
Copyright © 2007 by the Association for Computing Machinery, Inc. 
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed for 
commercial advantage and that copies bear this notice and the full citation on the first 
page. Copyrights for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on 
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail 
permissions@acm.org. 
SPM 2007, Beijing, China, June 04 – 06, 2007. 
© 2007 ACM 978-1-59593-666-0/07/0006 $5.00 

Approximate Convex Decomposition of Polyhedra

Jyh-Ming Lien∗

George Mason University

Nancy M. Amato†

Texas A&M University

Abstract

Decomposition is a technique commonly used to partition complex
models into simpler components. While decomposition into convex
components results in pieces that are easy to process, such decom-
positions can be costly to construct and can result in representations
with an unmanageable number of components. In this paper we ex-
plore an alternative partitioning strategy that decomposes a given
model into “approximately convex” pieces that may provide similar
benefits as convex components, while the resulting decomposition
is both significantly smaller (typically by orders of magnitude) and
can be computed more efficiently. Indeed, for many applications,
an approximate convex decomposition (ACD) can more accurately
represent the important structural features of the model by provid-
ing a mechanism for ignoring less significant features, such as sur-
face texture. We describe a technique for computing ACDs of three-
dimensional polyhedral solids and surfaces of arbitrary genus. We
provide results illustrating that our approach results in high quality
decompositions with very few components and applications show-
ing that comparable or better results can be obtained using ACD de-
compositions in place of exact convex decompositions (ECD) that
are several orders of magnitude larger.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, lan-
guages, and systems

Keywords: concavity measurement, convex decomposition

1 Introduction

One common strategy for dealing with large, complex models is to
decompose them into components that are easier to process. Many
different decomposition methods have been proposed – see, e.g.,
Chazelle and Palios [1994] for a brief review of some common
strategies. Of these, decomposition into convex components has
been of great interest because many algorithms, such as collision
detection and mesh generation, perform more efficiently on con-
vex objects. Convex decomposition of polygons is a well stud-
ied problem and has optimal solutions under different criteria; see
[Keil 2000] for a good survey. In contrast, convex decomposition
in three-dimensions is far less understood and, despite the practical
motivation, little research on convex decomposition of polyhedra
has gone beyond the theoretical stage [Chazelle et al. 1995].

A major reason that convex decompositions of polyhedra are not
used more extensively is that they are not practical for complex
models – an exact convex decomposition (ECD) can be costly to
construct and can result in a representation with an unmanageable
number of components. This is true for both solid decompositions,
which consist of a collection of convex volumes whose union equals

∗Department of Computer Science, e-mail:jmlien@cs.gmu.edu
†Department of Computer Science, e-mail:amato@cs.tamu.ed

Figure 1: The approximate convex decompositions (ACD) of the
Armadillo model consists of a small number of nearly convex com-
ponents that characterize the important features of the models bet-
ter than the exact convex decompositions (ECD) that have orders of
magnitude more components. The Armadillo model (500K edges,
12.1MB) has a solid ACD with 98 components (14.2MB) that can
be computed in 232 seconds while the solid ECD has more than
726,240 components (20+ GB) and could not be completed because
the disk space was exhausted after nearly 4 hours of computation.

the original polyhedron, and surface decompositions, which parti-
tion the surface of the polyhedron into a collection of convex sur-
face patches. For example, a solid ECD of the Armadillo model has
more than 726,240 components (see Figure 1). Similar statistics for
additional models are show in Table 1 in Section 6.

OurApproach. In this work, we explore a partitioning strategy that
decomposes a polyhedron into “approximately convex” pieces. Our
motivation is that for many applications, the approximately convex
components of this decomposition provide similar benefits as con-
vex components, while the resulting decomposition is both signif-
icantly smaller (typically by several orders of magnitude) and can
be computed more efficiently. These advantages have been proven
theoretically and experimentally for planar polygons by Lien and
Amato [2004]. In this paper we show that, unlike ECD, it is feasible
to apply the concept of approximate convex decomposition (ACD)
to three-dimensional polyhedra. In particular, we describe

• practical methods for computing a solid or surface ACD of a
polyhedron of arbitrary genus.

Our general strategy is to iteratively identify the most concave fea-
ture(s) in the current decomposition, and then to partition the poly-
hedron so that the concavity of the identified features is reduced.
This process continues until all components in the decomposition
have acceptable concavity, i.e., until they are convex ‘enough,’
which is a tunable parameter. While this follows the general ap-
proach used successfully for polygons, there are several operations
that were straight forward for polygons but which become nontriv-
ial for polyhedra. The main challenges include computing the con-
cavity of a feature for a polyhedra and resolving concave features to
generate small and high quality decomposition. To deal with these
technical challenges in 3D, we introduce a new technique:

• approximate feature grouping, that enables sets of features to
be processed together, which is both more efficient and pro-
duces better results.

We demonstrate the feasibility of our approach by applying it to

121



Figure 2: ACD provides a simpler representation of the dragon
model using the convex hulls (slightly separated) of its components.

start goal

(a) (b) (c) (d)

Figure 3: A difficult motion planning problem (a) in which the robot
is required to pass through a narrow passage to move from the start
to the goal. In (b), a uniform sampling of 200 collision-free con-
figurations fails to connect the start to the goal. In contrast, in (d),
placing 200 samples around the openings of the ACD of the envi-
ronment (c) successfully connects the start to the goal. The solution
path is shown in (a). See ‘Motion planning’ in Section 7 for detail.

a number of complex models. In general, even for very complex
models, the ACDs have very few components, typically several or-
ders of magnitude fewer than the ECDs. The size (memory) and
computational time are also significantly less, particularly for the
solid ACDs; see Figure 1.

We would like to emphasize that ACD aims to provide an approx-
imate representation of the original shape using a set of convex
components. Thus, unlike the part-based segmentations using au-
tomatic [Rom and Medioni 1994; Wu and Levine 1997; Mangan
and Whitaker 1999; Li et al. 2001; Dey et al. 2003; Katz and Tal
2003; Goswami et al. 2006; Lai et al. 2006] or (semi-)interactive
[Funkhouser et al. 2004; Lee et al. 2005; Liu et al. 2006] ap-
proaches, the main goal of ACD is in fact closer to that of the work
on shape approximation [Wu and Levine 1994; Cohen-Steiner et al.
2004; Yamauchi et al. 2005]. While most shape approximations
focused on meshes, ACD provides both solid and surface approxi-
mations.

Applications of ACD. In many applications, the detailed features of
the model are not crucial and in fact considering them could serve
to obscure important structural features and add to the processing
cost. In such cases, an approximate representation of the model,
such as our proposed ACD, that captures the key structural features
would be preferable. For example, the ACD of the Armadillo model
in Figure 1 identifies anatomical features much better than the ECD.
Other applications of ACD include shape approximation (Figure 2),
motion planning (Figure 3), mesh generation (Figure 4), and point
location (Figure 5).

2 Preliminaries

A model P in R
2 or R

3 is represented by a set of boundaries ∂P .
The convex hull of a model P , CHP , is the smallest convex set
enclosing P . P is said to be convex if P = CHP . Features of
P (vertices in R

2 and edges in R
3) are notches (non-convex fea-

(ACD) (tetrahedral mesh) (deformation)

Figure 4: A tetrahedral mesh is generated from the (simplified) con-
vex hulls of ACD components. The rightmost figure shows a defor-
mation using this mesh.

Figure 5: Snap shots of a system of 10,000 particles using the full
model and the convex hulls of the ACD components. In this simu-
lation, using ACD (lower row) is 2 times faster than using the full
model (upper row) without introducing evident errors.

tures) if they have internal angles greater than 180◦. We say Pi is a
component of P if Pi ⊂ P . A set of components {Pi} is a decom-
position of P if their union is P and all Pi are interior disjoint, i.e.,
{Pi} must satisfy:

D(P ) = {Pi | ∪iPi = P and ∀i6=jP
◦
i ∩ P ◦

j = ∅}, (1)

where P ◦
i is the open set of Pi. A convex decomposition of P is a

decomposition of P that contains only convex components.

For some applications, considering only the surface of a model is of
interest. We say Pi is a convex surface patch of P if Pi ⊂ ∂P and
lies entirely on the surface of its convex hull HPi

, i.e., Pi ⊂ ∂HPi

[Chazelle et al. 1995]. A convex surface decomposition of P is
a decomposition of ∂P that contains only convex surface compo-
nents.

Saliency. ACD decomposes a model by prioritizing salient features.
Curvature is known to be the most popular tool to evaluate fea-
ture saliency, e.g., for non-photorealistic rendering [DeCarlo et al.
2003], texture mapping [Lévy et al. 2002], and shape segmenta-
tion [Funkhouser et al. 2004]. However, estimating curvature of
an entire model is difficult. Expensive preprocessing, such as mesh
smoothing, simplification [Katz and Tal 2003] and function approx-
imation [Ohtake et al. 2004], or post-processing, such as Hysteresis
thresholding [Hubeli and Gross 2001], are generally required. De-
spite its ability to identify surface features, e.g., crest, we believe
that curvature, by itself, is not sufficient to identify structural fea-
tures. Thus, ACD uses concavity to identify salient features.

Concavity. In contrast to measures like area and volume, concavity
does not have a well accepted definition. A few methods have been
proposed that attempt to define and measure the concavity of poly-

122



gons [Sklansky 1972; Lien and Amato 2004]. To our knowledge,
no concavity measure has been proposed for polyhedra.

Although ACD is not restricted to a particular measure, all the mea-
sures we consider in this work define the concavity of a model P as
the maximum concavity of its boundary points, i.e.,

concavity(P ) = max
x∈∂P

{concavity(x)} ,

where x are the vertices of P . An important consequence of this
decision is that now we can use points with maximum concavity to
identify important features where decomposition can occur. This
would not be the case if we choose to sum concavities or use the
convexity measurement in [Zunic and Rosin 2002], where the con-

vexity of a model P is defined as
volume(P )

volume(HP )
.

Concavity can be combined with other measures, e.g., curvature
or convexity, to provide more sophisticated saliency identification.
For example, ACD can combine concavity and convexity to focus
on both deep and large features, e.g., to ignore wide but shallow or
deep but narrow tunnels in a model. As we will see later (Section 4),
we combine concavity and curvature for better feature grouping.

Measuring Concavity. Intuitively, one can think of the concavity
measurement as the length of the path traveled by a point x ∈ ∂P
during the process of inflating a balloon of the shape of P until the
balloon assumes the shape of CHP . Although a physically based
simulation of this balloon expansion [Kent et al. 1992] can be ex-
pensive, we will show later that x’s traveling distance can be effi-
ciently approximated.

In particular, our concavity measures use the concepts of bridges
and pockets. Bridges are convex hull facets that connect non-
adjacent vertices of ∂P , i.e., BRIDGES(P ) = ∂CHP \∂P . Pock-
ets are the portion of the boundary ∂P that is not on the convex hull
boundary ∂CHP , i.e., POCKETS(P ) = ∂P \ ∂CHP .

Because concave features, i.e., notches, can only be found in pock-
ets we measure the concavity of a notch x by

• associating each bridge with a unique pocket, and
• computing the distance from x to its associated bridge βx, i.e.,

concavity(x) = dist(x, CHP ) = dist(x, βx).

For polygons, there is a natural one-to-one bridge/pocket matching
that can be obtained easily. Also, in this case, Lien and Amato
[2004] proposed two practical methods to compute the concavity:
SL- and SP-concavity. SL-concavity is the straight-line distance to
the bridge. SP-concavity is the length of the shortest path to the
bridge without intersecting the polygon.

However, the techniques used for polygons do not extend easily
to three-dimensions. In particular, there is no trivial one-to-one
bridge/pocket matching. In addition, while SL-concavity can still
be computed efficiently, the best known methods for computing
shortest paths on polyhedra require exponential time [Sharir and
Schorr 1986]. We will address these issues later in this paper.

3 Approximate Convex Decomposition

The goal of approximate convex decomposition (ACD) is to gener-
ate decompositions whose components are approximately convex.
We estimate how convex a component is using the concavity of the
component. For a given model P , P is said to be τ -approximate
convex if concavity(P ) < τ , where concavity(ρ) denotes the
concavity measurement of ρ and τ is a tunable parameter denoting
the non-concavity tolerance of the application. A τ -approximate
convex decomposition of P , ACDτ (P ), is defined as a decompo-
sition that contains only τ -approximate convex components; i.e.,

ACDτ (P ) = {Pi | Pi ∈ D(P ) and concavity(Pi) ≤ τ}. (2)

Thus, an ACD0 is simply an exact convex decomposition.

An ACD is generated by recursively removing (resolving) concave
features in order of decreasing significance, i.e., concavity, until
all remaining components have concavity less than some desired
bound. This strategy is outlined in Algorithm 1.

Algorithm 1 ACD(P , τ )

Input. A model, P , and tolerance, τ .
Output. A decomposition, {Pi}, such that

max{concavity(Pi)} ≤ τ .
1: if concavity(P ) < τ then ⊲ see Sections 4.1 and 5
2: return P
3: else
4: Let x be a feature (notch) realizing concavity(P )
5: {Pi} = resolve(P, x) ⊲ see Sections 4.2 and 4.3
6: for each component {Pi} do
7: ACD(Pi,τ )

The two main operations required in Algorithm 1 for ACD are:

• measuring the concavity of a feature(s), and
• resolving specified concave feature(s).

3.1 Measuring Concave Features

ACD measures the concavity as the distance from a feature to its
associated bridge. Unfortunately, unlike polygons, there is no triv-
ial one-to-one bridge/pocket matching for polyhedra. The problem
of obtaining the bridge/pocket relationship is closely related to the
problem of spherical [Praun and Hoppe 2003] and simplical [Kho-
dakovsky et al. 2003] parameterization. However, mesh parameter-
ization is costly to compute. Polyhedron realization [Shapiro and
Tal 1998] that transforms a polyhedron P to a convex object H can
be computed efficiently, but H is generally not the convex hull of
P and cannot be determined before performing the transformation.

In addition, while SL-concavity can still be computed efficiently,
the best known methods for computing shortest paths on polyhedra
require exponential time [Sharir and Schorr 1986] and even meth-
ods [Choi et al. 1997] that approximate the shortest paths are too
inefficient to be used in our approach. We use only SL-concavity in
this paper.

3.2 Resolving Concave Features

Notch-cutting [Chazelle 1981] is a strategy that splits a polyhedron
with a cut plane can be used to resolve notches in Algorithm 1. The
details of this notch-cutting strategy are discussed in [Bajaj and Dey
1992]. Figures 6(a)(b) illustrate an ACD using cut planes that bisect
dihedral angles.

(a) (b) (c)

Figure 6: Resolving concavity (a) using a cut plane that bisects a
dihedral angle results in (b) a decomposition with 10 components
with concavity ≤ 0.1. In contrast, (c) carefully selected cut planes
generate only 4 components with concavity ≤ 0.1.

A difficulty of this approach is selecting “good” cut planes. For
example, in Figure 6(c), carefully selected cut planes can gener-

123



ate fewer components than cut planes that simply bisect the dihe-
dral angles of notches. Unfortunately, good strategies for finding
such good cut planes are not well known. Joe [1994] proposed an
approach to postpone processing notches whose resolution would
produce small components, but this strategy still produces many
small components with sharp edges for large models, especially for
more complicated models that are commonly seen nowadays.

3.3 General Strategy: Feature Grouping

For both measuring and resolving concavities, we use a technique
we call feature grouping to collect sets of similar and adjacent fea-
tures that can be processed together.

For measuring concavity, by allowing bridges to be formed from
convex hull patches instead of a single convex hull facet, we can
both dramatically reduce the number of bridges as well as decrease
the cost of computing the pocket to bridge matching. Figure 7
shows an example of the bridge/pocket relationship with and with-
out grouping. As we will see in Section 4.1, bridge patches can be
used to provide a conservative measure of concavity.

(bridges) (bridges)

(pockets)
without grouping

(pockets)
with grouping

Figure 7: The bridges and the pockets with and without bridge
grouping (clustering).

Resolution of concavity can also be improved by considering fea-
ture sets rather than individual features and by forcing the cut plane
to be defined with respect to a feature set. Unlike the existing
curvature-based methods [Hubeli and Gross 2001; DeCarlo et al.
2003; Ohtake et al. 2004; Rusinkiewicz 2004; Yoshizawa et al.
2005], our feature grouping is based on concavity.

4 ACD of Polyhedra without Handles

We first discuss our strategy for computing an ACD of a genus zero
polyhedron. This strategy will be extended to handle polyhedra
with non-zero genus in the next section.

4.1 Measuring Concave Features

Recall that we define the concavity of a vertex x as the distance
from ∂P to the convex hull boundary. Since there is no unambigu-
ous mapping from notches to convex hull facets in 3D as there was
in 2D, we first must define one.

e

projection of e

(a projected edge)

pocket

bridge

(a bridge/pocket pair)

(bridges) (pockets) (concavity)

Figure 8: Top: An identified bridge/pocket pair. Bottom:
Bridge/pocket pairs from the teeth model. The rightmost model
is shaded so that darker areas indicate higher concavity.

Our strategy to match bridges with pockets is to identify pockets
by projecting convex hull edges to the polyhedron’s surface. The
“projection” of a convex hull edge e is a path on the polyhedron’s
surface ∂P connecting the end points of e; we compute the paths
on ∂P using Dijkstra’s algorithm. After the convex hull edges are
projected, the set of all (connected) polyhedral facets bounded by
the projected edges forms a pocket. See Figure 8. After matching
bridges with pockets, we measure the concavity of x in pocket ρ
as the straight line distance to the tangent plane of ρ’s associated
bridge β.

Extension 1: Feature grouping – a conservative estimation.
Finding pockets for all facets in ∂CHP can be costly for large
models. It turns out we can reduce this cost and still provide a
conservative estimate of concavity by grouping clusters of ‘nearly’
coplanar and contiguous facets to form a bridge patch (or simply
a bridge) on ∂CHP . We then designate a “supporting” plane that
is tangent to ∂CHP as a representative plane for all facets in the
bridge and compute the concavity of a vertex as the distance to the
supporting plane of its bridge; see Figure 9. The bridge patches can
be selected so that the distance from all faces in the bridge patch to
the supporting plane will be guaranteed to be below some tunable
threshold ǫ. For example, when ǫ = 0.05, only 20 bridges are iden-
tified for the model in Figure 8 which has 4,626 facets on its convex
hull.

supporting plane

bridge

pocket

< ǫ< ǫ

Figure 9: A bridge patch and its supporting plane.

One way to compute bridge patches is from an outer approximation
of a polyhedron. Here we use Lloyd’s clustering algorithm adapted
from [Cohen-Steiner et al. 2004] to identify bridges and to ensure
that the maximum distance from the included facets to the support-
ing plane is less than ǫ. Our clustering process is composed of the
following two main steps:

1. estimating the number k of the required bridges, and
2. grouping the convex hull facets into k clusters.

In the first step, we estimate the required bridge size for a given

124



threshold ǫ by incrementally creating bridges and assigning convex
hull facets to the bridges until all the convex hull facets are assigned.
We say that a facet can be assigned to a bridge if the distance be-
tween them is less than ǫ. Our estimation process is outlined in
Algorithm 2 in Appendix A.

In the second step, after we know the upper bound of the number
of bridges required, we can approximate the convex hull boundary.
This can be solved using Lloyd’s clustering algorithm introduced
in [Cohen-Steiner et al. 2004], which iteratively assigns all convex
hull facets to the best bridges using a priority queue.

It is important to note that, as stated in Observation 4.1, the esti-
mated concavity measurement computed this way is always greater
than or equal to the concavity measured as convex hull facets are
projected individually. Therefore, the estimated concavity is an up-
per bound for the actual concavity.
Observation 4.1. The estimated concavity measurement is always
greater than, in an amount less than ǫ, or equal to the concavity
measured as convex hull facets are projected individually.

internal

opening

external

external cross section

q

q

p

p

Extension 2: Polygonal surface.
In most cases, the previously men-
tioned concavity measure can han-
dle surfaces with openings naturally.
The case that requires more attention
is when a surface “exposes” its inter-
nal side to the surface of the convex
hull, e.g., the surface on the right.
The internal side of a surface is ex-
posed to the convex hull surface if
and only if at least one of the convex
hull vertices is concave. A convex
hull vertex p is concave if its outward normals on the convex hull
and on the surface are pointing in opposite directions. The point p
(resp., q) in the figure above is concave (resp., convex).

Now, we can compute the pocket of a bridge β from the projection
of β’s boundary ∂β. Let e be an edge of ∂β. If e’s vertices are

• both convex, then project e as before,
• both concave, then e has no projection,
• one convex and one concave (e.g., the edge pq in the figure),

then e’s projection is the path connecting the convex end to
the opening.

4.2 Feature Grouping: Global Cuts

When resolving concave features, the concept of feature grouping
allows us to better prioritize concave features for resolution and also
results in a smaller and more meaningful decomposition. We first
describe our method for grouping features, and then show how the
groups are used to select cut planes to partition the model.

Our strategy of grouping concave features is a concavity-based
bottom-up approach in which critical points, called “knots”, on the
boundary of each pocket are connected into local feature sets, called
“pocket cuts”, which are then grouped to form global feature sets,
called “global cuts”. Our approach is illustrated in Figure 10 and
sketched below.

1. Identifying knots. Knots are critical points on a pocket bound-
ary ∂ρ identified as notches of the simplified ∂ρ using the
Douglas-Peucker (DP) algorithm [Hershberger and Snoeyink
1992] with simplification threshold δ, 0 ≤ δ ≤ τ .

2. Computing pocket cuts. A pocket cut is a chain of consecutive
edges in a pocket ρ whose removal will bisect ρ. Here, pocket
cuts are paths connecting pairs of knots, and we consider all
knot pairs for ρ.

3. Weighting cuts. The weight of a cut determines the
quality of the cut. We compute the weight of each

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 d
i

 C
o

n
c

a
v

it
y

Figure 11: The thin (blue) line in the plot is a pocket boundary of
the Stanford Bunny (indicated by an arrow) in concavity domain.
Its simplification is shown in a thicker (red) line and identified knots
are marked as dots.

pocket cut κ as W(κ) = ω(κ)/γ(κ), where ω(κ) =
|κ |/

∑

v∈κ concavity(v) is the reciprocal of the mean con-

cavity of κ and γ(κ) is the accumulated curvature of the edges
in κ. The curvature of an edge e is measured using the best fit
polynomial [Hubeli and Gross 2001].

4. Connecting pocket cuts into global cuts. Our strategy is to
organize the knots and pocket cuts in a graph GK whose ver-
tices are knots and edges are pocket cuts. The cycle with the
minimum weight in GK will be the global cut.

Essentially, this bottom-up approach identifies and groups the knots
on the projected bridge edges. It is natural to ask why knots are of
interest. As knots are the critical points of a projected bridge edge
πe, we also consider a projected bridge edge as a critical represen-
tation of a polyhedral boundary. Note that the end points of πe are
both vertices of the convex hull. Intuitively, the vertices of πe are
samples of ∂P and therefore encode important geometric features
related to concavity over the traversal from one peak to another
peak i.e., πe is an evidence that shows how the convex hull vertices
are connected on ∂P .

Next, we will provide more implementation details and justify the
choices of the steps mentioned above. The reader may first skip the
details and proceed to Section 5 to focus on this work’s high level
strategy.

4.2.1 Step 1: Identifying Knots

We use the Douglas-Peucker (DP) line approximation algorithm to
identify knots because DP can reveal critical points [White 1985]
and resembles the concept of ACD. A critical point in DP of a poly-
line π is a farthest point from the line segment connecting the end
points of π and, similarly, a knot in ACD is a farthest point from the
bridge boundary. This provides an explanation of why we can use
DP to extract important concave features.

Given a pocket boundary πe(i), knots are critical points on πe(i)
found by the DP algorithm. To identify knots on πe(i), we first

transform πe(i) in R
3 into a two dimensional line π∗

e (i) in the con-
cavity space using the following function:

π∗
e (i) =

(

di, concavity(πe(i))
)

, 0 ≤ i ≤ 1, (3)

where di = i · |e| and |e| is the length of e. Then π∗
e (i) is simplified

using the DP algorithm [Hershberger and Snoeyink 1992]. We call
a vertex a “knot” if it is a notch in πe(i) with concavity larger than
δ, 0 ≤ δ ≤ τ . The threshold δ controls the size of knots, i.e., a
smaller δ implies more concave features will be identified; in this
paper, we experimentally set δ between τ

10
and τ

100
.

125



(a) identifying knots (b) computing pocket cuts (c) extracting global cuts (d) splitting the model

Figure 10: The process of grouping and resolving concave features. (a) Knots (marked by spheres) from one of the pockets. (b) Knots from
all pockets and a pocket cut (shown in thick lines) connecting a pair of knots. (c) Global cuts (thick lines) and the graphs GK . (d) Solid (left)
and surface (right) decompositions using the identified global cuts.

An example of π∗
e (i) and identified knots are shown in Figure 11.

We note that these pocket boundaries have similar functionality as
the exoskeleton that connects critical points on ∂P coded with av-
erage geodesic distance [Zhang et al. 2003].

4.2.2 Step 2: Computing Pocket Cuts

A pocket cut is a chain of consecutive edges in a pocket ρ whose
removal will bisect ρ. In fact, any path in ρ that connects any two
knots is a pocket cut. For a given pair of knots, we form a pocket
cut by computing a path using Dijkstra’s algorithm (w.r.t. a weight
function W defined in Step 3). Figure 12(a) and (b) shows a pocket
with its knots on the boundary and all of its pocket cuts, respec-
tively.

A pocket with nk knots has O(n2
k) pocket cuts. Not all of these

O(n2
k) pocket cuts in ρ are interesting to us. In fact, we only need

to consider O(nk) pocket cuts. This reduction is based on the fol-
lowing observation.
Observation 4.2. Let Nρi

be a set of knots on the boundary be-
tween ρ and one of its neighboring pockets ρi. Pocket cuts between
each pairNρi

andNρj
in ρ form a non-crossing minimum (weight)

bipartite matching.

We say two pocket cuts κρ and κ′
ρ cross each other if κ′

ρ will be-
come disconnected after ρ is separated by κρ; see Figure 12(c). We
also restrict a knot to be connected to only one knot from a neigh-
boring pocket. The result of this restriction is that the pocket cuts
between two boundaries form a bipartite matching of their knots
and only O(nk) pocket cuts need to be considered when connect-
ing them into global cuts; Figure 12(d) shows a result using the
minimum weight bipartite matching (w.r.t. a weight function W).

Cup-shape pocket. Because knots are identified on the boundary
of a pocket ρ, we cannot find any pocket cut if the boundary of ρ
is near its bridge β, e.g., a cup shape pocket. Indeed, decomposing
a cup shaped model into meaningful components is known to be
difficult. In our case, this problem can be solved by simply subdi-
viding β and ρ into smaller bridges and pockets and forcing the new
pocket boundary to pass the maximum concavity of ρ, as illustrated
in Figure 13.

4.2.3 Step 3: Weighting a Cut

The weight of a cut determines the quality of the cut. As mentioned
in Section 2, we believe that curvature, which has been extensively
used to identify surface features, is not sufficient to identify struc-
tural features. Thus, we define the weight of a cut as:

W(κ) =
ω(κ)

γ(κ)
, (4)

where ω(κ) = |κ |/concavity(κ) is the reciprocal of the mean
concavity of a cut κ and γ(κ) is the accumulated curvature of the

(a) identified knots (b) all pocket cuts

(c) non-crossing pocket cuts(d) bipartite matching pocket cuts

Figure 12: (a) Identified knots of a pocket shown in dark circles.
(b) All pocket cuts that connect all pairs of knots in the pocket. (c)
Non-crossing pocket cuts. (d) Pocket cuts from bipartite matchings
between pairs of boundaries.

edges in κ. The curvature of an edge e is measured using the best
fit polynomial [Hubeli and Gross 2001] of the intersection of the
model and the plane bisecting e. Since curvature is only measured
on cuts, instead of on the entire model, the computation is less ex-
pensive.

4.2.4 Step 4: Extracting Cycles from Graph GK

Recall that GK is a graph whose vertices and edges are the knots
and the selected pocket cuts. An example of GK is shown in Fig-
ure 14. Each cycle in GK represents a possible way of decompos-
ing the model. The process of extracting cycles from GK used here
is similar to that of constructing a minimum spanning tree (MST)
TK on GK by greedily expanding the most promising branch into
all its neighboring pockets in each iteration. A cycle is identified
when two growing paths of TK meet. With this high level idea in
mind, we are going to discuss technical details next.

Let κρ be a pocket cut to be resolved, e.g., the pocket cut that con-

126



bridge

cup−shape pocket

x

subdivided bridges

cup−shape pocket

x

Figure 13: Left: A cup-shape pocket and its bridge. The boundary
of the pocket are very close to the bridge. Right: The bridge is
subdivided and the new pocket boundary is forced to pass the most
concave feature x.

tains the most concave vertex. To find cycles that include κρ, we
extract TK rooted at κρ from GK . TK is constructed so that a path
from the root κρ to a leaf will consist of concave features that can
be resolved together.

The process of building a tree TK from GK is similar to that of con-
structing a minimum spanning tree on GK . An exception is that we
also dynamically create new pocket cuts after each MST iteration.
These new pocket cuts are simply the shortest (geodesic distance)
paths connecting the current leaves of TK to the pocket boundaries
without knots, e.g., κ′ in Figure 14. Thus, TK can explore low con-
cavity or even convex areas without using knots. A MST that is
built directly on vertices and edges of a polyhedron has been used
for feature extraction, e.g., [Pauly et al. 2003]. However, unlike TK

which is built on knots and pocket cuts, their MST requires pruning
to enhance long features.

κ

κ
′

root

Figure 14: Left: An example of GK (partially shown). Thicker
pocket cuts have smaller weights. Right: An extracted tree from
GK . The boldest line is the best global cut for the root.

4.3 Resolving Concave Features

For convex volume decomposition, we define the cut plane of a
global cut κ as the best fit plane of κ. For convex surface decom-
position, we simply split the surface at the edges of κ.

A plane E fits κ best if E minimizes

∑

e∈κ

concavity(e) · µE(e) , (5)

where µE(e) is the area between e and the projection of e to E. E
can be approximated via a traditional principal component analysis
using points sampled on κ.

Note that, sometimes, the intersection of E and the model P does
not match the cut κ. An example of this problem is shown in Fig-
ure 15. This happens when the intersection traverses different pock-
ets that κ does. It can be addressed by iteratively pushing E toward

cut ba

cut plane

cut ba

perturb
�
�
�
�
�

�
�
�
�
�

cut

cut plane

a
b

Figure 15: Left: A cut κ around the neck connecting points a and b.
Mid: The best fit plane E of κ. In this case, E is slightly higher than
a and E’s intersection with the model does not match κ. Lighter
and darker shades indicate different components after decomposi-
tion. Right: An improved cut plane by pushing E towards a.

the vertices on the portion of κ that is misrepresented by the inter-
section, e.g., point a in Figure 15.

4.4 Complexity Analysis

Theorem 4.3. Let {Ci}, i = 1, . . . , m, be the τ -approximate
convex decomposition of a polyhedron P with ne edges with zero
genus. P can be decomposed into {Ci} in O(n3

e log ne) time.

Proof. First, we show that ACD of a polyhedron P requires
O(nvne log nv) time for each iteration in Algorithm 1, where nv

and ne are the number of vertices and edges in P , resp. The dom-
inant costs are the pocket cut computation, which extracts paths
between knots on ∂P and can take O(ne log nv) time for each path
extracted time using Dijkstra’s algorithm. To resolve all r notches
in P , Algorithm 1 will take O(rnvne log nv) = O(n3

e log ne).

Note that even though the time complexity of the proposed method
is high, as seen in our experimental results, this is usually a very
conservative estimate because the number of iterations required is
usually small when the tolerance τ is not zero and the total number
of pocket cuts is usually quite small.

5 ACD of Polyhedra with Arbitrary Genus

Because the convex hull of a polyhedron P is topologically a ball,
multiple bridges may share one pocket for polyhedra with non-zero
genus. For example, neither of the bridges α or β in Figure 16(a)
can enclose any region by themselves. We address this problem by
reducing the genus to zero.

Genus reduction is a process of finding sets of edges (called handle
cuts) whose removal will reduce the number of homological loops
on the surface of P . The problem of finding minimum length han-
dle cuts is NP-hard [Erickson and Har-Peled 2002]. Several heuris-
tics for genus reduction have been proposed (see a survey in [Zhang
et al. 2003]). The identified handle cuts will then be used to prevent
the paths of the bridge projections from crossing them. Figure 16(b)
shows an example of a handle cut and the new bridge/pocket rela-
tion after genus reduction.

Although we can always use one of the existing heuristics, the
bridge/pocket relationship can readily be used for genus reduction.
Our approach is based on the intuition that the bridges that share
the same pocket tell us approximate locations of the handles and
the trajectory of how a hand “holds” a handle roughly traces out
how we can cut the handle. For example, imagine holding the han-
dle of the cup in Figure 16 with one hand: the hand must enter the
hole though one of the bridges, e.g., β, and exit the hole from the
other bridge, e.g., α. We call bridges that share a common pocket
a set of “handle caps” of the enclosed handles. A model may have
several sets of handle caps.

127



β

α

(a)

handle cut

β

α

(b)

Figure 16: (a) The pocket (shaded area) is enclosed in the projected
boundaries of two bridges β and α. (b) Pockets of β and α after
genus reduction.

c

d

a

c

b

d

a

b

Figure 17: Four handle cuts found in the David model.

This intuition can be implemented by applying the following oper-
ations to identified handle cuts.

1. Flooding the polyhedral surface ∂P initiated from the pro-
jected boundaries of a set of handle caps. Vertices in a wave-
front will propagate to neighboring unoccupied vertices.

2. Loops can be extracted by tracing in the backward direction
of the propagation. For each pair of handle caps, we keep
a shortest loop that connects their projected boundaries, if it
exists.

3. Let Gh be a graph whose vertices are the handle caps and
whose edges are the discovered handle cuts. Cycles in Gh

indicate that the removal of all discovered handle cuts will
separate P into multiple components. We can prevent P from
being split by throwing away handle cuts so that no cycles are
formed in Gh.

4. Check if the handle caps still share one pocket. If so, repeat
the process described above until the remaining handle cuts
are found.

Figure 17 shows a result of our approach. Note that we may not al-
ways reduce the genus of a model to zero because some handles are
too small or can map to just one bridge, e.g., a handle completely
inside a bowl. These “hidden” handles will eventually be unearthed
as the decomposition process iterates if the concavity measurement
of the handle is untolerable. For many applications, this behavior
of ignoring insignificant handles can even represent the structure of
the input model better [Wood et al. 2004].

6 Experimental Results

In this section, we compare exact (ECD) and approximate (ACD)
convex decomposition. In addition, we consider four variants of

ACD, i.e., solid or surface ACD, and ACD with or without feature
grouping.

Implementation Details. There are three parameters, τ , ǫ, and δ,
used in our proposed method. The first parameter is the concavity
tolerance τ , which is used to control how convex the final compo-
nents are and should be set according to the need of the application.

The second parameter is the bridge clustering threshold ǫ, which is
the upper bound of the difference between the estimated concavity
and the accurate concavity when the bridge clustering is not used.
In our experiments, the value of ǫ does not significantly affect the
final decomposition and is always set to be ǫ = τ

2
.

The third parameter δ is used in the Douglas-Peucker (DP) algo-
rithm, which is used to identify knots on the pocket boundaries for
concave feature grouping. The value of δ is difficult to estimate and
is set experimentally between τ

10
and τ

100
.

Models. The models used in the experiments in this section are
summarized in Table 1. In Table 1, for each model studied, we show
the complexity of the model in terms of the number of edges, the
ratio of notches with respect to the edges, and the physical file size
in a simple BYU (Brigham Young University) format. In these 13
models, the David and the dragon models are not closed, i.e., with
openings on their boundaries, and all the other models are closed.

6.1 Results

All experiments were performed on a Pentium 2.0 GHz CPU with
512 MB RAM. Our implementation of ACD of polyhedra is coded
in C++. A summary of results for 13 models is shown in Table 1,
which includes results from both solid and surface decomposition,
and in Figures 18 and 19, which contain results of several approxi-
mation levels of ACD with and without feature grouping.

Result 1: ACDs are orders of magnitude smaller than ECDs. In
Table 1, We show the size of the six decompositions, including solid
ACD0.2, solid ACD0.02, solid ECD, surface ACD0.2, surface ACD0.02,
and surface ECD, in terms of the number of final components and
the physical file size in BYU format.

As seen in Table 1, the solid ACDs are orders of magnitude smaller
than solid ECD. The solid ACDs0.2 and solid ACDs0.02 have 0.001%
and 0.1% of the number of components that the solid ECDs have on
average, resp. The physical file size of solid ACDs0.2 and solid
ACDs0.02 are 0.08% and 0.16% of the size of the solid ECDs on
average, resp. Note that the ECD process of the Armadillo model
terminated early because it required more disk space than the avail-
able 20 GB. The results for ECD shown in Figure 18 are collected
before termination, i.e., they are for an unfinished ECD, so all com-
ponents are not yet convex. Figure 18 also shows that the solid ACD

can be computed 72 times faster than the solid ECD. These times
are representative of the savings offered by solid ACD over ECD.

Although the file size of the surface ACDs is not significantly
smaller than for the surface ECD, the surface ACDs0.2 and surface
ACDs0.02 have 0.02% and 0.2% of the number of components that
the ECD has on average. Figure 19 shows that ACDs only require
a small constant factor increase in the computation time over the
linear time surface ECD; this is representative of the relative cost of
surface ACD and ECD. The table below summarizes these statistics.

% solid ECD % solid ECD % surface ECD % surface ECD

#components file size #components file size

ACD0.2 0.001% 0.08% 0.02% 88.3%

ACD0.02 0.1% 0.16% 0.2% 89.6%

Result 2: Solid ACDs are only slightly larger than surface ACDs.

128



Table 1: Decompositions of 13 common models, where |r|% is the percentage of edges that are notches, |e| is the number of edges, and S
and |Pi| are the physical (file) size and the number of components of the decomposition, resp. All models are normalized so that the radius
of their minimum enclosing spheres is one unit. Feature grouping is used for ACDs.

Models dinopet elephant bull inner ear horse screw-dr bunny teeth female venus armadillo david dragon

Full Solid Surface

model ACD0.2 ACD0.02 ECD ACD0.2 ACD0.02 ECD

models |r|% |e| S |Pi| S |Pi| S |Pi| S |Pi| S |Pi| S |Pi| S

dinopet 34.9% 9,895 201 KB 13 252 KB 67 577 KB 5,607 38 MB 12 205 KB 62 226 KB 1,297 224 KB

elephant 30.4% 10,197 206 KB 13 338 KB 136 1.4 MB 5,349 50 MB 15 215 KB 123 250 KB 1,306 229 KB

bull 42.5% 18,594 379 KB 12 481 KB 211 2.3 MB 12,210 102 MB 12 388 KB 191 446 KB 3,486 444 KB

inner ear 34.0% 48,354 1.0 MB 31 1.4 MB 181 3.6 MB 14,591 171 MB 26 1.0 MB 89 1.1 MB 6,360 1.2 MB

horse 34.4% 59,541 1.3 MB 8 1.4 MB 77 2.4 MB 24,044 527 MB 8 1.3 MB 47 1.3 MB 8,095 1.4 MB

screw-dr 45.5% 81,450 1.8 MB 1 1.8 MB 44 3.0 MB 43,180 2.0 GB 1 1.8 MB 9 1.8 MB 15,052 2.1 MB

bunny 40.5% 104,496 2.3 MB 6 2.5 MB 178 6.6 MB 46,728 2.8 GB 6 2.3 MB 97 2.4 MB 16,549 2.7 MB

teeth 45.5% 349,806 7.9 MB 11 9.4 MB 307 18.8 MB 135,224 7.5 GB 29 8.0 MB 131 8.2 MB 67,059 9.4 MB

female 38.8% 365,163 8.5 MB 5 8.7 MB 67 10.9 MB 145,085 7.2 GB 5 8.5 MB 50 8.6 MB 51,580 9.3 MB

venus 43.8% 403,026 9.3 MB 3 9.5 MB 273 32.8 MB 166,555 18.2 GB 3 9.3 MB 164 9.6 MB 72,190 9.6 MB

armadillo 41.4% 518,916 12.1 MB 11 12.1 MB 98 14.2 MB 726,240 20+ GB 11 12.2 MB 85 12.4 MB 89,839 14.1 MB

david 38.7% 748,893 18.0 MB models are 10 18.0 MB 170 18.3 MB 85,132 20.1 MB

dragon 42.8% 1,307,170 31.7 MB not closed 12 31.8 MB 237 32.1 MB 246,053 37.3 MB

Table 1 also shows that the size of the solid ACDs are about 1.6
times larger than the surface ACDs due to the fact that the solid
ACDs use cut planes to approximate (possibly non-planar) concave
features.

Result 3: ACDs with feature grouping are smaller than ACDs with-
out feature grouping. This experiment studies the effect of fea-
ture grouping on the ACDs of the Armadillo and the David models.
We further investigate ACDs with different approximate levels. Fig-
ures 18 and 19 show results of solid and surface decomposition for
a range of approximation value τ , respectively. Figures 18 and 19
show that feature grouping successfully reduces the size of both
solid and surface decompositions. In particular, we see a slowly
increasing size for ACDs with feature grouping as the value of τ
decreases (i.e., as the convex approximation approaches an exact
convex decomposition). In addition, with feature grouping, ACD

produces structurally more meaningful components.

0

200

400
 0.02  0.04  0.08  0.2  τ

T
im

e
 (

s
e

c
)

without featue grouping
with feature grouping

no feature grouping feature grouping[Chazelle 1981]

0

200

400

 0.02  0.04  0.08  0.2  τ#
 o

f 
c
o
m

p
o
n
e
n
ts

exact

time=364.9

size=98726, 240 componets

13, 068.6 seconds

acd0.02 acd0.02

size=388

time=290.1

Figure 18: Convex solid decomposition. The size and time of ACD

with and without feature grouping are shown for a range approxi-
mation values τ .

seconds

exact
ACD without feature grouping[Chazelle et al. 1995] ACD with feature grouping

components85; 13297:3 �1:4 �1:7�0:9% �1:4% �7:1�5:5�0:07% �0:2%

� = 0:02� = 0:04 � = 0:02� = 0:04
Figure 19: Convex surface decomposition. The leftmost figure
shows a result of the exact decomposition using the “flood-and-
retract” heuristic. The others are results of the approximate decom-
position.

7 Applications of ACD

The convex hulls of the ACD components (and sometimes the com-
ponents themselves) can be used by methods that usually operate
on convex polyhedra, making them more efficient. This includes
a large set of problems in computational geometry and graphics.
Here, we demonstrate four applications including point location,
shape representation, motion planning, and mesh generation.

Point location (solid ACD without feature grouping). Point loca-
tion, which checks if a point x is in a polyhedron P , is a funda-
mental problem that can be found in ray tracing, simulation, and
sampling. Point location can be solved more efficiently for convex
polyhedra by checking if x is on the same side of all P ’s facets.
Locating points for a non-convex model can benefit from ACD us-

129



ing the convex hulls of its ACD components if some errors can be
tolerated, e.g., the particles in Figure 5. These errors are due to the
difference between the component convex hulls of the ACD compo-
nents and the original model.

In our experiments, point location of 108 random points is per-
formed for the solid ECD and for the convex hulls of the ACD0.02

components; point location in the ACD did not exploit the hierar-
chical structure of the ACD, but simply tested each component sep-
arately.

As seen in Figure 20, even using this naive strategy, point location
in the ACD is about 23% faster than in the original teeth model. As
seen with the elephant model, the advantage of the ACD over the
ECD is even more pronounced. In both experiments, fewer than 1%
errors were introduced using ACD.

ECD: 5,349 parts
57 hrs

ACD0.02: 204 parts
52.2 mins

Figure 20: Point location of 108 points in the solid ECD and the
convex hulls of the ACD0.02 of the elephant model (6,798 triangles).
Measured time includes time for decomposition and point location.
Point location in ACD0.02 has 0.99% errors. External points of 1000
samples in ECD are shown in the figure on the left and only the
misclassified (as internal) points in ACDs are shown on the right.

Shape approximation (surface ACD with feature grouping). The
components of an ACD can also be used for approximating shapes
using the convex hulls of the ACD components. Figure 2 shows a
simplified representation of the dragon model.

Although there are no well accepted criteria to compare decompo-
sitions, we can compare the skeletons extracted from the decom-
positions (see [Lien et al. 2006] for details), e.g., using graph edit
distance [Bunke and Kandel 2000], which computes the cost of op-
erations (i.e., inserting/removing vertices or edges) needed to con-
vert one graph (skeleton) to another. Using this metric, Figure 21
shows that ACD still produces matching representations after defor-
mations.

Motion planning (surface ACD with feature grouping). The ACD

components can help to plan motion, e.g., for navigating in the hu-
man colon or removing a mechanical part from an airplane engine.
Sampling-based motion planners have been shown to solve difficult
motion planning problems; see a survey in [Barraquand et al. 1997].
These methods approximate the reachable configuration space (C-
space) of a movable object by sampling and connecting random
configurations to form a graph (or a tree). However, they also have
several technical issues limiting their success on some important
types of problems, such as the difficulty of finding paths that are
required to pass through narrow passages.

ACD can address the so called “narrow passage” problem for some
problems by sampling with a bias toward cuts between the ACD

components of a workspace (for rigid or articulated robots). Fig-
ure 3 illustrates the advantage of this sampling strategy over uni-
form sampling [Kavraki et al. 1996]. Advantages of the ACD-based
sampling are that more samples are placed in the narrower (diffi-
cult) regions and also the connections between the samples can be
made more easily due to the nearly convex components.

Mesh generation (solid ACD with feature grouping). The ACD

D = 3
D2 = 0

D = 4
D2 = 0

Figure 21: Skeletons extracted from the ACD components of two
models and their deformations. D is the graph edit distance from
the skeleton of the deformed model to that of the original model.
D2 is D without considering degree 2 vertices whose insertion and
deletion do not change the topology of the graph.

components can be used to generate tetrahedral meshes from the
convex hulls of the ACD components using Delaunay triangulation.
The convex hulls may further simplified, e.g., using triboxes [Cros-
nier and Rossignac 1999], to generate even coarser meshes. These
meshes can later be used for, e.g., surface deformation. An illustra-
tion of this application is shown in Figure 4.

8 Discussion and Future Work

We have presented a framework for decomposing a given polyhe-
dron of arbitrary genus into nearly convex components. This pro-
vides a mechanism by which significant features are removed and
insignificant features can be allowed to remain in the final approxi-
mate convex decomposition (ACD).

Despite our promising results, our current implementation has some
limitations which we plan to address in future work, some of which
can be solved without too much difficulty. For example, some un-
common types of open surfaces with non-zero genus, whose ver-
tices on the convex hull are all convex, cannot be handled correctly
by the proposed method. Also, splitting non-linearly separable fea-
tures using a best fit cut plane can still generate a visually unpleas-
ant decomposition. One possible way to address this problem is to
use curved cut surfaces.

There are other issues that require further research. For example,
our feature grouping method has difficulty in collecting long fea-
tures that have relatively low concavity. One possible approach
to address this issue is to adaptively select the knot identification
threshold δ for each pocket. Another issue is the accuracy of the
concavity measure. One possible efficient alternative to computing
shortest paths, which as previously mentioned is NP-hard, is to use
an adaptively sampled distance field [Frisken et al. 2000].

References

BAJAJ, C., AND DEY, T. K. 1992. Convex decomposition of polyhedra
and robustness. SIAM J. Comput. 21, 339–364.

BARRAQUAND, J., KAVRAKI, L. E., LATOMBE, J.-C., LI, T.-Y., MOT-
WANI, R., AND RAGHAVAN, P. 1997. A random sampling scheme for
path planning. Int. J. of Rob. Res 16, 6, 759–774.

BUNKE, H., AND KANDEL, A. 2000. Mean and maximum common sub-
graph of two graphs. Pattern Recogn. Lett. 21, 2, 163–168.

CHAZELLE, B., AND PALIOS, L. 1994. Decomposition algorithms in
geometry. In Algebraic Geometry and its Applications, C. Bajaj, Ed.
Springer-Verlag, ch. 27, 419–447.

CHAZELLE, B., DOBKIN, D. P., SHOURABOURA, N., AND TAL, A. 1995.
Strategies for polyhedral surface decomposition: An experimental study.
In Proc. 11th Annu. ACM Sympos. Comput. Geom., 297–305.

CHAZELLE, B. 1981. Convex decompositions of polyhedra. In Proc. 13th
Annu. ACM Sympos. Theory Comput., 70–79.

130



CHOI, J., SELLEN, J., AND YAP, C. K. 1997. Approximate Euclidean
shortest paths in 3-space. Internat. J. Comput. Geom. Appl. 7, 4 (Aug.),
271–295.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational
shape approximation. ACM Trans. Graph. 23, 3, 905–914.

CROSNIER, A., AND ROSSIGNAC, J. 1999. Tribox-based simplification of
three-dimensional objects. Computers&Graphics 23, 3, 429–438.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA,
A. 2003. Suggestive contours for conveying shape. ACM Trans. Graph.
22, 3, 848–855.

DEY, T. K., GIESEN, J., AND GOSWAMI, S. 2003. Shape segmentation
and matching with flow discretization. In Proc. Workshop on Algorithms
and Data Structures, 25–36.

ERICKSON, J., AND HAR-PELED, S. 2002. Optimally cutting a surface
into a disk. In Proceedings of the eighteenth annual symposium on Com-
putational geometry, ACM Press, 244–253.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: a general representation of
shape for computer graphics. In Proc. ACM SIGGRAPH, 249–254.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W.,
TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D. 2004. Modeling by
example. ACM Trans. Graph. 23, 3, 652–663.

GOSWAMI, S., DEY, T. K., AND BAJAJ, C. L. 2006. Identifying flat and
tubular regions of a shape by unstable manifolds. In SPM ’06: Proceed-
ings of the 2006 ACM symposium on Solid and physical modeling, ACM
Press, New York, NY, USA, 27–37.

HERSHBERGER, J., AND SNOEYINK, J. 1992. Speeding up the Douglas-
Peucker line simplification algorithm. In Proc. 5th Internat. Sympos.
Spatial Data Handling, 134–143.

HUBELI, A., AND GROSS, M. 2001. Multiresolution feature extraction for
unstructured meshes. In Proceedings of the conference on Visualization
’01, 287–294.

JOE, B. 1994. Tetrahedral mesh generation in polyhedral regions based on
convex polyhedron decompositions. International Journal for Numerical
Methods in Engineering 37, 693–713.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954–961.

KAVRAKI, L. E., SVESTKA, P., LATOMBE, J. C., AND OVERMARS,
M. H. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. Robot. Automat. 12, 4
(August), 566–580.

KEIL, J. M. 2000. Polygon decomposition. In Handbook of Computational
Geometry, J.-R. Sack and J. Urrutia, Eds. Elsevier Science Publishers
B.V. North-Holland, Amsterdam, 491–518.

KENT, J. R., CARLSON, W. E., AND PARENT, R. E. 1992. Shape trans-
formation for polyhedral objects. SIGGRAPH Comput. Graph. 26, 2,
47–54.

KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P. 2003. Globally
smooth parameterizations with low distortion. ACM Trans. Graph. 22,
3, 350–357.

LAI, Y.-K., ZHOU, Q.-Y., HU, S.-M., AND MARTIN, R. R. 2006. Feature
sensitive mesh segmentation. In SPM ’06: Proceedings of the 2006 ACM
symposium on Solid and physical modeling, ACM Press, New York, NY,
USA, 17–25.

LEE, Y., LEE, S., SHAMIR, A., COHEN-OR, D., AND SEIDEL, H.-P.
2005. Mesh scissoring with minima rule and part salience. Comput.
Aided Geom. Des. 22, 5, 444–465.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least
squares conformal maps for automatic texture atlas generation. In Pro-
ceedings of the 29th annual conference on Computer graphics and inter-
active techniques, 362–371.

LI, X., TOON, T. W., AND HUANG, Z. 2001. Decomposing polygon
meshes for interactive applications. In Proceedings of the 2001 sympo-
sium on Interactive 3D graphics, 35–42.

LIEN, J.-M., AND AMATO, N. M. 2004. Approximate convex decompo-
sition of polygons. In Proc. 20th Annual ACM Symp. Computat. Geom.
(SoCG), 17–26.

LIEN, J.-M., KEYSER, J., AND AMATO, N. M. 2006. Simultaneous shape
decomposition and skeletonization. In SPM ’06: Proceedings of the
2006 ACM symposium on Solid and physical modeling, ACM Press, New
York, NY, USA, 219–228.

LIU, S., MARTIN, R. R., LANGBEIN, F. C., AND ROSIN, P. L. 2006.
Segmenting reliefs on triangle meshes. In SPM ’06: Proceedings of the
2006 ACM symposium on Solid and physical modeling, ACM Press, New
York, NY, USA, 7–16.

MANGAN, A. P., AND WHITAKER, R. T. 1999. Partitioning 3d surface
meshes using watershed segmentation. IEEE Transactions on Visualiza-
tion and Computer Graphics 5, 4, 308–321.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-valley lines
on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3, 609–
612.

PAULY, M., KEISER, R., AND GROSS, M. 2003. Multi-scale feature ex-
traction on point-sampled surfaces. In Proceedings of the Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, 281–289.

PRAUN, E., AND HOPPE, H. 2003. Spherical parametrization and remesh-
ing. ACM Trans. Graph. 22, 3, 340–349.

ROM, H., AND MEDIONI, G. 1994. Part decomposition and description
of 3d shapes. In Proc. International Conference of Pattern Recognition,
629–632.

RUSINKIEWICZ, S. 2004. Estimating curvatures and their derivatives on
triangle meshes. In Symposium on 3D Data Processing, Visualization,
and Transmission.

SHAPIRO, A., AND TAL, A. 1998. Polyhedron realization for shape trans-
formation. The Visual Computer 14, 8/9, 429–444.

SHARIR, M., AND SCHORR, A. 1986. On shortest paths in polyhedral
spaces. SIAM J. Comput. 15, 193–215.

SKLANSKY, J. 1972. Measuring concavity on rectangular mosaic. IEEE
Trans. Comput. C-21, 1355–1364.

WHITE, E. R. 1985. Assessment of line-generalization algorithms using
characteristic points. The American Cartographer 12, 1, 17–27.

WOOD, Z., HOPPE, H., DESBRUN, M., AND SCHRÖDER, P. 2004. Re-
moving excess topology from isosurfaces. ACM Trans. Graph. 23, 2,
190–208.

WU, K., AND LEVINE, M. D. 1994. Recovering parametric geons from
multiview range data. In Proc. International Conference of Pattern
Recognition, 159–166.

WU, K., AND LEVINE, M. D. 1997. 3d part segmentation using simulated
electrical charge distributions. IEEE Transactions on Pattern Analysis
and Machine Intelligence 19, 11, 1223–1235.

YAMAUCHI, H., LEE, S., LEE, Y., OHTAKE, Y., BELYAEV, A., AND SEI-
DEL, H.-P. 2005. Feature sensitive mesh segmentation with mean shift.
In SMI ’05: Proceedings of the International Conference on Shape Mod-
eling and Applications 2005 (SMI’ 05), IEEE Computer Society, Wash-
ington, DC, USA, 238—245.

YOSHIZAWA, S., BELYAEV, A., AND SEIDEL, H.-P. 2005. Fast and robust
detection of crest lines on meshes. In SPM ’05: Proceedings of the
2005 ACM symposium on Solid and physical modeling, ACM Press, New
York, NY, USA, 227–232.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2003. Feature-based sur-
face parameterization and texture mapping. Git-gvu-03-29, Georgia In-
stitute Technology.

ZUNIC, J., AND ROSIN, P. L. 2002. A convexity measurement for poly-
gons. In British Machine Vision Conference, 173–182.

A Bridge Size Estimation

Algorithm 2 estimates the number of the required bridges so that
the error of the approximated concavity is less than ǫ. Note that
C(β) in Algorithm 2 is a set of contiguous facets adjacent to β.
The distance from the facets in C(β) to the plane tangent to β is at
most ǫ.

Algorithm 2 bridge size estimation(CHP , ǫ)

Input. A convex hull CHP and a threshold ǫ
Output. The number of bridges that can cover ∂CHP

1: Let B and K be two empty sets
2: repeat
3: Let β be a facet of ∂CHP that is not in K
4: B = B ∪ β
5: K = K ∪ C(β) ⊲ C(β) are facets that can be assigned to

β
6: untilK = ∂CHP

7: return the size of B

131



132


