=1

Z�
��∑
�=1

⟨5, Y�,�⟩Y�,� = ∞∑
�=1

Z�E�5, (40)

where ⟨⋅, ⋅⟩ is the usual inner product in �2 and
E�5 = ��∑

�=1
⟨5, Y�,�⟩Y�,�, (41)

which means the set {E�}∞�=1 is a complete family of

orthogonal projections inX and5 = ∑∞�=1 E�5,5 ∈ X.

(c) −� generates an analytic semigroup {b−��} given
by

b−��5 = ∞∑
�=1

b−���E�5. (42)

(d) �e fractional powered spacesX� are given by

X� = � (��) = {5 ∈ X : ∞∑

=1

Z2�
 ����E
5����2 < ∞} , d ≥ 0,
(43)
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with the norm

‖5‖� = ������5���� = {∞∑

=1

Z2�
 ����E
5����2}
1/2 , 5 ∈ X�,

��5 = ∞∑

=1

Z�
E
5.
(44)

Also, for d ≥ 0, we de
ne 	� = X� × X, which is a
Hilbert space endowed with the norm given by��������[

4
V
]���������� = √����4����2� + ‖V‖2. (45)

�en, (1) can be written as abstract second order ordinary
di	erential equations in 	1/2 as follows:

4�� = −�4 + � + �� (�, 4, 4�, �) , � ∈ (0, 
] , � ̸= ��,
4 (0) = 40, 4� (0) = 41,

4� (�+� ) = 4� (�−� ) + ��� (��, 4 (��) , 4� (��) , � (��)) ,
� = 1, 2, 3, . . . , 
,

(46)

where ���, �� : [0, 
] × 	1/2 × � → 	1/2 are de
ned by

��� (�, 4, V, �) (5) = �� (�, 4 (5) , V (5) , � (5)) ,
�� (�, �, �) (5) = � (�, 4 (5) , V (5) , � (5)) ,

∀5 ∈ Ω, � = 1, 2, . . . , 
.
(47)

With the change of variables 4� = V, we can write second
order equation (46) as a 
rst order system of ordinary

di	erential equations in the Hilbert space 	1/2 = X1/2 × X
as follows:

�� = A� + �� + � (�, �, � (�)) , � ∈ 	1/2, � ∈ (0, 
] , � ̸= ��,
� (0) = �0,

� (�+� ) = � (�−� ) + i� (��, � (��) , � (��)) , � = 1, 2, 3, . . . , 
,
(48)

where � ∈ �2([0, 
]; �), � = X = �2(Ω),
� = [4

V
] , � = [0�] , A = [ 0 ��−� 0 ] (49)

is an unbounded linear operator with domain �(A) =�(�) × �(�1/2), and i�, � : [0, 
] × 	1/2 × � → 	1/2 are
de
ned by

� (�, �, �) = [ 0�� (�, 4, V, �)] ,
i� (�, �, �) = [ 0��� (�, j, V, �)] .

(50)

It is well known that the operatorA generates a strongly

continuous group {�(�)}�≥0 in the space 	 = 	1/2 = X1/2 ×X
(see [13]). �e following representation for this group can be
found in [9] as �eorem 2.2.

Proposition 7. �e group {�(�)}�≥0 generated by the operator
A has the following representation:

� (�) � = ∞∑

�=1

b���k��, � ∈ 	1/2, � ≥ 0, (51)

where {k�}�≥0 is a complete family of orthogonal projections in
the Hilbert space 	1/2 given by

k� = [E� 00 E�] , l ≥ 1,
�� = m�k�, m� = [ 0 1−Z� 0] , l ≥ 1.

(52)

4.2. Approximate Controllability. Now, we are ready to for-
mulate and prove the main result of this section, which is the
approximate of the semilinear impulsive wave equation with
bounded nonlinear perturbation.

�eorem 8. Semilinear impulsive wave equation (38) is
approximately controllable on [0, 
].
Proof. From [10], we know that the corresponding linear
system without impulses

�� = A� + ��, � ∈ 	1/2, � ∈ (0, 
] ,
� (0) = �0 (53)

is exactly controllable on [0, �], for all 0 < � < 
. On the
other hand, since � is bounded, there exists V > 0 such that
sup[0,�]×R×R×R‖�(�, 4, V, �)‖ ≤ V. �erefore, we obtain

‖�(�, �, �)‖�1/2
= {∫
Ω

oooo� (�, 4 (5) , V (5) , � (5))oooo2 �5}1/2 ≤ √q (Ω)V,
(54)

for all (�, �, �) ∈ [0, 
] × 	1/2 × � with q(Ω) the Lebesgue
measure of Ω. Hence hypotheses (A) and (B) in �eorem 6
are satis
ed and we get the result.

5. Final Remark

�is technique can be applied to those systems where the
linear part does not generate a compact semigroup and is
controllable on any [0, �] for � > 0 and the nonlinear
perturbation is bounded. Example of such systems is the
following controlled thermoelastic plate equation whose
linear part was studied in [10]:

4�� + Δ24 + %Δr = �1 (�, 5) + �1 (�, 4, 4�, r, � (�)) ,
on (0, 
) × Ω,
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r� − &Δr − %Δ4� = �2 (�, 5) + �2 (�, 4, 4�, r, � (�)) ,
on (0, 
) × Ω,

r = 4 = Δ4 = 0, on (0, 
) × 6Ω,
4� (�+� , 5) = 4� (�−� , 5) + �1� (�, 4 (��, 5) , 4� (��, 5) , � (��, 5)) ,

5 ∈ Ω,
r (�+� , 5) = r (�−� , 5) + �2� (��, r (��, 5) , � (��, 5)) , 5 ∈ Ω,

(55)

in the space 	 = X1 × X × X, where Ω is a bounded domain
inR

, the distributed controls �1, �2 ∈ �2([0, 
]; �2(Ω)), and���, �� are smooth functions with ��, s = 1, 2, being bounded.
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