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A rich nonparametric analysis of the finite normal mixture model is obtained by work-
ing with a precise truncation approximation of the Dirichlet process. Model fitting is carried
out by a simple Gibbs sampling algorithm that directly samples the nonparametric poste-
rior. The proposed sampler mixes well, requires no tuning parameters, and involves only
draws from simple distributions, including the draw for the mass parameter that controls
clustering, and the draw for the variances with the use of a nonconjugate uniform prior.
Working directly with the nonparametric prior is conceptually appealing and among other
things leads to graphical methods for studying the posterior mixing distribution as well as
penalized MLE procedures for deriving point estimates. We discuss methods for automating
selection of priors for the mean and variance components to avoid over or undersmoothing
the data. We also look at the effectiveness of incorporating prior information in the form of
frequentist point estimates.

Key Words: Almost sure truncation; Blocked Gibbs sampler; Nonparametric hierarchical
model; Penalized MLE; Pólya urn Gibbs sampling; Random probability measure.

1. INTRODUCTION

The finite normal mixture model has been the subject of much research interest from a
Bayesian perspective. See, for example, Ferguson (1983), Escobar (1988, 1994), Diebolt and
Robert (1994), Escobar and West (1995), Chib (1995), Richardson and Green (1997), and
Roeder and Wasserman (1997). As far back as Ferguson (1983) it has been realized that the
Dirichlet process (Ferguson 1973, 1974) can be used as a powerful nonparametric approach
for studying this model. However, earlier attempts for Dirichlet process computing involving
mixtures of normals were based on Monte Carlo simulation methods which were difficult
to implement for large sample sizes and tended to produce limited posterior inference. See
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Ferguson (1983), Lo (1984), and Kuo (1986). It was not until the work of Escobar (1988,
1994) and Escobar and West (1995) using Gibbs sampling methods that a comprehensive
approach first became available for Dirichlet process computing in the normal mixture
model. Also see MacEachern (1994), West, Müller, and Escobar (1994), Müller, Erkanli,
and West (1996) and MacEachern and Müller (1998). This article looks at the use of a
new Gibbs sampling method described by Ishwaran and Zarepour (2000) and Ishwaran
and James (2001), which differs from the Gibbs sampling approaches mentioned above,
by its direct involvement of the nonparametric prior in the updating scheme. The key to
this method involves exploiting a precise truncation approximation to the Dirichlet process;
which as a by-product allows us to draw values directly from the nonparametric posterior,
thus leading to several computational and inferential advantages.

1.1 HIERARCHICAL DESCRIPTION OF THE MODEL

In the finite normal mixture problem, we observe data X = (X1, . . . , Xn), where the
Xi are iid random variables with the “true” finite normal mixture density

fQ0(x) =
∫

�×�+
φ(x|µ(y), τ(y)) dQ0(y) =

d∑
k=1

pk,0φ(x|µk,0, τk,0), (1.1)

where φ(·|µ, τ) represents a normal density with a mean of µ and a variance of τ > 0 and
where we write Y = (µ(Y ), τ(Y )) for the two-dimensional mean and variance, where µ(·)
extracts the first coordinate of Y (the mean) and τ(·) extracts the second coordinate (the
variance).

Based on the data X, we would like to estimate the unknown mixture distribution Q0,
which is completely unspecified except for the assumption that it is a finite distribution.
Thus, not only are the number of support points 1 ≤ d < ∞ unknown, but so are the
weights {pk,0} and the atoms {(µk,0, τk,0)}, all of which are to be estimated. It is worth
emphasizing at this point that the problem studied here where the number of support points
d is unknown is different than the case where d is unknown but bounded by some fixed
known value d0: 1 ≤ d ≤ d0 < ∞. In the bounded dimension case, it was argued by
Ishwaran, James, and Sun (2001) that one could use a finite dimensional Dirichlet prior
as an effective method for modeling Q0. Also see Chen (1995) for more on the inference
in finite mixtures with bounded dimension. However, for the unbounded case considered
here we adopt the method of modeling Q0 through the use of a Dirichlet process to allow
for mixture models of arbitrary dimension d. Although here we use a truncated Dirichlet
process, we will see that in Theorem 1 and Corollary 1 of Section 2.1 that these lead to
asymptotic approximations to the posterior that are exponentially accurate.

Notice that the model derived from (1.1) also contains hidden variables Yi, since it can
also be expressed as

(Xi|Yi)
ind∼ N(µ(Yi), τ(Yi)), i = 1, . . . , n

(Yi|Q0)
iid∼ Q0(·) =

d∑
k=1

pk,0 δZk,0(·),
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where δZk,0(·) denotes the discrete measure concentrated atZk,0 = (µk,0, τk,0). Therefore, a
full analysis of the normal mixture problem should involve inference for both the unknown
mixing distribution Q0, as well as the unknown hidden variables Yi. However, Dirichlet
process computing based on the Pólya urn Gibbs sampling method of Escobar (1988, 1994)
has traditionally focused only on the analysis for the hidden variables Yi. This is an artifact
of the Pólya urn approach which is used to circumvent the difficulty in working directly with
the Dirichlet process. Although this clever method leads to a versatile Gibbs sampler for
Yi, one needs to convert these posterior values into inference for Q0, which in the end will
require some form of approximation to the Dirichlet process [see Theorem 3 from Ishwaran
and James (2001) for a general method for converting posterior Yi values into draws from
the posterior random measure]. Our argument is that one might as well start with a Dirichlet
process approximation, which as a by-product naturally produces draws from the posterior
of Q0, while at the same time leading to several computational/inferential advantages.

1.2 OUTLINE AND GOALS OF THE ARTICLE

The original Pólya urn Gibbs sampler developed by Escobar (1988, 1994) has evolved
over time to deal with various issues. In Escobar and West (1995), a method for updating
the Dirichlet mass parameter for controlling clustering was developed, while MacEach-
ern (1994), West, Müller, and Escobar (1994), and Bush and MacEachern (1996) presented
various solutions for dealing with the slow convergence seen with the original sampler. An-
other delicate issue is the problem associated with nonconjugacy, which has led to various
approaches and modifications to the original algorithm. See MacEachern and Müller (1998),
Neal (2000), and Walker and Damien (1998).

The goal of this article is to introduce a new type of Gibbs sampler, which we refer to
as a blocked Gibbs sampler, as a competitive computational procedure for Dirichlet process
computing in finite normal mixture models (the details are presented in Section 3). The
proposed Gibbs sampler is conceptually easy to understand, even for novices to Bayes
nonparametric MCMC methods, and is relatively straightforward to implement; requiring
only the ability to draw values from simple conditional distributions, and requires no tuning
parameters. It handles all the issues mentioned earlier, including (a) the ability to draw
posterior values for Q0; (b) a simple update for the Dirichlet mass parameter; (c) the ability
to deal with nonconjugacy; and (d) good mixing properties. The methodology for the blocked
Gibbs sampler was given by Ishwaran and Zarepour (2000) and Ishwaran and James (2001)
in a general setting. The contribution of this article will be to give the many details for
applying this method to the normal mixture problem, such as the details surrounding the
selection of priors and hyperparameters for the mean and variance components, which can
be critical to the amount of smoothing of the data and hence whose choice are critical for
inference of Q0. In particular, as an automated procedure for dealing with smoothing, we
develop an inverse sampling method for the variance based on a nonconjugate uniform prior
(see Section 3.2.1). Another contribution are the graphical methods we have developed for
converting the large amount of posterior information contained in draws from the posterior
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random measure into interpretable inference for Q0. We also look at the use of a Monte
Carlo penalized MLE as a method for converting posterior information into a simple point
estimate for the mixing distribution. In Section 4 we study the use of informative priors
using frequentist point estimates for Q0 and study their effect on the posterior through
graphical methods as well as by considering the resulting penalized estimators (see also
Section 2.4). Finally, we present Theorem 1 and Corollary 1 in Section 2.1 as a tool for
choosing Dirichlet process truncations which adequately approximate the posterior. The
results are easy to use in practice and can be used in conjunction with the output of the
blocked Gibbs sampler. The methods are illustrated by our examples of Sections 4 and 5.

2. HIERARCHICAL PRIORS FOR THE RANDOM MEASURE

The Bayesian nonparametric approach for estimating the true normal mixture model
(1.1) is based on the following hierarchical model

(Xi|Yi)
ind∼ N(µ(Yi), τ(Yi)), i = 1, . . . , n

(Yi|P ) iid∼ P

P ∼ PN , (2.1)

where

PN (·) =
N∑

k=1

pk δZk
(·)

is a random probability measure and Zk = (µk, τk) are iid variables with distribution H

independent of p = (p1, . . . , pN ). Therefore, the use of the prior PN is a nonparametric
method for modeling the unknown mixture distribution Q0.

The prior PN is an approximate Dirichlet process, defined by choosing its random
weights pk by the stick-breaking construction

p1 = V1 and pk = (1 − V1)(1 − V2) . . . (1 − Vk−1)Vk k = 2, . . . , N, (2.2)

whereV1, V2, . . . VN−1 are iid Beta(1, α) random variables and we setVN = 1 to ensure that∑N
k=1 pk = 1. By the construction given by Sethuraman (1994) (see also McCloskey 1965;

Sethuraman and Tiwari 1982; Donnelly and Joyce 1989; Perman, Pitman, and Yor 1992),
it easily follows that PN converges almost surely to a Dirichlet process with measure αH ,
written as DP(αH), that is, PN

a.s.→ DP(αH). We refer to H as the reference distribution
and α as the Dirichlet mass parameter. See also Muliere and Tardella (1998) who discussed
“ε-truncation” approximations to the Dirichlet process.

2.1 TRUNCATION VALUES FOR N

It is straightforward to choose a value for N that leads to a precise approximation. A
useful method for selecting N is to choose a value that yields a marginal density for X
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almost indistinguishable from its limit. Let

mN (X) =
∫ ( n∏

i=1

∫
�×�+

φ(Xi|µ(Yi), τ(Yi))P (dYi)

)
PN (dP )

denote the marginal density of (2.1). Similarly, let m∞ denote the marginal density of the
normal mixture hierarchical model (2.1) subject to a a DP(αH) random measure for P . See
the Appendix for a proof of the following L1 error bound.

Theorem 1. We have,∫
�n

|mN (X) −m∞(X)| dX ≤ 4

[
1 − IE

{(
N−1∑
k=1

pk

)n}]
≈ 4n exp(−(N − 1)/α), (2.3)

where pk are the stick-breaking random weights defined by (2.2).
Notice that the sample size has a modest effect on the bound for a reasonably large

value of N . For example, if n = 1,000, and if we use a truncation value of N = 50, then
even for the fairly large value α = 3, we get an L1 bound of 3.2 × 10−4. Therefore, even
for fairly large sample sizes, a mere truncation of N = 50 leads to a hierarchical model that
is effectively indistinguishable from one based on the DP(αH). Of course the adequacy of
this truncation will also depend upon α, but even if this is an unknown parameter we can
still monitor (2.3) by looking at the value for α in our Gibbs sampler. See Ishwaran and
Zarepour (2000) for more details.

The bound provided by Theorem 1 also implies an error bound for the truncated Dirich-
let process posterior. This may be somewhat expected, as the marginal density is a key
component in the posterior. The posterior error bound is described in terms of the posterior
clustering behavior of the hidden variables Y1, . . . , Yn, or equivalently in terms of the pos-
terior behavior of classification variables K1, . . . ,Kn. Later in Section 3 we will see that
one of the keys to the blocked Gibbs sampler is that it exploits the equivalent representation
for Yi in (2.1) as ZKi , where

(Ki|p) iid∼
N∑

k=1

pk δk(·), i = 1, . . . , n,

are classification variables identifying the Zk corresponding to a specific Yi. Thus, given
the classification vector K = (K1, . . . ,Kn) one can describe the clustering behavior of the
Yi.

Notice that K ∈ {1, . . . , N}n under PN , while K under the DP(αH) is the vector of
Ki variables defined by

(Ki|p) iid∼
∞∑

k=1

pk δk(·), i = 1, . . . , n,

for random weights pk defined by the stick-breaking procedure (2.2) for k = 1, 2, . . ..
Thus, under the Dirichlet process, K ∈ K∞, where K∞ = {1, 2, . . .}n. As a consequence
of Theorem 1 we can prove the following:
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Corollary 1. We have,∫
�n

( ∑
K∈K∞

|πN (K|X) − π∞(K|X)|
)
m∞(X) dX = O(n exp(−(N − 1)/α)),

whereπN (K|X) andπ∞(K|X) are the posteriors for K under PN and the Dirichlet process,
DP(αH), respectively.

Thus, Corollary 1 tells us that the posterior for K under PN is exponentially accurate
when integrated with respect to the marginal densitym∞ under the Dirichlet process. Notice
that the bound also shows how N could be selected to depend upon the sample size n to
ensure that the posterior will be asymptotically accurate. See the Appendix for a proof of
the corollary.

2.2 PRIORS FOR THE REFERENCE DISTRIBUTION AND DIRICHLET MASS PARAMETER

To complete the prior specification for PN we use the following priors for Zk =
(µk, τk) and α:

(µk|θ, σµ) iid∼ N(θ, σµ), k = 1, . . . , N

(τ−1
k |ν1, ν2)

iid∼ Gamma(ν1, ν2)

(α|η1, η2) ∼ Gamma(η1, η2)

θ ∼ N(0, A). (2.4)

Here we are writing Gamma(ν1, ν2), for example, to denote a gamma distribution with
shape parameter ν1 and scale parameter ν2, so that the mean for the distribution in this
parameterization is ν1/ν2.

In (2.4) we include a mean parameter θ for the µk values. This is very useful when the
data are uncentered (as in our two examples of Sections 4 and 5). The conditional mean for
θ is approximately

IE(θ|µ) ≈ 1
N

N∑
k=1

µk

under a noninformative prior (i.e., for large values of A; in our examples we used A =
1,000), and thus θ should be centered near the mean of X which allows the prior PN to
properly model µk,0 when the data are uncentered. It is also important to select a value for
σµ that will produce values µk that blanket an interval where we might anticipate the true
mean values µk,0 will lie in. Therefore, as we anticipate θ to be centered at the mean for the
data, a good choice is to set

√
σµ equal to four times the standard deviation of the data X.

To properly model τk,0 we should be careful in selecting the choice of the shape and
scale parameters ν1 and ν2 in the inverse gamma prior used for τk. The eventual choice
plays a critical role in the amount of smoothing of the data, and directly effects the number
of estimated clusters. One good choice is to let ν1 = ν2 = 2, which ensures that τk will
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take values between 0 and 3 with high probability. This selection works well when the
data have been rescaled so that there are no unreasonably large or small values, and have
been rescaled so that the true variances τk,0 will lie in the range of values between 0 and
3. However, trying to rescale the data to satisfy these constraints can sometimes require a
fair amount of tuning, and if not properly done the inverse gamma prior for τk will act as
an informative prior. A more automated procedure dispenses with conjugacy and instead
employs a uniform prior for τk:

τk
iid∼ Uniform[0, T ], k = 1, . . . , N. (2.5)

Selecting the upper bound T can be based on various automated rules, such as setting T to
equal the variance of the data. Another nice feature of the uniform prior is that it allows for
a simple inverse sampling method for updating τk in the Gibbs sampler. See Section 3.2.1
for details. We will investigate the use of a uniform prior in Section 5.

Finally, the values for η1 and η2 in the prior for α (the Dirichlet mass parameter)
should be selected with care because they directly control the amount of clustering. For
example, larger values for α in the approximate Dirichlet process will encourage more
distinct Yi values, and this will encourage more smoothing and an estimate for Q0 with
many components. A good choice for the hyperparameters is to use the values η1 = η2 = 2,
which will encourage both small and large values for α.

2.3 EQUAL VARIANCE MODELS

In some normal mixture examples we may only be interested in modeling the mean
with a mixture distribution, with the variance component modeled parametrically as a pos-
itive parameter [see the analysis of Section 4; also consult Ishwaran and Zarepour (2000)
for further applications of this method via the blocked Gibbs sampler]. This is easily ac-
commodated within the framework here by setting τ1 = τ2 = · · · = τN to equal some
parameter, say, τ0 and defining

PN (·) =
N∑

k=1

pk δµk
(·).

(Note that now H is a prior only for µk.) A convenient prior for τ0 is

(τ−1
0 |a0, b0) ∼ Gamma(a0, b0), (2.6)

where we choose small values a0 = b0 = 0.01 to ensure that the prior is noninformative.
A uniform prior for τ0 can also be used.

2.4 SUBJECTIVE PRIORS: INFORMATIVE H

We can also incorporate prior information forQ0 to allow the prior PN to more subjec-
tively model the mixing distribution. In this approach we replace the reference distribution
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H with the mixture of distributions

H∗(·) = wH(·) + (1 − w)HM (·),

where 0 < w < 1 is used to quantify our belief in H and HM is a prior based on subjective
information. In our later applications we will explore the use of informative distributions
for the mean in equal variance models as discussed above. We will use mixtures of normals
of the form

H∗(·) = wφ(·|Ŷ0, σ̂0)+(1−w)
M∑

k=1

γ̂kφ(·|Ŷk, σ̂), where γ̂k > 0,
M∑

k=1

γ̂k = 1. (2.7)

The first normal density on the right represents the effect of the prior H . We will set Ŷ0 to
equal the sample average and

√
σ̂0 to equal four times the standard deviation of the data in

our examples. This follows our earlier approach of selecting the hyperparameters forH and
ensures that H∗ will, with probability w, produce values for µk that should cover an appro-
priate region of the sample space. The values γ̂k and Ŷk in HM (·) =

∑M
k=1 γ̂kφ(·|Ŷk, σ̂)

will be taken to be frequentist point estimates for Q0. For example, we could select γ̂k and
Ŷk to be the weights and atoms obtained from the NPMLE forQ0. Observe that the variance
σ̂ inHM can be used to further quantify our prior beliefs, with smaller values used to reflect
a stronger prior belief in our point estimates. We return to these points again in in Section
4. See also Section 3.2.3 for computational details.

3. BLOCKED GIBBS SAMPLING

The trick to obtaining direct inference for PN , and to constructing an efficient Markov
chain Monte Carlo method, is to recast the nonparametric hierarchical model completely
in terms of random variables. By using the identity Yi = (µKi

, τKi
), it follows that we can

rewrite (2.1) as

(Xi|µ, τ ,K) ind∼ N(µKi , τKi) i = 1, . . . , n

(Ki|p) iid∼
N∑

k=1

pk δk(·)

(µk, τ
−1
k |θ) iid∼ N(θ, σµ) ⊗ Gamma(ν1, ν2), k = 1, . . . , N

α ∼ Gamma(η1, η2)

θ ∼ N(0, A), (3.1)

where p is defined by the stick-breaking construction (2.2), and µ = (µ1, . . . , µN ) and
τ = (τ1, . . . , τN ).

By rewriting the model as (3.1), we can devise a Gibbs sampling scheme for exploring
the posterior PN |X. To implement the blocked Gibbs sampler we iteratively draw values
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from the following conditional distributions:

(µ|τ ,K, θ,X)
(τ |µ,K,X)
(K|p,µ, τ ,X)
(p|K, α)
(α|p)
(θ|µ).

This method eventually produces values drawn from the distribution (µ, τ ,K,p, α, θ|X)
and in each cycle of the sampler we can keep track of (µ∗, τ ∗,p∗) which are sampled
values for (µ, τ ,p). These values produce a random probability measure

P∗
N (·) =

N∑
k=1

p∗
k δ(µ∗

k
,τ∗

k
)(·)

which is a draw from the posterior PN |X. Thus, P∗
N can be used to directly estimate PN |X

and its functionals.
For example, to derive an estimate for a future observation Yn+1 = (µKn+1 , τKn+1),

we randomly draw a value Y ∗
n+1 from P∗

N . We can also estimate the predictive density
for a future observation Xn+1. If f(Xn+1|X) denotes the predictive density for Xn+1

conditioned on the data X, then

f(Xn+1|X) =
∫

φ(Xn+1|µ(Yn+1), τ(Yn+1)))π(dYn+1|X)

=
∫ ∫

φ(Xn+1|µ(Yn+1), τ(Yn+1)))P (Yn+1) PN (dP |X).

For a probability measure P drawn from PN |X,∫
φ(Xn+1|µ(Yn+1), τ(Yn+1))P (dYn+1) =

N∑
k=1

p∗
kφ(Xn+1|µ∗

k, τ
∗
k ). (3.2)

Consequently, the predictive density f(Xn+1|X) can be approximated by computing the
mixture of normal densities (3.2) averaged over different sampled values (µ∗, τ ∗,p∗).

The draw P∗
N can also be used to derive a Monte Carlo penalized MLE. First notice

that many of the random weights p∗
k in the draw may be near zero, and thus the effective

dimension for P∗
N will typically be much smaller than N , its number of atoms. In this

penalization approach, we replace P∗
N with P̃∗

N , a random measure including only those
non-negligible random weights p∗

k. An effective method for selecting such weights is to
use only those values whose corresponding atoms (µ∗

k, τ
∗
k ) have been selected for some

Yi. That is, since Yi = (µKi , τKi), we use only those p∗
k for which rk = #{Ki = k} is

positive. We define

P̃∗
N (·) =

N∑
k=1

I{rk > 0}p∗
k∑N

k=1 I{rk > 0}p∗
k

δ(µ∗
k
,τ∗

k
)(·).
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The optimal P̃∗
N is the draw over a large number of draws with the largest value

ln(P̃∗
N ) − an(P̃∗

N ),

where ln(Q) =
∑n

i=1 log fQ(Xi) is the log-likelihood evaluated at a mixing distribution
Q and an(Q) is the penalty for Q. We will consider two different penalties: (1) Schwartz’s
BIC criteria (Schwartz 1978), which corresponds to the penalty

an(P̃∗
N ) =

1
2

logn× dimension(P̃∗
N ) = logn×

(
N∑

k=1

I{rk > 0} − 1
2

)
,

and (2) Akaike’s AIC criteria (Akaike 1973),

an(P̃∗
N ) = dimension(P̃∗

N ) = 2
N∑

k=1

I{rk > 0} − 1.

See Section 4 for an example illustrating this method.

Remark 1. Notice that the blocked Gibbs algorithm makes use of blocked updates for
parameters. This allows the unobservedYi values to be updated simultaneously and is one of
reasons for its success in producing a rapidly mixing Markov chain. In contrast, due to their
use of one-coordinate-at-a-time updates, Pólya urn Gibbs samplers like those discussed by
Escobar (1988, 1994) and Escobar and West (1995) tend to suppress the ability for similar
Yi values to change easily as the sampler iterates. To deal with this particular problem, one
needs to apply various acceleration methods as discussed by MacEachern (1994), West,
Müller, and Escobar (1994), and Bush and MacEachern (1996). An empirical comparison
of the mixing performance of the blocked Gibbs sampler to various Pólya urn Gibbs samplers
was given by Ishwaran and James (2001).

3.1 BLOCKED GIBBS ALGORITHM

The arguments used in Ishwaran and Zarepour (2000) can be extended to derive the
required conditional distributions. Let {K∗

1 , . . . ,K
∗
m} denote the current m unique values

of K. In each iteration of the Gibbs sampler we simulate:
(a) Conditional for µ: For each j ∈ {K∗

1 , . . . ,K
∗
m}, draw

(µj |τ ,K, θ,X) ind∼ N(µ∗
j , σ

∗
j ), where µ∗

j = σ∗
j

 ∑
{i:Ki=j}

Xi/τj + θ/σµ

 ,

σ∗
j = (nj/τj + 1/σµ)−1, and nj is the number of times K∗

j occurs in K. Also, for
each j ∈ K − {K∗

1 , . . . ,K
∗
m}, independently simulate µj ∼ N(θ, σµ).

(b) Conditional for τ : For each j ∈ {K∗
1 , . . . ,K

∗
m}, draw

(τ−1
j |µ,K,X) ind∼ Gamma(ν1 + nj/2, ν∗

2,j),

where ν∗
2,j = ν2 +

∑
{i:Ki=j}

(Xi − µj)2/2.
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Also, for each j ∈ K−{K∗
1 , . . . ,K

∗
m}, independently simulate τ−1

j ∼ Gamma(ν1,

ν2).
(c) Conditional for K:

(Ki|p,µ, τ ,X) ind∼
N∑

k=1

pk,i δk(·), i = 1, . . . , n,

where

(p1,i, . . . , pN,i) ∝
(

p1√
τ1

exp

(−1
2τ1

(Xi − µ1)2

)
,

. . . ,
pN√
τN

exp

( −1
2τN

(Xi − µN )2

))
.

(d) Conditional for p:

p1 = V ∗
1 and pk = (1 − V ∗

1 )(1 − V ∗
2 ) . . . (1 − V ∗

k−1)V
∗
k , k = 2, . . . , N − 1,

where

V ∗
k

ind∼ Beta

(
1 + rk, α+

N∑
l=k+1

rl

)
, for k = 1, . . . , N − 1

and (as before) rk records the number of Ki values which equal k.
(e) Conditional for α:

(α|p) ∼ Gamma

(
N + η1 − 1, η2 −

N−1∑
k=1

log(1 − V ∗
k )

)
,

for the same values of V ∗
k used in the simulation for p.

(f) Conditional for θ:

(θ|µ) ∼ N(θ∗, σ∗), where θ∗ =
σ∗

σµ

N∑
k=1

µk

and σ∗ = (N/σµ + 1/A)−1.

3.2 EXTENSIONS TO THE BLOCKED GIBBS ALGORITHM

3.2.1 Inverse Sampling for τk

As mentioned in Section 2.2, there is a simple inverse cdf method for sampling τk

under a uniform prior (2.5). For notational ease, let τ = τK∗
j

. Then τ has the conditional
density

f(τ) ∝ τ−nj/2 exp(−Cj/τ){0 < τ < T}, where Cj =
∑

{i:Ki=K∗
j

}
(Xi − µK∗

j
)2/2
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and nj is the cardinality of {i : Ki = K∗
j }, as before. If σ = Cj/τ , then σ has the density

f(σ) ∝ σnj/2−2 exp(−σ){Cj/T < σ < ∞}.

Therefore, to sample τ we first sample σ and then set τ = Cj/σ. Sampling σ depends upon
the value of nj . There are three distinct possibilities:

1. nj > 2: In this case, σ is a truncated Gamma(nj/2 − 1) random variable. Let

Γ(a, t) =
1

Γ(a)

∫ t

0
ua−1 exp(−u) du, a > 0

be the normalized incomplete gamma function. Then by inverse sampling (see De-
vroye 1986), it follows that

σ
D= Γ−1

(
aj , Γ(aj , Cj/T ) + U

(
1 − Γ(aj , Cj/T )

))
,

where aj = nj/2 − 1 and U ∼ Uniform[0, 1]. The functions Γ(a, ·) and Γ−1(a, ·)
are easy to compute in various software packages. For example, in S-Plus, Γ(a, ·)
is called by the function pgamma(·, a), while Γ−1(a, ·) is called by the function
qgamma(·, a).

2. nj = 2: In this case, we can approximate the density for σ by

f(σ) ∝ σε−1 exp(−σ){Cj/T < σ < ∞}

for some small value for ε > 0, say ε = 10−6. Then, applying the same reasoning
as before,

σ
D= Γ−1

(
ε , Γ(ε, Cj/T ) + U

(
1 − Γ(ε, Cj/T )

))
.

3. nj = 1: In this case, we sample σ using σ
D= F−1(U), where

F (t) =

∫ t

Cj/T
σ−3/2 exp(−σ) dσ∫∞

Cj/T
σ−3/2 exp(−σ) dσ

, t > Cj/T.

Using integration by parts (σ−3/2 = −2 ∂
∂σσ

−1/2), this can be rewritten as

F (t)

=
Γ(0.5, t) + (πt)−1/2 exp(−t) − [Γ(0.5, Cj/T ) + (πCj/T )−1/2 exp(−Cj/T )

]
1 − [Γ(0.5, Cj/T ) + (πCj/T )−1/2 exp(−Cj/T )

] .

Computing the inverse, F−1, is fairly straightforward using standard root finders,
such as the method of bisection. Note that this part of the algorithm is applied very
infrequently, since clusters of size nj = 1 will rarely occur.
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3.2.2 Equal Variances

As discussed in Section 2.3, we can fit the model containing only one variance compo-
nent by setting τ1 = τ2 = · · · = τN = τ0. In this case, with an inverse-gamma prior (2.6)
for τ0, we replace Step (b) by drawing a value from the conditional distribution of τ0:

(τ−1
0 |µ,K,X) ∼ Gamma

(
a0 + n/2, b0 +

n∑
i=1

(Xi − µKi
)2/2

)
.

Note that the algorithm described in the previous section can be employed if we use a
uniform prior for τ0.

3.2.3 Mixture Reference Distribution H∗

The blocked Gibbs algorithm is easily adjusted to incorporate a mixture reference
distribution H∗ as described by (2.7) for the equal variance model discussed above. In this
case, we replace Step (b) as above and replace Step (a) with a draw for µj from H∗ for each
j ∈ K − {K∗

1 , . . . ,K
∗
m}, and a draw for µj for each j ∈ {K∗

1 , . . . ,K
∗
m} from the normal

mixture density

w q0,jφ(·|m0,j , s0,j) + (1 − w)
M∑

k=1

qk,j γ̂kφ(·|mk,j , sk,j),

where sk,j = (nj/τ0 + 1/σ̂k)−1 and

mk,j = sk,j

 ∑
{i:Ki=j}

Xi/τ0 + Ŷk/σ̂k

 , k = 0, . . . ,M,

where σ̂k = σ̂ for k = 1, . . . ,M . Also,

qk,j ∝
√
sk,j

σ̂k
exp

(
m2

k,j

2sk,j
− Ŷ 2

k

2σ̂k

)
, k = 0, . . . ,M,

where these values are subject to the constraint: wq0,j + (1 − w)
∑M

k=1 qk,j γ̂k = 1.

Remark 2. Note that there is no longer a draw for θ given µ in the blocked Gibbs
sampler since we have replaced θ with the point estimate Ŷ0.

4. THE 1872 HIDALGO STAMP ISSUE OF MEXICO

The 1872–1874 Hidalgo postage stamps of Mexico were known to have been printed on
different paper types, as was customary for stamps of this era. Izenman and Sommer (1988)
tested this assumption extensively by reanalyzing Wilson’s (1983) data consisting of the
stamp thickness in millimeters of n = 485 unwatermarked Hidalgo stamps dating from
1872 through 1874. Applying Silverman’s (1981) critical bandwidth test with a normal
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Figure 1. Normal kernel density estimate for stamp thickness using bandwidth values of (a) h = 1, (b) h = 0.5,
(c) h = 0.25, (d) h = 0.15 using the “density()” function in S-Plus. The value h = 0.15 was the critical bandwidth
value discovered in Izenman and Sommer (1988).
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Figure 2. Bayes nonparametric density estimate (3.2) for stamp thickness data. Seventy-five density estimates
randomly selected from 3,500 iterations of the blocked Gibbs sampler following a 2,000 iteration burn-in.
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kernel, they concluded there were seven modes in the data located at 0.072, 0.080, 0.090,
0.100, 0.110, 0.120, and 0.130 mm, thus supporting the hypothesis that there were at least
seven different types of paper used in printing the stamp. Also see Minnotte and Scott (1993)
and Efron and Tibshirani (1993, chap. 16) who have also analyzed these data.

A similar analysis to Izenman and Sommer (1988) can be obtained by fitting a finite
normal mixture density

fQ0(x) =
∫

�
φ(x|µ, τ0) dQ0(µ) =

d∑
k=1

pk,0 φ(x|µk,0, τ0)

to the data, where
√
τ0 is an unknown bandwidth value and Q0 is an unknown mixing

distribution for the mean. As discussed in Section 2.3 and 3.2.2, there is a simple adjustment
to the blocked Gibbs sampler for fitting normal mixtures with fixed variance values.

The smoothed data using a normal kernel density estimate is given in Figure 1 for
different bandwidth values. This can be compared to the Bayes nonparameteric density
estimate in Figure 2, which seems to support the hypothesis of at least seven distinct modes
in the data. The Bayes density estimate was based on 3,500 iterations from the blocked
Gibbs sampler following an initial 2,000 iteration burn-in. A Dirichlet process truncation
value of N = 150 was used for the nonparametric prior and the choice of priors and
hyperparameters in the hierarchy for Zk and the Dirichlet mass parameter α followed the
guidelines suggested in Section 2.2. We also used the inverse gamma prior (2.6) for the
variance τ0.

We also ran the blocked Gibbs past the 3,500 iterations (following burn-in) until 25,000
iterations were obtained. Over these 25,000 iterations we computed a penalized MLE subject
to a BIC and AIC penalty as outlined in Section 3. The large number of iterations used in
determining the Monte Carlo MLE is usually necessary to ensure that the resulting point
estimate is at or near the optimal penalized value. The results are presented in Table 1.
Under both BIC and AIC the penalized MLE is an eight-point model with mean values not
too dissimilar from those observed by Izenman and Sommer (1988).

With the MLE there is a substantial amount of information contained in the draws

Table 1. Stochastic MLE subject to BIC and AIC penalties from the blocked Gibbs sampler using a
2,000 iteration burn-in followed by 25,000 sampled iterations (data values are mm× 100).
Both a noninformative and informative prior for H were used.

Noninformative H Informative H

BIC AIC BIC AIC

prob atoms prob atoms prob atoms prob atoms

0.35 7.93 0.36 7.95 0.34 7.95 0.36 7.93
0.27 7.18 0.27 7.20 0.28 7.19 0.27 7.19
0.13 10.02 0.12 10.02 0.14 10.02 0.14 10.02
0.10 10.96 0.11 10.94 0.10 11.00 0.10 10.89
0.10 9.08 0.08 9.07 0.09 9.06 0.08 9.06
0.03 12.03 0.03 12.00 0.03 12.00 0.03 12.00
0.01 12.91 0.02 12.78 0.02 12.92 0.01 12.83
0.01 6.23 0.01 6.38 0.01 6.44 0.005 6.37

0.005 11.14
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Figure 3. Averaged mixing distribution for the mean indexed by number of clusters and percentage of times
clusters occurred during 3,500 iterations following a 2,000 iteration burn-in. Atoms are plotted on the x-axis and
corresponding probabilities indexed by cluster on the y-axis. Barplots are stacked; thus the range of values on
the y-axis is larger than one.

of P∗
N that goes unused. In fact, one of the key aspects to using the blocked Gibbs is to

devise a way to convert the large amount of posterior information into simple interpretable
inference for Q0. One method that we find quite useful is to draw values from the posterior
distribution function for the mean mixing measure,

FN,µ(t) = PN ([−∞, t)|X).

Thus, from the output of the blocked Gibbs we estimate FN,µ(t) with

P∗
N ([−∞, tl)) =

N∑
k=1

p∗
k δµ∗

k
([−∞, tl)), l = 1, . . . , L,

where t1 < t2 < · · · < tL are fixed values that define some refined grid over �. We then
average these values, index them by the number of clusters (i.e., the number of distinct Yi

values for that draw), and then convert the averaged distribution functions into a stacked
barplot with tk values on the x-axis and probabilities on the y-axis. Thus, we convert the
cumulative probabilities into probabilities

P∗
N ([−∞, tl+1)) − P∗

N ([−∞, tl)), l = 1, . . . , L− 1;

thus effectively converting the distribution function into a density histogram. When averag-
ing over these values, many of these probabilities become near zero where the posterior has
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Figure 4. Averaged mixing distribution for the mean using informative reference distribution H∗ with distribution
HM weighted by 50%. Analysis based on 3,500 iterations following an initial 2,000 iteration burn-in

little mass so that the corresponding barplot may often appear to have few spikes. Figure 3
presents such a plot based on the information collected from our 3,500 draws. Here we see
the presence of at least seven distinct modes with a possible eighth mode appearing in the
left tail. This pattern is fairly consistent across the different distributions.

To test the effect on the posterior due to the use of an informative prior, we re-ran the
previous analysis using a mixture reference distributionH∗ as discussed in Section 2.4 (see
Equation (2.7)). In this case, we used a weight of w = 0.50, and for our prior guess HM

the Ŷk were values selected from the M = 11 points

{0.060, 0.064, 0.072, 0.075, 0.080, 0.090, 0.100, 0.110, 0.115, 0.120, 0.130},
which includes the orignal seven modes found in Izenman and Sommer (1988) using Sil-
verman’s critical bandwidth test, as well as two additional modes at .060 mm and .064 mm
they found using a square root transformation, and also two more modes at .075 mm and
.115 mm found by Minnotte and Scott (1993) using a mode tree analysis. We set γ̂k = 1/11
so that each component ofHM is selected with equal probability. For the variance σ̂ inHM ,
we set σ̂ = 0.001.

Table 1 and Figure 4 present the results of our analysis, which were derived using the
same configurations for the Gibbs sampler as before (to ensure a similar amount of clustering
we set α = 1.7 to equal the previous posterior mean for α). Figure 4 reveals a mean mixing
distribution similar to our previous analysis. However, the use of an informative prior seems
to have sharpened the posterior with the modes appearing more defined and the plot more
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Figure 5. Averaged mixing distribution for the mean from 3,500 sampled posterior distribution functions from the
galaxy data.

closely resembling an eight-point discrete distribution. The penalized MLE estimates in
Table 1 are also quite similar to the values observed earlier, with BIC finding an eight-
point model as before, although now AIC discovers a larger nine-point model. However,
the probability for this new atom is quite small.

5. GALAXY DATA

As a second illustration of the method, we reanalyzed the galaxy data in Roeder (1990)
which consists of the relative velocities in kilometers per second of n = 82 galaxies from
six well-separated conic sections of space. As discussed by Roeder (1990), there is strong
evidence to believe that modes in the data correspond to clumped galaxies, and that the
observed velocities are values derived from a finite mixture of normals. Thus, estimating
Q0 in this problem corresponds to identifying different clustered galaxies.

We applied the blocked Gibbs sampler to this data, following the same strategy used
in the previous example of Section 4, although we used a Gamma(2, 4) prior for α in order
to facilitate a more even comparison to the results in Escobar and West (1995), who also
studied this data but who used a Pólya urn Gibbs sampling algorithm.

Figures 5 and 6 present plots for the averaged posterior distribution functions for the
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Figure 6. Averaged mixing distribution for the variance computed over the same sampled values used in Figure 5.

mean and variance (marginal) mixing distributions. That is, the marginal distributions,

P∗
N ([−∞, t) × �+) =

N∑
k=1

p∗
k δµ∗

k
([−∞, t))

and P∗
N (� × [−∞, t)) =

N∑
k=1

p∗
k δτ∗

k
([−∞, t)),

respectively. The barplots are constructed using the same approach discussed in Section
4 (thus, as before, cumulative probabilities have been converted to probabilities). For the
mean, we see that the greatest difference in the distribution functions occur in the range of
values 20–22 and is mostly due to the difference between the four cluster model and models
derived from five to eight clusters. The same sort of effect is also seen for the variance,
with the averaged four cluster model exhibiting the greatest bimodal behavior (also see the
right-hand side plot of Figure 8). Given the relative infrequency of observing a four cluster
model (5.1% of the time), it seems from looking at Figure 5 and the predictive density
estimate in Figure 7, that the data contains at least five or six distinct components for the
mean.

However, to test how much smoothing of the data is due to our choice of the inverse
gamma prior for τk, we re-estimated the model using a uniform prior (2.5) for τk, where we
selected the upper bound T = 20.83 corresponding to the variance of the data (expressed
here in thousands of kilometers per second). The results are depicted in Figures 9 and 10 and
are based on the same configuration for the Gibbs sampler and choice for hyperparameters
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Figure 7. Seventy-five predictive densities (3.2) for the galaxy data selected randomly over 3,500 iterations.
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Figure 9. Averaged mixing distribution for the mean from the galaxy data obtained with a uniform prior for τk .

as before. With a uniform prior, we find that there is less smoothing, with the posterior
concentrating predominately on three and four cluster models now (each occurring 36% of
the time). With fewer clusters, we also clearly see a bimodal posterior distribution for the
variance, with the values in the right-tail causing the averaged posterior distributions for the
mean to have a large cluster at the values around 20–22. The same results were observed
for smaller values of T , such as T = 10. This analysis shows us some of the hidden dangers
with working with an inverse gamma prior, which can sometimes act as an informative
prior, either undersmoothing, or oversmoothing the data as seen here.

6. DISCUSSION

Sections 4 and 5 have presented finite normal mixture examples that show the range
of inference possible when working with a Dirichlet process approximation in a Gibbs
sampling setting. In particular, we illustrated how to use sampled values from the posterior
of the random measure PN to graphically study the posterior mixing distribution, while
at the same time we have also demonstrated how the method can be used for the more
traditional analysis of the hidden Yi variables.

The proposed Gibbs sampler mixes well due to its method for blocking the nonpara-
metric parameters µ, τ ,K, and p. Each of these parameters are updated simultaneously
in a multivariate step, which encourages good mixing for these parameters, and thus good
mixing for the unobserved Yi values. The blocked Gibbs sampler is relatively simple to
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Figure 10. Averaged mixing distribution for the variance distribution based on a uniform prior for τk . Based on
same sampled distribution functions used in deriving Figure 9.

program and requires only the ability to draw values from simple conditional distributions,
including the important update for the Dirichlet mass parameter α. The algorithm is also
easily extended to the nonconjugate setting involving a flat uniform prior for the variances
τk. This extension can sometimes be important as we saw in Section 5, where the use of an
inverse gamma prior for the variance appeared to oversmooth the data and to overestimate
the number of mixture components. Selecting the upper bound T in the uniform prior is
fairly automatic and avoids the difficulty of trying to correctly scale the data when using an
inverse gamma prior.

We also explored the use of a Bayesian Monte Carlo penalized MLE in our example
of Section 4. Although producing this estimate for Q0 requires a much larger number of
iterations then estimates based on averaged distribution functions, it has the advantage that
it conveys an easily interpretable summary result of the analysis. We have also indicated
a method for incorporating data dependent prior information that can include for example
frequentist point estimates for Q0. We saw in Section 4 that an informative prior can some-
times help to “sharpen” our estimates, but in general we believe that such priors should be
used cautiously.

APPENDIX: PROOFS

Proof of Theorem 1: By integrating over P we can write mN and m∞ in terms of
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the distributions for Y = (Y1, . . . , Yn) under PN and DP(αH) respectively. Call these two
sampling distributions πN (dY) and π∞(dY). Thus,∫

|mN (X) −m∞(X)| dX

=
∫ ∣∣∣∣∣
∫ n∏

i=1

φ(Xi|µ(Yi), τ(Yi))
(
πN (dY) − π∞(dY)

)∣∣∣∣∣ dX
≤
∫ ∫ n∏

i=1

φ(Xi|µ(Yi), τ(Yi)) dX |πN (dY) − π∞(dY)|

= 2D(πN , π∞),

where D(IP1, IP2) = supA |IP1(A) − IP2(A)| is the total variation distance between two
probability measures IP1 and IP2.

Recall that we can write Yi = ZKi . The sampled values Y under πN and π∞ are
identical when Ki is sampled from a value smaller than the N th term. Thus,

D(πN , π∞) ≤ 2
(
1 − πN{Ki < N, for i = 1, . . . , n})

= 2

[
1 − IE

{(
N−1∑
k=1

pk

)n}]
≈ 2n exp(−(N − 1)/α), (A.1)

where the right most approximation follows by observing that

N−1∑
k=1

pk = 1 − (1 − V1)(1 − V2) . . . (1 − VN−1)

D= 1 − exp(−E1/α) exp(−E2/α) . . . exp(−EN−1/α)

≈ 1 − exp(−(N − 1)/α),

where E1, . . . , EN−1 are iid exp(1) random variables. ✷

Proof of Corollary 1: Write Km for the set {1, 2, . . . ,m}n for m = 1, 2, . . .. We
have,∑

K∈K∞

|πN (K|X) − π∞(K|X)|

=
∑

K∈KN

|πN (K|X) − π∞(K|X)| +
∑

K∈K∞−KN

π∞(K|X).

(A.2)

Consider the first sum on the right-hand side of (A.2). Note that

πN (K|X) =
PrN (K)mN (X|K)

mN (X)
, K ∈ KN ,

where PrN (K) is the prior for K under PN and

mN (X|K) =
∏

j∈K∗

∫
�×�+

H(dY )
∏

{i:Ki=j}
φ(Xi|µ(Y ), τ(Y )),
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where K∗ denotes the set of unique Ki values. It is clear that mN (X|K) = m∞(X|K)
for each K ∈ KN . Moreover, it is also clear that PrN (K) = Pr∞(K) for each K ∈ KN−1

where Pr∞(K) is the prior under the Dirichlet process. However, the priors for K are not
necessarily equal overKN−KN−1. Thus writing Pr∞(K) as PrN (K)+[Pr∞(K)−PrN (K)]
we have,∑
K∈KN

|πN (K|X) − π∞(K|X)| ≤
∣∣∣∣1 − mN (X)

m∞(X)

∣∣∣∣ ∑
K∈KN

PrN (K)mN (X|K)
mN (X)

+
∑

K∈KN −KN−1

mN (X|K)
m∞(X)

| Pr∞(K) − Pr
N

(K)|.

The first sum on the right-hand side is πN (KN |X) which is bounded by one. Thus, inte-
grating with respect to m∞(X), the right-hand side is bounded by∫

�n

|mN (X) −m∞(X)| dX +
∑

K∈KN −KN−1

| Pr∞(K) − Pr
N

(K)|.

Both terms are order O(n exp(−(N − 1)/α)). The first term by using Theorem 1, and the
second term by using a similar argument as in (A.1) used in the proof of Theorem 1.

Finally, integrating the second sum on the right-hand side of (A.2) with respect to
m∞(X) gives Pr∞ (K∞ − KN ) which is order O(n exp(−(N − 1)/α)) by using the same
argument as in (A.1). ✷
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