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Abstract

This paper considers the computer vision problem of testing whether two equal
cardinality point sets A and B in the plane are e-congruent. We say that A and
B are e-congruent if there exists an isometry I and bijection £ : A — B such that
dist(£(a),I(a)) < ¢, for all @ € A. Since known methods for this problem are ex-
pensive, we develop approximate decision algorithms that are considerably faster than
the known decision algorithms, and have bounds on their imprecision. Our approach
reduces the problem to that of computing maximum flows on a series of graphs with
integral capacities.

Introduction

In this paper we address the following question: given two (equal cardinality) sets of points
in the plane, what do we mean when we say that they are “congruent”, and how do we
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determine congruency? To answer this question, we must define congruent, and provide
efficient algorithms that test for congruence. The practical motivation behind our study
comes from computer vision, where an observed image 1s compared to a hypothesized model.
Since the given problem is too difficult to permit efficient decision algorithms, we turn our
attention to approximate decision algorithms with performance guarantees. Eventually, we
reduce the problem to that of computing a maximum flow on each of a series of (s,t)-
graphs. We apply known solution techniques, and a new idea of Feder and Motwani [FM]
for speeding-up graph algorithms, which is well suited for our max-flow problems.

In pattern recognition, one often wishes to determine how well an observed image matches
a model image. For us, the model and the observed image will be point sets A and B of
equal cardinality. In order to make A match B as closely as possible, we perform an isometry
on A, and then pair each point of A with one of B such that the points of each pair lie close
to each other. An isometry is an affine mapping in the plane that preserves distances,
and is composed of a translation, rotation, and possibly a reflection. Any isometry can be
represented as

I(z)=MJz +1,

. cos@ sing 10 -1 0
where M = ( _sing cosgo) for some ¢ € [0,27), J € {( 0 1),( 01 , and

t € R®. Along with an isometry I, we must designate a bijection £ : A — B. A natural
measure of our attempt to match the observed image A with the model image B 1s the
maximum distance between any pair (£(a), I(a)), @ € A. Because of errors in measurement,
it is unrealistic to expect an observed image to match exactly the model from which it came,
so we will be interested in matchings that are approzimately congruent. We say that A
and B are congruent with tolerance €, or e-congruent, if there exist an isometry I and a
bijection £ : A — B such that dist({(a),I(a)) < ¢, for all a € A, where dist(-,-) is the
distance function for our chosen metric. We are interested in approximate congruence under
the L, metric, with various restrictions on the isometry, such as the translation-only and
rotation-only cases.

Several researchers have studied approximate congruence, notably Baird [Ba] and Alt,
et al. [AMWW]. The distinguishing feature of these algorithms is their high run-time: no
known algorithm for the case of the isometry restricted to a translation is better than O(nf),
and for the case of unrestricted isometry, the best known bound is O(n®) (this bound is
tight for the algorithm of [AMWW], as an example in this paper shows). For models with
a large number of points, such performance may be unacceptable. Faced with a problem
whose solution seems to be too expensive, we look for a useful solution—we trade some of
the exactness for improvements in run-time, and obtain fast algorithms that come with a
performance bound. We obtain approzimate decision algorithms for approximate congruence.

For a specified metric and isometry class, let €0p1(A, B) denote the minimum value of ¢
such that A and B are e-congruent. Occasionally, we will designate the isometry class implied
by this notation by writing sfpt(A, B), 65;(14, B), and €£pt(A, B), respectively, for the cases
of translation, rotation about d, and general isometry. Intuitively, we would believe that it is
more difficult to test for e-congruence if € is close to eopt( A, B). We would be willing to accept
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an algorithm that correctly answers queries for values of € not near Eopt(A, B), but sometimes
chooses not to answer when ¢ is near €.p¢(A, B), if that algorithm provides substantial time
savings over the complete decision algorithms, which always take a decision. We say that
an algorithm that tests for e-congruence is (e, B)-approzimate, if, for any € ¢ leopt(A, B) —
a, Eopt(A, B) + B, it correctly answers a query, and for € € [eopt(A, B) — a,eopt(A, B) + ],
it either answers correctly or chooses not to answer. We call [eope(4, B) — @, €0pi(A, B) + B]
the indecision interval. When we say that we have an “(a,)-approximate algorithm for
testing approximate congruence”, we use the word approximate twice, but with two different
meanings. The latter instance refers to the fact that we are trying to put the points of one
set within the e-balls of the other; the former refers to the indecision interval. An (a,3)-
approximate algorithm has the desirable property that it will not return an incorrect answer;
if it is not sure, it will simply say that it does not know the answer.

We present algorithms for three different classes of isometries—translation, rotation with
fixed center, and general isometry. While we will assume that all distances in the paper
represent the Euclidean metric, our algorithms apply equally well to any L, metric. For
the translation case we present a (7,7)-approximate algorithm for testing e-congruence
that runs in time O(n'®(¢/7)*). For the case of a rotation with a fixed center d, we
present two different (7,7)-approximate algorithms, which run in time O(n®(e/v)?)and
O(n*5(8/7)(e/7)?), respectively, where § = max{diam(A), diam(B)}. Finally, we show that
any (7,7)-approximate algorithm for rotation with a fixed center can be converted to a
(v,7)-approximate algorithm for general isometry with an additional factor of (e/v)* ap-
pearing in the time bound, giving us algorithms for general isometry of time O(n3(e/7)*)
and O(n!®(8/7)(e/7)*). We will show that for our translation algorithm and for one of
our rotation algorithms (and therefore for our general isometry algorithm), it is possible to
replace functions of n in the time bound by functions of (8/7). For example, the translation
problem can be solved in time O(n + (8/7)*(e/7)*log(6/7)). These alternate time bounds
imply that our algorithms are especially efficient on dense data.

It is possible to remove the indecision from our approximate decision algorithms, and
obtain complete decision algorithms whose time-complexity is dependent on the difficulty
of the problem instance. Specifically, if we think of K. = |eopt(A, B) — €| as the “diffi-
culty parameter”, then each of our approximate decision algorithms can be transformed
into a complete decision algorithm, with K. replacing 7 in the time bound. This gives
decision algorithms for testing e-congruence, with time bounds of O(n*®(e/K.)*)for the
translation case, O(n3(e/K.)?)and O(n**(§/K.)(e/K.)?)for rotation, and O(n®(e/K.)*)and
O(n'®(6/K.)(e/K.)*)for the general case.

As mentioned earlier, the best known algorithm for approximate congruence has run-
ning time O(n®) [AMWW]. For approximate congruence enabled by translations, several
O(n®) algorithms are known [AMWW, He, Iw]. Approximate congruence enabled by a ro-
tation with a given center can be decided in time O(n*) [Iw, Scl, Sc2], and approximate
congruence enabled by a reflection in time O(n®) [Iw]. An algorithm in [AMWW] solves in
time O(n®logn) the e-congruence optimization problem under translation, which asks us to
compute eoTpt(A, B). A special case of the e-congruence problem is that of given correspon-



Decision algorithms for approximate point set congruence

without given correspondence

known results new results

decision algorithms approximate decision algorithms

disjoint £-balls

translations 0(77,6) O('n, log n) 0(17,2‘5) O(nl's)
[AMWW, He, Iw] [AMWW] [Scl, Sc2]
rotations O(n* O(n? O(n3)
- ) ) O(n¥5(5/e))
[Iw, Scl, Sc2] [AKMSW]
. . O(n®

1sometries O(ns) O(n4 10g n) O(n2 log n) O(n4) O(nl(?(ﬁ)/g))

[AMWW] [AKMSW] [Be] [Scl, Sc2]

§ is the maximum of the diameters of the two point sets. The approximate decision
algorithms are (7,7)-approximate algorithms, where v is € divided by some constant.

Table 1: new results compared to known algorithms

dence, where the bijection £ is given; this problem is studied in [AMWW, ISI, Iw]. In [AMZ]
and [Sp], algorithms are given that generalize the approach of [AMWW] by considering
sets A and B of unequal cardinality, and by generalizing the metric. Specifically, [AMZ]
allows the “noise regions” (i.e. the e-balls around the points of A) to be arbitrary noncon-
vex polygons; it also considers piecewise linear noise functions. In [AKMSW], algorithms
are given for the decision problem for numerous metrics under various classes of isometries
and under similarity (an isometry plus a change of scale), but with the assumption that
the e-balls around point set A are pairwise-disjoint or have limited overlap. In [AKMSW],
[AMZ], and [Sp], combinatorial upper and lower bounds are given on the number of dis-
tinct bijections that can satisfy the decision problem. A problem related to e-congruence is
that of finding a translation that minimizes the Hausdorff distance between two point sets;
this problem is studied in [HuKe] and [HKS]. Approximate decision algorithms have been
studied by Schirra [Sc2], who gives (7, v)-approximate algorithms that test for e-congruence
under translation in O(n23(g/v)?) time and under general isometry in O(n*(¢/7)?) time,
and by Heffernan [He], who gives an O(n®(¢/7)°) time translation algorithm. Behrends [Be]
considers approximate decision algorithms for pairwise disjoint e-balls. We compare these



results with our new results in Table 1.

The remainder of the paper is organized as follows. Section 2 describes our translation
results, and reveals much of our technique for constructing (77,7)-approximate algorithms.
Section 3 describes two different approaches that test for e-congruence under rotation around
a fixed center, and Section 4 shows how to extend these results to the case of general isometry.
In Section 5 we give an example that motivates the development of approximate decision
algorithms for testing e-congruent. For the decision algorithm for e-congruence under general
isometry of [AMWW], we show that the worst-case time bound of O(n®) is tight. Section 6
is the conclusion.

2 Translation

In this section we give our algorithms for the translation case. Most of the decision al-
gorithms for approximate congruence without correspondence use the same scheme. They
compute a finite set of candidates for the isometry in demand, and ask whether any can-
didate isometry enables approximate congruence for the planar point sets A and B with
tolerance ¢. The decision problem of whether a fixed isometry I enables approximate con-
gruence is reduced to a maximum matching problem in a bipartite graph, which is reduced
to a max-flow problem. Each point in A and B is represented by a node in a bipartite
graph. The node representing point a; and the node representing b; are connected by an
edge iff dist(I(a;),b;) < e. This graph has a perfect matching iff there is a labeling £ such
that I and £ enable e-congruence [AMWW]. In this section we obtain fast, approximate
decision algorithms for e-congruence under translation, by replacing A and B with slightly
perturbed, degenerate versions. Thereby we sacrify precision, but enjoy improved run-times
by reducing the number of candidate translations and by limiting the number of edges in
each max-flow problem.

We state first a lemma that we will use in constructing the set of candidate translations.
Let ¢4 denote the centroid of point set A and cp denote the centroid of point set B. We
have [Sc2]

Lemma 1 If I enables p-congruence for A and B then dist(I(ca),cB) < p.

The basis of our imposed structure is an orthogonal grid with width A = V27/5 that
we superimpose onto the plane. Note that every point of the plane is within distance v/5
of the intersection of two grid lines, which we call a grid point. Therefore, if a translation
T enables p-congruence for A and B, then by Lemma 1 there exists a grid point g such
that dist(T(ca),g) < /5 and dist(cp,g) < p+7/5. Accordingly, the O((e/7)?) grid points
within distance € +/5 of cg will form the set of candidate translations. For g € R? let T.,,
be the translation that maps c4 onto g.

Lemma 2 If A and B are p-congruent by a translation then there is grid point g with
dist(g,cp) < p+7/5 such that Tc,, enables approzimate congruence with tolerance p+ /5
for A and B.



Figure 1: Moving points to grid points

We now use the grid to impose structure onto the point sets A and B. We move each p—oint
of A and B to its nearest grid point, with ties broken arbitrarily. Let A% = {a¥,..., a¥}
and B¥# = {b .., b#} be the multisets corresponding to A and B, respectively, obtame:d in
this manner, and let A° = {as,...,a} and B® = {83,...,b,} be the sets of distinct pc=ints
in A* and B¥ (see Figure 2).

Lemma 3 If A and B are p-congruent by a translation then A* and B# are approzimcately
congruent with tolerance p + 2v/5 by that translation.

Proof. Each point is moved out of its place by a distance of 7/5 at most. O

Let c4# be the centroid of A# and let T: 4g be the translation that maps c4# ont o g.
Combining Lemma 2 and Lemma 3 we get

Lemma 4 If A and B are p-congruent by a translation then there is a grid point g with
dist(g,cp) < p+/5 such that T 4 enables approzimate congruence with tolerance p+37/5
for A* and B#*.

Hence we can conclude that A and B are not e-congruent if for all grid points g —With

tolerance ¢ + 3v/5 for A# and B#. On the other hand:



Lemma 5 If A* and B¥ are approzimately congruent with tolerance p by Te ., for some
gridpoint g then A and B are approzimately congruent with tolerance p + 2v/5 by that
translation.

Lemmas 4 and 5 form the basis of a (7, 7)-approximate algorithm, which is given in Table
2. By Lemma 5, the point sets A and B are approximately congruent with tolerance ¢ by
a translation if A* and B# are approximately congruent with tolerance € — 2 /5 by Te 4g
for some g; thus, any YES answer is correct. Lemma 4 states that if there is no grid point g
among those considered such that T ,, enables congruence with tolerance € + 3v/5, then A
and B are not e-congruent; thus, a NO answer must be correct. We see that if the algorithm
in Table 2 gives an answer, then that answer is correct.

[1] possible « false

[2] Compute A* and B¥;

[3] for all g with dist(g,cp) <e+7/5do

[4] if A* and B# are approximately congruent with tolerance € + 3v/5 by Tc,,q
then return possible « true fi

[5] if A* and B#* are approximately congruent with tolerance ¢ — 2 /5Dy Tt ug
then return YES fi od;

[6] 1if possible
then return DON'T KNOW
else return NO fi

Table 2: (v,7)-approximate algorithm for e-congruence by translations

Lemma 6 The algorithm in Table 2 is a (y,7)-approzimate algorithm for approzimate con-
gruence with tolerance ¢ enabled by a translation.

Proof. We argued above that if the algorithm returns an answer, then that answer is
correct. We must show the algorithm returns an answer for any & outside of the indeci-
sion interval. Let € < 5Zpt(A, B) — 4. Then A and B are not approximately congruent
with tolerance ¢ + . Hence there is no grid point g such that T, . enables approximate
congruence with tolerance € + 37/5 for A# and B#, because this would imply that A and
B are approximately congruent with tolerance € + 37/5 + 2y/5 by Lemma 5. Now let
€ > Egt(A, B) +. Then A and B are approximately congruent with tolerance € — 7. By
Lemma 4 there is a grid point g such that A# and B# are approximately congruent with
tolerance € — v + 37/5 = € — 2v/5 enabled by T¢ ,,. O

It remains to explain how to test whether Tc ,, enables p-congruence for A# and B¥.
To represent graph networks, we will use the notation G = (V, E,c), where V and E are the
vertex and edge sets, respectively, and ¢ : E — IN gives the edge capacities. Consider the
network

G(TCA#gvll'v A%, B#) = ({s,t}UUUV, E, c)
where U = {uy,...,u,} represents the points in A#* and V = {v1,...,v,} represents the
points in B¥#,



E = {(s,w)]|1<i<n}
{058 |1<5 <}
{(us,v;) | dist(Te q(af), bF) < 0},
and c(s,u;) = 1
c(v;, )

c(ui,vj)

C C

i

I
e

If G(Te 4 g5 s A#, B#) has a max-flow of size n, then T¢ 4 enables p-congruence for A¥ and
B#. However, in the general case we have no better worst case bound than O(n?) for the
number of edges. Using standard techniques [Me, Ta] this gives a O(n*?) worst case bound
for each test.

Recently Feder and Motwani [FM] presented a method for speeding-up graph algo-
rithms. They search for complete bipartite subgraphs and substitute them by simpler struc-
tures. The resulting graphs are called compressed. With their technique a max-flow for
G(Te yg0 15 A#, B#) can be computed in time O(n*®/logn).

Replacing A and B by a slightly degenerate version makes the idea of [FM] more fruitful
for testing approximate congruence. Let Uy = {u; | a; is moved onto ag} C Uand V° = {v; |
b; is moved onto b7} C V. If T, ,, moves gridpoint af into the p-neighborhood of b7, this
generates a complete bipartite subgraph with node sets Ug and V;°. For every such bipartite
clique, we remove the edges in Ug x V;°, add a new node w, and add edges {(u;,w) | u; € UZ}
and {(w,v;) | v; € V°} with capacity 1 each. Thereby we replace |U2| - |V}°] old edges by
|U2| + |V°| new edges. We call the resulting graph G op(Te p00 15 A# B#).

A max-flow in Gfomp(TcA#g, p, A# B#) corresponds to a max-flow in G(Te 40 1 A#* B#).
With Dinic’s algorithm a max-flow in GZ__(Te 4q) b A# B#) can be computed in O(y/n)
phases, each in time proportional to the new number of edges. (It is a well known fact that
Dinic’s algorithm takes O(v/number of nodes) phases in a simple 0-1 network. A node is called
simple, if it has indegree 1 or outdegree 1, and a network is called simple, if all nodes are
simple. Note that the nodes in W are not simple in the compression of a graph. Analogously
to the proof on the number of phases of Dinic’s algorithm for simple 0-1 networks in [Me,
page 81] it can be shown, that Dinic’s algorithm takes O(+/number of simple nodes) in a 0-1
network, if no edge connects non-simple nodes.)

The p-neighborhood of any point contains O((r/7)?) grid points. Hence each point of
A* U B* contributes to O((p1/)?) bipartite cliques. Hence the number of edges in graph
Gt o (Te oo 11y A%, B#) is O(n(p/7)?)-

For the construction of Gﬁ)mp(TcA 290 A#* B#) we use range searching. For a set of n
points a data structure of size O(n) can be built in O(nlog n) time for fixed radius disk
queries, such that each query has time complexity O(logn + k), where k is the size of the
output [LS]. For each point a® in A° we ask for the points of B° included in the disk with
radius p € {e + 27/5,€ — 37/5} and center T; ,,4(a°). We have output size k = O((n/7)?)
for each query. Summing over all queries gives run-time O(n(logn + (/7)*)-
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If space is not important, we could alternatively use standard range searching [PS] with
squares of side length 2y containing the query disks and test each reported point for inclusion
in the query disk. This approach has the same time bounds for the two dimensional queries
considered here, but space complexity O(nlog n). However, it can be used in higher dimen-
sions, too. For queries in R?, preprocessing time is O(n log®! n), query time O(logn + k),
and space complexity O(nlog®™* n) [PS].

Theorem 1 The algorithm in Table 2 has running time O(n'3(e/7)*).

Proof. A* and B* can be constructed in O(n) time, and there are O((g/~)?) grid points g for
which T¢ ,, is tested. Each Gt o (Te 0> 5 A#* B#) can be constructed in time O(nlogn +
n(e/7)?) and a max-flow can be computed in time O(y/n-n(e/v)?). O

We now give an alternative for testing whether Tt .4 enables p-congruence. We denote
the number of points in A moved onto af by n# and the number of points in B moved to b5
by nf. We consider the following network

G°(Te pas 1 A°, B°) = ({3,t}U {v1,...,un} U{v1,... ,Um}, E°, )
where {uy,...,us} represents the points in A° and {vy, ..., v} represents the points in B°,

EO

il

{(s,u;) | 1 <i < h}
(v, 1) [1<j <m}
(uivvj) | diSt(TcA#g(ag)7b;) <},

C C
o b

and c(s,u;) nf
c(vj,t) = nf
c(ui,v;) = min(nf,nf .

We claim that it suffices to compute a max-flow on G(Te 4,4, A°, B°):

Lemma 7 G(TCA#g,u,A°,B°) has a flow of capacity n iff the multisets A#* and B¥#* are
p-congruent by Te ,q.

Proof. It is easy to see that a labeling implies a flow of capacity n. For the converse,
consider the well-known fact that there exists an integral max-flow solution if all edge ca-
pacities are integral [Me, Ta]. Hence if there is a max-flow with capacity n, then there is a
max-flow of capacity n with integer flow on each edge. Now it is easy to derive a labeling
{: A* —» B* from such a flow. Consider the edges one by one. If the max-flow pushes f
units over edge (ui,v;) then £ maps f of the unused copies of a¢ to f unused copies of b;.
Then these copies are marked as used and the next edge is considered. The capacities in the
network guarantee that the number of unused copies is always sufficient. O

It remains to establish the time-complexity of computing a max-flow on a graph G°
generated by the algorithm. There is a wealth of literature on the max-flow problem (for
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an overview, see [AOT, CHM, Ta]), with numerous algorithms whose complexities depend
principally on N and M, the number of nodes and edges, respectively, of G°. We will
establish bounds on N and M, and state the complexities that we can obtain with max-flow
algorithms. Again we use the fact that the e-ball around a point of A° or B° contains only
O((e/7)?) grid points, so a node of G° can be incident to only this many edges. If we use
the trivial bound of 2n for N, then M = O(n(g/7)?). An alternate bound on N arises by
considering the diameters of A and B. If § = max{diam(A), diam(B)}, then there can be
only O((6/7)?) points of A° and B°, giving that N has this bound, and M = O((6/7)%(/7)?)-

The method of Sleator and Tarjan [Sl, ST] computes max-flows in time O(NMlog N),
and yields an efficient bound of O((8/7)*(¢/7)?log(6/7)) when (8 /~)? is small compared to
n (note that the graph G° can be built in O((6/ 7)?(¢/7)?) time, since this is the number of
potential edges that must be checked). This bound is better than that given above when
n = Q((8/7)%%1og*?(8/7)). We summarize these in Table 3.

graph total time range
G o O(n**(e/7)*) n < (6/7)%1log**(8/7)
G | O(n+(8/7)(e/v) log(8/7)) | n > (8/7)*1og™*(6/7)

Table 3: Time-bounds for the (7,7)-approximate algorithms under translation

The max-flow methods mentioned here compute an integral maximum flow, if the input
graph has integral capacities. If a max-flow of size n is computed, it is, therefore, an integral
flow, and corresponds to a matching of the point sets A and B. This implies that we
solve something more than the decision problem: if we determine that the point sets are
e-congruent, we actually return a bijection ¢ and a translation T that enable e-congruence.

We mention here that our results for the translation case extend easily to higher dimen-
sions. We showed in this section that a (v,7)-approximate algorithm can be obtained by
considering a set of points representing candidate translations, such that no point within
distance € of cp is more than distance v/5 from a candidate point. If we cover R? with
orthogonal grid points at width A, then no point of R? is more than distance v/d)\/2 from a
grid point. By setting VdA/2 = v/5, we see that we should choose A = 27 /(5v/d) (note that
for d = 2, this gives the value A = 27/ (54/2) used in this section). By Lemma 2, we need
only consider translations that map ca to a grid point within distance € + /5 of cg. There
are O((¢/A)?) such points, which for d = O(1) gives:

Theorem 2 The algorithm in Table 2 is a (7,7)-approzimate algorithm for e-congruence
under translation for point sets in R®. The algorithm runs in time O(n*®(e/7)**) resp.

O(n + (8/7)e/7)* 10g(6/7))-
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3 Fixed center Rotations

In this section we give a (7,7)-approximate algorithm for testing approximate congruence
of two sets of n points enabled by a rotation with a fixed rotation center d. We give two
approximate decision algorithms, which we name the orthogonal, Rortho, and the polar, Rpolar,
based on the manner in which each perturbs the point sets. Analogously to the previous
section, each algorithm perturbs the two point sets A and B a little bit, and for each rotation
around d from a finite set, solves a max-flow problem on an appropriate graph to test
whether the rotation enables approximate congruence. The best known algorithms for this
problem have run time O(n*) [Iw, Scl, Sc2], and the orthogonal algorithm is a modification
of the decision algorithm of [Scl, Sc2] with run-time O(n®(¢/7)?). The polar algorithm
has versions which run in time O(n'%(8/7)(¢/7)?)and O(n + (8/7)%(e/7)?log(8/7)), where
§ = max{diam(A), diam(B)}. Our collection of algorithms allows one to choose one based
on the relative sizes of n and (6/7).

3.1 The orthogonal rotation algorithm

We begin the orthogonal rotation algorithm by superimposing a grid with separation A =
v/(2v/2) onto the plane. Then we move each point in A and B to its nearest grid point, to
form the multisets A* and B#, and the sets of distinct points A° and B°. For ¢ € [0,27) let
R® be the counterclockwise rotation by angle o with center d. For each pair (a°,b°) € A°x B°
there is a circular interval I{:ﬁ,’bo) C [0,27) such that dist(R?(a®),b°) < p iff ¢ € I( o 40). Let
L be the set of interval endpoints of all such intervals. Since the intervals are closed we have

Lemma 8 A# and B#* are p-congruent iff there is a ¢ € L such that A#* and B* are
p-congruent by R¥.

Let A° = {a,...,a3} and B° = {83,...,b),}. Let n# be the number of points in A moved
onto ¢ and n? the number of points in B moved to b5. A network

G°(R®,p, A°, B°) = ({s,8} U {us,...,un} U{vs,... ,Um}, E° )

is defined analogously to Section 2 with T, , , replaced by R, 1.e. {u1, . ..,un} represents the
points in A°, {v1,...,vn} represents the points in B°, E° = {(s,w;) | 1 <i < h} U {(v;,t) |
1 < j < m}U{(u,v;) | dist(R*(a3),b3) < p} and c(s,us) = nf, c(vj,t) = nP, and
c(ui,v;) = min(nf,n?). Recall that efe(A, B) is the minimum value where A and B are
approximately congruent by a rotation with center d.

Lemma 9 The algorithm in Table 4 is a (7,7)-approzimate algorithm for approzimate con-
gruence enabled by a rotation with a fized center d. '

Proof. If A and B are p-congruent by a rotation with center d, then A# and B# are
approximately congruent with tolerance p + /2 by a rotation with center d. If A# and B¥
are p-congruent by a rotation with center d, then A and B are approximately congruent with
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Rm'tho

[01] procedure fcROT(u,d,A°, B°)

[02] begin

(03] L«

[04]  for each pair (a°,b°) € A° x B° do

Compute I, &o,b°)§ Add the endpoints to L od

[05] Sort L into a circular list;
[06] Let ¢, be an arbitrary element in L;
[07] Compute G(R¢, i, A°, B®);
[08]  if G(R?,p, A%, B°) has a max-flow of size n

then return YES fi;
[09] repeat ¢ «— succ(p);
[10] Update G(R®, u, A°, B°) and compute a new max-flow;
[11] if the max-flow has capacity n then return YES fi
[12] until suce(p) = @o;
[13] return NO
[14] end;
[15] begin
[16] Compute A* and B#; Compute A° and B®;
[17] if fcROT(e +7v/2,d, A°, B°) returns NO

then return NO fi;

[18] if fcROT(e —v/2,d, A°, B°) returns YES

then return YES fi;
[19] return DON’T KNOW
[20] end

Table 4: the orthogonal rotation algorithm

tolerance g + /2 by a rotation with center d, because the points are displaced to points
which have distance /4 at most. Hence if the answer is YES or NO, this is correct. For
€< EOR;(A, B) —~ the point sets A* and B# are not approximately congruent with tolerance
€ +7/2 by a rotation with center d, because A and B are not approximately congruent with
tolerance € + 7. So the output has to be NO. For ¢ > 65&(14, B) + v the points sets A and B
are approximately congruent with tolerance € —+ by a rotation with center d and hence the
points sets A#¥ and B¥ are approximately congruent with tolerance & — ~/2 by a rotation
with center d. O

The actual run-time of this algorithm depends upon the manner in which we compute
the max-flows. In addition to the graph and the flow, we maintain the residual graph with
respect to the present flow. We have a max-flow in G4 = G(R”" ed(¥) 1, A°, B°) and we are
looking for a max-flow in Gpew = G(R?,p, A% B°). First we delete the edges of Goq which
are not in Gnep. Then we insert the edges in Gpe,, Which are not in Goiq. An edge is deleted
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by decreasing its capacity in unit steps until the capacity becomes zero. Let (u;,v;) be the
edge to be deleted. If, after a decrease of the capacity by one, the flow over this edge is
larger then the capacity, we decrease the flow on the path s — u; — v; — t by one. Since the
difference between the capacity of a max-flow in the new network and the present flow is
at most one, it is sufficient to search a path connecting s and ¢ in the residual graph. This
takes time proportional to the number of edges in the present graph. Similarly edges are
inserted by increasing their capacity in unit steps.

Let M be a bound on the number of edges in one of the networks considered in the loop
of procedure fcROT in Table 4. Let S, denote the sum of the capacities of the edges which
are in G(R®, p, A°, B°) and not in G(R7e¥%) pu, A°, B°) or vice versa. Then the time for the
update is O(S,M). Since each edge is inserted and deleted at most once and the sum of
the capacities of all possible edges connecting nodes in {us,...,us} and {v1,...,vn} is n?
at most, we have ¥,¢r S, < 2n®. For each ¢ € [0,27) and arbitrary a° € A° the number
of points in B° with distance at most u to R¥®(a°) is O((1/7)?). Hence M = O(n(p/7)?)
and the time for all updates is O(n3(p/7)?). The initial max-flow can be computed in time

O(n*(n/7)?) [FF].

Theorem 3 The (v,7)-approzimate algorithm in Table 4 for approzimate congruence by
fized center rotations has running time O(n®(e/7)?).

Proof. By discussion above. O

3.2 The polar rotation algorithm

We now give an alternate (7,)-approximate algorithm for determining if two point sets A
and B are e-congruent under rotation around a fixed center d. The polar algorithm runs in
time O(n'3(8/7)(/7)?), where § is the larger of the diameters of A and B. The polar rotation
algorithm is sub-quadratic in n, as opposed to cubic for the orthogonal rotation algorithm,
and is asymptotically superior when § = o(n'®y). The polar algorithm also provides an
O(n+ (8/7)%(e/7)*1og(8/7)) time method for the rotation problem, thereby offering further
improvements when (&/7) is small relative to n. Like the orthogonal rotation algorithm,
this one extends easily to an algorithm for the gemeral isometry case, with an additional
O((e/~)?) factor in the run time.

The spirit of the algorithm is to discretize the interval of all possible rotations, where
the number of subintervals depends on & but not n. At first our discussion will assume that
dist(d,p) < & for all p € AU B; later we will see that this assumption is not necessary, and
that the time bound actually improves when d is not near the two point sets. We will cover
the plane with two grids, one polar and one orthogonal. We describe first the polar grid, P.
Let A = 7/(5v/2). Place concentric circles centered at d with radii A, 2),..., kA, so that all
points of AU B are within the second-largest circle; we call the largest circle the bounding
circle, and we denote it and its interior by B. Now add a collection of evenly-spaced rays
emanating from d, such that the sub-arc on the bounding circle between two neighboring
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Figure 2: b*(P, )

rays is of length approximately A. Since k < [§/A], there are at most 278/ A rays. Together,
the rays and circles form a polar grid P.

We also superimpose an orthogonal grid. This grid consists of horizontal and vertical
lines spaced A units apart. We denote by C the set of orthogonal grid points in B (we can
ignore everything not in B). We map each point ¢ € C to the nearest grid point of the
polar grid P to form the set C°. Note that no point ¢ € C is more than (4/2/2)\ units
from its corresponding point ¢® € C°. We now map each point p € AU B to the nearest
point of C°, to form the multiset A# and B#, and the set of distinct points A° and B° resp..
Since each point p € AU B is within distance (v2/2)A of a point of the orthogonal grid C,
it must be within distance v/2) of a point of C°, giving dist(p,p*) < V22X = /5 for all
p € AU B. Given a point p, let U(p,p) be the ball of points within distance p of p. Note
that U(p, p+ (v/2/2)A) contains only O((u/))?) points of C, so only this many points of C°,
and therefore of A°, can be in U(p, u). We summarize some properties:

e For every p € AU B, dist(p,p*) < V22X = 7/5.
e Each point p* € A# U B¥ is on a ray and a circle of P.
o A ball of radius g contains only O((p/7)?) elements of A° and B°.

Let b(P, 1) denote the smallest region containing U(b, ) N B whose boundary lies entirely
on the rays and circles of P. (see Figure 2). We claim that b(P,p) C U(b,p + ~/5), for
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all b € B. If this were not true, we would have a segment s in B, with one endpoint o==n
the boundary of #(b, ) N B and the other on the boundary of U(b, p + v/5), that does ncot
intersect P. Since s lies in B and does not intersect P, it has length less than v2\ = 7/35.
But s has endpoints on the boundaries of U(b, p) and U (b, p+v/5), implying that its lengt=h
is at least /5, a contradiction. Therefore we have

(U(b, p) N B) C (P, p) CUb, p+7/5)-

We will say that A* and B# are P-congruent with tolerance p if there exists a bijecticon
£: A* = B* and a rotation R around d such that R(a#) € b#(P, ), where b* = {(a¥), famor
all a# € A*.

Lemma 10 If A* and B¥ are P-congruent with tolerance p under bijection £ and rotatieon
R, then A and B are congruent with tolerance p + 37/5 under £ and R.

Proof. Suppose that A# and B# are P-congruent with tolerance y under £ and R. V"Ve
know that b#(P, ) C U(b#*, p+v/5) for all b* € B¥, implying that A# and B¥# are congrue—mt
with tolerance p + /5. Since dist(b,b#) < v/5, we have b¥(P,u) C U(b,p + 27/5). B—ut
for every a € A, dist(a,a*) < v/5, implying that dist(R(a), R(a*)) < /5, so A and B a_re
(g + 3v/5)-congruent. O

Lemma 11 If A and B are congruent with tolerance p under bijection £ and rotation R,
then A* and B* are P-congruent with tolerance p + 27/5 under £ and R.

Proof. Consider £ and R that admit p-congruence for A and B. If dist({(a), R(a)) < p,
then dist(£(a), R(a¥#)) < p+/5. Since U(b,p+7/5) C Ub*, p+27/5) Cb*(P,p+ 27/ 55),
we have that A# and B¥ are P-congruent with tolerance g + 27v/5 under £ and R. O

In Table 5, we give our approximate decision algorithm, which assumes that we have= a
sub-procedure TPc to test for P-congruence.

Rpolar
[1] Compute A# and b#(P, e + 27/5), b¥(P,e — 3v/5) for all b* ¢ B¥,
[2] if TPc(A#, B#, P, e + 27/5) returns NO
then return NO fi;
[3] if TPc(A#, B#,P,e — 3v/5) returns YES with (£,R)
then return YES with (¢,R) fi;
[4] return DON'T KNOW

Table 5: the polar rotation algorithm

Lemma 12 The procedure in Table 5 is a (7,7)-approzimate algorithm for approzime—ate
congruence enabled by a rotation with o fired center d.
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Proof. If the procedure returns a pair (¢, R), it is because £ and R enable P-congruence
of A* and B# with tolerance € — 37/5, so by Lemma 10, £ and R enable congruence of A
and B with tolerance (¢ — 37/5) + 37/5 = e. If the procedure says that A and B are not
e-congruent, it is because A#* and B¥ are not P-congruent with tolerance ¢ + 2v/5; but by
Lemma 11, this implies that A and B are not congruent with tolerance €. Therefore, if the
algorithm returns an answer, it is correct.

Suppose £ > 6%(}1, B)+~. Then A and B are congruent with tolerance € —7, implying
that A#* and B# are P-congruent with tolerance (¢ —7)+27/5 = € — 37/5. Therefore, when
we call TPc(A*, B¥ P e — 37/5) we get £ and R that enable e-congruence of A and B.

Suppose ¢ < eiqa(A,B) — . Then A and B are not congruent with tolerance € + 7,
implying that A# and B¥ cannot be P-congruent with tolerance ¢ + 27/5. Therefore, when
we call TPc(A#, B#, P,e + 27/5), we will conclude that A and B are not e-congruent. o

All that remains is to discuss how we efficiently determine P-congruence. If we fix a ray of
P as direction 0, then each ray of P represents a rotation of ¢ radians, where ¢ is the angle
between the ray and the 0 direction. The boundary of a region b#(P, ), b* € B#, consists
of two types of parts: pieces of rays and pieces of arcs. Because the rays are evenly spaced,
and all points of A¥ lie on a ray, points of A#* enter and leave a region b#(P,p) only at
rotations corresponding to rays. Since the regions b#(P,p), b* € B#, are closed, it suffices
to consider only those directions ¢ corresponding to rays. We can define a max-flow graph
for a rotation ¢ in the same style as in the previous sections. We let A° ={a},...,ap} and
B° = {B2,...,b%}. Let A} be the set of points of A moved to aj and By be the set of points
of B moved to b}. We define the network

G*__(R*,P,u, A* B*) = ({s,t}UUUVUW,E,c)

comp

where U = {us, ..., un} and V = {v1,...,v,} represent the points of A# and the regions of

B#_ respectively, and
W = {wf; | R*(az) € (P, p)}
represents complete bipartite subgraphs in G(R?, P, p, A¥, B#), and
E = {(s,w)]|1<i<n}

U {(v;,t)|1<j<n}

U {(w,wfy) | a: € A and R*(a3) € bi(P, 1)},

U {(wg),v;) | b; € B and R*(a3) € b(P,p)},

and c(e) = 1 foralle€ E.

The sets A* and B# are P-congruent with tolerance p if and only if for some direction ¢
corresponding to a ray, the graph G’ﬁ,mp(R“’,P, p, A* B#) has a max-flow of size n. We

present the algorithm as procedure TPc in Table 6.
We have the following:

Theorem 4 The (v,7)-approzimate algorithm for approzimate congruence enabled by rota-
tion about a fired center d given in Table 5 runs in time O(n*(8/7)(e/7)?)-
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[1] procedure TPc(A*,B¥, P, u)
[2] Let L be the set of directions represented by the rays of P;
[3] repeat
[4] Let ¢ be an arbitrary element of L;
[5] Compute a max-flow for Gﬁ,mp(R“’, P,u, A*, B#);
[6] if G%._ (R?, P,p, A*, B¥) has a max-flow of n
engendered by R* and a bijection £,
then return YES, with (¢,R®);
(7 L« L\{p}
(8] wuntil L =0;
[9] return NO

Table 6: Procedure for testing P-congruence

Proof. Since a tegion b°(P,¢) can contain O((e/7)?) points of A° and each a° € A° is
contained in O((¢/7)?) regions, we can bound the number of edges M of graph G% __ by
M = O(n(e/)?). O

Alternatively, in the same style as in Section 2, we can define graphs G°(R¥, P, pu, A°, B°)
and use the Sleator-Tarjan method. For the number of nodes N and the number of edges
M of such a graph we have N = O((6/7)?) and M = O((6/7)*(e/~)?). From this point
onwards, our arguments are identical to those given in the translation section. The results
are summarized in Table 7.

graph total time range
G rp O(n**(8/7)(e/7)*) n < (6/7)**log**(8/7)
G | O(n+(8/7)°(e/7)log(6/7)) | n > (6/2)*/*1og™*(8/7)

Table 7: Time-bounds for the (7,7)-approximate algorithm Rpoar

The previous discussion assumes that d is within distance § of every point of AU B, where
§ = max{diam(A), diam(B)}. Clearly, if 65 = diam({d} U AU B) = O($), the above time-
bounds hold, since there still will be only O(6/7) rays of P. We describe now an improved
method for cases where d is not close to AU B.

We construct A# and B# through the use of a polar and an orthogonal grid, just as
for the regular polar algorithm. As before, we space the rays of the polar grid so that the
largest circle is cut into arcs of length A = 7/ (5v/2). We have balls U (A#) and U(B*) of
diameter O(8) that contain the sets A# and B#, respectively. In testing for e-congruence,
we can reasonably assume that ¢ < §. Suppose d is in neither U (A#) nor U(B*), and let «
and 6" represent the distances from d to the closest and furthest points of U(A#*) UU(B#).
If we set 8’ = §” — a, and let C(d, ) and C(d, o + &') be the circles centered at d with radii
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C(d,a+d")

Figure 3: the ring between C(d, a) and C(d, a + §')

a and a + §, respectively, then U(A#*) UU(B#) lies entirely in the ring between C(d, a) and
C(d,a + &) (see Figure 3). We assume that §' = O(), since otherwise A and B cannot be
congruent under rotation around d for any € < 6.

Assume in the following discussion that ¢ < a. We wish to show that, when testing
A# and B# for P-congruence, it suffices to consider candidate rotation directions over only
O(e/a) radians, rather than the entire range of directions. Rotate A and construct a polar
coordinate system centered at d so that the following is true: the ray § = 0 does not intersect
U(A*) or U(B*); and the points a’ and b’ with maximum 6-coordinate in their respective
sets A¥ and B# have equal -coordinate. In an intuitive sense, we realize that since both a’
and b’ are more than distance a from d, a rotation of A¥ (B#) by ce/a radians or more (for
some constant ¢) will move a’ (§') more than ¢ units away from any member of B¥ (A#).
We make this thought formal with the following argument. If 7 is the line containing d and
a', then 7 is a supporting line to the convex hull of A#* U B#. If we rotate A* by a small
positive rotation R¥, then a’ will move to the side of 7 that does not contain B#*, so the
distance of R*(a’) to T serves as a lower bound on the distance to the nearest point of B¥.
We make two observations. Firstly, a rotation R™? of x/2 radians moves a’ away from 7
by o units, where o’ > a is the distance of a’ from d. Secondly, if dist(R¥(a’),7) is the
distance between the point R®(a’) and the line 7, then the ratio dist(R*(a’),7)/¢ decreases
monotonically with ¢, for ¢ < 7/2. These observations show that for any ¢ < 7/2, we have
dist(R?(a’),7) > 2a'p/7 > 2ap/w. Therefore, if > en/(2c), then dist(R®(a’),7) = €, and
R¢(a’) is not within distance ¢ of any point of B#. This shows that we need to consider only
O(e/a) radians of rotations in the positive direction. A similar argument gives the same
bound for negative rotations.

The arcs of C(d,a + §’) cut by the rays of the polar grid are of length O(y). Thus,
sweeping O(e/a) radians will cover an arc of length O(e(&’ + @)/a) = O(e(6 + @) /) on
C(d,a + &), which contains O(e(§ + a)/(ay)) rays. This, then, is the number of intervals
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into which we discretize the candidate rotations, and is therefore the number of max-flow
problems which we must solve.

We consider how this modified algorithm performs for various values of €, §, and a. If
§ < a, then there are O(e/v) max-flow intervals, which is less than the O(§/v) intervals
for the algorithm that assumes 85 = O(6). In other words, having the center of rotation d
placed a reasonable distance away from A and B speeds up the algorithm, since the run-
time is not dependent on the diameter of AU B. Rotating around a distant center d can be
thought of as 1-dimensional translation; this is seen when one compares the O(e/v) max-
flow computations required for distant rotation to the O((e/7)?) computations required for
general translation.

If @ < §, but we have a small value of ¢ such that ¢ < a, then there are O(eé/(ay))
intervals, which is inferior to the case where § < a, but superior to the general 853 = O(9)
algorithm. Note that a < & implies 6 = O($), but being able to put balls around A#* and
B# that are at least € away from d gains a slight improvement. For each of these three cases,
we obtain the total time complexity by multiplying the given number of max-flow intervals
by the time to compute a single max-flow.

4 General case

As is noted in [AMWW], a decision algorithm for approximate congruence enabled by rigid
motions, i.e., isometries without reflection, is sufficient to decide approximate congruence
enabled by an arbitrary isometry: ome merely tests A and B as well as A and —B for
approximate congruence under a rigid motion. For approximate congruence enabled by rigid
motions, the best known complete decision algorithm [AMWW] has running time O(n®).
The time bound is asymptotically tight, i.e., the running time is Q(n®) in the worst case, as
we shall see in the next section. So approximate decision algorithms are particular interesting
in this case. In [Sc2] a (7, 7)-approximate algorithm with running time O(n*(e/v)?) has been
presented. We improve this algorithm by the methods described in the last sections and give
two (7,7)-approximate algorithms with run-time O(n3(g/v)*) and O(n**(8/7)(e/7)*) where
§ is the maximum of the diameter of A and the diameter of B. The algorithms are based on

Lemma 13 Let I be an isometry and £ a labeling that enable approzimate congruence with
tolerance p for A and B. Let Tc,g(,) be the translation that maps ca onto I(ca). Then
there is a rotation R with center I(ca) such that R and £ enable approzimate congruence
with tolerance p for Te,1(c,)(A) and B.

Proof. Every rigid motion can be composed of a rotation around an arbitrary center and
a suitable translation [Ma]. O

The previous lemma immediately gives

Lemma 14 Let I be an isometry and £ a labeling that enable approzimate congruence with
tolerance p for A and B. Let T.,q be the translation that maps ca onto point d. There is
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o rotation centered at d such that R and £ enable approzimate congruence with tolerance

i+ dist(d, I(ca)) for T.,a(A) and B.

Let I, be a rigid motion and £ a labelling which enable e-congruence for A and B. By
Lemma 1, I, maps ca into the e-neighborhood of ¢g. The algorithm in Table 8 inspects
rotation centers in the e-neighborhood of cp and uses an (o, 3)-approximate algorithm for
testing approximate congruence under fixed center rotations. The set of rotation centers is
chosen such that for each point in the e-neighborhood of cp there is rotation center within
distance v.

[1] Let R(A, B,c,¢) be an (a, f)-approximate algorithm
for approximate congruence with tolerance ¢
under rotations with fixed center ¢ (e.g. Rortho OT R polar)

[2] possible « false;

[3] Choose a set L of points such that each point in the € neighborhood
of cg has distance v at most to its nearest point in L;

[4] forallge L do

[5] if R(T:,q(A), B,g,€) returns YES
then return YES fi;
(6] if (R(T:,4(A), B,g,€ + v) returns YES or DON'T KNOW
then possible — true fi;
od;
[7] if possible
then return DON'T KNOW
else return NO
fi;

Table 8: (a + v, B + v)-approximate algorithm for e-congruence by rigid motions

Lemma 15 The algorithm in Table 8 is an (a+v, 8 +v)-approzimate algorithm for approz-
imate congruence under rigid motions.

Proof. First we prove the correctness of the algorithm. If R(Tc,4(A), B, g,€) returns YES
for some g then A and B are e-congruent, too. If R(T¢,4(A), B,g,€ + v) returns NO for all
g € L then A and B cannot be e-congruent by Lemma 14.

Next we show that the algorithm is (a+v, 3+ v)-approximate. Let ¢ < eli(A, B) — (a+v).
For all g € L we have en%(Ts,4(A), B) > €5,,(A, B). Hence e +v < a5 (T. ,o(A), B) — a for
all g. So R(T.,,(A), B, g, + v) returns NO for all g because it is (e, -)-approximate. Now
let € > €l (A, B) + 8 +v. There is a g € L such that (T g(A), B) < €l (A, B) 4+ v by
Lemma 1 and Lemma 14. Therefore £ > ena(T.,4(A), B) + 8 and R(T. ,4(A4), B, g, ¢) returns
YES for this g because it is (-,3)-approximate. Hence the algorithm above is (a + v, 8 +v)-
approximate if R is (a, 3)-approximate. 0
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The run-time of the algorithm is O(|L|-run-time of algorithm R). L can be chosen such
that |L| = O((¢/v)?). With R = Rertho 0 R = Rypotar and @ = f = v = 7/2 we get
(7,7)-approximate algorithms for approximate congruence under rigid motions.

Theorem 5 There is a (7,7)-approzimate algorithm for approzimate congruence enabled
by rigid motions with running time O(n®(e/v)*). Let § = max(diam(A), diam(B)). There
are (7,7)-approzimate algorithm for approzimate congruence enabled by rigid motions with

running time O(n**(¢/7)*(8/7)) and O((e/71)*(n + (8/7)°(e/7)*10g(8/7)))-

Proof. By the discussion above and Theorems 3 and 4 of Section 3. O

5 Lower bound on the worst case running time of the
decision algorithm of Alt et al.

We want to show that the algorithm of Alt et al. [AMWW] for deciding e-congruence of two
sets A = {ai,...,a,} and B = {bs,.. ., b,} of n points in the plane enabled by a rigid motion
has worst case running time ©(n®). We start with a brief description of the algorithm.

If there is rigid motion that enables e-congruence, then there is a rigid motion that enables
e-congruence and maps a; and a; onto circles C, and C; with radius € and center b; and b
resp. for some 1, j, k, 1 € [1..n]. In the algorithm of [AMWW] such an isometry is searched for
all combinations of 4, j, k, and . Let ¢, 7, k, be fixed. If a; and a; are simultanously moved on
C, and C; resp., the other points of A move on algebraic curves [AMWW, Sc1] which possibly
intersect the circles with radius € centered at the points in B. If the motion of a; and a; on
Cy and C is parametrized we get a set I, of parameter values for each pair (m,p) € [1..n]?
such that a,, has distance at most ¢ to b, for the parameter values in I p. Each I,
consists of O(1) intervals. The endpoints of these intervals are sorted and the isometric
mapping corresponding to these paramater values are tested for enabling e-congruence. For
the test whether isometry I enables approximate congruence with tolerance €, a maximum
matching in Gy = (U UV, Ej) is computed, where U = {u1,...,un} represents the points in
A,V = {vy,...,v,} represents the points in B, and Ey = {{u,, v} | dist(I(a,),bs) < €}. At
first the graph and a maximum matching are computed for the isometry corresponding to
the smallest parameter value. Graph and maximum matching for the other isometries are
computed one by one, according to increasing parameter values, using graph and maximum
matching of the preceeding isometry. The maximum matching is updated by a depth first
search for an augmenting path in the residual graph started in the unmatched nodes. The
algorithm stops if a perfect matching has been found.

For a lower bound on the worst case running time of this algorithm consider Fig. 4. Let
n/4 of the points of B be in the circles Dy, ..., Dy each. n/4 of the points of A arein E; and
E, each. Furthermore n/8 points are in E3 and 3n/8 points are in E4. We assume that the
points are in general position, i.e. all distances between different point pairs are different.
Since A and B are not e-congruent, all combinations of ¢, 7, k,l are taken into consideration.
We concentrate on those Q(n*) combinations where a; is in Di, a;in Dy, by in Ey, and b in
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(D)

Figure 4: Worst case example for the algorithm of Alt et al.

E,. When a; and a; are moved on C}, and C| resp., each point of A which is in D3 moves into
the e-neighborhood of each point of B which is in Es. Consider the Q(n?) interval endpoints
corresponding to these events. At each such event a new edge, say {us, vy}, is added to the
present graph, where u, corresponds to a point in D3 and v, corresponds to a point in Es.
The set of nodes reachable from u, and v, is contained in the set of nodes corresponding to
the points in D3 U D4 U E3. Furthermore, the /8 nodes corresponding to the points in E3
and the n/4 nodes corresponding to the points in Dy form a complete bipartite subgraph.
Since we maintain a maximum matching, all nodes corresponding to the points in Eg are
already matched, when the new edge is added. Hence the new edge cannot give rise to an
augmenting path. Since (n) of the nodes corresponding to the points in D4 are unmatched,
and each of these nodes has Q(n) incident edges, DFS takes time Q(n?). Since there are
Q(n?) such events for each of the Q(n*) combinations, the overall running time is Q(n®). Alt
ot al. have shown that the running time is O(n®), so the worst case running time is O(n?).
The example above is a good example for the utility of the approximate decision algorithm
in Table 8 using Rortho- Started with 7 = €/4 in Rortho and v = € /4, the algorithm has
running time O(n) for the example above: The points in A and B are moved to at most
32 different points. The computation of these points has time complexity O(n). There are
O(1) grid points in the neighborhood of the centroid of B. For each such grid point, the
number of interval endpoints and hence the number of graphs, which are considered, is O(1).
Each of these graphs is of size O(1). Since edge capacities are bounded by =, there are O(n)
updates of edge capacities in unit steps by blocking-flow computations. Since a blocking-flow
computation takes constant time, the running time of all update steps together is O(n). The
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initial max-flow computation has time complexity O(1). So in this extreme example we have
a speedup of n” compared to the complete decision algorithm of Alt et al.

6 Conclusion

In this paper we have addressed the question of testing whether two equal-cardinality point
sets are e-congruent, under the general L, metric and a specified class of isometries. Our
algorithms are (,7)-approximate, which means that, for any € ¢ [€opt(A, B) =7, €opt(A, B) +
4], they correctly answer a query, and for € € [€opt(A, B) — 7, €opt(A, B) + 7], they either
answer correctly or choose not to answer. Our presentation culminated with an algorithm
for the case where an arbitrary isometry may be performed on one of the sets, but we
also obtained more efficient algorithms for the special cases of the isometry restricted to a
translation only or a rotation only. In each case we gave an algorithm with running time
dependent on §/~ and linear in n in the worst-case, implying that these (y,7)-approximate
algorithms are especially efficient on dense data.

A primary strength of a (y,7)-approximate algorithm is that an incorrect answer is never
returned. Algorithms that work with perturbed data must have some imprecision, but our
algorithms have the attractive feature of being prudent enough not to answer when the query
is too difficult. The imprecision inherent in a (vy,7)-approximate algorithm is exhibited in
the indecision interval, [eopt(A, B) — 7, €opt(A4, B) +1]-

Another attraction of the (v,7)-approximate algorithms presented in this paper is that
the user is offered a trade-off between precision and run-time. We mention a manner whereby
this trade-off can be used to remove the indecision of an approximate decision algorithm.
If we wish to test for e-congruence (for any isometry class) for a given value €, we likely
will first choose to execute our algorithm with a relatively large value of 7, since for each of
our algorithms, the run-time is inversely proportional to an exponent of 7. If € lies in the
indecision interval [eopt(A4, B) — 7, €opt(4, B) + 7], then we may discover that our choice of
4 was too large, for we may not be given an answer. If we alternate setting v «— 7/2 and
repeating the test until receiving an answer, the cost of our procedure will be dominated by
the final test. The effect of our approach is that the total run-time is within a constant factor
of a single test which chooses for 7 the “optimal” choice of |€opt(A, B) — €|. This means that
we can replace v by K. = |eopt(A, B) — €| in the time bounds of our algorithms, and in the
process obtain complete, not approximate, algorithms:

Theorem 6 There ezist decision algorithms for testing e-congruence under translation
with time-complezity O(n'®(e/K.)*), under rotation with time-complezity O(n®(e/K.)?) and
O(n*3(8/K.)(¢/K.)?), and under general isometry with time-complexity O(n®(e/K.)*) and
O(n'5(6/K.)(e/K.)*). Here, K. = |eopt(A, B) — &l.

These new expressions agree with our intuition, since we believe that testing for e-congruence
should be harder when ¢ is close to €,t(4, B). We can also adapt our methods to estimate
eopt(A, B) through a search procedure, where the tolerance of the estimate replaces  in the
time bound of the algorithm.
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This means that we can replace 7 by |€,pi(A, B) —¢| in the time bounds of our algorithms,
and in the process obtain complete, not approximate, algorithms. These new expressions
agree with our intuition, since we believe that testing for e-congruence should be harder
when ¢ is close to €qpt(A, B). We can also adapt our methods to estimate (A, B) through
a search procedure, where the tolerance of the estimate replaces  in the time bound of the
algorithm.

Known decision algorithms for e-congruence are expensive, and therefore unsuitable for
many applications. Our response to this situation has been to develop approximate decision
algorithms, which enjoy substantially improved time bounds by perturbing the point sets
in order to impose structure. Our algorithms never return an incorrect answer, and have
bounds on the query values for which they can choose to give no answer. We feel that this
combination of speed, correctness, and bounded imprecision characterize our methods as
practical algorithms for point matching.
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