
Acta Informatica (2017) 54:729–764
DOI 10.1007/s00236-017-0297-2

ORIGINAL ARTICLE

Approximate counting in SMT and value estimation
for probabilistic programs

Dmitry Chistikov1 · Rayna Dimitrova2 ·
Rupak Majumdar2

Received: 29 October 2015 / Accepted: 20 March 2017 / Published online: 12 April 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract #SMT, or model counting for logical theories, is a well-known hard problem
that generalizes such tasks as counting the number of satisfying assignments to a Boolean
formula and computing the volumeof a polytope. In the realmof satisfiabilitymodulo theories
(SMT) there is a growing need for model counting solvers, coming from several application
domains (quantitative information flow, static analysis of probabilistic programs). In this
paper, we show a reduction from an approximate version of #SMT to SMT. We focus on
the theories of integer arithmetic and linear real arithmetic. We propose model counting
algorithms that provide approximate solutionswith formal bounds on the approximation error.
They run in polynomial time andmake a polynomial number of queries to the SMT solver for
the underlying theory, exploiting “for free” the sophisticated heuristics implemented within
modern SMT solvers. We have implemented the algorithms and used them to solve the value
problem for a model of loop-free probabilistic programs with nondeterminism.

1 Introduction

Satisfiability modulo theories (SMT) is a foundational problem in formal methods, and the
research landscape is not only enjoying the success of existing SMT solvers, but also gen-
erating demand for new features. In particular, there is a growing need for model counting

Most of this work was done while Dmitry Chistikov was a postdoctoral researcher at the Max Planck
Institute for Software Systems (MPI-SWS) in Kaiserslautern and Saarbrücken, Germany.

B Rayna Dimitrova
rayna@mpi-sws.org

Dmitry Chistikov
d.chistikov@warwick.ac.uk

Rupak Majumdar
rupak@mpi-sws.org

1 Department of Computer Science, University of Warwick, Coventry, United Kingdom

2 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-017-0297-2&domain=pdf

730 D. Chistikov et al.

solvers; for example, questions in quantitative information flow and in static analysis of prob-
abilistic programs are naturally cast as instances of model counting problems for appropriate
logical theories [24,43,52].

We define the #SMT problem that generalizes several model counting questions relative
to logical theories, such as computing the number of satisfying assignments to a Boolean
formula (#SAT) and computing the volume of a bounded polyhedron in a finite-dimensional
real vector space. Specifically, to define model counting modulo a measured theory, first
suppose every variable in a logical formula comes with a domain which is also a measure
space. Assume that, for every logical formula ϕ in the theory, the set of its models �ϕ� is
measurable with respect to the product measure; the model counting (or #SMT) problem
then asks, given ϕ, to compute the measure of �ϕ�, called the model count of ϕ.

In our work we focus on the model counting problems for the theories of bounded integer
arithmetic and linear real arithmetic. These problems are complete for the complexity class
#P, so fast exact algorithms are unlikely to exist.

We extend to the realm of SMT thewell-known hashing approach from theworld of #SAT,
which reduces approximate versions of counting to decision problems. From a theoretical
perspective, we solve a model counting problem with a resource-bounded algorithm that has
access to an oracle for the decision problem. From a practical perspective, we show how
to use unmodified existing SMT solvers to obtain approximate solutions to model-counting
problems. This reduces an approximate version of #SMT to SMT.

Specifically, for integer arithmetic (not necessarily linear),we give a randomized algorithm
that approximates themodel count of a given formulaϕ towithin amultiplicative factor (1+ε)

for any given ε > 0. The algorithm makes O(1
ε
|ϕ|) SMT queries of size at most O(1

ε2
|ϕ|2)

where |ϕ| is the size of ϕ.
For linear real arithmetic, we give a randomized algorithm that approximates the model

count with an additive error γ N , where N is the volume of a box containing all models of
the formula, and the coefficient γ is part of the input. The number of steps of the algorithm
and the number of SMT queries (modulo the combined theory of integer and linear real
arithmetic) are again polynomial.

As an application, we show how to solve the value problem (cf. [52]) for a model of
loop-free probabilistic programs with nondeterminism.

Techniques
Approximation of #P functions by randomized algorithms has a rich history in complexity
theory [33,34,58,62]. Jerrum, Valiant, and Vazirani [34] described a hashing-based BPPNP

procedure to approximately compute any #P function, and noted that this procedure already
appeared implicitly in previous papers by Sipser [54] and Stockmeyer [58]. The procedure
works with encoded computations of a Turing machine and is thus unlikely to perform well
in practice. Instead, we show a direct reduction from approximate model counting to SMT
solving, which allows us to retain the structure of the original formula. An alternate approach
could eagerly encode #SMT problems into #SAT, but experience with SMT solvers suggests
that a “lazy” approach may be preferable for some problems.

For the theory of linear real arithmetic, we also need an ingredient to handle continuous
domains. Dyer and Frieze [19] suggested a discretization that introduces bounded addi-
tive error; this placed approximate volume computation for polytopes—or, in logical terms,
approximate model counting for quantifier-free linear real arithmetic—in #P. Motivated by
the application in the analysis of probabilistic programs, we extend this technique to han-
dle formulas with existentially quantified variables, while Dyer and Frieze only work with
quantifier-free formulas. To this end, we prove a geometric result that bounds the effect of

123

Approximate counting in SMT 731

projections: this gives us an approximate model counting procedure for existentially quanti-
fied linear arithmetic formulas. Note that applying quantifier elimination as a preprocessing
step can make the resulting formula exponentially big; instead, our approach works directly
on the original formula that contains existentially quantified variables.

We have implemented our algorithm on top of the Z3 SMT solver [17] and applied it to
formulas that encode the value problem for probabilistic programs. Our initial experience
suggests that simple randomized algorithms using off-the-shelf SMT solvers can be effective
on small examples.

Counting in SMT

#SMT is a well-known hard problem whose instances have been studied before, e. g., in
volume computation [19], in enumeration of lattice points in integer polyhedra [2], and as
#SAT [28]. Indeed, very simple sub-problems, such as counting the number of satisfying
assignments of a Boolean formula or computing the volume of a union of axis-parallel
rectangles inR

n (calledKlee’smeasure problem [37]) are already #P-hard (seeSect. 2 below).
Existing techniques for #SMT either incorporate model counting primitives into proposi-

tional reasoning [5,44,63] or are based on enumerative combinatorics [24,40,43]. Typically,
exact algorithms [24,40,44] are exponential in the worst case, whereas approximate
algorithms [43,63] lack provable performance guarantees. In contrast to exact counting tech-
niques, our procedure is easily implementable and uses “for free” the sophisticated heuristics
built in off-the-shelf SMT solvers. Although the solutions it produces are not exact, they
provably meet user-provided requirements on approximation quality. This is achieved by
extending the hashing approach from SAT [10,21,27,28] to the SMT context.

A famous result of Dyer, Frieze, and Kannan [20] states that the volume of a convex
polyhedron can be approximated with a multiplicative error in probabilistic polynomial time
(without the need for an SMT solver). In our application, analysis of probabilistic programs,
we wish to compute the volume of a projection of a Boolean combination of polyhedra; in
general, it is, of course, non-convex. Thus, we cannot apply the volume estimation algorithm
of [20], so we turn to the “generic” approximation of #P using an NP oracle instead. Our
#SMT procedure for linear real arithmetic allows an additive error in the approximation; it
is known that the volume of a polytope does not always have a small exact representation as
a rational number [41].

An alternative approach to approximate #SMT is to applyMonteCarlomethods for volume
estimation. They can easily handle complicated measures for which there is limited symbolic
reasoning available. Like the hashing technique, this approach is also exponential in the worst
case [33]: suppose the volume in question, p, is very small and the required precision is a
constant multiple of p. In this case, Chernoff bound arguments would suggest the need for
�(1p) samples; the hashing approach, in contrast, will perform well. So, while in “regular”
settings (when p is non-vanishing) the Monte Carlo approach performs better, “singular”
settings (when p is close to zero) are better handled by the hashing approach. The two
techniques, therefore, are complementary to each other (see the remark at the end of Sect. 5.5).

Related work

Probably closest to our work is a series of papers by Chakraborty, Meel, Vardi et al. [8–
10], who apply the hashing technique to uniformly sample satisfying assignments of SAT
formulas [9]. They use CryptoMiniSat [55] as a practical implementation of an NP (SAT)
oracle, as it has built-in support for XOR (addition modulo 2) constraints that are used for
hashing. Their recent work [8] supports weighted sampling and weighted model counting,
where different satisfying assignments are associated with possibly different probabilities

123

732 D. Chistikov et al.

(this can be expressed as a discrete case of #SMT). Concurrently, Ermon et al. [21] apply the
hashing technique in the context of counting problems, relying on CryptoMiniSat as well.
Ermon et al. also consider a weighted setting where the weights of satisfying assignments
are given in a factorized form; for this setting, as a basic building block, they invoke an
optimization solver ToulBar2 [1] to answerMAP (maximumaposteriori assignment) queries.
More recently and concurrently with (the conference version of) our work, Belle, Van den
Broeck, and Passerini [4] apply the techniques of Chakraborty et al. in the context of so-called
weighted model integration. This is an instance of #SMT where the weights of the satisfying
assignments (models) are computed in a more complicated fashion. Belle et al. adapt the
procedure of Chakraborty et al., also using CryptoMiniSat, but additionally rely on the Z3
SMT solver to check candidate models against the theory constraints (real arithmetic in this
case) encoded by the propositional variables, and use the LattE tool [40] for computing the
volume of polyhedra.

We briefly review the problem settings of Ermon et al. [21] and Belle et al. [4,5] in Sect. 2.
In our work, the problem setting is more reminiscent of those in Chakraborty et al. [10] and
Ermon et al. [21], and the hashing approach itself is the same as the one described, e.g.,
in [10] for the #SAT case. We lift this idea to the SMT world, in particular for the cases
of bounded integer arithmetic and linear real arithmetic with existential quantification. Our
implementation is a proof of concept for the extension, to SMT, of the hashing approach to
approximate model counting. While we discuss some preliminary experiments in Sect. 6,
a scalable implementation and extensive empirical evaluation are beyond the scope of this
paper. We now outline some challenges towards a scalable tool for #SMT.

From an implementation perspective, bounded integer arithmetic can be reduced to the
Boolean case, which is readily handled by approximate #SAT tools such as ApproxMC [10].
Modern SMT solvers such as Z3 [17] contain conversion and preprocessing heuristics to
bit-blast arithmetic formulas. Our approach, on the other hand, handles bounded integer
arithmetic formulas directly, relying on the SMT solver for performing word-level reasoning.
As in SMT solving, the relative performance of the two techniques (direct theory reasoning
vs. bitblasting) is likely to depend on the considered benchmarks, and choosing between
them in a practical tool remains an open problem.

Our use of hashing introduces many Boolean XOR constraints. Modern SAT solvers per-
form poorly on XOR constraints, unless they implement specialized heuristics (see, e.g., the
CryptoMiniSat solver [55]). Our implementation currently uses an unmodified theory solver
with an additional pre-processor that solves the system of XOR equations (see Sect. 5.6). A
better implementation would replace the “usual” SAT solver within the SMT solver to one
that has special heuristics for XOR constraints, e.g., those implemented in CryptoMiniSat.
An open question is whether there is a different family of hash functions that combines
well with theory reasoning. A step in this direction was taken by Chakraborty et al. in their
recent work [11], where they use word-level hashing functions to enable better usage of the
power of modern SMT solvers. Chakraborty et al. show, empirically, that on a large num-
ber of benchmarks word-level reasoning leads to improved performance compared to the
bit-level XOR reasoning. However, they also establish that these word-level hash functions
do not help for formulas involving word-level multiplication—and, in fact, the XOR-based
approach performs better on several such benchmarks [11].

Contributions

We extend, from SAT to SMT, the hashing approach to approximate model counting:

1. We formulate the notion of a measured theory (Sect. 2) that gives a unified framework
for model-counting problems.

123

Approximate counting in SMT 733

2. For the theory of bounded integer arithmetic, we provide a direct reduction (Theorem 1
in Sect. 2) from approximate counting to SMT.

3. For the theory of bounded linear real arithmetic, we give a technical construction
(Lemma 2 in Sect. 3.3) that lets us extend the results of Dyer and Frieze to the case
where the polyhedral set is given as a projection of a Boolean combination of polytopes;
this leads to an approximate model counting procedure for this theory (Theorem 2 in
Sect. 2).

4. As an application, we show that the value problem for small loop-free probabilistic
programs with nondeterminism reduces to #SMT (Sect. 5).

The conference version of this paper appeared as [13].

2 The #SMT problem

We present a framework for a uniform treatment of model counting both in discrete theories
like SAT (where it is literally counting models) and in linear real arithmetic (where it is really
volume computation for polyhedra). We then introduce the notion of approximation and give
an algorithm for approximate model counting by reduction to SMT.

Preliminaries: Counting Problems and #P

A relation R ⊆ �∗ × �∗ is a p-relation if (1) there exists a polynomial p(n) such that if
(x, y) ∈ R then |y| = p(|x |) and (2) the predicate (x, y) ∈ R can be checked in deterministic
polynomial time in the size of x . Intuitively, a p-relation relates inputs x to solutions y. It
is easy to see that a decision problem L belongs to NP if there is a p-relation R such that
L = {x | ∃y.R(x, y)}.

A counting problem is a function that maps �∗ to N. A counting problem f : �∗ → N

belongs to the class #P if there exists a p-relation R such that f (x) = |{y | R(x, y)}|, i. e.,
the class #P consists of functions that count the number of solutions to a p-relation [61].
Completeness in #P is with respect to Turing reductions; the same term is also (ab)used to
encompass problems that reduce to a fixed number of queries to a #P function (see, e. g., [19]).

#SAT is an example of a #P-complete problem: it asks for the number of satisfying
assignments to a Boolean formula in conjunctive normal form (CNF) [61]. Remarkably,
#P characterizes the computational complexity not only of “discrete” problems, but also of
problems involving real-valued variables: approximate volume computation (with additive
error) for bounded rational polyhedra in R

k is #P-complete [19].

Measured Theories and #SMT

Wewill now define the notion ofmodel counting that generalizes #SAT and volume computa-
tion for polyhedra. SupposeT is a logical theory. Letϕ(x)be a formula in this theorywith free
first-order variables x = (x1, . . . , xk).Assume thatT comeswith afixed interpretationwhich
specifies domains of the variables, denoted D1, . . . , Dk , and assigns a meaning to predicates
and function symbols in the signature of T . Then a tuple a = (a1, . . . , ak) ∈ D1×· · ·× Dk

is called a model of ϕ if the sentence ϕ(a1, . . . , ak) holds, i. e., if a |�T ϕ(x). We denote
the set of all models of a formula ϕ(x) by �ϕ�; the satisfiability problem for T asks, for a
formula ϕ given as input, whether �ϕ� �= ∅.

Consider the special cases of #SAT and volume computation for polyhedra; the cor-
responding satisfiability problems are SAT and linear programming. For #SAT, atomic
predicates are of the form xi = b, for b ∈ {0, 1}, the domain Di of each xi is {0, 1},

123

734 D. Chistikov et al.

and formulas are propositional formulas in conjunctive normal form. For volume computa-
tion, atomic predicates are of the form c1x1 + · · · + ckxk ≤ d , for c1, . . . , ck, d ∈ R, the
domain Di of each xi is R, and formulas are conjunctions of atomic predicates. Sets �ϕ� in
these cases are the set of satisfying assignments and the polyhedron itself, respectively.

Suppose the domains D1, . . . , Dk given by the fixed interpretation are measure spaces:
each Di is associatedwith a σ -algebraFi ⊆ 2Di and ameasureμi : Fi → R. Thismeans, by
definition, thatFi and μi satisfy the following properties:Fi contains ∅ and is closed under
complement and countable unions, andμi is non-negative, assigns 0 to ∅, and is σ -additive.1

In our special cases, these spaces are as follows. For #SAT, eachFi is the set of all subsets
of Di = {0, 1}, and μi (A) is simply the number of elements in A. For volume computation,
each Fi is the set of all Borel subsets of Di = R, and μi is the Lebesgue measure.

Assume that each measure μi is σ -finite, that is, the domain Di is a countable union
of measurable sets (i. e., of elements of Fi , and so with finite measure associated with
them). This condition, which holds for both special cases, implies that the Cartesian product
D1×· · ·×Dk is measurable with respect to a unique product measure μ, defined as follows.
A set A ⊆ D1 × · · · × Dk is measurable (that is, μ assigns a value to A) if and only if A is
an element of the smallest σ -algebra that contains all sets of the form A1 × · · · × Ak , with
Ai ∈ Fi for all i . For all such sets, it holds that μ(A1 × · · · × Ak) = μ1(A1) . . . μk(Ak).

In our special cases, the product measure μ(A) of a set A is the number of elements in
A ⊆ {0, 1}k and the volume of A ⊆ R

k , respectively.
We say that the theory T is measured if for every formula ϕ(x) in T with free (first-

order) variables x = (x1, . . . , xk) the set �ϕ� is measurable. We define the model count of a
formula ϕ as mc(ϕ) = μ(�ϕ�). Naturally, if the measures in a measured theory can assume
non-integer values, the model count of a formula is not necessarily an integer. With every
measured theory we associate a model counting problem, denoted #SMT[T]: the input is a
logical formula ϕ(x) in T , and the goal is to compute the valuemc(ϕ).

The #SAT and volume computation problems are just special cases as intended, since
mc(ϕ) is equal to the number of satisfying assignments of a Boolean formula and to the
volume of a polyhedron, respectively.

Note that one can alternatively restrict the theory to a fixed number of variables k, i.e.,
to x = (x1, . . . , xk), where x ∈ D1 × · · · × Dk , and introduce a measure μ directly on
D1 × · · · × Dk ; that is, μ will not be a product measure. Such measures arise, for instance,
whenμ comes in a factorized form where factors span non-singleton subsets of {x1, . . . , xk}.
A toy example, with k = 3, might have μ induced by the probability density function
Z · f1(x1, x2) · f2(x2, x3), where f1 and f2 are non-negative and absolutely continuous, and
the normalization constant Z (sometimes called the partition function) is chosen in such a
way that μ(D1 × D2 × D3) = 1. Note that computing Z , given f1 and f2, is itself a #SMT-
(i.e., model counting) question: the associated theory has measure μ̄ induced by f1 · f2, and
the goal is to computemc(true), where we assume that true is a formula in the theory with
�true� = D1× D2× D3. (Much more sophisticated) problems of this form arise in machine
learning and have been studied, e.g., by Ermon et al. [21].

Remark A different stance on model counting questions, under the name of weighted model
integration (for real arithmetic), was recently suggested by Belle, Passerini, and Van den
Broeck [5]. Their problem setting starts with a tuple of real-valued (theory) variables x =
(x1, . . . , xk) and a logical formula ϕ over x and over standalone propositional variables, p =
(p1, . . . , ps). All theory atoms in the formula are also abstracted as (different) propositional

1 The reader is referred to standard textbooks on probability and/or measure theory for further background;
see, e.g., [18, Chapter 1].

123

Approximate counting in SMT 735

variables, q = (q1, . . . , qt). All literals l of propositional variables p, q are annotated with
weight functions fl(x), which (can) depend on x . Take any total assignment to p, q that
satisfies the propositional abstraction of ϕ and let L be the set of all satisfied literals. The
weight of this assignment to p, q is the integral

∫ ∏
l∈L fl(x) dx taken over the area restricted

in R
k by the conjunction of atoms that are associated with literals l ∈ L . The weighted

model integral of ϕ is then the sum of weights of all assignments (to p, q) that satisfy the
propositional abstraction of ϕ.

We discuss several other model counting problems in the following subsection.

Approximate Model Counting

We now introduce approximate #SMT and show how approximate #SMT reduces to SMT.
We need some standard definitions. For our purposes, a randomized algorithm is an algorithm
that uses internal coin-tossing. We always assume, whenever we use the term, that, for each
possible input x to A , the overall probability, over the internal coin tosses r , that A outputs
a wrong answer is at most 1/4. (This error probability 1/4 can be reduced to any smaller
α > 0, by taking the median across O(logα−1) independent runs of A .)

We say that a randomized algorithm A approximates a real-valued functional problem
C : �∗ → R with an additive error if A takes as input an x ∈ �∗ and a rational number
γ > 0 and produces an output A (x, γ) such that

Pr
[|A (x, γ)− C (x)| ≤ γ U (x)

] ≥ 3/4,

whereU : �∗ → R is some specific and efficiently computable upper bound on the absolute
value of C (x), i. e., |C (x)| ≤ U (x), that comes with the problem C . Similarly, A approx-
imates a (possibly real-valued) functional problem C : �∗ → R with a multiplicative error
if A takes as input an x ∈ �∗ and a rational number ε > 0 and produces an output A (x, ε)
such that

Pr
[
(1+ ε)−1C (x) ≤ A (x, ε) ≤ (1+ ε)C (x)

] ≥ 3/4.

The computation time is usually considered relative to |x | + γ−1 or |x | + ε−1, respectively
(note the inverse of the admissible error). Polynomial-time algorithms that achieve approx-
imations with a multiplicative error are also known as fully polynomial-time randomized
approximation schemes (FPRAS) [34].

Algorithms can be equipped with oracles solving auxiliary problems, with the intuition
that an external solver (say, for SAT) is invoked. In theoretical considerations, the definition
of the running time of such an algorithm takes into account the preparation of queries to the
oracle (just as any other computation), but not the answer to a query—it is returned within
a single time step. Oracles may be defined as solving some specific problems (say, SAT) as
well as any problems from a class (say, from NP). The following result is well-known.

Proposition 1 (generic approximate counting [34,58]) Let C : �∗ → N be any member of
#P. There exists a polynomial-time randomized algorithm A which, using an NP-oracle,
approximates C with a multiplicative error.

In the rest of this section, we present our results on the complexity of model counting
problems, #SMT[T], for measured theories. For these problems, we develop randomized
polynomial-time approximation algorithms equipped with oracles, in the flavour of Propo-
sition 1. We describe the proof ideas in Sect. 3, and details are provided in Appendix. We
formally relate model counting and the value problem for probabilistic programs in Sect. 5;
in the implementation, we substitute an appropriate solver for the theory oracle. We illustrate
our approach on an example in Sect. 4.

123

736 D. Chistikov et al.

Integer arithmetic. By IA we denote the bounded version of integer arithmetic: each free
variable xi of a formula ϕ(x1, . . . , xk) comes with a bounded domain Di = [ai , bi] ⊆ Z,
where ai , bi ∈ Z. We use the counting measure | · | : A ⊆ Z �→ |A|, so the model count
mc(ϕ) of a formula ϕ is the number of its models. In the formulas, we allow existential (but
not universal) quantifiers at the top level. The model counting problem for IA is #P-complete.

Example 1 Consider the formula

ϕ(x) = ∃y ∈ [1, 10]. (x ≥ 1) ∧ (x ≤ 10) ∧ (2x + y ≤ 6)

= ∃y. (y ≥ 1) ∧ (y ≤ 10) ∧ (x ≥ 1) ∧ (x ≤ 10) ∧ (2x + y ≤ 6)

in themeasured theory IA. This formula has one free variable x andone existentially quantified
variable y, let’s say both with domain [0, 10]. It is easy to see that there exist only two values
of x , x ≥ 1, for which there exists a y ≥ 1 with 2x + y ≤ 6: these are the integers 1 and 2.
Hence,mc(ϕ) = 2. ��
Theorem 1 The model counting problem for IA can be approximated with a multiplicative
error by a polynomial-time randomized algorithm that has oracle access to satisfiability of
formulas in IA.

Linear real arithmetic. ByRA we denote the bounded version of linear real arithmetic, with
possible existential (but not universal) quantifiers at the top level. Each free variable xi of a
formula ϕ(x1, . . . , xk) comes with a bounded domain Di = [ai , bi] ⊆ R, where ai , bi ∈ R.
The associated measure is the standard Lebesgue measure, and the model count mc(ϕ) of
a formula ϕ is the volume of its set of models. (Since we consider linear constraints, any
quantifier-free formula defines a finite union of polytopes. It is an easy geometric fact that
its projection on a set of variables will again be a finite union of bounded polytopes. Thus,
existential quantification involves only finite unions.)

Example 2 Consider the same formula

ϕ(x) = ∃y ∈ [1, 10]. (x ≥ 1) ∧ (x ≤ 10) ∧ (2x + y ≤ 6)

= ∃y. (y ≥ 1) ∧ (y ≤ 10) ∧ (x ≥ 1) ∧ (x ≤ 10) ∧ (2x + y ≤ 6),

this time in the measured theory RA, where x ∈ R and y ∈ R. Note that now ϕ(x) is
equivalent to (x ≥ 1) ∧ (x ≤ 2.5), and thus mc(ϕ) = 1.5: this is the length of the line
segment defined by this constraint. ��

We denote the combined theory of (bounded) integer arithmetic and linear real arithmetic
by IA + RA. In the model counting problem for RA, the a priori upper bound U on the
solution is

∏k
i=1(bi−ai); additive approximation of the problemwithU = 1 is #P-complete.

Theorem 2 The model counting problem for RA can be approximated with an additive
error by a polynomial-time randomized algorithm that has oracle access to satisfiability of
formulas in IA + RA.

3 Proof techniques

In this section we explain the techniques behind Theorems 1 and 2. The detailed analysis can
be found in Appendix.

123

Approximate counting in SMT 737

3.1 Intuition: hashing-based approximate counting

Let us first explain how the hashing-based approach to approximate counting works. In this
subsection we will describe the intuition behind the approach on an abstract level using very
simple examples and without referring to any implementation issues. We will later (Sect. 3.2
and 3.3) present the approach in more generality and explain how it can be implemented in
practice.

The core of the hashing approach is the following high-level observation (see, e.g., Jerrum
et al. [34], and historical notes in the introduction above). LetHm be a family of hash functions
of the form h : D→ {0, 1}m with properties to be fixed below. Intuitively, one expects that,
for each element a ∈ D, if a function h is picked at random from Hm , then the image
h(a) attains all values from {0, 1}m with equal probabilities. For example, the probability
that h(a) = 0m should equal 1/2m . Moreover, this behaviour should, in a way, extend from
single elements a ∈ D to sets: with high probability, the number of elements of a set S ⊆ D
that satisfy h(a) = 0m should be close to |S|/2m . Since this number is, in fact, always integral,
one can expect it to be positive if |S| � 2m and equal to zero if |S| � 2m . Obviously, for
each set S there will be individual functions h ∈ Hm violating these inequalities, but for the
majority of functions h ∈ Hm these inequalities will hold.

Now the idea is to use this observation for estimating the cardinality of a set that is not
given to us explicitly. In the scenario we are interested in, the set S will be the set of all
models of a given formula. More formally, consider a formula ϕ(x) in some measured theory
with one free variable. For simplicity, suppose the theory is IA, integer arithmetic with a
bounded domain D = [0, M], where the measure of a set A ⊆ D is simply the cardinality
of A. Denote by S the set of all models of the formula ϕ(x), i.e., S = �ϕ�. If, as above, the
hash function h : D → {0, 1}m is chosen at random from an appropriate family Hm , then
with high probability the formula ϕ(x) ∧ (h(x) = 0m) is satisfiable if mc(ϕ) � 2m and
unsatisfiable ifmc(ϕ)� 2m .

Notice that we do not a priori know |S|, but we do know that it is between 0 (the formula
is unsatisfiable) and the entire volume D. So, we can iteratively search over this range to
approximate |S|. Let us therefore arrange the following process to estimate mc(ϕ). We
shall first check if the formula ϕ(x) is satisfiable; if it is not, mc(ϕ) = 0 and the process
terminates immediately. Suppose ϕ(x) is satisfiable; we will go over the values of m from 1
to about logM in increasing order and for each of them decide, admitting a certain element
of uncertainty, whether mc(ϕ) � 2m or mc(ϕ) � 2m . Specifically, for each m we will
draw a hash function h at random from the familyHm and check satisfiability of the formula
ϕ(x) ∧ (h(x) = 0m). If the formula is unsatisfiable, this will suggest that mc(ϕ) � 2m

or mc(ϕ) ≈ 2m , and we will therefore terminate the process. If the formula is satisfiable,
this will suggest that mc(ϕ) � 2m or mc(ϕ) ≈ 2m , and we will therefore continue the
process, going on to the increased value of m. (Note that if mc(ϕ) ≈ 2m for some m, the
formula ϕ(x)∧ (h(x) = 0m) is about equally likely to be satisfiable and unsatisfiable.) Rare
events aside, we should expect the process to terminate when the value of m is such that
2m ≈ mc(ϕ).

Example 3 Suppose ϕ(x) is the formula x = 42, and the domain of the variable x is D =
[0, 255]. The set S = �ϕ� is a singleton: S = {42}. Since S �= ∅, that is, the formula ϕ(x) is
satisfiable, we start the process described above.

We setm = 1 at first and draw a hash function h1 : D→ {0, 1} at random from the setH1.
Let us omit the description of the set H1; suppose the hash function that we draw happens
to be h1(x) = x mod 2. We now check satisfiability of the formula ϕ(x) ∧ (x mod 2 = 0),

123

738 D. Chistikov et al.

which is equivalent to (x = 42) ∧ (x mod 2 = 0). As x = 42 is a model of this formula,
we proceed to m = 2. Now we need to draw a hash function from H2. Suppose it has the
form h2(x) = �x/64� where the result is interpreted as an element of {0, 1}2 in a natural
way. Since �42/64� = 0, the formula (x = 42) ∧ (h2(x) = (0, 0)) is satisfiable. Once we
have determined this, we proceed tom = 3. Here we need to draw a hash function at random
from the set H3; suppose we draw h3(x) = (h31, h32, h33) where h31 = (x + 1) mod 2;
then, regardless of how h32 and h33 are defined, the formula (x = 42)∧ (h3(x) = (0, 0, 0))
will be unsatisfiable. Therefore, our process will terminate at m = 3.

What will be the outcome of the process? The exact answer is tightly related to the
properties of the families of the hash functions Hm . More precisely, we asserted previously
that with high probability the formula ϕ(x) ∧ (h(x) = 0m) where h ∈ Hm is satisfiable if
mc(ϕ) � 2m and unsatisfiable if mc(ϕ) � 2m . The precise meaning of � and � will,
in fact, influence the final estimate of mc(ϕ). From the fact that in our run the process
terminates at m = 3 we can draw the conclusion that (with high probability)mc(ϕ) belongs
to the interval [u∗2m, u∗2m] = [8u∗, 8u∗] where u∗ and u∗ are positive constants that do
not depend on the formula ϕ and form a part of the description of our algorithm. One can
imagine, for instance, that u∗ = 1/2 and u∗ = 1; in our case this will give us the interval
[4, 8]. (The actual formulas defining u∗ and u∗ can be found in Appendix A.2.) Of course, in
our case this answer will not be very satisfactory, because the correct value ofmc(ϕ) is 1. If,
however, we compute the probability of such an outcome, i.e., the probability that the process
will only terminate at m ≥ 3 on input ϕ, we will see that this is a moderately rare event.
If each bit of all hash functions from Hm is chosen independently (imagine, for example,
that picking h from Hm corresponds to picking the values of each h(x) independently and
uniformly—this corresponds to the “ideal” hashing), then this probability will be 1/8. In
comparison, with probability 1/2 the process will stop at m = 1, which corresponds to
the interval [1/2, 1]—and this interval contains the correct value. Standard error reduction
techniques will help us amplify the probability of such successful outcomes, thus making it
very likely (according to our choice of α) that the guessed interval will contain the correct
value ofmc(ϕ). In general, with high probability, the higher the values of m that the process
attains, the larger the estimate ofmc(ϕ). ��
3.2 Approximate discrete model counting

We now explain the idea behind Theorem 1 in more detail, zooming in on some aspects that
we only sketched previously. Let ϕ(x) be an input formula in IA and let x = (x1, . . . , xk)
be the free variables of ϕ. Suppose M is a big enough integer such that all models of ϕ have
components not exceeding M , i. e., �ϕ� ⊆ [0, M]k .

Our approach to approximating mc(ϕ) = |�ϕ�| works as follows. Suppose our goal is
to find a value v such that v ≤ mc(ϕ) ≤ 2v, and we have an oracle E , for “Estimate”,
answering questions of the form mc(ϕ) ≥? N . Then it is sufficient to make such queries to
E for N = Nm = 2m ,m = 0, . . . , k log(M +1), and the overall algorithm design is reduced
to implementing such an oracle efficiently.

As we already know, such an implementation can be done with the help of hashing.
Suppose that a hash function h, taken at random from some family H , maps elements of
[0, M]k to {0, 1}m . If the family H is chosen appropriately, then each potential model w

is mapped by h to, say, 0m with probability 2−m ; moreover, one should expect that any set
S ⊆ [0, M]k of size d has roughly 2−m · d elements in h−1(0m) = {w ∈ [0, M]k | h(w) =
0m}. In other words, if |S| ≥ 2m , then S ∩ h−1(0m) is non-empty with high probability,
and if |S| � 2m , then S ∩ h−1(0m) is empty with high probability. So—rephrasing slightly

123

Approximate counting in SMT 739

Algorithm 1: Approximate model counting for IA
Input: formula ϕ(x) in IA
Output: value v ∈ R

Parameters: ε ∈ (0, 1), /* approximation factor */
α ∈ (0, 1), /* error probability */
a ∈ N /* enumeration limit for SMT solver */

Compute values m∗, q, p, r based on parameters (see text);
1 if (e := SMT(ϕ, p + 1)) ≤ p then return e;
2 ψ(x, x ′) = ϕ(x) ∧ t (x, x ′);
3 ψq (x, x′) = ψ(x1, x ′1) ∧ ψ(x2, x ′2) ∧ · · · ∧ ψ(xq , x ′q);
4 k′ := number of bits in x′;
5 for m = 1, . . . ,m∗ do
6 c := 0; /* majority vote counter */
7 for j = 1, . . . , r do
8 if E (ψq , k′,m, a) then c := c + 1

9 if c ≤ r/2 then break;

10 return
q√
a · 2m−0.5

the observations outlined above—our task is reduced to distinguishing between empty and
non-empty sets. This, in turn, is a satisfiability question and, as such, can be entrusted to the
IA solver. As a result, we reduced the approximation of the model count of ϕ to a series of
satisfiability questions in IA.

Our algorithm posts these questions as SMT queries of the form

ϕ(x) ∧ t (x, x ′) ∧ (h′(x ′) = 0m), (1)

where x and x ′ are tuples of integer variables, each component of x ′ is either 0 or 1, the formula
t (x, x ′) says that x ′ is binary encoding of x , and the IA formula h′(x ′) = 0m encodes the
computation of the hash function h on input x .

Algorithm 2: Satisfiability “oracle” E

Input: formula ψq (x, x′) in IA; k′,m, a ∈ N

Output: true or false
1 h′ := pick- hash(k′,m);
2 ψh′ (x, x′) = ψq (x, x′) ∧ (h′(x′) = 0m);
3 return (SMT(ψh′ , a) ≥ a) /* check if ψh′ has at least a models */

Algorithm 1 is the basis of our implementation. It returns a value v that satisfies the
inequalities (1 + ε)−1mc(ϕ) ≤ v ≤ (1 + ε)mc(ϕ) with probability at least 1 − α. Algo-
rithm 1 uses a set of parameters to discharge small values by enumeration in the SMT solver
(parameters a, p) and to query the solver for larger instances (parameters m∗, q, r). The
procedure E given as Algorithm 2 asks the SMT solver for IA to produce a models (for a
positive integer parameter a) to formulas of the form (1) by calling the procedure SMT.

To achieve the required precision with the desired probability, the algorithm constructs a
conjunction of q copies of the formula (over disjoint sets of variables), where the number of
copies q is defined2 as

2 We refer the reader to Appendix A.2 for a detailed description.

123

740 D. Chistikov et al.

q =
⌈
1+ 4 log(

√
a + 1+ 1)− 2 log a

2 log(1+ ε)

⌉

;

we refer the reader to Appendix A.2 for a detailed description. This results in a formula
with k′ = qk�log(M + 1)� = O(|ϕ|/ε) binary variables, where |ϕ| denotes the size of the
original formula ϕ. Then, in lines 5–9, Algorithm 1 performs for each dimension of the hash
function in the range {1, . . . ,m∗} a majority vote over r calls to the procedure E , where the
values of m∗ and r are computed as follows:

m∗ = �k′ − 2 log(
√
a + 1+ 1)�, r =

⌈

8 · ln
(
1

α
· �k′ − 2 log(

√
a + 1+ 1)�

)⌉

.

For a formal derivation of these values, see Appendix A.3.
In a practical implementation, early termination of the majority-vote loop is possible as

soon as the number of positive answers given by E exceeds r/2.
For formulas ϕ with up to p = �(√a + 1 − 1)2/q� models, Algorithm 1 returns the

exact model count mc(ϕ) (line 1 in Algorithm 1) computed by the procedure SMT, which
repeatedly calls the solver, counting the number of models up to p + 1.

The values ofm∗, q, p, and r used in Algorithm 1, as well as the choice of the return value
v = q
√
a · 2m−0.5, guarantee its correctness and are formally derived in Appendix.

For a fixed approximation factor ε the number q of copies depends only on the parameter a.
More precisely, the larger the parameter a is, the fewer copies q are necessary. While, in
general, smaller values for q result in fewer variables in the queries to the SMT solver,
the number of queries at each step of the loop in Algorithm 1 increases with a, albeit not
drastically. One possible heuristic for balancing this trade-off is choosing as a the smallest
value after which the value for q stabilizes. We have observed empirically that applying
this heuristic leads to good performance, and have used it to select the values for a for the
experiments on which we report in Sect. 5.6.

The family of hash functions H used by pick- hash in Algorithm 2 needs to satisfy
the condition of pairwise independence: for any two distinct vectors x1, x2 ∈ [0, M]k and
any two strings w1, w2 ∈ {0, 1}m , the probability that a random function h ∈ H satisfies
h(x1) = w1 and h(x2) = w2 is equal to 1/22m . The condition of pairwise independence is
used by Algorithm 1 via the following proposition, known as (a simple form of) the Leftover
Hash Lemma. It was originally proved by Impagliazzo, Levin, and Luby [32], and here we
use a formulation due to Trevisan [59].

Lemma 1 LetH be a family of pairwise independent hash functions h : {0, 1}n → {0, 1}m.
Let S ⊆ {0, 1}n be such that |S| ≥ 4/ρ2 · 2m. For h ∈ H , let ξ be the cardinality of the set
{w ∈ S : h(w) = 0m}. Then

Pr
[∣∣
∣
∣ξ −

|S|
2m

∣
∣
∣
∣ ≥ ρ · |S|

2m

]

≤ 1

4
.

There are several constructions for pairwise independent hash functions; we employ a
commonly used family, that of random XOR constraints [3,9,28,62]. Given k′ and m, the
family contains (in binary encoding) all functions h′ = (h′1, . . . , h′m) : {0, 1}k′ → {0, 1}m
with h′i (x1 . . . , xk′) = ai,0 +∑k′

j=1 ai, j x j , where ai, j ∈ {0, 1} for all i and + is the XOR
operator (addition inGF(2)). By randomly choosing the coefficientsai, j weget a randomhash
function from this family. The size of each query is thus bounded by O(k′2) = O(1

ε2
|ϕ|2),

where |ϕ| is again the size of the original formula ϕ, and there will be at most m∗ + 1 ≤
k′ + O(1) = O(1

ε
|ϕ|) queries in total.

123

Approximate counting in SMT 741

Table 1 Input and runtime parameters

i ε α a Bits m Time (s) Result

8 0.2 0.1 100 21 10 8.16 41.6801

16 0.2 0.1 100 45 10 18.87 41.6801

32 0.2 0.1 100 93 10 44.81 41.6801

ε, parameter in the multiplicative approximation factor (1 + ε); α, maximum error probability; a, the SMT
enumeration threshold (number of models the SMT solver checks for); Bits, number of binary variables in the
formula given to the solver; m, maximal hash size; Result, approximate model count

Example 4 Consider the formula ϕ(x) = (x ≤ 42), where the integer variable x ranges over
the sets Mi = [1, 2i−1−1], for i ∈ {8, 16, 32}. The model countmc(ϕ) = 42 is small, while
the size of the variable domain changes with i and for i = 32 is quite significant. Table 1
illustrates the performance of our approximate counting algorithm on input ϕ for this set of
values of i . The parameter ε in themultiplicative approximation factor (1+ε) is set to 0.2, and
the maximum error probability α is set to 0.1. We report the number of Boolean variables in
the formula given to the solver (aftermaking the respective number of copies), and the running
time in seconds. The table shows that the running time, as well as the number of calls to the
SMT solver, are small, which reflects the small model count (the main loop of Algorithm 1
terminates early). As the size of the domain increases, the size of the SMT queries also
increases, which, however, leads to only a moderate increase in the overall running time. ��

Note that the entire argument remains valid even if ϕ has existentially quantified variables:
queries (1) retain them as is. The prefix of existential quantifiers could simply be dropped
from (1), as searching for models of quantifier-free formulas already captures existential
quantification. It is important, though, that themodel enumeration done by the procedureSMT
in Algorithms 1 and 2 only count distinct assignments to the free variables of ϕ and ψh′
respectively.

3.3 Approximate continuous model counting

In this subsection we explain the idea behind Theorem 2. Let ϕ be a formula in RA; using
appropriate scaling, we can assume without loss of generality that all its variables share
the same domain. Suppose �ϕ� ⊆ [0, M]k and fix some γ , with the prospect of finding a
value v that is at most ε = γ Mk away from mc(ϕ) (we take Mk as the value of the upper
boundU in the definition of additive approximation).We show below how to reduce this task
of approximate continuous model counting to additive approximation of a model counting
problem for a formula with a discrete set of possible models, which, in turn, will be reduced
to that of multiplicative approximation.

We first show how to reduce our continuous problem to a discrete one. Divide the cube
[0, M]k into sk small cubes with side δ each, δ = M/s. For every y = (y1, . . . , yk) ∈
{0, 1, . . . , s − 1}k , set ψ ′(y) = 1 if at least one point of the cube C(y) = {y jδ ≤ x j ≤
(y j + 1) δ, 1 ≤ j ≤ k} satisfies ϕ; that is, if C(y) ∩ �ϕ� �= ∅.

Imagine that we have a formula ψ such that ψ(y) = ψ ′(y) for all y ∈ {0, 1, . . . , s − 1}k ,
and let ψ be written in a theory with a uniform measure that assigns “weight” M/s to each
point y j ∈ {0, 1, . . . , s − 1}; one can think of these weights as coefficients in numerical
integration. From the technique of Dyer and Frieze [19, Theorem 2] it follows that for a
quantifier-free ϕ and an appropriate value of s the inequality |mc(ψ)−mc(ϕ)| ≤ ε/2 holds.

123

742 D. Chistikov et al.

Indeed, Dyer and Frieze prove a statement of this form in the context of volume compu-
tation of a polyhedron, defined by a system of inequalities Ax ≤ b. However, they actually
show a stronger statement: given a collection of m hyperplanes in R

k and a set [0, M]k , an
appropriate setting of swill ensure that out of sk cubeswith side δ = M/s only a small number
J will be cut, i. e., intersected by some hyperplane. More precisely, if s = ⌈

mk2Mk/(ε/2)
⌉
,

then this number J will satisfy the inequality δk · J ≤ ε/2. Thus, the total volume of cut
cubes is at most ε/2, and so, in our terms, we have |mc(ψ)−mc(ϕ)| ≤ ε/2 as desired.

However, in our case the formula ϕ need not be quantifier-free and may contain existential
quantifiers at the top level. If ϕ(x) = ∃u.(x, u) where is quantifier-free, then the con-
straints that can “cut” the x-cubes are not necessarily inequalities from . These constraints
can rather arise from projections of constraints on variables x and, what makes the problem
more difficult, their combinations. However, we are able to prove the following statement:

Lemma 2 The number J̄ of points y ∈ {0, 1, . . . , s − 1}k for which cubes C(y) are cut
satisfies δ̄k · J̄ ≤ ε/2 if δ̄ = M/s̄, where s̄ = ⌈

2m+2kk2Mk/(ε/2)
⌉ = ⌈

2m+2kk2/(γ /2)
⌉

and m is the number of atomic predicates in .

Proof Observe that a cube C(y) is cut if and only if it is intersected by a hyperplane defined
by some predicate in variables x . Such a predicate does not necessarily come from the
formula itself, but can arise when a polytope in variables (x, u) is projected to the space
associated with variables x . Put differently, each cut cubeC(y) has some d-dimensional face
with 0 ≤ d ≤ k − 1 that “cuts” it; this face is an intersection of C(y) with some affine
subspace π in variables x .

Consider this subspace π . It can be, first, the projection of a hyperplane defined in vari-
ables (x, u) by an atomic predicate in or, second, the projection of an intersection of several
such hyperplanes. Now note that each predicate in (x, u) defines exactly one hyperplane; an
intersection of hyperplanes in (x, u) projects to some specific affine subspace in variables x .
Therefore, each “cutting” affine subspace π is associated with a distinct subset of atomic
predicates in , where, since the domain is bounded, we count in constraints 0 ≤ x j ≤ M
as well. This gives us at most 2m+2k cutting subspaces, so it remains to apply the result of
Dyer and Frieze with m = 2m+2k . ��

A consequence of the lemma is that the choice of the number s̄ ensures that the formula
ψ(y) = ∃ x .(ϕ(x) ∧ x ∈ C(y)) written in the combined theory IA + RA satisfies the
inequality |mc(ψ) − mc(ϕ)| ≤ ε/2. Here we associate the domain of each free variable
y j ∈ {0, 1, . . . , s̄ − 1} with the uniform measure μ j (v) = M/s̄. Note that the value of s̄
chosen in Lemma 2 will still keep the number of steps of our algorithm polynomial in the
size of the input, because the number of bits needed to store the integer index along each axis
is �log(s̄ + 1)� and not s̄ itself.

As a result, it remains to approximate mc(ψ) with additive error of at most ε′ = ε/2 =
γ Mk/2, which can be done by invoking the procedure from Theorem 1 that delivers approx-
imation with multiplicative error β = ε′/Mk = γ /2.

4 A fully worked-out example

We now show how our approach to #SMT, developed in Sects. 2 and 3 above, works on a
specific example, coming from the value problem for probabilistic programs. Probabilistic
programs are a means of describing probability distributions; the model we use combines

123

Approximate counting in SMT 743

probabilistic assignments and nondeterministic choice, making programs more expressive,
but analysis problems more difficult.

For this section we choose a relatively high level of presentation in order to convey the
main ideas in a more understandable way; a formal treatment follows in Sect. 5, where we
discuss (our model of) probabilistic programs and their analysis in detail.

The Monty Hall problem [50,53]

We describe our approach using as an example the following classic problem fromprobability
theory. Imagine a television game show with two characters: the player and the host. The
player is facing three doors, numbered 1, 2, and 3; behind one of these there is a car, and
behind the other two there are goats. The player initially picks one of the doors, say door i ,
but does not open it. The host, who knows the position of the car, then opens another door,
say door j with j �= i , and shows a goat behind it. The player then gets to open one of the
remaining doors. There are two available strategies: stay with the original choice, door i , or
switch to the remaining alternative, door k /∈ {i, j}. The Monty Hall problem asks, which
strategy is better? It is widely known that, in the standard probabilistic setting of the problem,
the switching strategy is the better one: it has payoff 2/3, i. e., it chooses the door with the
car with probability 2/3; the staying strategy has payoff of only 1/3.

Modeling with a probabilistic program

We model the setting of the Monty Hall problem with the probabilistic program in Proce-
dure 3: “Switch” strategy in Monty Hall problem, which implements the “switch” strategy.

Procedure 3: “Switch” strategy in Monty Hall problem

c ∼ Uniform({1, 2, 3}) /* position of the car */
i := 1 /* initial choice of the player */
choice:

case: j := 2; assume(j �= c)
case: j := 3; assume(j �= c)

/* the host opens door j with a goat */
if i �= c then accept else reject /* the player switches from door i */

In this problem, there are several kinds of uncertainty and choice, so we briefly explain how
they are expressed with the features of our programming model.

First, there is uncertainty in what door hides the car and what door the player initially
picks. It is standard to model the initial position of the car, c, by a random variable distributed
uniformly on {1, 2, 3}; we simply follow the information-theoretic guidelines here. At the
same time, due to the symmetry of the setting we can safely assume that the player always
picks door i = 1 at first, so here choice is modeled by a deterministic assignment.

Second, there is uncertainty in what door the host opens. We model this with nondeter-
ministic choice. Since the host knows that the car is behind door c and does not open door c
accordingly,we restrict this choice by stipulating that j �= c. For the semantics of the program,
this means that for different outcomes of the probabilistic assignment c ∼ Uniform({1, 2, 3})
different sets of paths through the program are available (some paths are excluded, because
they are incompatible with the results of observations stipulated by assume statements3).

3 Our assume statement has the same semantics as the observe statement in [29].

123

744 D. Chistikov et al.

Table 2 Semantics of the probabilistic program in procedure 3: “Switch” strategy in Monty Hall problem

Note that we don’t know the nature of the host’s choice in the case that more than one
option is available (when c = 1, either element of {2, 3} can be chosen as j). In principle,
this choice may be cooperative (the host helps the player to win the car), adversarial (the
host wants to prevent the player from winning), probabilistic (the host tosses a coin), or any
other. In our example, the cooperative and the adversarial behavior of the host are identical,
so our model is compatible with either of them. For now, let us defer the in-depth discussion
of the treatment of nondeterminism to Sect. 5.3.

Finally, uncertainty in the final choice of the player is modeled by fixing a specific
behaviour of the player and declaring acceptance if the result is successful. Our procedure
implements the “switching” strategy; that is, the player always switches from door i . The
analysis of the program will show how good the strategy is.

Semantics and value of the program

Informally, consider all possible outcomes of the probabilistic assignments. Restrict attention
to those that may result in the program reaching (nondeterministically) at least one of accept
or reject statements—such elementary outcomes form the setTerm (for “termination”); only
these scenarios are compatible with the observations. Similarly, some of these outcomes may
result in the program reaching (again, nondeterministically) an accept statement—they form
the set Accept; the interpretation is that for these scenarios the strategy is successful.

These sets Term and Accept are events in a probability space. The value of the program
(in this case interpreted as the payoff of the player’s strategy) is the probability of acceptance
conditioned on termination:4

val(Switch) = Pr [Accept | Term] = Pr [Accept]
Pr [Term] ,

where, in general, we assume Pr [Term] > 0 and the last equality follows because Accept∩
Term = Accept. In general, this semantics corresponds to the cooperative behavior of the
host, but in our case the adversarial behavior would be identical: there is no value of c such
that one nondeterministic choice leads to accept and another leads to reject. (We can also
deal with adversarial nondeterminism, see Sect. 5.3.)

Indeed, consider Table 2, which illustrates the semantics of the probabilistic program
in Procedure 3: “Switch” strategy in Monty Hall problem. There are three probabilistic
assignments c = 1, 2, 3, each associated with probability 1/3. For c = 1 there are two paths
to reject, and for each of c = 2, 3 there is a single path toaccept and a path that hits a violated
assume, indicated by the symbol×. Therefore, the nondeterministic execution for c = 1 is
rejecting, and the nondeterministic executions for c = 2 and c = 3 are accepting. The set

4 As we consider loop-free probabilistic programs, all executions are finite. Thus, here a “terminating” exe-
cution is one that satisfies all assume statements which it encounters, and reaches accept or reject.

123

Approximate counting in SMT 745

Accept thus includes the assignments c = 2 and c = 3, and the setTerm all three assignments
c = 1, 2, 3; as a result, val(Switch) = Pr [Accept]/Pr [Term] = (2/3)/(3/3) = 2/3, as
intended.

Remark Probably the most common mistake that occurs in the analysis of the Monty Hall
example (as a puzzle in probability theory) is an inadequate choice of the probability space.
Note that our model only associates probabilities with the choice of position of the car
(c ∈ {1, 2, 3}). The assume statements in the program do not act on these probabilistic
assignments directly: rather, they eliminate certain paths through the program (more precisely,
the paths that hit a violated assume). If for a particular probabilistic outcome all paths are
eliminated, then this outcome is removed from the set Term, thus rescaling the probability
weight for all other outcomes (this does not happen in the Monty Hall example). In all other
aspects, however, the space of all probabilistic outcomes (c ∈ {1, 2, 3}) remains the same,
and each individual outcome is classified as accepted or rejected according to the standard
(cooperative) semantics of the induced nondeterministic execution.

Reduction of value estimation to model counting

To estimate the value of the program, we first reduce its computation to a model counting
problem (as defined in Sect. 2) for an appropriate logical theory. We write down the verifi-
cation condition vc(N , P) that defines a valid computation of the program, by asserting a
relation between (values of) nondeterministic and probabilistic variables N and P . Then we
construct existential formulas of the form

ϕacc(P) = ∃ N . vc(N , P) ∧ accept and

ϕterm(P) = ∃ N . vc(N , P) ∧ (accept ∨ reject),

which assert that the program terminateswith “accept” (resp. “accept” or “reject”), andwhose
sets of models (i. e., satisfying assignments) are exactly the sets Accept and Term defined
above. For the Monty Hall program, these formulas ϕacc(c) and ϕterm(c), with c ∈ {1, 2, 3},
will be equivalent to c �= 1 and true, respectively. The value of the program is the ratio
mc(ϕacc)/mc(ϕterm), where mc(·) denotes the model count of a formula, as in Sect. 2.
Technically, we can use IA, the theory of integer arithmetic, with the domain {1, 2, 3} for the
free variable c and with the counting measure | · | : A �→ |A|, also following Sect. 2. So in
our example,mc(ϕacc) = 2 and mc(ϕterm) = 3.

Computing the value of the program

We show how our method (see Sect. 3.2) estimatesmc(ϕacc). We make several copies of the
variable c, denoted c1, . . . , cq . The formula

ϕ(c) = ϕacc(c
1) ∧ ϕacc(c

2) ∧ · · · ∧ ϕacc(c
q)

has 2q models, and we can estimate mc(ϕacc) by estimating mc(ϕ) and taking the qth root
of the estimate. Enlarging ϕacc to ϕ and then taking the qth root increases precision: for
example, if the approximation procedure gives a result up to a factor of 2, the qth root of the
estimate formc(ϕ) gives an approximation formc(ϕacc) up to a factor of 21/q .

Now observe that for a hash function h with values in {0, 1}m , taken at random from an
appropriate family, the expected model count of the formula

ϕ(c) ∧ (h(c) = 0m) (2)

ismc(ϕ) · 2−m . By a Chernoff bound argument, the model count is concentrated around the
expectation. Our algorithm will, for increasing values of m, sample random hash functions

123

746 D. Chistikov et al.

Table 3 Typical run for the
Monty Hall example

m Satisfiable Unsatisfiable Majority vote

0…6 62 0 Sat

7…9 61 1 Sat

10 55 7 Sat

11 50 12 Sat

12 48 14 Sat

13 21 41 Unsat

from an appropriate class, construct the formula (2), and give the formula to an SMT solver
to check satisfiability. (Note that such formulas are purely existential—in variables c as well
as in q copies of N .) With high probability, the first m for which the sampled formula is
unsatisfiable will give a good enough estimate of mc(ϕ) and, by the reduction above, of
mc(ϕacc).

Let us give some concrete values to support the intuition. We encode the number c ∈
{1, 2, 3} in binary, as c ≡ c0c1. We make q = 12 copies, and this will ensure that we
will obtain the exact value of mc(ϕacc) by taking qth root of mc(ϕ), where ϕ is as above
(for exact rather than approximate solution, a multiplicative gap of less than 3/2 suffices
in our setting). In reality, mc(ϕacc) = 2 and so mc(ϕ) = 212, but we only know a priori
that mc(ϕacc) ∈ [0, 3] and mc(ϕ) ≤ 312. We iterate over the dimension m of the hash
function and perform the SMT query (2) for each m. Using standard statistical techniques,
we can reduce the error probability α by repeating each random experiment a sufficiently
large number of times, r ; in our case r = 62 leads to α = 0.01. A typical run of our
implementation is demonstrated in Table 3; for each m we show how many of the sampled
formulas are satisfiable, and how many are not. The “Majority vote” column is used by our
procedure to decide if the number of models is more than 2m times a constant factor. From
the table, our procedure will conclude thatmc(ϕ) is between 0.17 · 212 and 11.66 · 212 with
probability at least 0.99 (see Appendix for derivation of the constants 0.17 and 11.66). This
gives us the interval [1.73, 2.45] for mc(ϕacc); since mc(ϕacc) is integer, we conclude that
mc(ϕacc) = 2 with probability at least 0.99.

As mentioned above, the same technique will deliver us mc(ϕterm) = 3 and hence,
val(Switch) = 2/3.

5 Value estimation for probabilistic programs

In this section we show how our approach to #SMT applies to the value problem for proba-
bilistic programs.

What are probabilistic programs?

Probabilistic models such as Bayesian networks, Markov chains, probabilistic guarded-
command languages, and Markov decision processes have a rich history and form the
modeling basis in many different domains (see, e.g., [16,22,38,45]). More recently, there has
been a move toward integrating probabilistic modeling with “usual” programming languages
[25,46]. Semantics and abstract interpretation for probabilistic programs with angelic and
demonic non-determinism has been studied before [15,39,45,47], and we base our semantics
on these works.

123

Approximate counting in SMT 747

Probabilistic programming models extend “usual” nondeterministic programs with the
ability to sample values from a distribution and condition the behavior of the programs based
on observations [29]. Intuitively, probabilistic programs extend an imperative programming
language like Cwith two constructs: a nondeterministic assignment to a variable from a range
of values, and a probabilistic assignment that sets a variable to a random value sampled from a
distribution. Designed as a modeling framework, probabilistic programs are typically treated
as descriptions of probability distributions and not meant to be implemented and executed
as usual programs.

Section summary

We consider a core loop-free imperative language extended with probabilistic statements,
similarly to [52], andwith nondeterministic choice. Under each given assignment to the prob-
abilistic variables, a program accepts (rejects) if there is an execution path that is compatible
with the observations and goes from the initial vertex to the accepting (resp., rejecting) vertex
of its control flow automaton. Consider all possible outcomes of the probabilistic assignments
in a programP . Restrict attention to those that result inP reaching (nondeterministically) at
least one of the accepting or rejecting vertices—such elementary outcomes form the setTerm
(for “termination”); only these scenarios are compatible with the observations. Similarly,
some of these outcomes may result in the program reaching (again, nondeterministically)
the accepting vertex—they form the set Accept. Note that the sets Term and Accept are
events in a probability space; define val(P), the value of P , as the conditional probability
Pr[Accept | Term], which is equal to the ratio Pr[Accept]

Pr[Term] as Accept ⊆ Term. We assume
that programs are well-formed in that Pr [Term] is bounded away from 0.

Now consider a probabilistic program P over a measured theory T , i. e., where the
expressions and predicates come from T . Associate a separate variable r with each proba-
bilistic assignment in P and denote the corresponding distribution by dist(r). Let R be the
set of all such variables r .

Proposition 2 There exists a polynomial-time algorithm that, given a program P over T ,
constructs logical formulas ϕacc(R) and ϕterm(R) over T such that Accept = �ϕacc� and
Term = �ϕterm�, where each free variable r ∈ R is interpreted over its domain with measure
dist(r). Thus, val(P) = mc(ϕacc)/mc(ϕterm).

Proposition 2 reduces the value problem—i.e., the problem of computing val(P)—tomodel
counting. This enables us to characterize the complexity of the value problem and solve this
problem approximately using the hashing approach from Sect. 3. These results appear as
Theorem 4 in Sect. 5.5 below.

In the remainder of this section we define the syntax (Sect. 5.1) and semantics (Sect. 5.2)
of our programs and the value problem. By reducing this problem to #SMT (Sect. 5.5) we
show an application of our approach to approximate model counting (an experimental evalu-
ation is provided in Sect. 5.6). We also discuss modeling different kinds of nondeterminism:
cooperative and adversarial (Sect. 5.3), and give an short overview of known probabilistic
models subsumed by ours (Sect. 5.4).

123

748 D. Chistikov et al.

init

acc

rej

c ∼ Uniform({1,2,3})
i := 1

j := 2

j := 3

assume(j = c)

assume(j = c)

i= c

i= c

Fig. 1 CFA for the probabilistic program given as procedure 3: “Switch” strategy in Monty Hall problem

5.1 Syntax

A program has a set of variables X , partitioned into Boolean, integer, and real-valued vari-
ables.We assume expressions are type correct, i.e., there are no conversions between variables
of different types. The basic statements of a program are:

– skip (do nothing),
– deterministic assignments x := e,
– probabilistic assignments x ∼ Uniform(a, b),
– assume statements assume(ϕ),

where e and ϕ come from an (unspecified) language of expressions and predicates, respec-
tively.

The (deterministic) assignment and assume statements have the usual meaning: the deter-
ministic assignment x := e sets the value of the variable x to the value of the expression
on the right-hand side, and assume(ϕ) continues execution only if the predicate is satisfied
in the current state (i.e., it models observations used to condition a distribution). The prob-
abilistic assignment operation x ∼ Uniform(a, b) samples the uniform distribution over
the range [a, b] with constant parameters a, b and assigns the resulting value to the vari-
able x . For example, for a real variable x , the statement x ∼ Uniform(0, 1) draws a value
uniformly at random from the segment [0, 1], and for an integer variable y, the statement
y ∼ Uniform(0, 1) sets y to 0 or 1 with equal probability.

The control flow of a program is represented using directed acyclic graphs, called control
flow automata (CFA), whose nodes represent program locations and whose edges are labeled
with program statements. Let S denote the set of basic statements; then a control flow
automaton (CFA)P = (X , V, E, init,acc, rej) consists of a set of variablesX , a labeled,
directed, acyclic graph (V, E), with E ⊆ V × S × V , and three designated vertices init,
acc, and rej in V called the initial, accepting, and rejecting vertices.

Figure 1 depicts the CFA for the probabilistic program shown in Procedure
3: “Switch” strategy in Monty Hall problem. The accept and reject statements from the
procedure correspond to the acc and rej vertices of the CFA respectively.

We assume init has no incoming edges and acc and rej have no outgoing edges. We write

v
s−→ v′ if (v, s, v′) ∈ E . We also assume programs are in static single assignment (SSA)

form, that is, each variable is assigned at most once along any execution path. A program
can be converted to SSA form using standard techniques [31,48].

Since control flow automata are acyclic, our programs do not have looping constructs.
Loops can be accommodated in two different ways: by assuming that the user provides loop
invariants [35], or by assuming an outer (statistical) procedure that selects a finite set of
executions that is sufficient for the analysis up to a given confidence level [51,52]. In either

123

Approximate counting in SMT 749

case, the core analysis problem reduces to analyzing finite-path unwindings of programswith
loops, which is exactly what our model captures.

Although our syntax only allows uniform distributions, we can model some other dis-
tributions. For example, to simulate a Bernoulli random variable x that takes value 0 with
probability p and 1 with probability 1− p, we write the following code:

X ∼ Uniform(0, 1);
if (X ≤ p){x := 0; } else {x := 1; }

We can similarly encode uniform distributions with non-constant boundaries as well as
(approximately encode) normal distributions (using repeated samples from uniform distri-
butions and the central limit theorem). To encode uniform distributions with non-constant
boundaries, we use assume conditioning: e.g., to simulate a random variable x that has
distribution Uniform(−y2, 1+ 2y) where y ∈ [0, 10] is a previously assigned variable, we
write the following code:

x ∼ Uniform(−100, 21);
assume(−y ∗ y ≤ x ≤ 1+ 2 ∗ y);

The semantics of this conditioning is explained in the following subsection.

5.2 Semantics

The semantics of a probabilistic program is given as a superposition of nondeterministic
programs, following [15,39]. Intuitively, when a probabilistic program runs, an oracle makes
all random choices faced by the program along its execution up front. With these choices,
the program reduces to a usual nondeterministic program.

We first provide some intuition behind our semantics. Let us partition the variables X
of a program into random variables R (those assigned in a probabilistic assignment) and
nondeterministic variables N = X \R (the rest). (The partition is possible because programs
are in static single assignment form.)We consider two events. The (normal) termination event
(resp. the acceptance event) states that under a scenarioω for the random variables in R, there
is an assignment to the variables in N such that the program execution under this choice of
values reachesacc or rej (resp. reachesacc). The termination is “normal” in that allassumes
are satisfied. Our semantics computes the conditional probability, under all scenarios, of the
acceptance event given that the termination event occurred.

We now formalize the semantics. A state of a program is a pair (v, x) of a control node
v ∈ V and a type-preserving assignment of values to all program variables in X . Let �

denote the set of all states and �∗ the set of finite sequences over �.
Let (�,F ,Pr) be the probability space associated with probabilistic assignments in a

program P; elements of � will be called scenarios. The probabilistic semantics of P ,
denoted 〈[P]〉, is a function from � to 2�∗ , mapping each scenario ω ∈ � to a collection of
maximal executions of the nondeterministic program obtained by fixing ω. It is defined with
the help of an extension of 〈[·]〉 from programs to states, which, in turn, is defined inductively
as follows:

– (acc, x) ∈ 〈[acc]〉ω and (rej, x) ∈ 〈[rej]〉ω for all x;

– (v, x)(v′, x)σ ∈ 〈[v]〉ω if v
skip−−→ v′ and (v′, x)σ ∈ 〈[v′]〉ω;

123

750 D. Chistikov et al.

– (v, x)(v′, x′)σ ∈ 〈[v]〉ω if v
x :=e−−→ v′, x′ = x[x := eval(e)(x, ω)], and (v′, x)σ ∈ 〈[v′]〉ω;

similarly, if v
x∼Uniform(a,b)−−−−−−−−−→ v′, we have x′ = x[x := c] where c is the value chosen for

x in the scenario ω;

– (v, x)(v′, x)σ ∈ 〈[v]〉ω if v
assume(ϕ)−−−−−−→ v′, eval(ϕ)(x, ω) = true, and (v′, x)σ ∈ 〈[v′]〉ω.

Finally, define 〈[P]〉ω = 〈[init]〉ω. Here eval(e)(x, ω) (resp. eval(ϕ)(x, ω)) denotes the value
of the expression e (resp. predicate ϕ) taken in the scenario ω under the current assignment
x of values to program variables, and x[x := c] is the assignment that maps variable x to the
value c and agrees with x on all other variables.

Let ⊆ �∗ be a set of paths of a program P . The probability that the run of P has a
property is defined as

Pr [run of P satisfies] =
∫

�

1
[〈[P]〉 ∩ �= ∅] dPr(ω)

where 1
[〈[P]〉 ∩ �= ∅] denotes the indicator event that at least one execution path from

〈[P]〉 belongs to . Specifically, let acc ⊆ �∗ be the set of all sequences that end in a state
(acc, x) for some x, and term ⊆ �∗ be the set of all sequences that end in either (acc, x)
or (rej, x). We define the termination and acceptance events as

Term = [run of P satisfies term] ,

Accept = [run of P satisfies acc] .

The value val(P) of a program P is defined as the conditional probability Pr[Accept |
Term], which is equal to the ratio Pr[Accept]

Pr[Term] as Accept ⊆ Term. Thus, the value of a
program is the conditional probability

Prω[∃z .P(ω, z) reaches acc | ∃z .P(ω, z) reaches acc or rej].
For simplicity of exposition, we restrict attention to well-formed programs, for which
Pr[Term] is bounded away from 0. The value problem takes as input a program P and
computes val(P).

Before we show in Sect. 5.5 how the value problem reduces to model counting, we first
discuss the features and expressivity of our model of probabilistic programs. In Sect. 5.3 we
discuss the semantics of nondeterminism and in Sect. 5.4 we relate our programming model
to well-known probabilistic models.

5.3 Cooperative versus adversarial nondeterminism

Our semantics corresponds to a cooperative understanding of nondeterminism, in the fol-
lowing sense. For each individual scenario ω, the set 〈[P]〉ω can have one of the following
four forms:

1. there are no paths to acc nor rej (for any assignment z for the nondeterministic variables
in N),

2. there is a path to rej, but no paths to acc,
3. there is a path to acc, but no paths to rej,
4. there are paths to both acc and rej (under different assignments z, z′ for the nondeter-

ministic variables).

The conditional probability measure

Prω[· | Term] = Prω[· | ∃z .P(z, ω) reaches acc or rej]

123

Approximate counting in SMT 751

restricts the attention to ω of the forms 2, 3, 4. Now our definition of Accept says that all
ω of the form 4 are counted towards acceptance. The value of the program is accordingly
defined as the (conditional) probability of options 3, 4.

In the Monty Hall problem in Sect. 4, this semantics worked as intended only because
there are no scenarios ω of the form 4. However, a cooperative interpretation may not always
be desirable. Imagine, for instance, that in a game, for some fixed strategy of the player
all scenarios ω have the form 4, which means that the outcome of the game depends on the
host’s choice. Our semantics evaluates the strategy as perfect, with the value 1, although using
the strategy may even lead to losing with probability 1 once nondeterminism is interpreted
adversarially.

We can distinguish between semantics with cooperative and adversarial (also known as
angelic and demonic) nondeterminismbydefining theupper and lower values of a programby

val(P) = Prω[∃z .P(z, ω) reaches acc | Term] and

val(P) = Prω[�z .P(z, ω) reaches rej | Term].
The upper value val(P) coincides with val(P) as defined in Sect. 5.2, and the lower value
val(P) indeed corresponds to the adversarial interpretation of nondeterministic choice: only
scenarios of the form 3 are counted towards acceptance, and scenarios of the form 2 and,
most importantly, 4 towards rejection. Obviously, val(P) ≤ val(P), with equality if and
only if the set of scenarios of the form 4 has (conditional) measure zero, as in Sect. 4.

Observe now that the problem of computing val(P) reduces to the problem of computing
val(P): the reason for that is the equality

val(P) = 1− val(P∗),

where for a program P = (X , V, E, init,acc, rej) we define the corresponding dual pro-
gram P∗ = (X , V, E, init, rej,acc). The details are easily checked.

Note that the type of nondeterminism is interpreted at the level of programs and not on
the level of individual statements. Mixing statements with different type of nondeterminism
is equivalent to considering probabilistic programs with alternation, which raises the com-
plexity of the value problem: even non-probabilistic loop-free programs with two kinds of
nondeterminism on the per-statement basis are PSPACE-hard to analyze.

Also note that our semantics resolves the nondeterminism after the probabilistic choice.
This indicates that the nondeterministic choice can “look in the future.” For example, consider
a program that first chooses a bit x nondeterministically, then chooses a bit r uniformly at
random, and then accepts if x = r and rejects if x �= r . Under our semantics, the program
always accepts: there is a way for the nondeterministic choice to guess correctly. This feature
of ourmodel can be undesirable in certain cases: in formal approaches to security, for example,
a scheduler that uses the power to look into the future when resolving nondeterminism is
unrealistic; its existence, however, can lead to classifying secure protocols as insecure [12].

We now briefly discuss the synthesis question in which the nondeterminism is resolved
before the probabilistic choice. A more general setting, where nondeterministic and proba-
bilistic choice alternate, is PSPACE-complete [49].

Verification vs. synthesis. In this paper, we consider the verification question: given a prob-
ability space over random inputs, the value of the program is the conditional probability of
acceptance, given the program terminates. As stated above, nondeterminism is resolved after
probabilistic choice. In decision making under uncertainty, one is also interested in the syn-
thesis question: is there a strategy (a way to resolve nondeterministic choices) such that the

123

752 D. Chistikov et al.

resulting probabilistic program achieves a certain value. That is, the value synthesis problem
asks to compute, for a given p ≥ 0, if

∃z . val(P(·, z)) ≥ p.

The complexity of the synthesis problem is, in general, harder than that of the verification
problem. The precise complexity characterization isNP#P, the class of problems solvable by
a nondeterministic polynomial-time Turing machine with access to a #P oracle. Intuitively,
the NP-computation guesses the values of variables in z, and asks a #P oracle to resolve
the resulting verification problem. Moreover, the problem is NP#P-hard already for Boolean
programs, by using a reduction from E-MAJSAT, a canonical NP#P-complete problem.

Proposition 3 Synthesis for probabilistic programs over IA and RA is NP#P-complete.

In general, one can study models with arbitrary interleavings of probabilistic and nonde-
terministic choice. For such models, the static analysis problem reduces to stochastic SMT,
which is known to be PSPACE-complete [49].

We leave the study of “approximate synthesis” techniques for the future.

5.4 Related models

Our programming model captures (finite-path) behaviors of several different probabilistic
models that have been considered before, including the programmingmodels studied recently
[31,51,52]. In contrast to models that only capture probabilistic behavior, such as (dynamic)
Bayesiannetworks,we additionally allownondeterministic choices.We showa fewadditional
probabilistic models that can be expressed as programs.

(Dynamic) Bayesian networks [16,38]. A Bayesian network over V is a directed acyclic
graph G = (V, E), where each vertex v ∈ V represents a random variable and each edge
(u, v) ∈ E represents a direct dependence of the random variable v on the random variable
u. Each node v is labeled with a conditional probability distribution: that of v conditioned on
the values of the random variables {u | (u, v) ∈ E}. A Bayesian network can be represented
as a probabilistic program that encodes the conditional probability distribution for each node
using a sequence of conditionals and the Bernoulli distribution.

A temporal graphical model is a probabilistic model for states that evolve over time. In
such a model, there is a set of random variables X (t) indexed by a time t , and the distribution
of a variable v(t+1) ∈ X (t+1) is given by a conditional probability distribution over the
values of random variables in X (t). One example of a temporal model is a dynamic Bayesian
network. A dynamic Bayesian network consists of a pair 〈B0,B→〉, whereB0 is a Bayesian
network over X that gives the initial probability distribution andB→ is a Bayesian network
over X ∪ X ′, such that only variables in X ′ have incoming edges (or conditional probability
distributions associated with them). Here, X ′ denotes a fresh copy of variables in X . The
network B→ defines the distribution of variables in X ′ given values of variables in X . The
distribution of X (t+1) is obtained from X (t) according to B→. Given a time horizon T , a
dynamic Bayesian network is unrolled for T steps in the obviousway: by first runningB0 and
running T copies ofB→ in sequence. Again, for any T , such an unrolling can be expressed
by a probabilistic program. Dynamic Bayesian networks subsume several other models, such
as hidden Markov models and linear-Gaussian dynamical systems.

Influence diagrams [38]. Influence diagrams are a common model to study decision making
under uncertainty. They extend Bayesian networks with nondeterministic variables under the

123

Approximate counting in SMT 753

control of an agent. An influence diagram is a directed acyclic graph G = (V, E), where the
nodes are partitioned into random variables VR , decision variables VD , and utility variables
VU . Each variable in VR ∪ VD has a finite domain. The incoming edges to variables in
VR model direct dependencies as in a Bayesian network, and the distribution of a random
variable is givenby adistribution conditionedon the values of all incomingvariables.Decision
variables are chosen by an adversary. Utility variables have no outgoing edges and model
the utility derived by an agent under a given scenario and choice of decisions. The value of a
utility variable is derived as a deterministic function of values of incoming edges. For a given
scenario of random variables and choice of decision variables, the value of the diagram is the
sum of all utility variables. By comparing the utility to a constant, we can reduce computing
a bound on the utility to the value problem. Influence diagrams subsume models such as
Markov decision processes with adversarial nondeterminism.5 The Monty Hall problem in
Sect. 4 represents an example of an influence diagram.

Probabilistic guarded command languages (pGCL) [45]. pGCLs extend Dijkstra’s guarded
command languagewith a probabilistic choice operation. They have been used tomodel com-
munication protocols involving randomization. Our programs can model bounded unrollings
of pGCLs, and the value problem can be used to check probabilistic assertions of loop-free
pGCL code. This is the core problem in the deductive verification of pGCLs [35].

5.5 From value estimation to model counting

We show a reduction from the value problem for a probabilistic program to a model counting
problem. First, we define a symbolic semantics of programs.

Let P = (X , V, E, init,acc, rej) be a program in SSA form. Let R = {x ∈ X |
x ∼ Uniform(a, b) is a statement in P}. For each variable r ∈ R, we write dist(r) for the
(unique) distribution Uniform(a, b) such that r ∼ Uniform(a, b) appears in the program.

Let BV = {bv | v ∈ V } be a set of fresh Boolean variables. We associate the following
verification condition vc(P) with the program P:

∧

v∈V

⎡

⎣bv ⇒
⎛

⎝
∨

(v′,s,v)∈E
bv′ ∧�(s)

⎞

⎠

⎤

⎦ ∧ binit

where�(s) is defined as follows:�(skip) is true,�(x := e) is x = e,�(x ∼ Uniform(a, b))
is true, and �(assume(ϕ)) is ϕ.

Intuitively, the variable bv encodes “node v is visited along the current execution.” The
constraints encode that in order for v to be visited, the execution must traverse an edge
(v′, s, v) and update the state according to s. The predicate �(s) describes the effect of the
execution on the state.

The predicates �(s) do not add an additional constraint for probabilistic assignments
because we account for such assignments separately as follows. Define formulas

ϕacc = ∃BV ∃X \R . vc(P) ∧ bacc, and

ϕterm = ∃BV ∃X \R . vc(P) ∧ (bacc ∨ brej).

5 Strictly speaking, MDPs and influence diagrams, where nondeterminism is resolved adversarially, are
modeled by the duals of our programs (as defined in Sect. 5.3). Thus, the verification problem asks what is
the worst case effect of the environment.

123

754 D. Chistikov et al.

Note that ϕacc and ϕterm are over the free variables R; if the programP is over a measured
theoryT , i. e., its expressions and predicates come fromT , then ϕacc and ϕterm are formulas
in T .

Theorem 3 (cf. Proposition 2) For a program P , we have Accept = �ϕacc� and Term =
�ϕterm�, where each free variable r ∈ R is interpreted over its domain with measure dist(r).
Thus, val(P) = mc(ϕacc)/mc(ϕterm).

Theorem 3 reduces the value estimation question to model counting. Note that our reasoning
is program-level as opposed to path-level: in contrast to other techniques (see, e.g., [23,52]),
our analysis makes only two #SMT queries and not one query per path through the program.
While this results in more complex satisfiability queries, the burden of path enumeration is
shifted from the analysis procedure to the underlying SMT solver.

For the theories of integer and linear real arithmetic, Theorem 3 gives us a #P upper bound
on the complexity of the value problem. On the other hand, the value problem is #P-hard, as
it easily encodes #SAT. Indeed, given an instance of #SAT (a Boolean formula in conjunctive
normal form), consider a program that picks the Boolean variables uniformly at random, and
accepts iff all the clauses are satisfied. The number of satisfying assignments to the formula is
obtained from the probability of reaching the accept vertex. Finally, since the model counting
problem can be approximated using a polynomial-time randomized algorithm with an SMT
oracle, we also get an algorithm for approximate value estimation.

Theorem 4 (complexity of the value problem)

1. The value problem for loop-free probabilistic programs (over IA andRA) is #P-complete.
The problem is #P-hard even for programs with only Boolean variables.

2. The value problem for loop-free probabilistic programs over IA can be approximated
with a multiplicative error by a polynomial-time randomized algorithm that has oracle
access to satisfiability of formulas in IA.

3. The value problem for loop-free probabilistic programs over RA can be approximated
with an additive error by a polynomial-time randomized algorithm that has oracle access
to satisfiability of formulas in IA + RA.

Remark The core of our value estimation algorithms is a procedure to estimate the number
of models of a formula in a given theory (approximate #SMT). An alternative approach to the
value problem—and, similarly, to model counting—would performMonte Carlo simulation.
It can easily handle complicated probability distributions for which there is limited symbolic
reasoning available. However, to achieve good performance, Monte Carlo often depends on
heuristics that sacrifice theoretical guarantees. In contrast, while using “for free” successful
heuristics that are already implemented in off-the-shelf SMT solvers to search the state space,
our approach still preserves the theoretical guarantees.

There are simple instances inwhichMonteCarlo simulationmust be run for an exponential
number of steps before providing a non-trivial answer [33]. Consider the case when the
probability in question, p, is very low and the required precision is a constant multiple of p.
In such a case, model counts are small and so there are only a few queries to the SMT solver.
On the other hand, for Monte Carlo simulation, Chernoff bound arguments would suggest
running the program �(1p) times.

While our SMT-based techniques can also require exponential time within the SMT solver
in the worst case, experience with SMT-based verification of deterministic programs sug-
gests that SMT solvers can be quite effective in symbolically searching large state spaces in

123

Approximate counting in SMT 755

reasonable time. An illustrative analogy is that the relation between Monte Carlo techniques
and SMT-based techniques resembles that between enumerative techniques and symbolic
techniques in deterministic model checking: while in the worst case, both must enumerate
all potential behaviors, symbolic search often empirically scales to larger state spaces.

In conclusion, Monte Carlo sampling will easily outperform hashing techniques in a host
of “regular” settings, i. e., where the probability of termination is non-vanishing. “Singular”
settings where this probability is close to zero—as, for instance, the formula from Example 4
in Sect. 3.2— will be beyond the reach of Monte Carlo even for generating a single posi-
tive sample (path), let alone for providing a confidence interval sufficient for multiplicative
approximation of the value of the program. Indeed, since the success probability decreases
exponentially with the number of bits, the number of Monte Carlo simulations required
increases exponentially. The hashing approach that we explore deals with such settings eas-
ily, so the two techniques are, in fact, complementary to each other.

5.6 Evaluation

Wehave implemented the algorithm from Sect. 3.2 in C++ on top of the SMT solver Z3 [17]6.
The SMT solver is used unmodified, with default settings.

Examples

We evaluate our techniques on five examples. The first two are probabilistic programs that use
nondeterminism. The remaining examples are Bayesian networks encoded in our language.

The Monty Hall problem [53] For the example from Sect. 4 we compute the probability of
success of the switching strategy.

The three prisoners problem. Our second example is a problem that appeared in Martin
Gardner’s “Mathematical Games” column in the Scientific American in 1959. There, one of
three prisoners (1, 2, and 3), who are sentenced to death, is randomly pardoned. The guard
gives prisoner 1 the following information: If 2 is pardoned, he gives 1 the name of 3. If 3
is pardoned, he gives him the name of 2. If 1 is pardoned, he flips a coin to decide whether
to name 2 or 3. Provided that the guard tells prisoner 1 that prisoner 2 is to be executed,
determine what is prisoner 1’s chance to be pardoned?

Pearl’s burglar alarm; grass model. These two examples are classical Bayesian networks
from the literature. Pearl’s burglar alarm example is as given in [29, Figure 15]; the grass
model is taken from [36, Figure 1].

Kidney disease eGFR sensitivity estimation. The last example is a probabilistic model of
a medical diagnostics system with noisy inputs. We considered the program given in [29,
Figure 11] using a simplified model of the input distributions. In our setting, we approximate
the original lognormal distribution (the logarithm of the patient’s creatinine level) by drawing
its value uniformly from the set {−0.16,−0.09,−0.08, 0, 0.08, 0.09, 0.16, 0.17}, regardless
of the patient’s gender, and we draw the patient’s age uniformly from the interval [30, 80].
The patient’s gender and ethnicity are distributed in the same way as described in [52].

6 More specifically, using version Z3 4.4.0.

123

756 D. Chistikov et al.

Table 4 Input and runtime parameters

Example Free Atoms ε α a k′

Monty Hall (1) 1 5 0.2 0.01 13 10

Three prisoners (2) 2 6 0.2 0.01 27 12

Alarm (3) 4 8 0.5 0.1 19 56

Grass model (4) 6 8 0.5 0.1 19 48

Sensitivity est. (5) 8 63 0.5 0.1 19 66

Free, number of free (probabilistic) variables in the input formula; Atoms, number of atomic arithmetic
predicates in the input formula; ε, parameter in the multiplicative approximation factor (1+ ε); α, maximum
error probability; a, the SMT enumeration threshold (number of models the SMT solver checks for); k′,
number of binary variables in the formula given to the solver

Table 5 Running time of the tool

Example macc mterm Time (s) for ϕacc Time (s) for ϕterm

Monty Hall (1) 2 5 0.27 0.89

Three prisoners (2) 0 2 0.01 0.73

Alarm (3) 36 49 121.94 76.34

Grass model (4) 34 35 54.86 50.61

Sensitivity est. (5) 56 57 250.69 223.56

macc, mterm, maximal hash sizes for ϕacc, ϕterm, respectively

Results

For each programP , we used our tool to estimate the model count of the formulas ϕacc and
ϕterm; the value val(P) of the program is approximated by vacc/vterm, where vacc and vterm
are the approximate model counts computed by our tool. Table 4 shows input and runtime
parameters for the considered examples. The approximation factor ε, the bound α on the
error probability, and the enumeration limit a for the SMT solver are provided by the user.
For examples (1) and (2), we choose ε to be 0.2, while for the remaining examples we take
0.5. The chosen value of ε has impact on the number of copies q of the formula that we
construct, an thus on the number k′ of binary variables in the formula given to the solver.
Furthermore, the more satisfying assignments a formula has, the larger dimension m of the
hash function is reached during the run. Table 5 shows macc and mterm: the maximal values
of m reached during the runs on ϕacc and ϕterm; it also shows the time (in seconds) our tool
takes to compute vacc and vterm. It might seem strange that for examples (3), (4) and (5)
the time it takes to compute vacc is larger than that for vterm, despite that the set of paths
satisfying ϕacc is a subset of ϕterm. While, as expected, we have macc < mterm, the calls to
the SMT solver for ϕterm take less time than those for ϕacc.

While our technique can solve these small instances in reasonable time, there remains
much room for improvement. Although SAT solvers can scale to large instances, it is well
known that even a small number of XOR constraints can quickly exceed the capabilities
of state-of-the-art solvers [30,57,60]. Since for each m we add m parity constraints to
the formula, we run into the SAT bottleneck: computing an approximation of mc(ϕacc)

for example (4) with ε = 0.3 results in running time of several hours. (At the same time,
exact counting by enumerating satisfying assignments is not a feasible alternative either:
for the formula ϕacc in example (4), which has more than 400 000 of them, performing

123

Approximate counting in SMT 757

this task naively with Z3 also took several hours.) Our current implementation pre-solves
the system of XOR constraints before passing them to Z3, which somewhat improves the
performance; however, the efficiency of the hashing approach can benefit greatly from better
handling of XOR constraints in the SMT solver. For example, a SAT solver that deals with
XOR constraints efficiently—such as CryptoMiniSat [55,56]— can scale to over a thousand
variables [8,9,28]; incorporating such a SAT solver within Z3 remains a task for the future.
(Needless to say, other families of pairwise independent hash functions can be used instead
of XOR constraints, but essentially all of them seem to use arithmetic modulo p for p ≥ 2,
which appears hard for theory solvers.)

The scalability needs improvement also in the continuous case, where our discretization
procedure introduces a large number of discrete variables. For instance, a more realistic
model of example (5) would be one in which the logarithm of the creatinine level is modeled
as a continuous random variable. This would result, after discretization, in formulas with
hundreds of Boolean variables, which appears to be beyond the limit of Z3’s XOR reasoning.

6 Concluding remarks

Static reasoning questions for probabilistic programs [29,31,52], as well as quantitative
and probabilistic analysis of software [6,23,24,42], have received a lot of recent attention.
There are two predominant approaches to these questions. The first one is to perform Monte
Carlo sampling of the program [6,7,42,51,52]. To improve performance, such methods use
sophisticated heuristics and variance reduction techniques, such as stratified sampling in [6,
52]. The second approach is based on reduction to model counting [23,24,43,44], either
using off-the-shelf #SMT solvers or developing #SMT procedures on top of existing tools.
Another recent approach is based on data flow analysis [14]. Our work introduces a new
dimension of approximation to this area: we reduce program analysis to #SMT, but carry
out a randomized approximation procedure for the count. In contrast to previous techniques,
our analysis is performed at the program level and not at the path level: the entire analysis
makes only two queries to a #SMT oracle (not one query per path through the program).
Analysis at the path level requires enumeration of the program-paths, whose number can be
exponential in the length of the program. Our approach shifts this enumeration to the SMT
oracle. It avoids the need for implementing complex heuristics for efficient path enumeration
at the price of harder SMT queries, thus relying on the efficiency of SMT solvers.

By known connections between counting and uniform generation [3,34], our techniques
can be adapted to generate (approximately) uniform random samples from the set ofmodels of
a formula in IA orRA. Uniform generation from Boolean formulas using hashing techniques
was recently implemented and evaluated in the context of constrained random testing of
hardware [8,9]. We extend this technique to the SMT setting, which was left as a future
direction in [9] (previously known methods for counting integral points of polytopes [2,24]
do not generalize to the nonlinear theory IA).

Further directions

Scalability. An extension of the presented techniques may be desirable to cope with larger
instances of #SMT. As argued in Sect. 5.6, incorporating XOR-aware reasoning into an SMT
solver can be an important step in this direction.

123

758 D. Chistikov et al.

Theories. Similar techniques apply to theories other than IA andRA. For example, our algo-
rithm can be extended to an appropriate fragment of the combined theory of string constraints
and integer arithmetic. While SMT solvers can handle this theory (using heuristics), it would
be nontrivial to design a model counting procedure using the previously known approach
based on generating functions [43].

Distributions. Although the syntax of our probabilistic programs supports only Uniform,
it is easy to simulate other distributions: Bernoulli, uniform with non-constant endpoints,
(approximation of) normal. This, however, will not scalewell, so futureworkmay incorporate
non-uniform distributions as a basic primitive. (An important special case covers weighted
model counting in SAT, for which a novel extension of the hashing approach was recently
proposed [8] and, by the time the present paper was submitted, also studied in the context of
SMT [4].)

Applications. A natural application of the uniform generation technique in the SMT setting
would be a procedure that generates program behaviors uniformly at random from the space
of possible behaviors. (For the model we studied, program behaviors are trees: the branch-
ing comes from nondeterministic choice, and the random variables are sampled from their
respective distributions.)

Appendix: Technical proofs

In this section we fill in the details in the proof of Theorem 1, continuing Sect. 3.2 and thus
proving correctness of Algorithm 1; however, to simplify notation, we write n instead of k′ to
denote the total number of Boolean variables. As the entire analysis is essentially Boolean,
we build on a previous exposition of the topic due to Trevisan [59]. We pay much more
attention to the precise choice of parameters, though; we assume that the SMT enumeration
threshold a ≥ 1, the approximation parameter ε > 0, and the upper bound on the probability
of bad estimate α ∈ (0; 1) are given as input. In Appendix A.2 we show how to choose:

– q , the number of copies of the formula, see equation (9), and
– v, the output value of the algorithm (during its run), see equation (10).

In Appendix A.3 we show

– p, the initial enumeration threshold (number of models that are sought before the algo-
rithm enters the main loop), see equation (11),

– m∗, the largest possible dimension of the hash, see equation (12), and
– r , the number of calls to the “Estimate” oracle (E), see equation (13).

Before this, in Appendix A.1, we show how to choose internal parameters (equation (6))
so as to establish key properties of the oracle E ; the choice of parameters in the following
Appendix A.2 and A.3 relies on these properties.

A.1 The “estimate” oracle from Sect. 3.2

We use a simple form of the Leftover Hash Lemma. This lemma was originally proved by
Impagliazzo, Levin, and Luby [32]; we use a formulation due to Trevisan [59]. In brief,
the lemma establishes the following property: For any sufficiently large set S ⊆ {0, 1}n , the
number of elements of S that aremapped to a particular image, 0m , by a random hash function
h from an appropriate family H does not deviate a lot from its expected value, |S|/2m .

123

Approximate counting in SMT 759

Lemma 1 LetH be a family of pairwise independent hash functions h : {0, 1}n → {0, 1}m.
Let S ⊆ {0, 1}n be such that |S| ≥ 4/ρ2 · 2m. For h ∈ H , let ξ be the cardinality of the set
{w ∈ S : h(w) = 0m}. Then

Pr
[∣∣
∣
∣ξ −

|S|
2m

∣
∣
∣
∣ ≥ ρ · |S|

2m

]

≤ 1

4
.

We now show how to implement the “Estimate” oracle E . Recall that its goal, roughly
speaking, is to answer questions of the form

Does the formula � have at least N = 2m models? (3)

Let a be a positive integer parameter, to be chosen arbitrarily. Our oracle E will rely, in turn,
on an SMT oracle (solver) for the underlying theory (IA) and will post queries of the form

Does the formula �h := (� ∧ (h = 0)) have at least a models? (4)

where h is a hash function h : {0, 1}n → {0, 1}m withm chosen in an appropriate way. Instead
of answering questions (3) exactly, our oracle E will have a blind spot. Let mc(�) be the
number of models of �; for some parameters g < G and for any sufficiently large m, we
ensure that the following properties hold: (I) ifmc(�) < g ·2m , then E returns “no”with high
probability; (II) if mc(�) > G · 2m , then E returns “yes” with high probability. The blind
spot is the intermediate case, g · 2m ≤ mc(�) ≤ G · 2m : the oracle E can answer “yes” or
“no” in an arbitrary way. The entire implementation of the oracle will be very simple: it will
pick h at random fromH , ask the question (4) for the obtained formula�h = (�∧ (h = 0))
and repeat the answer—yes or no—of the underlying SMT oracle.

Let us now proceed to proofs of properties (I) and (II).

Claim 1 Let x > 0 be a real number such that g = 4/x2 and a = (1 + x) g. Suppose
mc(�) ≤ g · 2m; then Pr[E = “no”] ≥ 3/4.

Proof Denote θ = mc(�)/2m ≤ g and pick any formula � such that, first, ��� ⊆
��� and, second, mc(�) = g · 2m . Write S = ��� and, as above, let ξ be the
cardinality of the set {w ∈ S : h(w) = 0m}; note that ξ = mc(�h)where�h = �∧(h = 0).
Observe that Pr[E = “yes”] is equal to

Pr[mc(�h)− g ≥ a − g] ≤ Pr[mc(�h)− g ≥ a − g]
= Pr[ξ − g ≥ x · g] ≤ Pr[|ξ − g| ≥ x · g] ≤ 1/4,

where the last inequality follows from Lemma 1 with ρ = x , since |S| = mc(�) = g ·2m =
4/x2 · 2m . ��
Claim 2 Let y > 0 be a real number such that G = 4/y2 and a = (1 − y)G. Suppose
mc(�) ≥ G · 2m; then Pr[E = “yes”] ≥ 3/4.

Proof As in Claim 1, denote θ = mc(�)/2m ≥ G. Now pick S = ��� and let ξ again
be the cardinality of the set {w ∈ S : h(w) = 0m}; we have ξ = mc(�h). Observe that
Pr[E = “yes”] is equal to
Pr[mc(�h)− θ ≥ a − θ]≥Pr[mc(�h)− θ ≥ (1− y) · G − G]=Pr[ξ − θ≥−y · G] ≥
Pr[|ξ − θ | ≤ y · G] ≥ 3/4,

where the last inequality again follows from Lemma 1, now with ρ = y and |S| = mc(�) =
θ · 2m ≥ G · 2m = 4/y2 · 2m . ��

123

760 D. Chistikov et al.

Let us match the parameter settings from Claims 1 and 2. We have

g(x) = 4/x2, G(y) = 4/y2,

a(x) = (1+ x) · 4/x2, a(y) = (1− y) · 4/y2.
Needless to say, the following equality needs to be satisfied:

a = a(x) = a(y). (5)

The multiplicative gap between G and g is B = G(y)/g(x) = (x/y)2, i.e., B = λ2 for
λ = x/y. Suppose λ ≥ 1 is fixed; then Eq. (5) gives us

1+ λy

λ2y2
= 1− y

y2
,

1+ λy = λ2 − λ2y,

(λ2 + λ)y = (λ2 − 1),

y = λ− 1

λ
= 1− 1

λ
and

a = a(λ) = 1

λ
· 4 · λ2

(λ− 1)2
= 4λ

(λ− 1)2
.

Given an integer a ≥ 1, how big a gap B(a) does it correspond to? Rewrite the equation
a(λ) = a as (λ− 1)2 · a = 4λ and further as

λ2 · a − λ · (2a + 4)+ a = 0.

Both roots of this quadratic equation are real, but only the greater one is ≥ 1; it is given by
the formula

λ(a) = a + 2+ 2
√
a + 1

a
= (
√
a + 1+ 1)2

a
and corresponds to

y(a) = λ(a)− 1

λ(a)
= 2+ 2

√
a + 1

a + 2+ 2
√
a + 1

= 2√
a + 1+ 1

and

x(a) = λ(a) · y(a) = λ(a)− 1 = 2 (
√
a + 1+ 1)

a
.

Finally,

g = g(x) = a2

(
√
a + 1+ 1)2

= (
√
a + 1− 1)2,

G = G(y) = (
√
a + 1+ 1)2, and

B = λ2 = (
√
a + 1+ 1)4

a2
=
(√

a + 1+ 1√
a + 1− 1

)2

.

(6)

To sum up, fixing a ≥ 1 for SMT queries (4) leads to the multiplicative blind spot of “size” B
and constants g and G defined in Equation (6); we will use these parameters in the following
subsections.

A.2 Copies of the formula and return value of the algorithm

Recall that the formula � that we use throughout the algorithm is of the following form:

� = ψq = ψ(1) ∧ ψ(2) ∧ · · · ∧ ψ(q)

123

Approximate counting in SMT 761

where q ≥ 1 is a natural parameter and formulas ψ(i), 1 ≤ i ≤ q , are copies of ψ where all
variables are replaced by fresh copies. In total, � has q times as many variables as ψ , and
mc(�) = mc(ψ)q .

We now describe how the parameter q is chosen. Recall that Algorithm 1 calls the “Esti-
mate” oracle E with m = 1, 2, . . . (we ignore the majority vote machinery for now; the
reader can safely assume r = 1 as the reasoning in the general case is the same). Suppose
first several calls to E result in “yes” answers, and let m be the first dimension of the hash
that corresponds to a “no”. We can now rule out (here and below—with high probability)
the case that mc(�) ≥ G · 2m ; similarly, it is unlikely that mc(�) ≤ g · 2m−1. We should
conclude, therefore, that

g/2 · 2m < mc(�) < G · 2m (7)

with high probability. Now, the task of the overall algorithm is to return a value v that lies in
the segment ((1+ ε)−1 ·mc(ψ); (1+ ε) ·mc(ψ)); in other words, vq—which is an estimate
ofmc(�)—should satisfy the condition

(1+ ε)−q ·mc(�) ≤ vq ≤ (1+ ε)q ·mc(�). (8)

We now align the segments defined in equations (7) and (8) above. First, observe that the
ratios of the right and left endpoints for each of these segments are 2G/g = 2B and (1+ε)2q ,
respectively; recall that B = G/g is given by equation (6). As our goal is thus to ensure that
(1+ ε)2q ≥ 2B, we choose

q =
⌈

1+ log B

2 log(1+ ε)

⌉

. (9)

Second, our best estimate for mc(�) is, accordingly, the geometric mean of the left and
right endpoints of the segment in (7); in other words, the best estimate for logmc(�) is the
arithmetic mean of their logarithms:

log(vq) = m + log g − 1+ logG

2
= m + log(g · G)− 1

2
=

m + log(a2)− 1

2
= m + log a − 1

2
,

and thus the return value of Algorithm 1 is

v = q
√
a · 2m−0.5. (10)

A.3 Majority vote and confidence level

It remains to choose the parameter r that determines how many times the “Estimate” oracle
E is called for each value of m. The choice of r depends primarily on α ∈ (0; 1), a number
provided as part of the input: the probability that the algorithm returns a value v that is not
within a (1+ ε)-factor ofmc(ψ) should be at most α. For this choice, however, we also take
into account the smallest and largest values of m that can be reached during the run of the
algorithm.

We first look into the smallest m on the run. To make the algorithm simple, we start from
m = 1; to achieve the same quality of the produced values as in the previous subsection, we
need to ensure that the maximum possible gap that arises if E returns “no” for m = 1 is (at
most) of the same size. For larger values of m, the algorithm would conclude that Eq. (7) is
satisfied. For m = 1, this means that the case mc(�) ≤ g should be ruled out. Therefore,

123

762 D. Chistikov et al.

the initial enumeration threshold for mc(�) should be set to g (note that, in fact, g ≤ a); if
the enumeration is done on the original formula ψ instead, the threshold is chosen as

p = �g1/q� =
⌈
(
√
a + 1− 1)2/q

⌉
(11)

where q is as in Eq. (9).
Let us now look into the largestm on the run. Here the purpose of the call to E is essentially

to rule out the casemc(�) ≥ G · 2m ; this is needed unless G · 2m > 2n where n is the total
number of Boolean variables. Hence, the last call to E should have m ≤ m∗ where m∗ is
defined as

m∗ = �n − logG� = �n − 2 log(
√
a + 1+ 1)�. (12)

Finally, let us proceed to the choice of r . Suppose that m is fixed, and let Xi denote the
Bernoulli randomvariable that is equal to 1 if the i th call to E returns the less likely answer and
to 0 otherwise (recall that, by Claims 1 and 2, the less likely answer is “no” ifmc(�) ≥ G ·2m
and “yes” ifmc(�) ≤ g ·2m ; these answers correspond to E being “wrong”). LetE denote the
expectation; we haveEXi ≤ 1/4 for 1 ≤ i ≤ r by the choice of parameters in Appendix A.1.
Denote by Am the event that, in the presence of r “voters”, the majority will vote “in the
wrong way”; this event is captured by the inequality

∑r
i=1 Xi ≥ r/2. If X = ∑r

i=1 Xi/r ,
then Am = (X ≥ 1/2), while the expectation satisfies EX ≤ 1/4. We have

Pr[Am] = Pr[X ≥ 1/2] ≤ Pr[X − EX ≥ 1/4] ≤ exp

{

−2 ·
(
1

4

)2

· r
}

= e−r/8,

where the last inequality is the one-sided Chernoff bound (see, e.g., [26, Section D.1.2.3]).
Therefore, the probability of Algorithm 1 giving a bad estimate is upper-bounded by

Pr[A1 ∪ · · · ∪ Am∗] ≤ m∗ · e−r/8;
to ensure that it is at most α, we pick the smallest r such that the right-hand side does not
exceed α:

r =
⌈

8 · ln
(
1

α
· �n − logG�

)⌉

=
⌈

8 · ln
(
1

α
· �n − 2 log(

√
a + 1+ 1)�

)⌉

. (13)

This completes our analysis.

References

1. Allouche, D., de Givry, S., Schiex, T.: Toulbar2, an open source exact cost function network solver.
Technical report, INRIA (2010)

2. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension
is fixed. In: FOCS 93. ACM (1993)

3. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using an NP-oracle. Inf.
Comput. 163(2), 510–526 (2000)

4. Belle, V., Van den Broeck, G., Passerini, A.: Hashing-based approximate probabilistic inference in hybrid
domains. In: Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI), Ams-
terdam (2015)

5. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid domains by weighted
model integration. In: Q. Yang, M. Wooldridge (eds.) Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp.
2770–2776. AAAI Press (2015). http://ijcai.org/papers15/Abstracts/IJCAI15-392.html

6. Borges, M., Filieri, A., d’Amorim, M., Pasareanu, C., Visser, W.: Compositional solution space quantifi-
cation for probabilistic software analysis. In: PLDI, p. 15. ACM (2014)

123

http://ijcai.org/papers15/Abstracts/IJCAI15-392.html

Approximate counting in SMT 763

7. Chaganty, A., Nori, A., Rajamani, S.: Efficiently sampling probabilistic programs via program analysis.
In: AISTATS, JMLR Proceedings, vol. 31, pp. 153–160. JMLR.org (2013)

8. Chakraborty, S., Fremont, D., Meel, K., Seshia, S., Vardi, M.: Distribution-aware sampling and weighted
model counting for SAT. In: AAAI’14, pp. 1722–1730 (2014). http://www.aaai.org/ocs/index.php/AAAI/
AAAI14/paper/view/8364

9. Chakraborty, S., Meel, K., Vardi, M.: A scalable and nearly uniform generator of SAT witnesses. CAV,
LNCS vol. 8044, pp. 608–623 (2013)

10. Chakraborty, S., Meel, K., Vardi, M.: A scalable approximate model counter. In: CP: Constraint Program-
ming, LNCS, vol. 8124, pp. 200–216 (2013)

11. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic inference via word-level
counting. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, February 12–17, 2016, Phoenix, pp. 3218–3224. AAAI Press (2016)

12. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. Inf. Comput.
208(6), 694–715 (2010). doi:10.1016/j.ic.2009.06.006

13. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and value estimation for
probabilistic programs. In: Tools and Algorithms for the Construction and Analysis of Systems—21st
International Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, April 11–18, 2015. pp. 320–334 (2015)

14. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian inference using data flow
analysis. In: ESEC/FSE’13, pp. 92–102 (2013). doi:10.1145/2491411.2491423

15. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: ESOP, LNCS 7211, pp. 169–193.
Springer (2012)

16. Darwiche,A.:Modeling andReasoningwithBayesianNetworks.CambridgeUniversity Press,Cambridge
(2009)

17. DeMoura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, TACAS’08/ETAPS’08, pp. 337–340.
Springer (2008)

18. Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge (2010)
19. Dyer, M., Frieze, A.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput.

17(5), 967–974 (1988)
20. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for approximating the volume of

convex bodies. J. ACM 38(1), 1–17 (1991)
21. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimensionality: discrete integration

by hashing and optimization. ICML 2, 334–342 (2013)
22. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Berlin (1997)
23. Filieri, A., Pasareanu, C., Visser, W.: Reliability analysis in symbolic pathfinder. In: ICSE, pp. 622–631

(2013)
24. Fredrikson, M., Jha, S.: Satisfiability modulo counting: a new approach for analyzing privacy properties.

In: CSL-LICS, pp. 42:1–42:10. ACM (2014)
25. Gilks, W., Thomas, A., Spiegelhalter, D.: A language and program for complex Bayesian modelling.

Statistician 43(1), 169–177 (1994)
26. Goldreich, O.: Computational Complexity: AConceptual Perspective. Cambridge University Press, Cam-

bridge (2008)
27. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model counting. In: IJCAI, pp.

2293–2299 (2007)
28. Gomes, C., Sabharwal, A., Selman, B.: Model counting. In: Biere, A., Heule, M., van Maaren, H., Walsh,

T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
633–654. IOS Press (2009)

29. Gordon, A., Henzinger, T., Nori, A., Rajamani, S., Samuel, S.: Probabilistic programming. In: FOSE 14,
pp. 167–181. ACM (2014)

30. Han, C., Jiang, J.R.: When Boolean satisfiability meets Gaussian elimination in a simplex way. In: Mad-
husudan, P., Seshia, S.A. (eds.) Computer Aided Verification—24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7–13, 2012 Proceedings, Lecture Notes in Computer Science, vol. 7358, pp.
410–426. Springer (2012). doi:10.1007/978-3-642-31424-7_31

31. Hur, C.K., Nori, A., Rajamani, S., Samuel, S.: Slicing probabilistic programs. In: PLDI, p. 16. ACM
(2014)

32. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended
abstract). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14–17,
1989, Seattle, Washigton, USA, pp. 12–24 (1989)

33. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting
and integration. Approximation algorithms for NP-hard problems pp. 482–520 (1996)

123

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://dx.doi.org/10.1016/j.ic.2009.06.006
http://dx.doi.org/10.1145/2491411.2491423
http://dx.doi.org/10.1007/978-3-642-31424-7_31

764 D. Chistikov et al.

34. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial structures from a uniform
distribution. TCS 43, 169–188 (1986)

35. Katoen, J.P.,McIver,A.,Meinicke, L.,Morgan, C.: Linear-invariant generation for probabilistic programs:
automated support for proof-based methods. In: SAS, LNCS 6337, pp. 390–406. Springer (2010)

36. Kiselyov, O., Shan, C.C.: Monolingual probabilistic programming using generalized coroutines. In: UAI,
pp. 285–292. AUAI Press (2009)

37. Klee, V.: Can the measure of ∪[ai , bi] be computed in less than O(n log n) steps? Am. Math. Mon. 84,
284–285 (1977)

38. Koller,D., Friedman,N.: Probabilistic graphicalmodels: principles and techniques.MITPress,Cambridge
(2009)

39. Kozen, D.: Semantics of probabilistic programs. JCSS 22, 328–350 (1981)
40. LattE tool. https://www.math.ucdavis.edu/~latte
41. Lawrence, J.: Polytope volume computation. Math. Comput. 57(195), 259–271 (1991)
42. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and approximate probabilis-

tic symbolic execution for nondeterministic programs. In: ASE’14, pp. 575–586 (2014). doi:10.1145/
2642937.2643011

43. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over unbounded strings. In:
PLDI, p. 57. ACM (2014)

44. Ma, F., Liu, S., Zhang, J.: Volume computation for Boolean combination of linear arithmetic constraints.
In: CADE-22, LNCS 5663, pp. 453–468. Springer (2009)

45. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer, Berlin
(2005)

46. Minka, T., Winn, J., Guiver, J., Kannan, A.: Infer.NET 2.3 (2009)
47. Monniaux, D.: Abstract interpretation of programs as Markov decision processes. Sci. Comput. Progr.

58, 179–205 (2005)
48. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan-Kaufman, Burlington (1997)
49. Papadimitriou, C.: Games against nature. JCSS 31(2), 288–301 (1985)
50. Monty Hall problem: http://en.wikipedia.org/wiki/Monty_Hall_problem
51. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K., Grossman, D., Ceze, L.: Expressing and

verifying probabilistic assertions. In: PLDI, p. 14. ACM (2014)
52. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring

whole program properties from finitely many paths. In: PLDI, pp. 447–458. ACM (2013)
53. Selvin, S.: A problem in probability. Am. Stat. 29(1), 67 (1975)
54. Sipser, M.: A complexity-theoretic approach to randomness. In: STOC, pp. 330–335. ACM (1983)
55. Soos, M.: CryptoMiniSat—a SAT solver for cryptographic problems. http://www.msoos.org/

cryptominisat4/
56. Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS-10. Pragmatics of

SAT, Edinburgh, UK, July 10, 2010, pp. 2–14 (2010). http://www.easychair.org/publications/?page=
1319113489

57. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Theory and
Applications of Satisfiability Testing—SAT 2009, 12th International Conference, SAT 2009, Swansea,
June 30–July 3, 2009. Proceedings, pp. 244–257 (2009)

58. Stockmeyer, L.: On approximation algorithms for #P . SIAM J. Comput. 14, 849–861 (1985)
59. Trevisan, L.: Computational complexity (CS254), lecture 8 (2010). http://www.cs.stanford.edu/~trevisan/

cs254-10/lecture08.pdf
60. Urquhart, A.: Hard examples for resolution. J. ACM 34(1), 209–219 (1987)
61. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 9, 189–201 (1979)
62. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47, 85–93

(1986)
63. Zhou, M., He, F., Song, X., He, S., Chen, G., Gu, M.: Estimating the volume of solution space for

satisfiability modulo linear real arithmetic. Theory Comput. Syst. 56(2), 347–371 (2014). doi:10.1007/
s00224-014-9553-9

123

https://www.math.ucdavis.edu/~latte
http://dx.doi.org/10.1145/2642937.2643011
http://dx.doi.org/10.1145/2642937.2643011
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.msoos.org/cryptominisat4/
http://www.msoos.org/cryptominisat4/
http://www.easychair.org/publications/?page=1319113489
http://www.easychair.org/publications/?page=1319113489
http://www.cs.stanford.edu/~trevisan/cs254-10/lecture08.pdf
http://www.cs.stanford.edu/~trevisan/cs254-10/lecture08.pdf
http://dx.doi.org/10.1007/s00224-014-9553-9
http://dx.doi.org/10.1007/s00224-014-9553-9

	Approximate counting in SMT and value estimation for probabilistic programs
	Abstract
	1 Introduction
	2 The #SMT problem
	3 Proof techniques
	3.1 Intuition: hashing-based approximate counting
	3.2 Approximate discrete model counting
	3.3 Approximate continuous model counting

	4 A fully worked-out example
	5 Value estimation for probabilistic programs
	5.1 Syntax
	5.2 Semantics
	5.3 Cooperative versus adversarial nondeterminism
	5.4 Related models
	5.5 From value estimation to model counting
	5.6 Evaluation

	6 Concluding remarks
	Appendix: Technical proofs
	A.1 The ``estimate'' oracle from Sect. 3.2
	A.2 Copies of the formula and return value of the algorithm
	A.3 Majority vote and confidence level

	References

