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Fig. 1. We decompose a solid mesh into a set of components and utilize the convex hulls of the components (shown in different colors) to represent the original
shape. Compared to prior works, we can better capture the fine-grained structures of the input shape with fewer components. See handles of the oven and the
cabinet, slots of the toaster, and the spout of the kettle (zoom in for details). The high-quality decomposition enables delicate object interaction in downstream
applications (e.g., a robot opens the drawer by grabbing the handles).

Approximate convex decomposition aims to decompose a 3D shape into

a set of almost convex components, whose convex hulls can then be used

to represent the input shape. It thus enables efficient geometry processing

algorithms specifically designed for convex shapes and has been widely

used in game engines, physics simulations, and animation. While prior

works can capture the global structure of input shapes, they may fail to

preserve fine-grained details (e.g., filling a toaster’s slots), which are critical

for retaining the functionality of objects in interactive environments. In this

paper, we propose a novel method that addresses the limitations of existing

approaches from three perspectives: (a) We introduce a novel collision-

aware concavity metric that examines the distance between a shape and

its convex hull from both the boundary and the interior. The proposed

concavity preserves collision conditions and is more robust to detect various

approximation errors. (b) We decompose shapes by directly cutting meshes

with 3D planes. It ensures generated convex hulls are intersection-free and

avoids voxelization errors. (c) Instead of using a one-step greedy strategy,
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we propose employing a multi-step tree search to determine the cutting

planes, which leads to a globally better solution and avoids unnecessary

cuttings. Through extensive evaluation on a large-scale articulated object

dataset, we show that our method generates decompositions closer to the

original shape with fewer components. It thus supports delicate and efficient

object interaction in downstream applications.
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1 INTRODUCTION
With the development of 3D depth sensors, VR/AR, and physics

simulation, large-scale detailed 3D models have become more com-

mon. In addition to employing data structures such as octrees and

bounding volume hierarchies (BVH) to accelerate specific geome-

try processing algorithms, another common strategy for handling

complex 3D models is to decompose them into simpler compo-

nents. In particular, convex decomposition has aroused great in-

terest. Many fundamental geometry problems in rendering and

physics simulation are non-trivial and computationally expensive
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to solve for general shapes. However, if input shapes are convex

polyhedra, many of them can be formulated as convex optimiza-

tion problems, and efficient algorithms can be specifically designed.

Examples include determining whether a 3D point lies inside or

outside of a mesh [Snoeyink 2017], checking whether two meshes

intersect [Bergen 1999; Liu et al. 2008; Mirtich 1998], and calculating

the minimum distance between two meshes [Gilbert et al. 1988].

Decomposing a 3D solid shape into a minimum number of exact

convex components is the exact convex decomposition (ECD) problem,

which has proven to be NP-hard [Chazelle et al. 1997; O’Rourke

and Supowit 1983]. Although many suboptimal heuristics [Chazelle

1981] have been proposed, they usually output a large number of

small components, preventing them from practical applications.

Instead, the approximate convex decomposition (ACD) problem [Lien

and Amato 2007] proposes to lift the strict convexity constraint

and only requires the decomposed components to be approximately

convex. Since ACD approaches [Lien and Amato 2007; Mamou and

Ghorbel 2009; Mamou et al. 2016; Thul et al. 2018] typically generate

a much smaller number of components, whose convex hulls can then

be used to approximate the original shape and speed up downstream

applications, ACD works have recently received more attention. For

example, V-HACD [Mamou et al. 2016] is currently one of the most

popular open-source ACD methods and has been adopted by a wide

range of game engines and physics simulation SDKs.

Existing ACD methods share a similar overall pipeline. In order

to quantify the decomposition quality, they first define a concavity

metric to measure the similarity between a decomposed component

and its convex hull. They then design a heuristic cost function to

decompose the 3D meshes greedily. There are three major short-

comings of existing ACD methods: (a) Concavity metric: Prior
works mainly utilize two types of metrics: boundary-distance-based

concavity [Ghosh et al. 2013; Lien and Amato 2004, 2007, 2008; Liu

et al. 2016; Mamou and Ghorbel 2009], which measures the distance

between the boundary surfaces of the shape and its convex hull;

and volume-based concavity [Attene et al. 2008; Mamou et al. 2016;

Thul et al. 2018], which calculates the volume difference between

the solid shape and its convex hull. However, both metrics may fail

to preserve the collision conditions in some cases, which means

some positions in the space are unlikely to collide shape, but col-

lide with the decomposition results. The insensitivity of existing

concavity metrics to changes in collision conditions can be fatal

for preserving object functionality. For example, they might cause

an algorithm to stuff the slots of a toaster. (b) Component rep-
resentation: There are two common strategies for representing

components and decomposing shapes. The first one is to decom-

pose shapes by grouping the triangle faces [Lien and Amato 2007;

Liu et al. 2016; Mamou and Ghorbel 2009], which results in zig-zag

boundaries of the components and intersecting convex hulls. In

contrast, V-HACD [Mamou et al. 2016] first voxelizes the input

mesh and then decomposes the voxels. However, the voxelization

introduces discretization artifacts, which even makes the algorithm

unable to recognize already convex shapes. (c) One-step greedy
search: Most previous works [Mamou et al. 2016; Thul et al. 2018]

decompose the shapes by recursively performing locally optimal

actions. They often take short-sighted actions and end up gener-

ating more components. Furthermore, considering only one step

may lead to various corner cases, which requires different heuristic

terms [Mamou et al. 2016] as workarounds.

In this paper, we introduce a novel approximate convex decompo-

sition method for 3D meshes, which effectively addresses the limita-

tions of existing approaches from three corresponding perspectives:

(a) We propose a novel collision-aware concavity metric that ex-

amines the component from both the boundary surface and shape

interior by sampling points and calculating Hausdorff distance. The

proposed concavity encourages preserving the collision conditions

by penalizing the inclusion of regions that are far away from the

original shape. We also propose an efficient way to calculate the

concavity to speed up the decomposition. (b) We decompose shapes

by directly cutting 3D solid meshes with 3D planes, which results

in flat boundaries between components. It ensures intersection-free

convex hulls and avoids the defects caused by voxelization. We also

provide a lightweight mesh cutting implementation, which is 100x

faster than off-the-shelf libraries. (c) We propose utilizing the Monte

Carlo tree search to determine cutting planes, which simulates and

searches multiple future actions before each cutting. Compared

to the one-step greedy search, we are more likely to find cutting

planes that lead to a better global solution and avoid unnecessary

cuttings. In addition, by considering multiple steps, we no longer

need various heuristic terms to prevent corner cases.

We evaluate our method on the V-HACD benchmark [Mamou

et al. 2016] and PartNet Mobility [Xiang et al. 2020], a large-scale

articulated object dataset. We show that our method better pre-

serves the collision conditions and accurately approximates the

fine-grained structures (e.g., drawer handles, kettle spouts, inner

rings of scissors, and toaster slots) with fewer convex components.

Our decomposition results thus enable delicate and fast object inter-

action in downstream applications. See Figure 1 for some examples.

Our code is available at https://github.com/SarahWeiii/CoACD.

2 RELATED WORK

2.1 Application of Convex Shapes
Many efficient geometric algorithms require convex shapes as input.

For example, collision detection between shapes is the cornerstone

in physics simulation, virtual reality, game engines, and animations.

Fast and precise collision detection algorithms have been specially

designed for convex shapes [Bergen 1999; Gilbert et al. 1988; Liu et al.

2008; Mirtich 1998; Weller 2013]. Point location, which checks if a

point is within a shape, is an important task in rendering and simula-

tion. It can also be accelerated if input shapes are convex [Snoeyink

2017]. Moreover, by abstracting a 3D shape with a set of convex

components, many downstream applications are developed, such

as skeleton extraction [Lien et al. 2006], tetrahedral mesh genera-

tion [Joe 1994], mesh deformation [Jacobson et al. 2011; Liu et al.

2021; Wang et al. 2015; Wicke et al. 2007; Xian et al. 2012], and

real-time animation [Müller et al. 2013].

2.2 Convex Decomposition
The problem of exact convex decomposition (ECD) was proved to

be NP-hard [Chazelle et al. 1997; O’Rourke and Supowit 1983], and

many suboptimal heuristic algorithms have been proposed [Ba-

jaj and Dey 1992; Bajaj and Pascucci 1996; Chazelle 1984, 1981;
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Hershberger and Snoeyink 1998; Joe 1994]. However, ECD works

typically outputs a substantial amount of components and slows

down practical applications. People thus turned to approximate con-
vex decomposition (ACD) [Lien and Amato 2004, 2007], which lifts

the strict convexity constraint and only requires the decomposed

components to be almost convex.

ACD works first define a concavity metric, which measures the

difference between a shape and its convex hull. They then iteratively

decompose a 3D shape through top-down partition or bottom-up

clustering, until the concavity of each decomposed component is

within a pre-defined threshold. There are mainly three families of

concavity metrics:

• Boundary-distance-based: Lien and Amato [2004, 2007, 2008] pro-

pose to measure the distance between the shape boundary and

its convex hull by mimicking the process of inflating a balloon.

FACD [Ghosh et al. 2013] further extends this idea by introduc-

ing a relative concavity to enhance the details of local structures.

CoRise[Liu et al. 2016] utilizes the shortest geodesic paths on the

mesh surface and calculates the distance between the points on

the path and edges of the convex hull. HACD [Mamou and Ghor-

bel 2009] projects the mesh vertices to the convex hull surface

along normal directions and then measures the distance between

the vertices and their projection. Most boundary-distance-based

concavities involve intricate geometric processing and are ineffi-

cient to calculate for 3D shapes. Moreover, only requiring a small

distance between the shape boundary and its convex hull is not

enough to guarantee plausible decomposition.

• Volume-based: There are also many works utilizing the volume

difference between the shape and its convex hull as the concavity

metric. Attene et al. [2008] tetrahedralizes the input mesh and

hierarchically cluster the tets using the volume-based concavity.

V-HACD [Mamou et al. 2016] first voxelizes the input mesh and

then greedily decomposes the voxels with axis-aligned cutting

planes and volume-based concavity. Due to its open-source code

and good performance in general cases, V-HACD is currently one

of the most widely used convex decomposition algorithms. Thul

et al. [2018] also utilizes the volume-based metric and extends

the task from a single static mesh to temporal coherent animated

meshes. While computationally efficient, many unreasonable de-

compositions may not be penalized using volume differences

alone. For example, it’s easy for V-HACD to stuff the slots of a

toaster since the relative volume difference may be small.

• Visibility-based: Liu et al. [2010]; Ren et al. [2011] count the pairs

of surface points that are mutually visible within the inner volume

of the shape, and utilize the ratio of visible pairs as the concavity

metric. However, it may be biased by the positions of the concave

parts and inefficient to calculate for complex shapes.

Recently, many learning-based methods [Chen et al. 2020; Deng

et al. 2020] also attempted to represent 3D meshes with assemblies

of convex polyhedra. However, they generate convex components

based on a global embedding feature of the shape and may thus fail

to preserve many input structures. Their poor generalizability on

novel shapes also prevents them from extensive practical use.

Algorithm 1: Approximate Convex Decomposition

Input: A 2-manifold solid mesh S, a concavity threshold 𝜖

Output: Approximate convex decomposition D
1 Q ← {S} // processing queue

2 D ← ∅ // decomposition results

3 while Q is not empty do
4 𝐶 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
5 if �Concavity(𝐶) < 𝜖 then // Section 4

6 D .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝐶)
7 else
8 P ← MCTS(𝐶) // search for cutting plane, Section 6

9 P ← Refine(𝐶,P) // Section 6.5

10 𝐶𝐿,𝐶𝑅 ← Cut(𝐶,P) // Section 5

11 Q .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝐶𝐿,𝐶𝑅)

12 D ← Merge(D, 𝜖) // Section 6.5

2.3 Shape Abstraction
Another related direction is shape abstraction. Unlike convex de-

composition, which accurately approximates original shapes, shape

abstraction extracts the global structure and pays less attention

to low-level details. Existing approaches utilize conventional op-

timization or deep learning to abstract a 3D shape into a set of

primitives, such as cuboids [Calderon and Boubekeur 2017; Gadelha

et al. 2020; Mo et al. 2019; Smirnov et al. 2020; Sun et al. 2019;

Tulsiani et al. 2017; Zou et al. 2017], superquadrics [Paschalidou

et al. 2020, 2019], sphere-trees [Bradshaw and O’Sullivan 2004],

sphere-meshes [Gadelha et al. 2020; Thiery et al. 2013], generalized

cylinders [Zhou et al. 2015], and their combination [Li et al. 2019].

Althoughmost geometric primitives are convex, shape abstraction is

hard to capture fine-grained structures due to the low-dimensional

expressibility of the primitives.

3 PROBLEM DEFINITION AND METHOD OVERVIEW
We aim to decompose a solid shape S (represented by a 2-manifold

mesh) into a set of almost convex polyhedra {S𝑖 }, such that the solid
shape determined by the union

⋃ {S𝑖 } is equivalent to the original

shape S, and there is no intersection between the components S𝑖
except for the boundary. We utilize a concavity metric to measure

the difference between each component and its convex hull. Our

objective is to minimize the number of components while ensuring

the concavity of each component is within a pre-defined threshold 𝜖 .

After decomposition, the convex hulls of the generated components

can be used to approximate the original shape S. By adjusting the

threshold 𝜖 , users can balance the number of components and the

level of detail of the decomposition. We assume that the input is

a 2-manifold solid mesh and we can convert imperfect input (e.g.,

non-watertight or non-manifold meshes) by pre-processing with an

off-the-shelf manifold conversion algorithm [Huang et al. 2018].

As shown in Algorithm 1, we utilize a divide-and-conquer strat-

egy to recursively decompose the solid shape. For each component

whose concavity is greater than the threshold 𝜖 , we search for the

best cutting plane and use it to split the component into two (lines 8
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Fig. 2. From left to right: a spherical shell with a small opening, a solid
sphere with a deep hole, and a solid sphere indicating the convex hull
of the left two shapes. Both Hi (S) and H

b
(S) are necessary to measure

the difference between a shape and its convex hull. In the blue example,
Hi (S) ≫ H

b
(S) , while in the green example,H

b
(S) ≫ Hi (S) . The purple

polygons surrounding the cross-sections indicate the boundary surface of
the convex hull.

to 10). The cutting process is recursively applied until all the com-

ponents satisfy the concavity constraint. At last, a post-processing

step is applied in order to merge the generated components and

further reduce the number of components (line 12).

Our high-level pipeline is similar to V-HACD, and the differences

mainly come from three aspects. First, we introduce a novel collision-

aware concavity metric that is more sensitive to detect various

approximation errors and leads to a more reasonable and robust

decomposition. Also, we propose an efficient way to calculate the

concavity (Section 4). Second, without voxelizing the input mesh and

splitting the voxels, we directly decompose the shapes by cutting

meshes with 3D planes, which avoids the discretization errors and

supports more precise and efficient decomposition (Section 5). Third,

instead of greedily searching for the locally optimal decompose

actions with one-step results, we propose leveraging multi-step tree

search to achieve globally better decomposition (Section 6).

4 COLLISION-AWARE CONCAVITY METRIC

4.1 Concavity Definition
ACD works utilize concavity to measure the difference between a

solid shape S and its convex hull CH(S), which can be used to

quantify the quality of the decomposed components. The ideal con-
cavity should be able to recognize all unreasonable approximations

and penalize them with a high cost. It should also be efficient to

calculate, as numerous concavity calculations are needed during the

decomposition process.

There is no consensus on the definition of the concavity among

existing ACD works. Some of them [Ghosh et al. 2013; Lien and

Amato 2004, 2007, 2008; Liu et al. 2016; Mamou and Ghorbel 2009]

focus on the distance between the boundary surfaces of S and

CH(S), while other works [Attene et al. 2008; Mamou et al. 2016;

Thul et al. 2018] utilize the volume difference betweenS and CH(S)
as the concavity. Please refer to Section 2.2 for more details.

A reasonable decomposition should preserve the collision con-

ditions of the input shape, which means any position in the space

that is unlikely to collide with the input shape (i.e., far away from

Fig. 3. Failure cases of the boundary-distance-based methods (from
HACD [Mamou and Ghorbel 2009]). Focusing only on the boundary dis-
tance between the shape and its convex hull, HACD may fail to handle the
hollow structures and fill the interior space.

the input shape), should not collide with the convex decomposition

results as well. Otherwise, both the structure and functionality of

the input shape can be greatly affected. A good concavity metric

should thus be sensitive to detect the approximation errors that sig-

nificantly change the collision conditions. However, we argue that

both the boundary-distance-based and the volume-based metrics

may fail to do so and lead to undesirable decomposition results:

• Boundary-distance-based metrics alone are insufficient for preserv-
ing collision conditions. As shown in Figure 2, if S is a hollow

spherical shell (blue example), the boundary distance between S
and CH(S) may be quite small, and the algorithm may thus fill

the interior space and approximate S with a solid convex hull.

However, it is inappropriate to do so if we want to exploit the free

space inside S. In fact, such shell-like structures are quite com-

mon in applications. For example, in physical simulators, a teapot

needs to hold water, and it’s inappropriate to approximate the

body of the teapot with a solid convex hull. Otherwise, the water

particles collide with the interior of the teapot. Figure 3 shows

some failure cases of the boundary-distance-based concavity.

• Volume-based metrics alone are insufficient for preserving collision
conditions. In some cases, the volume difference between S and

CH(S) may be very small, but significant differences may exist

at the boundary of S and CH(S). For example, in Figure 2, if S is

a solid sphere with a deep hole (green one), the relative volume of

the deep hole is small. However, it is inappropriate to approximate

S with its convex hull, which fills the hole. Figure 4 shows com-

mon failure cases of the volume-based concavity, where V-HACD

tends to utilize thin planar components to close the holes.

The failure cases of existing concavity metrics are fatal to the

functionality of the objects in downstream applications. For example,

suppose we use the decomposition results shown in Figure 4 in a

simulator. In that case, robots can no longer grasp the scissors by

the circles, can no longer use the kettle to pour water, and can no

longer interact with the water dispenser on the refrigerator.

However, it’s non-trivial to directly combine the existing boundary-

distance-based metrics and volume-based metrics since they have

different geometric meanings and scales. On the other hand, many

existing boundary-distance-based metrics involve intricate geome-

try processing and are cumbersome to calculate.

To overcome the limitations of existing approaches, we propose a

novel collision-aware concavitymetric that examines the decomposed

component from both the boundary and the interior with a unified

metric. To introduce the metric, we first review the definition of the

ACM Trans. Graph., Vol. 41, No. 4, Article 42. Publication date: July 2022.
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Fig. 4. Failure cases of the volume-based methods (from V-HACD [Mamou
et al. 2016]). Focusing on the volume difference, V-HACD may fill holes
when the relative volume of the errors is not too large (e.g., thin planar
structures). The red rectangles highlight the error-prone regions.

Hausdorff distance for two point sets:

H(𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵), sup
𝑏∈𝐵

𝑑 (𝑏,𝐴)} (1)

where 𝐴 and 𝐵 are two point sets, 𝑑 (𝑥,𝑌 ) = inf𝑦∈𝑌 𝑑 (𝑥,𝑦) and
𝑑 (𝑥,𝑦) indicates the Euclidean distance between the two points.

As shown in Figure 5, we sample two pairs of point sets tomeasure

the distance between a solid shape S and its convex hull CH(S).
Specifically, by sampling the points from the two boundary surfaces,

we define H
b
(S) as:

H
b
(S) = H(Sample(𝜕S), Sample(𝜕 CH(S))) (2)

where Sample() indicates the point set sampling operation, and 𝜕

denotes the boundary surface of a solid shape. Similarly, by sampling

points from the interior of the shapes, we define Hi (S) as:
Hi (S) = H(Sample(IntS), Sample(Int CH(S))) (3)

where Int denotes the interior of a solid shape.

The concavity of a solid shape S is then proposed to be:

Concavity(S) = max(H
b
(S),Hi (S)) (4)

By measuring the distance from both the boundary surface and the

interior, the proposed concavity can better capture shape differences

and well address failure cases of the prior concavity metrics.

We argue that both terms in Equation 4 are necessary and comple-

mentary for measuring the shape difference. Only usingH
b
(S) may

fail to handle the shell-like structures. Taking the spherical shell (the

Fig. 5. The figure illustrates how to calculate the concavity for “Blender’s
Suzanne” and “Utah teapot”. The first and third columns show the input
shapes and their sampled point clouds, while the second and fourth columns
show the convex hulls and their sampled point clouds. From top to bottom:
manifold meshes, point clouds sampled from the boundary surfaces (for
calculatingH

b
(S)), and point clouds sampled from the interior of the shapes

(for calculating Hi (S)). The teapot is hollow since its inside is connected to
the outside world through the spout. In each dotted square, the red points
indicate the pair of points that achieves Hi (S) or Hb

(S) .

blue one shown in Figure 2) as an example, H
b
(S) only measures

the radius of the small opening on the boundary surface, which is

quite small. In contrast, Hi (S) recognizes the large difference from
the interior and penalizes it with the inner radius of the shell. On

the other hand, only using Hi (S) may fail to capture the difference

between boundary surfaces. For the solid sphere with a deep hole

(the green one shown in Figure 2), Hi (S) only measures the radius

of the hole, no matter how deep the hole is. Instead,H
b
(S) is able to

measure the depth of the hole, which better captures the difference.

A notable property of the proposed concavity metric is its collision
awareness. Our concavity encourages decompositions to preserve

the collision conditions by penalizing the distances between points

in CH(S) − S (i.e., the extra volume introduced by the convex

hull) and the original shape S. Therefore, our metric is sensitive to

detecting approximation errors that significantly alter the collision

conditions, no matter they are fine-grained structures with small

volume or thin planar structures. Instead of calculating an overall

average difference, the proposed concavity focuses on the worst

case (i.e., the farthest point pair). This is because that in many

applications (e.g., robot simulation), we need a guarantee about

the worst case to avoid fatal approximations to certain parts of the

shape, even though the approximation may look good overall.

Moreover, by using our proposed metric, it’s more intuitive for

users to set and adjust the concavity threshold 𝜖 , since one can

interpret the threshold as the degree to which the original shape

becomes thicker. In contrast, the volume-based concavity may not

have such an intuitive interpretation, and the change caused by

adjusting the volume difference threshold may be less predictable.

ACM Trans. Graph., Vol. 41, No. 4, Article 42. Publication date: July 2022.
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4.2 Efficient Concavity Calculation
Besides recognizing all implausible approximations, a good concav-

ity metric should also be efficient to calculate. Our proposed metric

samples points from the shape and its convex hull, and then calcu-

lates Hausdorff distance between the point sets, which avoids intri-

cate geometry processing required by existing boundary-distance-

based metrics. The nearest neighbor calculation in Hausdorff dis-

tance can be accelerated by approximation approaches and parallel

computation [Arya et al. 1998; Blanco and Rai 2014]. Moreover,

when calculating H
b
(S), we exploit point-to-triangle-face distances

to improve the precision further and reduce the number of samples.

That being said, calculating accurate Hi (S) can still be time-

consuming. The calculation of H
b
(S) only needs sampled points

from the boundary surfaces, while the calculation of Hi (S) needs
much more sampled points from the interiors of the shapes to

achieve high precision. See Figure 5 for differences between the

sampled points. To further accelerate the concavity calculation, we

propose a surrogate term Rv (S) for Hi (S):

Rv (S) =
3

√︂
3(Vol(CH(S)) − Vol(S))

4𝜋
(5)

where Vol(CH(S)) - Vol(S) indicates the volume difference be-

tween the convex hull and the input shape. The geometric interpre-

tation of Rv (S) is the radius of a sphere with volume Vol(CH(S)) -
Vol(S), which is potentially the largest inscribed sphere within the

difference of CH(S) and S. Rv (S) serves a similar role as Hi (S) to
recognize the differences within the interior of solid shapes. More-

over, we can actually prove a theoretical guarantee for Rv (S):

Theorem 1. For every solid shape S, we have:
√
2max(H

b
(S), Rv (S)) ≥ max(H

b
(S),Hi (S))

The theorem indicates that we can useH
b
(S) and Rv (S) to bound

the proposed Concavity(S) and still be able to recognize any unrea-
sonable approximations. Please refer to the supplementary materials

for detailed proof. In practice, we find that Rv (S) often overesti-

mates Hi (S). We thus utilize:�Concavity(S) = max(H
b
(S), 𝑘 Rv (S)) (6)

where 𝑘 is a coefficient less than 1, as the concavity metric to achieve

a better approximation. It’s much faster to calculate �Concavity(S),
since it avoids sampling points from the interior of the shapes and

the corresponding nearest neighbor calculation.

5 SHAPE DECOMPOSITION BY CUTTING MESHES
As introduced in Section 3, our method recursively decomposes

a shape S into smaller components. There are various ways to

represent a component and different geometry processing strategies

to decompose the shape. We discuss the geometric design in this

section and leave the search strategy to the next section.

In general, prior works mainly take two types of decomposing

strategies. For triangle-grouping-based methods [Liu et al. 2016;

Mamou and Ghorbel 2009], they preserve the triangle faces of the

input mesh, and group the faces by top-down division or bottom-

up clustering. For volume-based methods, like V-HACD, they first

voxelize the input mesh, use voxels to represent the shape, and then

Fig. 6. An example of triangle-grouping-based methods (from HACD). From
left to right: (a) Input triangle mesh. (b) Grouping results of the triangle
faces, where each color indicates a component. There are zig-zag boundaries
between different components. (c) Corresponding convex hulls of each
component, and they intersect with each other.

Fig. 7. Each pair shows an input mesh and its voxelization (64×64×64). Even
the input shapes are already convex, there are noticeable volume differences
between the voxels and their bounding convex hulls, making V-HACD fail
to recognize already convex parts.

divide the voxels. However, both strategies have some apparent lim-

itations. Specifically, triangle-grouping-based methods often output

components with zigzag boundaries (see Figure 6). As a result, the

convex hulls of the decomposed components usually intersect with

each other, which is undesirable in many applications. On the other

hand, although volume-based methods avoid crooked boundaries of

the components, their voxelization pre-processing may introduce

discretization artifacts. More importantly, volume-based methods

may fail to recognize already convex components. As shown in

Figure 7, although the input shapes are already convex, V-HACD

still regards them as non-convex due to the discretization error, and

may try to further divide the voxels. Not only that, but to achieve

high precision, V-HACD would require a large number of voxels

which would slow down the decomposition algorithm.

Instead, we follow [Thul et al.

2018] to utilize triangle meshes to

represent solid components during

decomposition and directly cut the

manifold meshes with 3D planes. As

shown in the left inset, given a mani-

fold mesh and a 3D cutting plane, we

split the mesh into two parts along

the plane surface. Each resulting part

is still a manifold mesh with flat boundaries and can be recursively

decomposed. In this way, we ensure convex hulls of the decomposed

components are intersection-free. Moreover, without voxelization

as pre-preprocessing, we preserve fine-grained details and avoid

over-decomposing convex shapes.
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Fig. 8. We sample𝑚 equally-spaced candidate cutting planes (illustrated
by straight lines here) from each axis-aligned direction. After finding the
best candidate with a tree search, we also refine the plane’s position.

However, existing mesh cutting functions from off-the-shelf com-

putational geometry libraries (e.g., CGAL [Fabri and Pion 2009])

are very heavy and time-consuming, which slows down our decom-

position algorithm. Therefore, we implement a lightweight cutting

function that is about 100x faster than CGAL’s implementation.

Specifically, the implementation mainly includes four steps: (a) Find

triangles that are not intersecting with the cutting plane, and group

them into two sets according towhich side of the plane the triangle is

in. The two triangle sets are later used to form the two parts. (b) Split

each intersecting triangle into two with the cutting plane, and then

add them into the two sets. (c) Add new surfaces (overlapping with

the cutting plane) for the two parts to form solid meshes. To achieve

this, we solve the constrained Delaunay triangulation [Shewchuk

1996], where the intersecting edges serve as boundary constraints.

(d) Remove redundant triangles (if any) introduced in step (c), which

correspond to holes on the newly added surfaces.

6 MONTE CARLO TREE SEARCH FOR CUTTING PLANE

6.1 Search Space
During the decomposition process, for each intermediate component

𝐶 whose �Concavity(𝐶) is greater than the threshold 𝜖 , we find a

cutting plane to split 𝐶 into two parts 𝐶𝐿 and 𝐶𝑅 . Since there are

infinite cutting planes in the 3D space, we follow V-HACD [Mamou

et al. 2016] to restrict the candidate planes to be axis-aligned (parallel

to 𝑥𝑦, 𝑥𝑧, or 𝑦𝑧 planes), and sample 𝑚 equal-spaced candidates

along each direction, as shown in Figure 8. Axis-aligned discretized

candidate planes enable a feasible search space and avoid irregular

cutting results. The found optimal discretized candidate will be

refined in the continuous local neighborhood for a more accurate

cutting. (section 6.5) Also, we optionally perform a PCA [Pearson

1901] for the input shape at the beginning of the decomposition

algorithm to align the cutting plane directions with the principal

axes of the input shape.

6.2 One-Step Greedy vs. Multi-Step Search
Intuitively, prior works [Mamou et al. 2016; Thul et al. 2018] greedily

find a cutting plane from the candidates, which minimizes:

max( �Concavity(𝐶𝐿), �Concavity(𝐶𝑅)) (7)

However, the one-step greedy search may be short-sighted and fail

to find cutting planes that result in better global decomposition,

Fig. 9. Comparison between one-step greedy and multi-step search. (a)
Input shape (a cube without top and bottom). (b) The one-step greedy
algorithm fails to find the proper first cutting plane, since all candidate
cutting planes lead to the same cost (Equation 7) as illustrated by the blue
arrows (H

b
). (c) The multi-step search algorithm can instead find the proper

first cutting plane by simulating and searching future cuttings, which leads
to the globally optimal solution (decomposed into exactly four pieces).

Fig. 10. Failure cases of one-step greedy search. First row: V-HACD employs
a greedy search and generates redundant components. Second row: our
method utilizes a multi-step tree search and solves the cases perfectly.

and end up with more decomposed components. Figure 9 shows

such an example, where the optimal solution is to decompose the

input shape into exactly four square parts. However, when only one

step is taken into account, the greedy search tries to cut the shape

from the middle, resulting in more components. Figure 10 compares

decomposition results of some simple primitives. Since V-HACD

utilizes a greedy search, it fails to decompose the cases perfectly.

Moreover, for the one-step greedy search, only using a concavity

metric to find the cutting plane may often produce poor results and

even block the decomposition algorithm. For example, when only

considering one cutting, many candidate planes may lead to the

same concavity deduction (Equation 7), and the cutting plane selec-

tion thus becomes arbitrary in these draw situations. To this end,

prior works [Mamou et al. 2016] introduce various auxiliary heuris-

tic terms (e.g., balance term and symmetry term) for Equation 7 as

a workaround to make the algorithm more robust to various cases.

We instead propose to take multiple steps into account when

searching for a cutting plane. Specifically, we solve a Monte Carlo
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Algorithm 2: Search for Cutting Plane

1 Function MCTS(𝐶, 𝑡, 𝑑):
2 Create root node 𝑣0 with input mesh 𝐶

3 while within 𝑡 iterations do
4 {P1, · · · ,P𝑙 }, 𝑣𝑙 ← TreePolicy (𝑣0 , 𝑑)

5 {P𝑙+1, · · · ,P𝑑 } ← DefaultPolicy (𝑣𝑙 , 𝑑)

6 𝑞 ← Quality({P1, · · · ,P𝑑 }) // Calculate a score

7 Backup(𝑣𝑙 , 𝑞) // Update the score along the tree path

8 𝑣∗ ← argmax

𝑣′∈children of 𝑣0

𝑄 (𝑣 ′)

9 return corresponding plane of 𝑣∗

10 Function TreePolicy(𝑣 , 𝑑):
11 S ← ∅ // Selected cutting planes

12 while 𝑑𝑒𝑝𝑡ℎ(𝑣) < 𝑑 do // From the root to the leaf

13 𝑐∗ = argmax

𝑐𝑖 ∈components of 𝑣

Concavity(𝑐𝑖 )

14 if all cutting plane candidates of 𝑐∗ are expanded then
15 𝑣 ← best child of 𝑣 according to the UCB formula

16 S ← S + {corresponding plane of 𝑣}
17 else // Expand a new child for 𝑣

18 Randomly select a untried cutting plane P of 𝑐∗

19 Cut 𝑐∗ into 𝑐∗
𝑙
and 𝑐∗𝑟 with P

20 Create a new child 𝑣 ′ to 𝑣 with P, 𝑐∗
𝑙
and 𝑐∗𝑟

21 return S + {P}, 𝑣 ′

22 return S, 𝑣
23 Function DefaultPolicy(𝑣 , 𝑑):
24 S ← ∅ // Selected cutting planes

25 {𝑐𝑖 } = Copy(components of 𝑣) // Avoid affecting tree nodes

26 for 𝑖 ∈ range(𝑑 − 𝑑𝑒𝑝𝑡ℎ(𝑣)) do
27 𝑐∗ = argmax

𝑐𝑖

Concavity(𝑐𝑖 )

28 for direction in {𝑥𝑦, 𝑥𝑧,𝑦𝑧} do
29 Try to cut 𝑐∗ into 𝑐∗

𝑙
and 𝑐∗𝑟 from middle with a

plane along the 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

30 𝑞 ← −max(Concavity(𝑐∗
𝑙
),Concavity(𝑐∗𝑟 ))

31 P ← cutting plane that lead to the largest 𝑞

32 Cut 𝑐∗ into 𝑐∗
𝑙
and 𝑐∗𝑟 with P

33 S ← S + {P}
34 return S
35 Function Backup(𝑣, 𝑞):
36 while 𝑣 is not null do // From the leaf to the root

37 𝑁 (𝑣) ← 𝑁 (𝑣) + 1 // Visit times

38 𝑄 (𝑣) ← max(𝑄 (𝑣), 𝑞) // Value function

39 𝑣 ← parent of 𝑣

tree search (MCTS), which simulates multiple future cuttings, to

find a cutting plane for each intermediate component 𝐶 . This way,

we pay more attention to long-term interests and are more likely

to find cutting planes that lead to global optimal decompositions.

Moreover, we find that by considering multiple steps during the

tree search, we no longer need any other heuristic terms to prevent

various corner cases.

6.3 Search Tree Structure
It’s non-trivial to apply MCTS to our cutting plane search, and

many dedicated designs are involved. Specifically, in our tree search,

each node represents a set of decomposed components {𝑐𝑖 } for 𝐶 ,
and the root node contains a single component {𝐶}. For each node,

we aim to cut the component 𝑐∗ with the largest concavity among

those components associated with the node, and each child node

corresponds to a cutting action for 𝑐∗. Since a cutting plane splits 𝑐∗

into two parts, the number of a child node’s components is equal to

the number of its parent node’s components plus one. Also, since we

sample𝑚 candidate cutting planes from each axis-aligned direction,

each node contains at most 3𝑚 child nodes.

As shown in Algorithm 2, there is only a single root node in

the search tree at the beginning, and 𝑡 iterations of tree search are

performed. In each iteration, we first utilize the TreePolicy() to
select a tree node for expansion by balancing the exploration and

exploitation. We then evaluate the newly expanded tree node with

the DefaultPolicy(). Specifically, for the TreePolicy(), we start
from the root node and select successive child nodes until a node 𝑙

with unexpanded child nodes is reached. During the node selection,

the UCB (Upper Confidence Bound) [Kocsis and Szepesvári 2006]

value is used to balance the exploration (gather more information

about less-visited nodes) and exploitation (choose the optimal node

based on existing information):

Q(𝑛) + 𝑐

√︄
2 lnN(𝑛′)
N(𝑛) (8)

where 𝑛 indicates the current node, 𝑛′ is its parent node, 𝑄 () is the
value function, 𝑁 () indicates the number of visit times, and 𝑐 is the

exploration parameter. After reaching 𝑙 , we then expand one child

node for 𝑙 by randomly selecting an untried cutting plane P for the

component 𝑐∗ and cutting 𝑐∗ with P (lines 18 to 20).

6.4 Tree Node Evaluation
It’s non-trivial to evaluate the expanded node, and one of the chal-

lenges is to compare decompositions with different number of cut-

tings (nodes at different depths).We thus employ a DefaultPolicy()
to complete one playout, which leads to a fixed number of 𝑑 + 1
components with one-step greedy cuttings. Specifically, the greedy

strategy first tries to cut the component 𝑐∗ with the largest con-

cavity from the middle along three axis-aligned directions (line 29).

By comparing the one-step concavity reduction (Equation 7), the

strategy then keeps the best cutting results from the three trials.

We repeatedly apply this greedy cutting strategy until we get 𝑑 + 1
decomposed components, and then calculate a score for the node.

Please note that, in the tree search, we do not wait until all com-

ponents are almost convex. Because then it could be much more

time-consuming, and most cuttings may be achieved by the default

policy, making the results less relevant to the searched tree nodes.

After applying the TreePolicy() and DefaultPolicy(), we
get 𝑑 cutting planes and 𝑑 + 1 resulting components, where the
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first 𝑙 planes {P1, · · · ,P𝑙 } are associated with a tree path start-

ing from the root node to the leaf node, and the remaining planes

{P𝑙+1, · · · ,P𝑑 } come from DefaultPolicy(). To evaluate the de-

composition (line 6), we not only assess the 𝑑 + 1 decomposed

components after 𝑑 cuttings, but also examine the intermediate re-

sults. In this way, we can differentiate paths leading to similar final

results and pick the path that achieves good results at a earlier stage.

Specifically, the score for the set of cutting planes is calculated as:

Quality({P1, · · · ,P𝑑 }) =
1

𝑑

𝑑∑︁
𝑖=1

− 𝑖+1
max

𝑗=1
Concavity(𝑐𝑖 𝑗 ) (9)

where 𝑐𝑖 𝑗 represents one of the 𝑖+1 components after the 𝑖th cutting.

At the end of each iteration, we update the scores for all nodes along

the path (line 7).

6.5 Plane Refinement and Component Merging
After completing an MCTS search (𝑡

iterations), we take the optimal cut-

ting plane of the root node (from the

child with the highest score). Since

we sample discretized equally-spaced

planes as candidates, it’s likely that

the searched plane may not be the

optimal one from a continuous space.

As shown in the left inset, we thus locally refine the searched plane.

Specifically, we find the 𝑑 cutting planes {P1, · · · ,P𝑑 } that corre-
spond to the optimal path in the search tree. We finetune the first

plane P1 within a small range using a greedy ternary search, while

other 𝑑−1 cutting planes and the score function (Equation 9) remain

the same. In this way, we can find high-resolution cutting planes

without increasing the complexity of tree search. The refined plane

is then used to cut 𝐶 into two parts. Please note that, in order to

accelerate the tree search, we use Rv as the concavity within the

MCTS. However, outside MCTS, we still use max(H
b
(S), 𝑘 Rv (S))

to determine whether a component satisfies the concavity constraint

and whether further cuttings are needed.

Since we recursively split a component into two, it’s possible

that among the set of decomposed components, there exist some

components that could be merged to form a larger component that

is still almost convex. We thus perform a post-processing to merge

the generated components and further reduce the number of com-

ponents. Specifically, we traverse all pairs of adjacent components

and check the �Concavity of the merged component. If it’s within the

threshold 𝜖 , we will replace the two components with the merged

one. We repeat the process until no more components to merge.

7 EVALUATIONS

7.1 Comparing with Existing Methods
We evaluate the methods on the V-HACD dataset [Mamou et al.

2016] and PartNet-Mobility dataset [Xiang et al. 2020]. V-HACD

dataset contains 61 shapes and most shapes are animals or hu-

mans. PartNet-Mobility dataset contains 2,346 shapes covering a

wide range of indoor articulated objects (e.g., cabinets and scis-

sors), which can be used for robotics simulation. Compared to the

V-HACD dataset, shapes in the PartNet-Mobility dataset contain

Table 1. Quantitative comparison on the V-HACD dataset and PartNet-
Mobility dataset. For both HACD and V-HACD, we aim to compare the
number of decomposed components. For Animation, we aim to match the
number of decomposed components and compare the concavity scores. The
runtime is in seconds.
1 Animation is run with a different system configuration.

dataset method # component ↓ concavity ↓ runtime ↓

V-HACD

HACD 57.6 0.118 67.2

Ours 29.6 0.084 201.0

PartNetM

HACD 33.5 0.414 268.9

Ours 7.3 0.204 194.4

dataset method # component ↓ concavity ↓ runtime ↓

V-HACD

V-HACD 60.2 0.067 192.1

Ours 29.8 0.044 201.9

PartNetM

V-HACD 44.6 0.055 206.0

Ours 20.1 0.052 253.4

dataset method # component ↓ concavity ↓ runtime ↓

V-HACD

Animation 34.4 0.069 28.5
1

Ours 34.5 0.049 229.8

more complex inner structures and delicate details. It also requires

higher quality decomposition to enable fine-grained object inter-

action. Each shape in the PartNet-Mobility dataset may contain

multiple parts and we decompose each part individually.

We compare our proposed method with existing approximate

convex decomposition methods, HACD [Mamou and Ghorbel 2009],

V-HACD [Mamou et al. 2016], and Animation [Thul et al. 2018].

It’s non-trivial to compare different decomposition methods, since

some methods use the concavity threshold as the termination rule,

while other methods take the expected number of components as

input. Moreover, different methods may have different concavity

definitions. As a result, we compare our proposed method with

each of the baseline method separately. Specifically, for comparison

with HACD and V-HACD, we first run their methods by setting

hyper-parameters that encourage as fine-grained decomposition as

possible. After that, we calculate a concavity score for each of their

generated decomposition solution:

Score(S, {CH1, · · · , CH𝑛}) = max

𝑖
�Concavity(S ∩ CH 𝑖 ) (10)

where {CH1, · · · , CH𝑛} indicates the set of generated convex hulls
for the input shape S, and S ∩ CH 𝑖 calculates the intersection be-

tween the input solid shape and the 𝑖th convex hull. We then utilize

that score as the concavity threshold for running our method. In

this way, our method will generate decomposition with finer details,

and we aim to compare the number of decomposed components.

For comparison with Animation, we first run our method with a

fixed concavity threshold of 0.05. We then run Animation for each

shape to generate the same number of components as our results.

After that, we can fairly compare the concavity scores (Equation 10)

of the two methods. Since Animation didn’t release their code due to

commercial reasons, we ask the authors to help us run the method
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Fig. 11. We compare our method with HACD, Animation, and V-HACD. Please zoom in for the details. The input shapes come from the PartNet-Mobility
dataset. Each shape may consist of multiple parts (e.g., two blades of a scissor), and each part is decomposed individually. The red rectangles on the input
shapes highlight the error-prone regions. The numbers below the results indicate the number of decomposed components. For both HACD and V-HACD,
we set parameters to encourage fine-grained decomposition. For our method, we use a concavity threshold of 0.05. For Animation, we let the number of
decomposed components equal our results.
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Fig. 12. First row: results from a one-step greedy strategy with our proposed
concavity metric. Second row: results from our method with multi-step tree
search. Both methods are tested with the same concavity threshold.

on their machine. We quantitatively compare our method and Ani-

mation only on the V-HACD dataset, since PartNet-Mobility dataset

is too large.

As shown in Table 1, our method outperforms HACD and V-

HACD in terms of the number of components on both datasets with

a large margin. At the same time, the mean concavity scores of our

results are even lower than that of the two methods. As for com-

parison with Animation, both methods generate almost the same

number of components for each shape. However, we achieve lower

concavity scores which indicate the finer decomposition results by

our method. We run methods with a single CPU thread (except for

Animation) and we share similar runtime with HACD and V-HACD.

Animation is more time-efficient, since its implementation has been

carefully optimized with industrial codes.

Figure 11 shows the qualitative comparison on the PartNet-Mobility

dataset, where many shapes need fine-grained decomposition to

enable downstream object interaction. For example, the inside ring

of the scissors should be large enough, so that an agent can grab

them, the slots of the toaster and the spouts of the kettles should

not be filled so that they can work properly. However, decomposi-

tion results from existing methods may fail to preserve the original

shape’s functionality. Among the three baselines, HACD produces

the worst results since it only considers the difference between the

boundary surfaces while ignoring the interior structures. It fills

the inner space for most shapes. V-HACD and Animation produce

better results but still suffer from the hole filling issues to some

extent. Both methods utilize the volume difference as the concavity

metric and may ignore fine-grained structures or introduce some

thin-planar components to fill the holes, since those errors do not

receive a large penalty from the volume-based concavity. Instead, by

leveraging our collision-aware concavity, our method keeps most

structures of the input shapes. Also, the numbers of our decomposed

components are smaller than those of HACD and V-HACD, which

may speed up the downstream applications.

7.2 Ablation studies
One-step greedy vs. multi-step tree search. To examine the benefit

introduced by the multi-step tree search, we construct a counter-

part greedy baseline which utilizes our proposed concavity metric

and directly search for the best one-step cutting plane that leads

Table 2. Quantitative comparison between a one-step greedy baseline and
our method with multi-step tree search on the V-HACD dataset.

One-Step Greedy Multi-Step Tree Search

# component ↓ runtime ↓ # component ↓ runtime ↓
49.9 271.7 34.5 229.8

to the minimum resulting concavity (Equation 7). We compare the

one-step greedy baseline and our proposed method with the same

concavity threshold 0.05. The quantitative results on the V-HACD

dataset are shown in Table 2, where the one-step greedy baseline

generates much more components than our multi-step tree search

version. Moreover, since the multi-step tree search version reduces

the number of rounds (fewer parts) and utilizes a simplified concav-

ity calculation in the tree search, it is even faster than the greedy

baseline.

As shown in Figure 12, the one-step greedy algorithm may be

short-sighted and generate more components, while the results

with multi-step tree search are more reasonable. For example, when

searching for the first cutting plane of the torus (first from left),

either vertically or horizontally cutting can lead to sub-parts with the

same concavity score, and the greedy algorithm will thus randomly

select the first cutting plane. However, horizontal cuttings will lead

to more components in the final results. Similarly, for the bottle cap

example (first from right), the one-step greedy algorithm will not

cut off the bottom in the first step because it will even increase the

concavity score. However, by leveraging the multi-step tree search,

we can find that cutting off the bottom in the first step can avoid

the bottom being divided into unnecessary parts.

Impact of the concavity threshold 𝜖 . Our method terminates when

the concavities of all decomposed components are less than a pre-

defined threshold 𝜖 . The concavity threshold 𝜖 thus balances the

level of details and the number of decomposed components. As

shown in Figure 13a and Figure 14, when we decrease the concavity

threshold 𝜖 , the algorithm generates more components to preserve

the details and the generated convex hulls are much closer to the

original shape. When we increase the concavity threshold 𝜖 , we

generate fewer components to approximate the global structure of

the original shape and may lose some of the details. The variation

is more significant when the concavity is relatively small.

We also want to point out that compared to the volume-based

concavity, our proposed concavity metric measures the distance.

One can interpret the threshold as the degree to which the original

shape becomes thicker, which may be more intuitive for users to

adjust the threshold and achieve their desired decomposition. In

contrast, the volume-based concavity may not correspond to such

an intuitive interpretation, and the change caused by adjusting the

threshold may be less predictable.

Impact of hyper-parameters in the tree search. We study the impact

of the hyper-parameters in the multi-step tree search by fixing

other hyper-parameters and the concavity threshold. The ablation

results are shown in the Figure 13. (i) We sample𝑚 candidate cutting

planes from each axis-aligned direction. By samplingmore candidate
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Fig. 13. Ablation studies: (a) the concavity threshold 𝜖 and the post-processing merge, (b) the number of sampled cutting plane candidates from each
axis-aligned direction (i.e.,𝑚), (c) the maximum search depth 𝑑 in each MCTS, (d) the number of iterations in each MCTS (i.e., 𝑡 ). For all figures, the y-axis
represents the number of decomposed component under each setting.

Fig. 14. Comparison of different concavity thresholds. For each example, we show the decomposition results under different concavity thresholds ranging
from 0.02 to 0.2. Users can intuitively balance the level of detail and the number of components by adjusting the concavity threshold 𝜖 .

planes, we achieve more precise cuttings, which are much closer

to the optimal location. As shown in Figure 13b, a larger 𝑚 thus

leads to fewer components. (ii) We limit the maximum depth of the

search tree to 𝑑 and evaluate each tree node by generating 𝑑 + 1
components. A larger 𝑑 enables the algorithm to analyze cuttings

in further steps and achieve a more precise tree node evaluation.

As shown in Figure 13c, a larger 𝑑 leads to a better performance

generally. Moreover, we find that seeing one step further (i.e., 𝑑 = 2)

introduces the most significant gain. (iii) As shown in Figure 13d,

searching for more iterations leads to better solutions, since a larger

number of iterations 𝑡 means expanding more nodes, exploring

more cutting combinations, and more accurate evaluation for the

tree nodes. However, increasing the three hyper-parameters causes

a longer search time. As a result, there are trade-offs between the

decomposition quality and the runtime.

Refinement, Merging, and Cutting Directions. The cutting plane
refinement aims to find a better position in the continuous local

neighborhood of the searched discretized candidates, thus enabling

a more precise cutting. As shown in Figure 13b, when the number

of candidate cutting planes increases, the improvement brought by

the refinement becomes smaller due to the narrower gap between

two adjacent candidates.

After decomposition, wemerge components as post-processing to

further reduce the number of components. As shown in Figure 13a,

when the concavity threshold is smaller, the shape is decomposed
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Fig. 15. Comparison of different cutting directions. In each pair, the left one
indicates cutting with a set of random axes, while the right one indicates
cutting with the principal axes computed by PCA.

Fig. 16. Top: We train RL agents to open 49 drawers of 25 cabinets in a
physics simulator. Bottom left: Using decomposition results of V-HACD as
collision shapes. The collision shape of the drawer is highlighted in green,
and the hole of the handle is filled (zoom in for details). Bottom right: Using
our decomposition results as collision shapes. We preserve fine-grained
details of the handle.

into more pieces, and the component merging can reduce more

redundant divisions.

Since we sample cutting planes from three mutually orthogonal

directions as V-HACD, the selection of the cutting directions may

have a great influence on the final results in some cases, as shown in

Figure 15. By specifying a set of good axes or computing principal

axes by PCA, we may generate fewer components.

7.3 Application
An important application of convex decomposition is to provide

collision shapes for physics simulators that perform extensive colli-

sion detection. On the one hand, we aim to approximate the shape

with a small number of convex components, thereby speeding up

the collision detection. On the other hand, we want the decom-

posed components to closely match the original shape, so that the

functionality of the object is not compromised.

In this experiment, we compare two sets of collision shapes gener-

ated by our method and V-HACD. Specifically, we load 25 cabinets

into SAPIEN [Xiang et al. 2020], a physics simulator. We utilize

our method and V-HACD to generate a collision shape (i.e., an as-

sembly of convex components) for each part (e.g., a drawer or a

Table 3. Results of the OpenCabinetDrawer task. We compare using differ-
ent decomposition results as the collision shapes.

V-HACD Ours

Successfully Opened Drawer 49% 80%

body), respectively. As shown in Figure 16, the collision shapes by

our method preserve fine-grained details of the handles, while the

collision shapes by V-HACD fill the holes of the handles even a tiny

threshold is used.

We train SAC [Haarnoja et al. 2018] (a reinforcement learning

algorithm) agents to control a robot arm to open the drawers. Specif-

ically, there are 49 drawers from the 25 cabinets. We train an individ-

ual SAC agent from scratch for each drawer with 10
6
time steps per

trial. Please refer to [Mu et al. 2021] for other training details. Since

reinforcement learning algorithms are not guaranteed to converge

to the optimum every run, if we open a drawer in 5 trials, we regard

it as a success case. We report the result in Table 3.

By using more accurate collision shapes generated by our method,

the RL agents achieve a much higher success rate. We observe that,

when using our collision shapes, which preserve the fine-grained

details (e.g., holes) of the handles, the robot arm is easier to form a

shape-closure grasp, which is more robust. However, when using

V-HACD’s collision shapes, the robot arm easily slips off the handles,

since they fill the holes.

8 DISCUSSION
We propose a novel approximate convex decomposition method that

differs from prior approaches in three folds: (a) we introduce a novel

collision-aware concavity metric that better examines the shapes

from both the boundary and the interior. It preserves fine-grained

structures of the input shape and enables delicate object interac-

tion in downstream applications. (b) we decompose the shape by

efficiently cutting the meshes. It ensures intersection-free compo-

nents and avoids discretization artifacts. (c) we utilize multi-step

tree search to find globally better cutting planes, leading to fewer

decomposed components.

We currently adopt many simplifications due to the runtime con-

sideration. In the future, we would like to optimize our implementa-

tion further (e.g., utilize parallelization). We may also employ deep

neural networks to help evaluate a decomposition solution more ef-

ficiently and accurately. Moreover, we can explore a smarter way to

pick the cutting directions and set adaptive thresholds for different

parts to reduce the number of decomposed components.
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Fig. 17. Counter example of Case 2. 𝑝∗ must be on the boundary surface of
S.

A PROOF FOR THEOREM 1
In the paper, we propose a surrogate term Rv (S) to accelerate the

computation of Hi (S) and provide a theoretical guarantee:

Theorem 2. For every solid shape S, we have
√
2max(H

b
(S), Rv (S)) ≥ max(H

b
(S),Hi (S))

Here we give the detailed proof for the theorem. Recall that the

Hausdorff distance for two point sets 𝐴 and 𝐵 is calculated as:

H(𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵), sup
𝑏∈𝐵

𝑑 (𝑏,𝐴)} (11)

where 𝑑 (𝑥,𝑌 ) = inf𝑦∈𝑌 𝑑 (𝑥,𝑦) and 𝑑 (𝑥,𝑦) indicates the Eu-

clidean distance between the two points.

When calculating Hi (S), the two point sets are sampled from the

interior of the solid shape S and its convex hull CH(S). We denote

them as 𝑃 and 𝑄 , respectively:

𝑃 = Sample(IntS) (12)

𝑄 = Sample(Int CH(S)) (13)

In our proof, we assume that the interior doesn’t exclude the bound-

ary surface, which is slightly different from the usual definition. Also,

we assume that Sample(𝑇 ) cover all points in 𝑇 (infinite sampled

points).

Since S is contained by CH(S), 𝑑 (𝑝,𝑄) = 0 for all 𝑝 ∈ 𝑃 . We can

thus simplify Hi (S) as:

Hi (S) = sup

𝑞∈𝑄
𝑑 (𝑞, 𝑃) (14)

We know that there exists a pair of points 𝑝∗ ∈ 𝑃 and 𝑞∗ ∈ 𝑄 ,
such that Hi (S) = 𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑝∗, 𝑞∗). We prove the theorem by

enumerating all possible locations of 𝑝∗ and𝑞∗, which can be divided
into four cases.

Case 1: 𝑞∗ lies inside of S.
In this case, Hi (S) = 𝑑 (𝑞∗, 𝑃) = 0, and the theorem holds.

Case 2: 𝑝∗ is not on the boundary surface of S.
This case is impossible. Since 𝑞∗ lies outside of S (not Case 1),

there must exist another point 𝑝 ′ on the boundary surface ofS, such
that 𝑑 (𝑞∗, 𝑝 ′) < 𝑑 (𝑞∗, 𝑝∗), which contradicts 𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑞∗, 𝑝∗).
See Figure 17 for a illustration.
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Fig. 18. Illustration of the interval space. Blue lines indicate the solid shape
S, and the red lines indicate its convex hull CH(S) . (a) The shaded area
shows the interval space, which consists of four connected regions 𝐸𝑖 . (b) If
𝑝∗ and 𝑞∗ lie in different 𝐸𝑖 , the segment connecting 𝑝∗ and 𝑞∗ will intersect
with the boundary surface of S at another point 𝑝′′, and 𝑑 (𝑝′′, 𝑞∗) <

𝑑 (𝑝∗, 𝑞∗) .

Case 3: 𝑝∗ is on the boundary surface of S and 𝑞∗ is on the
boundary surface of CH(S).

In this case, we have Hi (S) = H
b
(S), and the theorem holds.

Case 4: 𝑝∗ is on the boundary surface of S and 𝑞∗ is not on
the boundary surface of CH(S).
𝑞∗ must lie within CH(S) − S, the space outside of S but inside

of CH(S). As shown in Figure 18a, we call the space between S
and CH(S) as the interval space, which may consists of multiple

connected regions 𝐸𝑖 . We denote the connected region containing

both 𝑝∗, 𝑞∗ as 𝐸∗.
Note that (𝑝∗, 𝑞∗) cannot locate on different 𝐸𝑖 . Otherwise, as

shown in Figure 18b, there must exist another point 𝑝 ′′ on the

boundary surface of S, such that 𝑑 (𝑞∗, 𝑝 ′′) < 𝑑 (𝑞∗, 𝑝∗), which con-

tradicts 𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑞∗, 𝑝∗).
Before we talk about the connection between Rv (S) and Hi (S),

we first construct a maximum inscribed sphere within 𝐸∗ cen-
tered at 𝑞∗. We denote this sphere as Φ and its radius as 𝑟 . We know

that:

Vol(CH(S)) − Vol(S) ≥ Vol(𝐸∗) ≥ Vol(Φ) (15)

Combinedwith the definition ofRv (S), we can infer thatRv (S) ≥
𝑟 .

Case 4.1: Φ does not intersect with the boundary surface of
CH(S).
In this case, Φ must intersect with the boundary surface of S

at 𝑝∗. Otherwise, there exist another point 𝑝 ′′′ on the boundary

surface of S, such that 𝑑 (𝑞∗, 𝑝 ′′′) < 𝑑 (𝑞∗, 𝑝∗), which contradicts

𝑑 (𝑞∗, 𝑃) = 𝑑 (𝑞∗, 𝑝∗). As a result, 𝑑 (𝑞∗, 𝑝∗) is equal to the radius 𝑟 .

Since Rv (S) ≥ 𝑟 , we have:

𝑟 = 𝑑 (𝑝∗, 𝑞∗) = Hi (S) ≤ Rv (S) (16)

The theorem holds.

Case 4.2: Φ intersects with the boundary surface of CH(S).
In this case, Hi (S) does not equal to the radius 𝑟 , since the max-

imum inscribed sphere Φ is bounded by the boundary surface of
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Fig. 19. (a) An example that the maximum inscribed sphere Φ is bounded
by the boundary surface of CH(S) and Hi (S) does not equal to the radius
𝑟 . (b) Illustration of the proof in Case 4.2.

Table 4. Quantitative comparison on the PartNet-Mobility dataset [Xiang
et al. 2020]. “Better ratio” indicates the percentage of cases where our
method outperforms the baseline.

HACD [Mamou and Ghorbel 2009] V-HACD [Mamou et al. 2016]

# components ↓ concavity ↓ # components ↓ concavity ↓
theirs ours theirs ours theirs ours theirs ours

average 33.5 7.3 0.414 0.204 44.6 20.1 0.055 0.052
median 27 1 0.218 0.117 20 13 0.045 0.041

better ratio - 90.85% - 89.18% - 96.50% - 96.90%

CH(S) and it may fail to touch any point on the boundary surface

of S. Figure 19a shows such an example.

As shown in Figure 19b, we denote one of the intersection point

as 𝑞0. We know that 𝑞0 is on the boundary surface of CH(S) and we
have 𝑑 (𝑞∗, 𝑞0) = 𝑟 . We also find 𝑞0’s nearest point on the boundary

surface of S and denote it as 𝑝0. We denote 𝑑 (𝑝0, 𝑞0) as 𝑠 in the

figure, and we know that 𝑠 ≤ H
b
(S). We want to calculate the

distance between 𝑝0 and 𝑞
∗
, which is denoted as 𝑡 in the figure. To

this end, we find the tangent plane of CH(S) at 𝑞0, which is denoted
as 𝒫 in the figure. Due to the property of convex hulls, 𝑞∗, 𝑞0, and
𝑝0 should lie in the same side of the plane 𝒫. Therefore, within

△𝑞∗𝑞0𝑝0, ∠𝑞∗𝑞0𝑝0 ≤ 90
◦
, and we thus have:

𝑟2 + 𝑠2 ≥ 𝑡2 (17)

Since 𝑟 ≤ Rv (S) and 𝑠 ≤ H
b
(S), we have:

𝑡 ≤
√︁
𝑟2 + 𝑠2 ≤

√︃
Rv (S)2 + Hb

(S)2 ≤
√
2max(Rv (S),Hb

(S))
(18)

Moreover, since 𝑝∗ is 𝑞∗’s nearest point on the boundary surface

of S, we know that Hi (S) = 𝑑 (𝑝∗, 𝑞∗) ≤ 𝑡 . The theorem thus holds.

B DETAILED VERSION OF TABLE 1
We show the complete quantitative comparison (for all objects)

of the V-HACD dataset [Mamou et al. 2016] in Table 5. Since the

PartNet-Mobility dataset [Xiang et al. 2020] contains thousands

of objects, we only report insightful statistics in Table 4. We com-

pare each baseline algorithm with our method separately. For both

HACD [Mamou and Ghorbel 2009] and V-HACD [Mamou et al.
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Fig. 20. The influence of the exploration parameter 𝑐 .

2016], we let our method produce decomposition results with lower

concavity scores and aim to compare the numbers of decomposed

components. For Animation [Thul et al. 2018], we aim to match the

numbers of decomposed components and compare the concavity

scores. In addition to the average and median, we also calculate the

percentage of cases where our method outperforms the baseline

(denoted as “better ratio”).

C DEFAULT VALUE OF HYPER-PARAMETERS
The default value of the hyper-parameters are𝑚 = 20, 𝑡 = 500,𝑑 = 4,

𝑘 = 0.3. We sample 3,000 points per unit area when computing H
b
.

The hyper-parameters are consistent across datasets and experi-

ments except for ablating the hyper-parameter. In experiments, all

of our methods include the merging stage unless otherwise noted.

D ABLATION STUDY OF THE EXPLORATION
PARAMETER 𝑐

In the tree search, we use the UCB (Upper Confidence Bound) [Koc-

sis and Szepesvári 2006] term to select a tree node for expansion:

Q(𝑛) + 𝑐

√︄
2 lnN(𝑛′)
N(𝑛) (19)

where 𝑐 is the parameter balancing the exploration and exploita-

tion. We study the influence of 𝑐 on the V-HACD dataset and report

the results in Figure 20. As shown in the figure, when 𝑐 is set to 0,

the UCB term only uses the existing value function 𝑄 (𝑛) to select a

node, and no exploration occurs. In this case, MCTS almost degen-

erates into a one-step greedy search, and the resulting number of

components increases a lot. In contrast, when 𝑐 is set to a large num-

ber, the UCB term ignores the influence of the quality function, and

the MCTS degrades to an inefficient exhaustive search algorithm,

which also leads to sub-optimal results. Instead, we empirically set 𝑐

to be �Concavity(S)/𝑑 , where �Concavity(S) is the concavity score

of each individual input component, and 𝑑 is the depth of the tree

search. We find that it generates good results in general.

E HOWWELL DOES Rv APPROXIMATES Hi?
In addition to the theoretical proof, we experimentally verify that

Theorem 1 holds for all shapes on both datasets. We empirically set
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Table 5. Quantitative comparison on the V-HACD dataset [Mamou et al. 2016]. “Better ratio” indicates the percentage of cases where our method outperforms
the baseline.

HACD [Mamou and Ghorbel 2009] V-HACD [Mamou et al. 2016] Animation [Thul et al. 2018]

# components ↓ concavity ↓ # components ↓ concavity ↓ # components ↓ concavity ↓
theirs ours theirs ours theirs ours theirs ours theirs ours theirs ours

block 52 2 0.307 0.316 19 18 0.043 0.030 18 18 0.066 0.035
bunny 58 53 0.050 0.033 21 12 0.100 0.078 52 52 0.083 0.051
camel 64 39 0.039 0.023 42 21 0.077 0.050 35 35 0.061 0.050
casting 86 4 0.312 0.267 59 52 0.064 0.037 68 69 0.066 0.056
chair 30 6 0.183 0.091 30 23 0.026 0.017 13 13 0.055 0.045
cow1 66 45 0.038 0.022 33 20 0.062 0.045 27 27 0.059 0.049
cow2 54 68 0.021 0.015 29 25 0.054 0.029 25 25 0.041 0.047

crank 90 12 0.190 0.097 114 12 0.187 0.097 80 80 0.186 0.050
cup 65 10 0.135 0.083 38 23 0.075 0.058 46 47 0.315 0.054

dancer2 34 51 0.015 0.012 49 25 0.024 0.017 7 7 0.040 0.039
deer_bound 55 44 0.040 0.021 69 44 0.037 0.021 35 35 0.044 0.047

dilo 42 45 0.016 0.011 35 29 0.027 0.015 15 15 0.059 0.051
dino 51 70 0.019 0.013 32 30 0.048 0.024 25 25 0.039 0.053

DRAGON_F 90 29 0.085 0.052 76 42 0.064 0.040 52 52 0.061 0.058
drum 17 12 0.059 0.035 6 5 0.100 0.054 16 16 0.068 0.047
egea 34 52 0.032 0.023 6 6 0.102 0.074 26 26 0.048 0.050

eight 42 37 0.019 0.014 26 18 0.033 0.024 17 17 0.041 0.040
elephant 84 52 0.043 0.029 62 43 0.053 0.034 45 45 0.060 0.051

elk 42 46 0.052 0.032 40 28 0.098 0.058 52 52 0.045 0.050

face-YH 125 10 0.240 0.160 240 113 0.039 0.027 82 82 0.067 0.050
feline 91 27 0.086 0.054 87 29 0.079 0.051 54 54 0.051 0.052

fish 26 8 0.081 0.047 17 10 0.072 0.042 13 13 0.044 0.045

foot 30 32 0.018 0.015 6 6 0.040 0.034 5 5 0.041 0.050

genus3 53 31 0.034 0.023 29 16 0.064 0.046 23 23 0.054 0.048
greek_sculpture 83 71 0.029 0.021 47 19 0.059 0.047 30 30 0.054 0.050

Hand1 49 41 0.035 0.024 27 16 0.078 0.051 26 26 0.061 0.048
hand2 49 41 0.038 0.024 27 17 0.077 0.048 25 25 0.060 0.047
helix 37 36 0.016 0.013 32 32 0.027 0.016 21 21 0.040 0.047

helmet 28 3 0.211 0.090 7 5 0.103 0.082 10 10 0.068 0.087

hero 118 13 0.144 0.097 228 51 0.060 0.044 78 78 0.090 0.052
homer 61 66 0.020 0.014 23 17 0.044 0.030 16 16 0.062 0.047
hornbug 114 51 0.059 0.038 120 38 0.076 0.048 67 67 0.059 0.050
horse 55 45 0.033 0.020 32 22 0.055 0.037 24 24 0.061 0.046

maneki-neko 130 1 0.394 0.299 516 278 0.038 0.027 190 191 0.096 0.051
mannequin-devil 50 13 0.085 0.062 8 3 0.190 0.116 36 36 0.100 0.051

mannequin 42 42 0.037 0.022 9 8 0.101 0.062 23 23 0.062 0.052
mask 112 6 0.259 0.178 183 77 0.036 0.026 50 50 0.069 0.060

moaimoai 53 63 0.022 0.016 8 6 0.083 0.066 17 17 0.103 0.048
monk 75 55 0.036 0.024 23 7 0.108 0.078 29 29 0.095 0.051
octopus 81 48 0.058 0.032 96 65 0.041 0.023 54 54 0.065 0.053
pig 46 60 0.022 0.016 13 11 0.074 0.053 18 18 0.046 0.050

pinocchio_b 150 4 0.319 0.249 330 140 0.048 0.032 132 132 0.069 0.050
polygirl 55 15 0.063 0.043 30 17 0.059 0.039 23 23 0.071 0.060
rabbit 36 5 0.118 0.075 11 7 0.076 0.055 15 15 0.048 0.050

rocker-arm 65 26 0.062 0.033 51 23 0.069 0.037 29 29 0.074 0.050
screwdriver 48 38 0.025 0.016 27 26 0.035 0.022 18 18 0.038 0.046

shark_b 84 7 0.098 0.056 336 80 0.013 0.010 16 16 0.040 0.052

Sketched-Brunnen 101 20 0.145 0.090 110 67 0.047 0.033 65 65 0.062 0.050
sledge 30 2 0.277 0.238 24 18 0.060 0.021 18 18 0.034 0.031
squirrel 44 44 0.048 0.034 14 10 0.113 0.079 46 46 0.058 0.053
sword 15 67 0.025 0.016 32 9 0.055 0.040 14 14 0.030 0.049

table 5 15 0.012 0.007 6 9 0.039 0.014 7 7 0.329 0.048
Teapot 83 7 0.240 0.216 61 23 0.152 0.091 63 63 0.085 0.097

test2 27 1 0.651 0.521 15 13 0.058 0.043 21 21 0.075 0.046
test 8 1 0.534 0.534 2 2 0.058 0.029 3 3 0.011 0.013

torus 34 4 0.227 0.132 11 9 0.055 0.038 12 12 0.037 0.048

tstTorusModel3 36 4 0.250 0.179 16 16 0.037 0.024 12 12 0.042 0.042
tstTorusModel 34 4 0.226 0.132 11 9 0.055 0.042 11 11 0.042 0.047

tube1 8 4 0.223 0.031 4 4 0.050 0.031 4 4 0.042 0.032
venus-original 42 44 0.036 0.026 7 6 0.100 0.072 27 27 0.056 0.050

venus 46 52 0.024 0.017 13 10 0.075 0.050 20 20 0.056 0.048

average 57.6 29.6 0.118 0.084 60.2 29.8 0.067 0.044 34.4 34.5 0.069 0.049
median 51 31 0.058 0.033 29 18 0.059 0.040 25 25 0.059 0.050

better ratio - 77.05% - 98.36% - 98.36% - 100.00% - 95.10% - 81.97%
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𝑘 to 0.3 by calculating the average
Hi

Rv

. We find that max(H
b
, 𝑘 Rv)

approximatesmax(H
b
,Hi) well in practice, with a small absolute or

relative error. Specifically, we compare two metrics on the Part-

NetM dataset (13,536 shapes), and find that for more than 94%

shapes, we have: |max (H
b
, 𝑘 Rv) −max (H

b
,Hi) | ≤ 0.02 or 0.8 ≤

max (H
b
, 𝑘 Rv) /max (H

b
,Hi) ≤ 1.2.
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