
J Geod (2007) 81:733–749
DOI 10.1007/s00190-007-0143-3

ORIGINAL ARTICLE

Approximate decorrelation and non-isotropic smoothing
of time-variable GRACE-type gravity field models

Jürgen Kusche

Received: 15 August 2006 / Accepted: 4 February 2007 / Published online: 27 February 2007
© Springer-Verlag 2007

Abstract We discuss a new method for approximately
decorrelating and non-isotropically filtering the monthly
gravity fields provided by the gravity recovery and cli-
mate experiment (GRACE) twin-satellite mission. The
procedure is more efficient than conventional Gaussian-
type isotropic filters in reducing stripes and spurious pat-
terns, while retaining the signal magnitudes. One of the
problems that users of GRACE level 2 monthly gravity
field solutions fight is the effect of increasing noise in
higher frequencies. Simply truncating the spherical har-
monic solution at low degrees causes the loss of a sig-
nificant portion of signal, which is not an option if one is
interested in geophysical phenomena on a scale of few
hundred to few thousand km. The common approach is
to filter the published solutions, that is to convolve them
with an isotropic kernel that allows an interpretation as
smoothed averaging. The downside of this approach is
an amplitude bias and the fact that it neither accounts for
the variable data density that increases towards the poles
where the orbits converge nor for the anisotropic error
correlation structure that the solutions exhibit. Here a
relatively simple regularization procedure will be out-
lined, which allows one to take the latter two effects
into account, on the basis of published level 2 prod-
ucts. This leads to a series of approximate decorrelation
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transformations applied to the monthly solutions, which
enable a successive smoothing to reduce the noise in
the higher frequencies. This smoothing effect may be
used to generate solutions that behave, on average over
all possible directions, very close to Gaussian-type fil-
tered ones. The localizing and smoothing properties of
our non-isotropic kernels are compared with Gaussian
kernels in terms of the kernel variance and the resulting
amplitude bias for a standard signal. Examples involving
real GRACE level 2 fields as well as geophysical models
are used to demonstrate the techniques. With the new
method, we find that the characteristic striping pattern
in the GRACE solutions are much more reduced than
Gaussian-filtered solutions of comparable signal ampli-
tude and root mean square.

Keywords GRACE · Time-variable gravity ·
Smoothing · Decorrelation

1 Introduction

The gravity recovery and climate experiment (GRACE)
mission provides measurements of the time-variable
Earth gravity field (Tapley et al. 2004). Combined with
simultaneous and complementary observations and
model results, it enables one to quantify interactions
between atmosphere, hydrosphere and geosphere. The
satellite gravity observations are facilitating closure of
equations expressing mass change globally and locally.
On land, they provide the change in terrestrial water
storage and allow in hydrography to estimate the evapo-
transpiration from the terrestrial water budget (Rodell
et al. 2004). At sea, they provide the change in ocean
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water mass, unlike satellite radar altimetry, which can-
not distinguish between steric and non-steric sea-level
changes (Chambers et al. 2004).

GRACE is a twin-satellite formation, with two iden-
tical spacecraft chasing each other in similar near-polar
orbits. A K-band ranging system (KBR) provides the
biased intersatellite range as well as its derivatives with
respect to time. In addition, both satellites are equipped
with geodetic GPS receivers as well as accelerometry for
removing non-gravitational forces prior to data analysis.
The data reduction for GRACE is described in Flecht-
ner (2003) and Bettadpur (2004). Unconstrained solu-
tions are generated and published on a regular base by
the Center for Space Research (CSR) at the University
of Texas, GeoForschungsZentrum Potsdam (GFZ), and
the Jet Propulsion Laboratory (JPL), which form the
GRACE science data system (SDS).

However, due to the sensor error characteristics, the
mission geometry, and possibly due to limitations in cur-
rent analysis strategies and background models, these
unconstrained GRACE monthly models cannot be used
to their full spectral extent without modification. Being
a single-orbital plane mission, the ability of GRACE
to recover short-time temporal variations in gravity is
limited. Schrama and Visser (2007) demonstrated the
effect of background model errors on the accuracy of
monthly fields based upon closed-loop simulations. In
Wahr et al. (2006), error estimates were derived from
non-annual variability, fitting quite well to published
‘calibrated’ errors. They, and many other authors, have
stressed the need to smooth the GRACE models by
spectral convolution with a kernel of gradually decreas-
ing power, in order to cope with the increasing noise
and artefacts (‘stripes’) present in the GRACE mod-
els for higher degrees. This is particularly important if
geoid changes are being inverted to changes in the height
of an equivalent column of water loading the Earth or
the associated vertical deformation effect, because load
Love numbers decrease quickly and the corresponding
kernels amplify the higher degree noise even more.

Low-degree truncation is not a real solution to the
problem, because one discards a larger part of the sig-
nal in this case, and it is difficult to focus on regional
applications like computing basin averages. Finally, con-
straining or regularization of the monthly normal equa-
tions is a different option to smooth out the noise in
the fields, but it is available only to those who pro-
cess the actual GRACE KBR and GPS data. Regu-
larized solutions have been provided by the GRACE
SDS, mainly motivated by the fact that in September
2004 the GRACE satellites went through a 61/4 reso-
nance orbit, thus resulting in a degraded spatial coverage
around this month. Furthermore, because GRACE sci-

entific applications vary widely in their need for smooth-
ing, one would wish to have a whole ‘multiresolution’
scale of smoothed versions of each individual field avail-
able. This would mean the GRACE analysis centers
(ACs) would have to provide a whole set of differently
constrained versions for each field to the users, which
appears unlikely at the moment.

Isotropic Gaussian smoothing (i.e., degree-dependent
down-weighting of the Stokes coefficients) of the
GRACE monthly gravity fields had been proposed in
Wahr et al. (1998), based upon methods outlined in
Jekeli (1981). Swenson and Wahr (2002) refined iso-
tropic smoothing by devising three methods where the
spectral weights derive from statistical optimization
principles well-known in inverse theory. The problem
of the optimal degree of smoothing has also been stud-
ied e.g., by Seo and Wilson (2005), Chen et al. (2005),
and these authors suggest to base the choice on a com-
parison with independent geophysical data in terms of
the signal energy (the global root mean square (RMS)).

Fengler et al. (2006) have embedded isotropic
smoothing in a formal wavelet multiresolution concept.
They used a kernel with cubic-polynomial behaviour
in the spectral domain for analysing GRACE models.
At the same time, Schmidt et al. (2006) applied simi-
lar isotropic kernels in a direct least-squares estimate to
in-situ GRACE data, circumventing the use of spheri-
cal harmonics. Han et al. (2005) devised a non-isotropic
smoothing kernel whose spectral Legendre coefficients
depend on both degree and order. In fact, their ker-
nel is constructed as a Gaussian where the averaging
radius varies with the harmonic order. In consequence,
the Gaussian is compressed in the North-South direction
as compared to the East-West direction. Finally, Swen-
son and Wahr (2006) designed a non-isotropic kernel in
order to decorrelate the GRACE coefficients.

Smoothing the spherical harmonic solutions by con-
volution with a kernel that itself presents a smoothed
form of the spherical Dirac kernel, may be viewed as a
particular method of regularization. If one accepts this
view, it is obvious that a regularization bias will be intro-
duced: it has been noticed by several authors (e.g. Chen
et al. 2005, 2006; Klees et al. 2006) that time-series of
smoothed area averages of surface mass change from
GRACE are being biased towards zero in amplitude
(with a negligible phase shift typically if signals outside
the area are removed), and some authors (Velicogna
and Wahr 2006; Fenoglio-Marc et al. 2006) have tried
to counteract this effect by deriving amplitude rescaling
factors.

Another issue in the discussion is that if one agrees
that Tikhonov-type regularization (or other constraining
methods that ‘improve’ the original normal equations)
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can be viewed under the same framework than post-
analysis smoothing of the least-squares solution, one
will accept that in favour of Tikhonov-type regular-
ization, several optimality principles exist. Here, the
geodetic community has extended expertise with param-
eter choice strategies for finding the proper degree of
smoothing in a particular problem.

The approach that we pursue here is along this line:
a non-isotropic two-point kernel function shall be con-
structed such that its application to the monthly GRACE
solutions ‘mimics’ the Tikhonov-type regularization of
the original normal equation system. To this end, a ‘syn-
thetic error covariance matrix’ computed from GRACE
orbits, and an a-priori signal covariance matrix will be
used. As we shall see, this computation does not require
particularly accurate or dense orbits or an accurate func-
tional model of GRACE data processing. However, it
does take into account the North-South correlation
structure of the fields quite efficiently. The degree of
smoothing itself can be modified through the weight-
ing of the two covariances and the power-law within
the signal covariance. Consequently, we call this
method ‘approximate decorrelation and non-isotropic
smoothing’.

The paper is organized as follows: in Sect. 2, we
will briefly review the conventional degree- and degree/
order- dependent smoothing techniques. Then, in Sect. 3,
the new method of non-isotropic smoothing by
approximate decorrelation and successive regulariza-
tion is introduced. This leads to two-point smoothing
kernels being defined. Two performance measures that
apply for isotropic and non-isotropic smoothing will be
introduced in Sect. 4. Finally, on this basis, we will inves-
tigate our smoothing kernels numerically in Sect. 5. They
will be applied to a set of time-variable GRACE gravity
models as well as to a set of geophysical models.

2 Smoothing time-variable gravity fields: an overview

2.1 Motivation

The purpose of this section is to briefly introduce isotro-
pic smoothing for global gravity field models, as a pre-
requisite for the new method to be discussed in
the sequel. We will also briefly discuss degree/order-
dependent, non-isotropic smoothing techniques.

Let x denote a vector containing a finite set of fully
one-normalized spherical harmonic coefficients of
degree l and order m, complete to degree L

xlmq =
{

clm

slm
for

q = 1
q = 2

, (1)

such that a finite approximation of the Earth’s gravita-
tional potential at location r, λ, θ can be written as

T = GM

r

L
∑

l=0

l
∑

m=0

2
∑

q=1

(

R

r

)l

xlmqȲlmq = aTx, (2)

where GM and R are the Earth’s gravitational constant
times mass and the reference length scale of the spheri-
cal harmonic representation, and Ȳlmq(λ, θ) are the fully
normalized spherical harmonics. Let further x̂ be an
unbiased least-squares (LS) estimate based on a month
of GRACE data and referenced to a long-term mean
model, and let x̂γ denote a smoothed version to be dis-
cussed in the following, where the numerical value of γ

indicates the degree of smoothing.
Grids zi = z(γj, θk, t) of geophysically relevant quanti-

ties, like monthly geoid changes or surface mass changes,
collected in z, are then derived by linear spectral oper-
ations ẑγ = Fx̂γ and basin or area averages σ = σ(t),
e.g., of surface mass or water storage variation follow in
the same way from the estimates, σ̂γ = gT x̂γ . The F and
g contain the spectral conversion factors or ‘spherical
symbols’ that convert geoid change into the aforemen-
tioned quantities, as well possible spherical harmonic
basin function coefficients. A discussion regarding eval-
uation and averaging on the ellipsoid might take place
elsewhere in the literature, but is not covered here.

2.2 Degree-dependent smoothing

For degree-dependent smoothing of the gravity model,
the ‘filtered’ spherical harmonic coefficients are simply
given by

x̂lmq;γ = wl;γ x̂lmq (3)

or, written in matrix form (Wγ = diag(wl;γ )),

x̂γ = Wγ x̂, (4)

where the wl;γ are degree-dependent weighting factors,
which can be given an interpretation as Legendre coeffi-
cients of an isotropic smoothing kernel

Wγ (λ, θ , λ′, θ ′) =
∞
∑

l=0

l
∑

m=0

2
∑

q=1

wl;γ Ȳlmq(λ, θ)Ȳlmq(λ′, θ ′)

=
∞
∑

l=0

(2l + 1)wl;γ Pl(cos ψ), (5)

with cos ψ = sin θ sin θ ′
cos(λ − λ′) + cos θ cos θ ′ and Pl

being unnormalized Legendre polynomials.
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The smoothed gravity potential will be

Tγ (λ, θ) =
∫

�

Wγ (λ, θ , λ′, θ ′)T(λ′, θ ′)dω′

=
∫

�

δ
(λ,θ)

Wγ
(λ′, θ ′)T(λ′, θ ′)dω′ (6)

where the integration extends over the unit sphere �,
and

δ
(λ,θ)

Wγ
(λ′, θ ′) =

∫

�

Wγ (λ′, θ ′, λ′′, θ ′′)δ(λ,θ)(λ′′, θ ′′)dω′′. (7)

In Eq. (7), δ(λ,θ) denotes the spherical Dirac kernel
located at λ, θ , and δ

(λ,θ)

Wγ
is a smoothed version of δ(λ,θ).

The global RMS of the smoothed solution is damped by
the factor

αT,Wγ
=

x̂TWT
γ Wγ x̂

x̂T x̂
, (8)

which is the Rayleigh quotient of WT
γ Wγ in the direction

of the field.
We will now relate our concept to the multiresolution

scheme of Fengler et al. (2006). For the moment, we
will assume that γ represents a regularization parame-
ter controlling the ‘width’ of the kernel, with Tγ → T for
γ → 0. This is obviously the case for the kernel variance
discussed in Sect. 4.1. Let γ = γ (j) be associated with
some integer scale parameter j ⊂ N0, such that γ → 0
for j → ∞, and let all wl;γ ≥ 0. Then wl;γ as a function
of degree l and scale index j is called the generator of a
‘scaling function’ if

w0;γ = 1 (9)

lim
j→∞

wl;γ = 1 (10)

0 ≤ wl;γ ≤ wl;γ ′ for j ≤ j′. (11)

The first condition (Eq. 9) says that the kernel should
be globally normalized, which is useful because only
then it retains the global average of a smoothed func-
tion. One the other hand, this should not remain unchal-
lenged, because in many applications it is rather a
regional average that we are interested in. We postpone
the discussion of this issue to Sect. 4.2. The second condi-
tion (Eq. 10) requires the kernel to approach the spher-
ical Dirac kernel in the limit γ → 0, which is equivalent
to Tγ approaching T. The third condition (Eq. 11) helps
in establishing a hierarchy of smoothing kernels.

In the infinite-dimensional case, the γ (j)-smoothed
functions Tγ (j), if assumed as belonging to the space
L2(�) of square-integrable functions originally, consti-
tute a hierarchy of nested function spaces V0 ⊂ V1 ⊂

· · · ⊂ L2(�) with L2(�) being the closure of the unifica-
tion of all individual spaces VJ . This is a multiresolution
scheme (cf. Freeden et al. 1998), and it is a useful prop-
erty, because we can decompose every square-
integrable function on the sphere then uniquely into a
sum of an initial smoothed version and some ‘incremen-
tally smoothed’ versions. The mentioned scaling func-
tion will be explicitly given by Eq. (5), with γ = γ (j).

In the finite-dimensional case considered here, the
third condition (Eq. 11) simply comes down to

0 ≤ αT,Wγ
≤ αT,Wγ ′ for j ≤ j′ (12)

with α according to Eq. (8) for any field T. That is, the
hierarchy of kernels, indicated by γ (j), translates itself
into a monotonically increasing damping of the global
RMS. Concluding, we note that (a) virtually all kernels
proposed for smoothing on the sphere (e.g., Jekeli 1981;
Freeden et al. 1998) fulfill these conditions, and (b) they
are easy to extend to non-isotropic smoothing kernels
as we will see in Sect. 3.

The most common choice with the analysis of
GRACE gravity fields, popularized by Wahr et al. (1998),
is the Gaussian kernel. It has been discussed together
with a few other kernels in Jekeli (1981). For the Gauss-
ian,

W(ψ) = 2b
e−b(1−cos ψ)

1 − e−2b
, (13)

with

b = ln(2)

1 − cos( r
R )

, (14)

where r = Rψ is the ‘half-width’ parameter, where the
kernel drops from 1.0 at ψ = 0 to 0.5, which is com-
monly used to indicate the degree of smoothing. We will
keep in mind that a more general parameter γ can be
related to r and therefore write γ = γ (r). The spectral
weights are derived from using recursion formulae

w0;γ (r) = 1

w1;γ (r) =
(

1+e−2b

1−e−2b − 1
b

)

wl+1;γ (r) = − 2l+1
b

wl;γ (r) + wl−1;γ (r).

(15)

2.3 Degree- and order-dependent smoothing

If we allow the weights in the diagonal matrix Wγ to
depend on both spherical harmonic degree and order,

x̂lmq;γ = wlmq;γ x̂lmq (16)

there is now a certain flexibility that has been used in
the past to design filters or regularization operators that
adopt to the geographical latitude and therefore to the
data density of a satellite mission. When applying this to
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the spherical Dirac kernel in location λ′, θ ′, we arrive at
the corresponding non-isotropic filter function centered
at the same location,

Wλ′,θ ′
γ (λ, θ) =

∞
∑

l′=0

l
∑

m′=0

2
∑

q′=1

wlmq;γ Ȳlmq(λ′, θ ′)Ȳlmq(λ, θ)

(17)

which possesses, viewed as a function of λ, θ , the spher-
ical harmonic coefficients wlmq;γ Ȳlmq(λ′, θ ′).

The conditions set by Eqs. (9), (10) and (11) can be
adopted to this case by requiring w001;γ = 1, wlmq;γ → 1
for γ → 0, and wlmq;γ ≤ wlmq;γ ′ for j ≤ j′. If the last con-
dition (Eq. 11) is met, a j-ordered sequence of smooth-
ing kernels will maintain the monotonically increasing
damping expressed by Eq. (12).

As mentioned before, the kernel devised by Han et al.
(2005) is of the type Eq. (16). They chose wlmq;γ =
wl;r(m), where wl;r(m) is according to Eq. (15) and r(m) =
r1−r0

m1
m + r0 varies linearly with m starting with given r0

to reach a maximal value r1 at a chosen degree m1.
By formulating an empirical model for correlations

between spherical harmonic GRACE coefficients of like
parity, Swenson and Wahr (2006) designed an approx-
imate degree- and order-dependent decorrelation filter
along a similar line as we propose in Sect. 3. The weight
matrix Wγ is provided by their Eq. (5). This model,
however, is derived from inspecting the GRACE coeffi-
cients themselves; it is not based on assumptions on the
orbital geometry or any error source. Then, for smooth-
ing the decorrelated field, the subsequent application of
Gaussian filters is proposed.

3 Non-isotropic smoothing by approximate

decorrelation and regularization

For the method discussed in this article, we will con-
ceptually go back to the LS estimation of the spherical
harmonic model based on data. With the normal equa-
tions matrix N and right-hand side vector b, x̂ originates
from

x̂ = N−1b. (18)

If we knew a prior signal covariance E{xxT} = S =
M−1, and if we knew the GRACE error covariance
E{x̂x̂T} = E = N−1, we could compute

x̂γ (1) = (N + M)−1b = (N + M)−1Nx̂ = Wx̂, (19)

which corresponds, loosely speaking, to a Bayesian esti-
mate.

This assumes that E = N−1; however because one
does not know the GRACE background model (tides,

atmospheric pressure) errors very well, this is not ful-
filled but one could at least use a ‘calibrated’ error
covariance. Smoothing monthly GRACE models
through the use of Eq. (19) had been proposed by
Swenson and Wahr (2002) and applied by several
authors. In case the signal and error covariance depend
only on the spherical harmonic degree, the resulting fil-
ter equals to what is otherwise known as a ‘Wiener’ filter
(Sasgen et al. 2006).

Additional smoothing will be achieved through down-
weighting the signal covariance by a factor a

x̂γ (a) = (N + aM)−1b = (N + aM)−1Nx̂ = Wγ (a)x̂, (20)

which comes down to regularization of the original nor-
mal equations. However, the common GRACE user
does not have access to the GRACE normal equation
matrix. Moreover, for designing a filtering technique
that applies to the level-2 products, it will not be required
to use the original normal matrix but an easy-to-
compute approximation might do as well.

The same argument holds for the signal covariance
matrix, whose exact evaluation will require bringing
together an extended set of realistic geophysical models.

Instead, one might want to use approximations Ē = N̄
−1

and S̄ = M̄
−1

, and replace Eqs. (19) and (20) by

ˆ̄xγ (1) = (N̄ + M̄)−1N̄x̂ = W̄x̂ (21)

and

ˆ̄xγ (a) = (N̄ + aM̄)−1N̄x̂ = W̄γ (a)x̂. (22)

Let E = Ē + �E and S = S̄ + �S, then it is not too
difficult to see that

W̄γ (a) = Ŵγ (a)Wγ (a) (23)

with

Ŵγ (a) = I − Wγ (a)R
III

+Wγ (a)E(I − RI)(I − RII)−1RIIS−1, (24)

and we used the abbreviations RI = �EE, RII = �SS

and RIII = �ES.
From Eqs. (23) and (24), we understand that the fil-

ter matrix W̄γ (a) is a distorted version of the statistically
optimal but damped filter matrix Wγ (a), and the distor-
tion Ŵγ (a) decreases for increased smoothing (larger a).
In principle, Eqs. (23) and (24) would allow estimat-
ing the effect of using approximate covariances, if one
succeeds in expressing those relative errors RI , RII and
RIII . We do not pursue this issue further due to space
limitations.
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Furthermore, after some manipulations of Eq. (20),
it becomes clear that

Wγ (a) =
(

I + (a − a′)Wγ (a′)N
−1M

)−1
Wγ (a′). (25)

Thus, for a′ ≤ a, and a′, a connected to j′, j, Eq. (12)
holds. The consequence is that a monotonically increas-
ing set of a-values guarantees the monotonic decrease
in the solution RMS. This is a well-known result for
Tikhonov-type regularization.

With a dense matrix Wγ as defined in this section,
the filtering of the spherical harmonic coefficients can
be written as

x̂lmq;γ (a) =
L

∑

l′=0

l
∑

m′=0

2
∑

q′=1

w
l′m′q′

lmq;γ (a)
x̂l′m′q′ . (26)

The w
l′m′q′

lmq;γ (a)
establish a non-isotropic two-point kernel

Wγ (a)(λ
′, θ ′, λ, θ) =

L
∑

l=0

l
∑

m=0

2
∑

q=1

L
∑

l′=0

l
∑

m′=0

2
∑

q′=1

w
l′m′q′

lmq;γ (a)

× Ȳl′m′q′(λ′, θ ′)Ȳlmq(λ, θ). (27)

Applied to the spherical Dirac function in location λ′, θ ′,
the filter function becomes

W
λ′,θ ′

γ (a)
(λ, θ) = Wγ (a)(λ

′, θ ′, λ, θ)

=
∫

�

Wγ (a)(λ
′′, θ ′′, λ, θ) δλ′,θ ′

(λ′′, θ ′′)dω′′

=
L

∑

l=0

l
∑

m=0

2
∑

q=1

wlmq;γ (a)Ȳlmq(λ, θ) (28)

with spherical harmonic coefficients wlmq;γ (a) =
∑∑∑

w
l′m′q′

lmq;γ (a)
Ȳl′m′q′(λ′, θ ′) when viewed as a function of λ, θ .

Equation (9) can be adapted to this case by requiring

w
l′m′q′

001;γ = δl′
0 δm′

0 δ
q′

1 . Because Wγ (0) = I, Eq. (10), here

w
l′m′q′

lmq;γ → δl′
l
δm′

m δ
q′
q for γ → 0, is automatically fulfilled.

It has already been explained that Eq. (12) holds.

The coefficients w
l′m′,q′

lmq;γ (a)
are not necessarily symmet-

ric in l, l′, m, m′ or q, q′, as the matrix Wγ (a), due to Eq.
(20), will not be symmetric. Consequently, the number
of coefficients to be stored will be of the order L4 for
maximum degree L; using a four-byte representation,
one would have to allocate about 90 Mb (250 Mb by
790 Mb) for L = 70(90 by 120), which does not pose a
major problem.

4 Performance measures

4.1 Definition of a smoothing radius using the kernel
variance

The smoothing properties of a kernel function are
related to its localization properties in space: a ‘narrow’
kernel smooths less than a ‘broad’ kernel. It will turn out
very useful to describe the localization of a non-isotro-
pic kernel by one single number, which we may identify
with the parameter γ used in an abstract sense so far.
In this way, we can compare isotropic and non-isotropic
kernels, or non-isotropic kernels generated in a different
way. However, this disqualifies conventional measures
known from the theory of radially symmetric functions
on the sphere like the half-width radius (where the value
of the kernel drops to 50% of its maximum value), the
distance of the first zero-crossing or other definitions
of the correlation length, as these measures are hardly
representative for a non-symmetric function.

Instead, we will turn to the square root of the vari-
ance of the normalized squared kernel, as proposed by
Narcowich and Ward (1996). The variance is the second
centralized moment of a probability density function
(PDF) defined on the sphere. It is an integral measure of
its spreading about the expectation and it can be defined
independent of introducing a particular coordinate sys-
tem for mapping the surface of the sphere. The variance
is independent of location for isotropic kernels; but this
clearly does not hold for non-isotropic kernels.

However, in order to be able to interpret a function
F as a PDF, we must enforce that this function pos-
sesses unit integral over the sphere, and it must be non-
negative. Both conditions are not necessarily fulfilled
with our non-isotropic kernel functions. Therefore, we
will define the variance of a smoothing kernel Wγ =
W

λ′,θ ′
γ (λ, θ) via F = W̃2

γ (see e.g. Freeden et al. 1998),
where

W̃γ (λ, θ) = 1
|Wγ |L2(�)

Wγ (λ, θ)

=
∑∞

l=0
∑l

m=0
∑2

q=1 wlmq;γ Ȳlmq(λ, θ)
(

∑∞
l=0

∑l
m=0

∑2
q=1 w2

lmq;γ

)1/2
(29)

and we have used wlmq;γ =
∑ ∑ ∑

w
l′m′q′

lmq;γ Ȳl′m′q′(λ′, θ ′)
for general non-isotropic filters, and wlmq;γ = wl;γ for
isotropic filters.

One has to keep in mind that, due to this definition,
negative side-lobes of the original kernel map into pos-
itive ones, and the resulting variance will be larger that
when one would consider the central lobe of a kernel
alone. It is clear that the squared normalized kernel is
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non-negative and
∫

�

W̃2
γ dω = |W̃γ |2L2(�) = 1

|Wγ |2L2(�)

∫

�

Wγ
2dω = 1. (30)

The variance is defined as (Narcowich and Ward 1996)

σ 2 =
∫

�

(e − µ)2W̃2
γ dω (31)

where e = (sin θ cos λ, sin θ sin λ, cos θ)T is an arbitrary
location on the sphere, and µ is the expectation operator
pointing to the centre of probability mass of W̃2

γ , i.e.,

µ =
∫

�

eW̃2
γ dω. (32)

This centre of mass is inside the sphere (see Freeden
et al. 1998, Fig. 5.5.1, for a graphical representation of the
situation.) As the unit vector can be represented through
the unnormalized degree-one spherical harmonics e =
(Y111, Y112, Y101)

T , we can write the components of µ as

µx = (W̃2
γ )111 =

∫

�
W̃2

γ Y111dω

µy = (W̃2
γ )112 =

∫

�
W̃2

γ Y112dω

µz = (W̃2
γ )101 =

∫

�
W̃2

γ Y101dω.
(33)

Here by (W̃2
γ )lmq we denote the unnormalized spheri-

cal harmonic coefficients of W̃2
γ . Because of (e − µ)2 =

1 + (µ)2 − 2eTµ and
∫

−2eTµW̃2dω = −2(µ)2, the var-
iance is then

σ 2 = 1 − (µ)2 = 1 −
1

∑

m=0

2
∑

q=1

(

(W̃2
γ )1mq

)2
. (34)

The degree-one coefficients of W̃2
γ in Eq. (34) could

be computed through a double series employing triple
integrals of spherical harmonics, relating them to the
coefficients of Wγ . The triple integrals may be expressed
by Wigner-3j symbols (Edmonds 1974) and computed
from recursion procedures (Schulten and Gordon 1976),
but this is very cumbersome as the series would have to
extend to the maximum spherical harmonic degree L

present in Wγ .
Instead, we apply a ‘pseudo-spectral’ method, where

W̃2
γ is generated on a suitable grid on the sphere point-

wise from Eq. (29). A subsequent spherical harmonic
analysis provides the degree-one coefficients for Eq.
(34). The square root of the variance, scaled by the
Earth’s radius, Rσ = R

√
σ 2 can serve as a represen-

tative smoothing ‘radius’ parameter. It will be identi-
fied with the single smoothing parameter γ mentioned
earlier that we will use for measuring and comparing
smoothness throughout this article.

Table 1 Square root of variance for the Gaussian smoothing oper-
ator, and the scaling bias for two different area cap sizes (with
maximal degree L = 70)

r (km) Rσ (km) β(Rψ = 1, 500 km) (%) β(Rψ = 3, 000 km)(%)

400 339 85 93
650 549 74 87
900 759 63 82
1,000 841 59 80
1,500 1,248 41 69

Table 2 Square root of variance and standard bias for the non-
isotropic smoothing operator, for different a, p = 4, and λ′ = 0◦,
θ ′ = 90◦

a (-) Rσ (km) β(Rψ =1, 500km) β(Rψ =3, 000km)

(%) (%)

a = 1 × 1011 438 97 98
a = 1 × 1012 556 94 97
a = 1 × 1013 759 89 94
a = 1 × 1014 1,130 79 89
a = 1 × 1015 1,861 57 76

Table 3 Square root of variance and standard bias for the non-
isotropic smoothing operator, for different latitudes θ ′, a = 1 ×
1013, p = 4, and λ′ = 0◦

θ (◦) Rσ (km) β(Rψ = 1, 500 km) (%) β(Rψ = 3, 000 km) (%)

15 1,526 94 97
30 934 92 95
45 787 91 95
60 757 90 94
75 755 90 94
90 759 89 94

For the Gaussian, we have collected this information
in Table 1. We can assign γ = γ (r) = σ(r), where r is
the half-width radius in Eq. (13). For the non-isotropic
kernels introduced in Sect. 3, we can assign a relation
γ = γ (a) = σ(a). It is important to bear in mind that
the variance of the kernel, unlike with isotropic kernels,
depends on the location on the sphere. The square root
of the variance is given in Tables 2 and 3 in Sect. 5.

4.2 Definition of a standard scaling bias

Smoothing the time-variable gravity signal by means of
convolution with a kernel function reduces noise, but it
also suppresses parts of the signal. From Eq. (8), we have
already seen the overall damping of the signal RMS. In
many applications of the GRACE monthly fields, one
is interested in constructing a time-series of basin-wide
averages for a region of interest, and extracting annual
and semi-annual amplitude and phases from this (Wahr
et al. 1998).
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It has been noticed that the aforementioned bias due
to smoothing leads to a significant amplitude reduction
in these amplitude estimates in the first place, while
the phase distortion is usually small if leakage signals
of the surrounding regions are removed from model-
ling. Velicogna and Wahr (2006) rescaled their estimates
for mass loss in Antarctica by a factor of 1/0.62, while
Fenoglio-Marc et al. (2006) applied 1/0.56 for the annual
amplitude of non-steric sea level in the Mediterranean
Sea.

While it is not surprising that this effect depends on
the particular signal (in- and outside the area of inter-
est), the smoothing kernel itself, and on the shape of the
basin, it is a valid question if we can characterize and
compare it here as a property of the kernel for some
sort of ‘standard’ basin and standard signal. It appears
natural to define a standard area as disc-shaped with
given radius, and the standard signal as being uniform
across the standard area and zero outside. The scaling
bias derived in this way is intended to be representative
to what can be expected for a basin-wide oscillation of
a near-uniform signal in reality, although it might be too
optimistic for basins with a distinct non-spherical shape.

The relative scaling bias is the ratio of the smoothed
signal Tγ (λ, θ) averaged for a region O(λ, θ), compared
to the the original non-smoothed signal T(λ, θ) averaged
for the same region. Writing this in the general case for
non-isotropic smoothing gives

βO,Wγ ,T =
TOWγ

TO
=

∫

�
Odω

∫

�
OTdω

∫

�
OWγ

Tdω
∫

�
OWγ

dω

=
∑∞

l=0
∑l

m=0
∑2

q=1
∑∞

l′=0
∑l′

m′=0
∑2

q′=1 w
l′m′q′

lmq;γ olmqxl′m′q′

∑∞
l=0

∑l
m=0

∑2
q=1 olmqxlmq

(35)

where olmq denotes the spherical harmonic coefficients
of the basin function (one inside, zero outside), and xlmq

are the coefficients of the original signal T(λ, θ).
Here we assumed that Eq. (9) holds as discussed

before for the non-isotropic case in Sect. 3, i.e., 1
o001

∑ ∑ ∑

w
l′m′q′

001;γ ol′m′q′ = w001;γ = 1. An alternative way
to define the scaling bias, as quantity that should be zero
in the ideal case, would be

β ′
O,Wγ ,T = 1 − βO,Wγ ,T . (36)

From Eq. (35), all three quantities [kernel shape

(through w
l′m′q′

lmq
), basin shape (through olmq) and signal

(through xl′m′q′)] contribute to the bias. Further inves-
tigations might continue with splitting the signal spec-
trally into inner (target) and exterior (leakage) signal,
T(λ, θ) = TO(λ, θ) + T�/O(λ, θ), but we do not pur-
sue this direction here due to lack of space. For the
finite-dimensional case considered here, Eq. (35) can be
summarized as

βO,Wγ ,T = oTWγ x

oTx
. (37)

Now, for a disc-shaped standard basin of radius ψ

and surface area 4πo
(0,0)

001 , located at the North pole for
simplicity,

O
(0,0)
ψ (λ, θ) =

∞
∑

l=0

l
∑

m=0

2
∑

q=1

o
(0,0)

lmq
Ȳlmq(λ, θ) (38)

o
(0,0)

l01 = 1
4π

ψ
∫

θ=0

2π
∫

λ=0

Ȳl01(θ , λ) sin θdθdλ

= 1
2(2l+1)

(

Pl−1(cos ψ)−Pl+1(cos ψ)
)

(39)

o
(0,0)

001 = 1
2
(1 − cos ψ)

with all other o
(0,0)

lmq
= 0. Rotating the disc instead to an

arbitrary position λ′, θ ′, we arrive at

O
(λ′,θ ′)
ψ (λ, θ) =

∞
∑

l=0

l
∑

m=0

2
∑

q=1

o
(λ′,θ ′)
lmq

Ȳlmq(λ, θ) (40)

o
(λ′,θ ′)
lmq

= o
(0,0)

l01 Ȳlmq(λ′, θ ′). (41)

Note that our disc signal is not normalized to a unit
integral, consequently there is no additional ‘disc factor’
to be considered. An area-wide standard signal of unit
amplitude is characterized by

xnmq = onmq. (42)

The ‘standard scaling bias’ for a disc signal centered
at λ′, θ ′, of extension ψ , will then be

β
O

(λ′ ,θ ′)
ψ ,Wγ ,O(λ′ ,θ ′)

ψ

=
∑∞

l=0
∑l

m=0
∑2

q=1
∑∞

l′=0
∑l′

m′=0
∑2

q′=1 w
l′m′q′

lmq;γ o
(λ′,θ ′)
lmq

o
(λ′,θ ′)
l′m′q′

∑∞
l=0

∑l
m=0

∑2
q=1(o

(λ′,θ ′)
lmq

)2

=
∑∞

l=0
∑l

m=0
∑2

q=1
∑∞

l′=0
∑l′

m′=0
∑2

q′=1 w
l′m′q′

lmq;γ o
(0,0)

l01 Ȳlmq(λ′, θ ′)o(0,0)

l′01 Ȳl′m′q′(λ′, θ ′)
∑∞

l=0
∑l

m=0
∑2

q=1(o
(0,0)

l01 )2(Ȳlmq(λ′, θ ′))2
(43)
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or, in brief, it will equal to the Rayleigh quotient of W

in the direction of o

β
O

(λ′ ,θ ′)
ψ ,Wγ ,O(λ′ ,θ ′)

ψ

= oTWo

oTo
. (44)

For the Gaussian and for our non-isotropic kernels,
the corresponding scaling bias values are provided in
Tables 1, 2 and 3, for discs of radius 1,500 and 3,000 km
located at the equator.

In fact, one might think of maximizing the Rayleigh
quotient βO,Wγ ,O (or minimizing β ′

O,Wγ ,O) for a given,
possibly non-spherical, area O by an appropriate choice

of the w
l′m′,q′

lmq;γ (a)
. This is equivalent to the spherical

Slepian problem (for a recent account cf. Simons and
Dahlen 2006 and the references therein), and it leads
to a series of Eigenvalue problems that are difficult to
solve for non-spherical areas.

5 Application to GRACE monthly gravity fields

and to geophysical gridded fields

5.1 Data

In what follows, the method outlined in Sect. 3 will
be first applied to Level-2 GRACE monthly gravity
field solutions, provided by the GRACE project. To this
end, we have retrieved exemplary monthly solutions,
and removed a static long-term (‘mean’) gravity field as
a background reference. This means that our residual
fields have to be considered as anomalies with respect
to time.

Because this study is only concerned with the smooth-
ing techniques, we omit details regarding the reference
time, handling of dealiasing products and ocean pole
tides (cf. e.g. Flechtner 2003; Bettadpur 2004), which
are important in the geophysical interpretation. Further-
more, using the kernel as described in Wahr et al. (1998)
or Chao (2005), including the indirect potential effect
by the loading of the Earth, they have been converted
to a description of equivalent water column height.

For the sake of comparison with geophysical data,
gridded ocean bottom pressure (OBP) fields from the
consortium for estimating the circulation and climate of
the ocean (ECCO) project (Stammer et al. 1999) and
gridded land hydrological fields from the land dynam-
ics (LaD) project (Milly and Shmakin 2002) have been
retrieved. Both fields are referred to the mean of year
2002, the OBP product is converted point-wise to equiv-
alent water column change employing the relation dh =
dp

gρw
that connects pressure anomalies dp, gravity g, sea-

water density ρw, and water column change dh, and the

resulting fields are added to produce one unified repre-
sentation of the mass redistribution.

Subsequently, both the GRACE field time-series and
the (overlayed) geophysical field time-series are
smoothed using the method described in Sect. 3, and
Gaussian filtering has been applied for comparison. Note
that smoothed GRACE solutions and corresponding
geophysical fields for the same time frame have been
compared to each other by many authors (cf. e.g.
Tapley et al. 2004), and this is not the intention of the
present paper. Rather, we want to see how the new
method, being designed to deal with the (approximated)
GRACE error structure, performs for the GRACE fields
but also for the gridded geophysical products, which,
compared the GRACE products, do not appear to
exhibit a strong non-isotropic signal structure.

For the construction of a synthetic dense error covari-
ance matrix for the GRACE solutions (Sect. 5.2), we
investigated two exemplary pairs of orbits: (1) GRACE
A and B orbits for August 2003 with 10s sampling,
kindly provided by Drazen Švehla (Technical Univer-
sity Munich). We deliberately removed day 240, which
is also missing in the GRACE gravity field solution of
this month, in order to approximate reality somewhat
closer. We thus retain 30 days. (2) Level-1b GRACE A
and B orbits provided by the GRACE project (through
the GFZ Information System and Data Center) for May
2004 with 60 s sampling. Here we removed days 140
and 145–147, retaining 27 days. However, as it turned
out, the constructed smoothing kernels in Sect. 5.3 are
fortunately not sensitive to the specific choice of orbit
regarding accuracy, sampling, the specific month, or the
consideration of missing days.

5.2 Approximate error covariance and signal
covariance

Throughout this study, we use

(Ē)
l′m′q′

lmq
=

⎛

⎝a1

t0+t
∫

t0

(

H̄A
lmq(t) − H̄B

lmq(t)
)

×
(

H̄A
l′m′q′(t) − H̄B

l′m′q′(t)
)

dt

⎞

⎠

−1

(45)

as an approximation for the GRACE error covariance,
where

H̄X
lmq =

(

R

rX(t)

)l

Ȳlmq(λX , θX), (46)

and X ∈ {GRACE A, B}.
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Equation (45) corresponds to the inverse normal
equation matrix in case one processes the GRACE KBR
inter-satellite range-rate observation following the
so-called energy conservation approach (see Jekeli 1999,
and the references therein). It implicitly assumes that the
GRACE satellite velocities are perfectly known, which
is certainly not true. Whereas this somewhat hampers
the interpretation of E as a measure of the real GRACE
errors, for our purposes we will retain it as it is easy to
compute given a representative pair of orbits (see Sect.
5.3), it takes the orbital characteristics into account, and
it matches the likely GRACE error quite well as will
be elaborated below. This type of matrix and its block-
diagonal relatives have been used in error propagation
studies. The factor a1 absorbs the proper scaling of the
KBR inter-satellite observation, as well as a possible
calibration factor.

Equation (45) was created for this study starting with

degree l = 2 complete to degree L = 70. We set w
l′m′,q′

lmq;γ (a)

= δ
l′m′,q′

lmq
for l < 2 and w

l′m′,q′

lmq;γ (a)
= 0 for l > L.

It is well known that Eq. (45) exhibits a block-diag-
onal structure when the spherical harmonic coefficients
are arranged in an order-degree scheme. In our case, the
maximum correlation 0.89 within an order-block was
reached for order m = 34 (degrees 38 and 40). Across
the order-blocks, the maximum correlation is much less
with 0.07 for degree/order 18/15 and 61/61 (during the
review phase of this paper Srinivas Bettadpur (CSR)
kindly provided a full GRACE error covariance matrix
to us, for which the maximum correlation within the
order-blocks was found to 0.91 and across the order-
blocks to 0.16).

The signal covariance matrix is modelled as diagonal,
following a power law in the spherical harmonic degree,

(S̄)
l′m′q′

lmq
= l−p

a2
δl′

l δm′
m δ

q′
q , (47)

where p is a factor that will be chosen based on geo-
physical models, as discussed below. We can absorb the
scaling factor a2 by defining the regularization parame-
ter a as

a = a2

a1
. (48)

The degree variances follow from Eqs. (45) and (47)
as

(Ē)l =
∑l

m=0
∑2

q=1(Ē)
l′m′q′

lmq

2l + 1
(49)

(S̄)l =
∑l

m=0
∑2

q=1(S̄)
l′m′q′

lmq

2l + 1
= l−p

a2
. (50)
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Fig. 1 Error and signal geoid power spectra (mm2): (Ē)l accord-
ing to Eq. (49), with a1 ∼ 1.4 × 10−15. (S̄)l according to Eq. (50)
with p = 4 and a2 = 0.0625. Empirical signal spectrum (circles)
according to Eq. (51) from overlay of ECCO and LaD models
converted to geoid height changes. Average power (crosses) of
monthly GRACE solution of the years 2002–2004 (the increasing
branch of the spectrum may indicate the error spectrum)

Empirical signal degree variances are, correspondingly,
computed from

cl =
∑l

m=0
∑2

q=1(x
l′m′q′

lmq
)2

2l + 1
. (51)

In Fig. 1, we show two different empirical geoid power
spectra (in mm2) for the data mentioned in Sect. 5.1, as
well as corresponding well-fitting models used to con-
struct our kernels in the sequel. The circles (◦) in Fig. 1
are derived according to Eq. (51) from the overlay of the
ECCO and LaD models, expanded in spherical harmon-
ics and converted to geoid changes by applying Farrell’s
(1972) load Love numbers. They are used as an empirical
signal spectrum here. A model (S̄)l according to Eq. (50)
is fitted to this spectrum, with p = 4.0 and a2 = 0.0625.
It is obvious that any p ∼ 4 will give a good approxima-
tion. We will work with p = 4 for the remainder of this
article.

Of course, it is questionable if the ECCO and LaD
models represent the true power in the time-variable
gravity field. Land hydrology and OBP are not reduced
in the GRACE processing, thus these fields are expected
to explain the largest part in the signal as seen by
GRACE, but other contributors (e.g., post-glacial
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Fig. 2 Cross-section of the normalized smoothing kernel

W
λ′ ,θ ′

γ (a)
(λ, θ), North-South (circles) and East-West (asterisk) direc-

tion; for a = 1 × 1013, p = 4, and λ′ = 0◦, θ ′ = 90◦. Distance (km)
is measured along equator and meridian, respectively

rebound a.k.a. glacial isostatic adjustment) exist. How-
ever, we expect that our method is not overly sensitive
towards misspecifications in the signal covariance.

The crosses (×) in Fig. 1 are derived as the aver-
aged power in the individual monthly GRACE solutions
from analysing the years 2002–2004. It is very likely
that the increasing branch of this spectrum—beyond
about degree 24—is dominated by noise, as all geo-
physical models exhibit decreasing power for increas-
ing harmonic degree. However, it appears very difficult
to make a similar statement concerning the low-degree
decreasing branch of the spectrum, as there is little val-
idation possibility for GRACE. Assuming tacitly that
the increasing branch represents the higher-degree part
of the GRACE error spectrum, we can try to adjust the
synthetic error covariance matrix (Eq. 45) to it by vary-
ing a1 in a way that (Ē)l (Eq. 49) matches the empirical
spectrum. This is the case for a1 ∼ 1.4 × 10−15, shown in
Fig. 1.

From these fits, we may assume that an a somewhere
in the order of ∼1013 will provide the ‘optimal’ non-iso-
tropic (Swenson and Wahr 2002) kernel, which equals
to the ‘Wiener’ filter in the terminology of Sasgen et al.
(2006) for isotropic smoothing. However, several assum-
ptions were involved in coming up with this number, as
discussed before, and in our exemplary computations it
will become clear that a somewhat stronger smoothing
appears visually superior.
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Fig. 3 Cross-section of the normalized smoothing kernel

W
λ′ ,θ ′

γ (a)
(λ, θ), North-South (circles) and East-West (asterisk) direc-

tion; for a = 1 × 1013, p = 4, and λ′ = 0◦, θ ′ = 60◦. Distance (km)
is measured along equator and θ ′ = 60◦-parallel, respectively

5.3 Non-isotropic smoothing kernels

Figures 2, 3, 4, 5, 6 show cross-sections of the smoothing
kernels W

λ′,θ ′

γ (a)
(λ, θ) that we constructed on the sphere

in the way described before, centered at location λ′, θ ′.
For better comparison, all kernels are normalized before
drawing (scaled by 1/W

λ′,θ ′

γ (a)
(λ′, θ ′)). In Figs. 2, 3, 4, the

kernel for fixed parameter a and p is located on differ-
ent parallels along the λ′ = 0◦ meridian. The North-
South (N-S) cross-section W

λ′,θ ′

γ (a)
(λ′, θ) is drawn along

this meridian, but the East-West (E-W) cross-section
W

λ′,θ ′

γ (a)
(λ, θ ′) is constructed along the corresponding par-

allel for ease of interpretation. This means that a part of
the difference in the cross-sections is due to the meridi-
onal convergence.

However, from Fig. 2, showing the kernel located at
the equator, a few general properties of our kernels
become quite obvious: The kernel is ‘tighter’ in the N-S
direction than in E-W direction, which is clearly due to
the GRACE error structure modelled in the covariance
matrix. It possesses negative sidelobes, which are much
more pronounced for the N-S direction than for the E-W
direction. Negative sidelobes mean that the estimated,
unregularized gravity field for these regions gets a nega-
tive weight in the convolution procedure: the field which
is correlated in N-S direction due to track direction is
decorrelated. One can understand this in the following
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Fig. 4 Cross-section of the normalized smoothing kernel
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(λ, θ), North-South (circles) and East-West (asterisk) direc-

tion; for a = 1 × 1013, p = 4, and λ′ = 0◦, θ ′ = 30◦. Distance (km)
is measured along equator and θ ′ = 30◦-parallel, respectively
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Fig. 5 Cross-section of the normalized smoothing kernel

W
λ′ ,θ ′

γ (a)
(λ, θ), North-South (circles) and East-West (asterisk) direc-

tion; for a = 1 × 1012, p = 4, and λ′ = 0◦, θ ′ = 90◦. Distance (km)
is measured along equator and meridian, respectively

way: a positive correlation may be seen as a bias, and
convolution with a kernel possessing negative sidelobes
is equivalent to applying a differentiation filter, which
removes the bias.
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Fig. 6 Cross-section of the normalized smoothing kernel

W
λ′ ,θ ′

γ (a)
(λ, θ), North-South (circles) and East-West (asterisk) direc-

tion; for a = 1 × 1014, p = 4, and λ′ = 0◦, θ ′ = 90◦. Distance (km)
is measured along equator and meridian, respectively

Negative sidelobes also exist for the kernel designed
by Swenson and Wahr (2006, cf. Fig. 4). This is a clear
difference to the non-isotropic Gaussian proposed by
Han et al. (2005), which will always result in positive
weights in all directions. One may further compare with
the isotropic kernels shown in Schmidt et al. (2006, Figs.
2, 3, 4, 5), or Fengler et al. (2006, Fig. 2), which pos-
sess similar negative sidelobes but are, in contrast to our
kernels, isotropic and generated from a function that
analytically prescribes their Legendre coefficients.

When moving towards higher latitudes (Figs. 3 and 4),
the E-W cross-section changes little—apart from the
mentioned meridional convergence effect in our projec-
tion—but the N-S profile gets asymmetric in that the
negative sidelobe facing the pole decreases and the one
facing the equator increases in magnitude. Again, we
can ascribe this to the error structure modelled in Eq.
(45).

In Figs. 5 and 6, the kernel is again located at the
equator but the parameter a is decreased and increased
by one order of magnitude. Compared with Fig. 2, it
becomes clear that this parameter controls the overall
smoothing effect and can be used much in the same way
as the half-width radius for the Gaussian kernel, thus
adapting the smoothing to the desired application. We
will quantify this effect in Sect. 5.4 using the variance of
the non-isotropic kernel as a measure for smoothness.
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Fig. 7 Non-isotropically (left) and Gaussian (right) smoothed
GRACE field, converted to equivalent water height, May 2003.
From top to bottom, left column: a = 1013 (max = 0.52 m,
RMS = 0.07 m), a = 1014 (max = 0.38 m, RMS = 0.05 m),

a = 1015 (max = 0.23 m, RMS = 0.04 m). From top to bottom, right

column: half-width radius 400 km (max = 0.45 m, RMS = 0.07),
650 km (max = 0.30, RMS = 0.05), 900 km (max = 0.23 m,
RMS = 0.04 m)

Finally, we have compared the kernel shown in Fig. 1
when computed using the two sets of GRACE orbits as
mentioned in Sect. 5.1. The parameter a had to be scaled
by a factor of 30

27 × 6 to account for the different number
of epochs (30 days at 10 s sampling versus 27 days at 60 s
sampling) used in the evaluation of Eq. (45), but then
the two corresponding kernels match each other with
less than 2% difference overall. Thus, we decide that it
makes no significant difference what orbit is used, even
if these orbits belong to different months. This is not

surprising as the actual track structure, which does
become visible in geoid error plots from Eq. (45), maps
itself in the very high degrees that are efficiently damped
by our kernels.

5.4 Smoothing radius and scaling bias

Tables 2 and 3 summarize the computation of the square
root of the kernel variance and the standard scaling
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Fig. 8 Non-isotropically (left) and Gaussian (right) smoothed
GRACE field, converted to equivalent water height, March 2004.
From top to bottom, left column: a = 1013 (max = 0.52 m,
RMS = 0.07 m), a = 1014 (max = 0.44 m, RMS = 0.05 m),

a = 1015 (max = 0.26 m, RMS = 0.04 m). From top to bottom,
right column: half-width radius 400 km (max = 0.56 m, RMS =
0.08), 650 km (max = 0.36, RMS = 0.05), 900 km (max =
0.26 m, RMS = 0.04 m)

bias for several versions of our non-isotropic smoothing
kernel. We have varied the smoothing parameter a,
the latitude of the kernel location, and the radius of
the standard basin. A radius of 1,500 km corresponds
roughly to a basin the size of the Mediterranean Sea
(Fenoglio-Marc et al. 2006). The variance follows from
Eq. (34) and the standard bias from Eq. (43).

A comparison with Table 1 is instructive, as it reveals
in how far a non-isotropic kernel corresponds to a Gauss-
ian either of equal variance or of equal standard bias, and
for which latitude. For example, at the equator, the non-
isotropic kernel for a = 1013 corresponds to a Gaussian
of half-width 900 km in terms of variance but it exhib-
its a smaller bias as β is closer to one. Generally the
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Fig. 9 Original (top), non-isotropically (bottom left) and Gaussian (bottom right) smoothed geophysical surface mass field, March 2002.
Top: (max = 0.55 m, RMS = 0.04), bottom left: a = 1014 (max = 0.20 m, RMS = 0.027 m), bottom right: 650 km (max = 0.20, RMS =
0.027)

standard bias for the non-isotropic kernels considered
here is smaller than for the Gaussian.

5.5 Non-isotropically smoothed GRACE monthly
models

In this section, we have applied both the new non-
isotropic technique (Sects. 3 and 5.2) and the Gaussian
smoothing to exemplary GRACE solutions (May 2003
and March 2004) of the first release provided by the
GRACE project. These solutions suffered from large
oscillations in the degree-2 coefficients so we have
removed these from the plot. Consequently, all plots
in Fig. 7 (8) show the same May 2003 (March 2004)
GRACE gravity solution, referred to a mean field, for
degrees l = 3, . . . , 70 and converted to equivalent water
height changes in metres. In the left column of Figs. 7
and 8, smoothing using the non-isotropic method with
a = 1013, a = 1014 and a = 1015 was applied; in the right
column, the smoothed results for Gaussian kernels with
400, 650 and 900 km half-width are provided.

It is difficult to compare these plots visually in a com-
prehensive way. It has to be mentioned that the left–right

correspondence of plots in Figs. 7 and 8 is chosen some-
what arbitrary based on the global RMS of the signal,
as we cannot uniquely assign a certain Gaussian filter to
a non-isotropic one. This is, αT,Wγ (a)

for the left columns
equals approximately to αT,Wγ (r)

in the right column.
What can be said without doubt is that for the non-

isotropically filtered fields, the signal magnitude
(maximum and RMS values as given in the captions
of Figs. 7 and 8 ) appears stronger than for the corre-
sponding Gaussian-filtered field, whereas the back-
ground North-South stripings are damped much more.
This is the main result of this paper. However, it is also
obvious that the equatorial kernel variance, being much
the same for the top left and bottom right plot of Figs. 7
and 8, fails to indicate which Gaussian and non-isotro-
pic filter correspond to each other visually, or in terms
of reduced global RMS.

5.6 Non-isotropically smoothed geophysical gridded
fields

For a comparison, we have also smoothed a geophysi-
cal gridded field from ECCO/LaD (March 2002) in the
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same way. These products are not ‘error-free’, but they
are not supposed to exhibit a similar directional error
structure (stripes) like the GRACE products. Moreover,
the geophysical products are not excessive in amplitude
as the non-smoothed GRACE fields are when converted
in surface mass.

Figure 9 illustrates the original field, which was then
expanded in spherical harmonics and subsequently fil-
tered. Again, the chosen parameter a and the Gaussian
radius r were matched to produce results of comparable
signal RMS, although the correspondence is now
different from the previous GRACE example. The
results are very close, and it does not appear that true
longitudinal structures (if any) are oversmoothed by the
non-isotropic method.

6 Concluding remarks

We have described a new method for the approximate
decorrelation and non-isotropic smoothing of GRACE
monthly solutions. Smoothing is necessary due to the
error structure in these gravity fields.

Our method differs from previous proposals in that it
uses an approximate, fully populated, but easily comput-
able error covariance matrix and that it employs a set of
regularizations of the spherical harmonic coefficients.
The smoothing kernels that follow from this setting
are non-isotropic, tighter in N-S direction compared to
E-W direction, and they possess negative sidelobes that
depend in amplitude on the geographical latitude. The
kernels are generally position-dependent. As a result,
the predominant North-South error structure in the
GRACE fields is approximately decorrelated. We find
that the striping patterns are much more reduced than in
Gaussian filtered solutions of comparable signal ampli-
tude and RMS. This is the main result of this paper.
For two exemplary monthly fields, this is clearly demon-
strated here.

In contrast, for a gridded geophysical field assumed as
error-free, the non-isotropic smoothing and the Gauss-
ian smoothing lead to visually very similar results. There
is however no unique one-to-one correspondence
between the smoothed fields resulting from the two tech-
niques; this makes direct comparisons difficult. Also, the
proposed smoothing kernels depend on a tuning param-
eter that is less straightforward to interpret compared to,
e.g., a Gaussian smoothing radius.
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