
 Open access Journal Article DOI:10.1080/0740817X.2010.504690

Approximate dynamic programming for dynamic capacity allocation with multiple
priority levels — Source link

Alexander Erdelyi, Huseyin Topaloglu

Institutions: Cornell University

Published on: 22 Dec 2010 - Iie Transactions (Taylor & Francis Group)

Topics: Time horizon, Dynamic priority scheduling, Holding cost, Dynamic programming and Bellman equation

Related papers:

 Dynamic Multipriority Patient Scheduling for a Diagnostic Resource

 Appointment scheduling in health care: Challenges and opportunities

 Approximate dynamic programming : solving the curses of dimensionality

 Outpatient scheduling in health care: a review of literature

 Operating room planning and scheduling: A literature review

Share this paper:

View more about this paper here: https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-
2v6fhp2mfa

https://typeset.io/
https://www.doi.org/10.1080/0740817X.2010.504690
https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-2v6fhp2mfa
https://typeset.io/authors/alexander-erdelyi-ez0sdsrnde
https://typeset.io/authors/huseyin-topaloglu-27uit5zdbt
https://typeset.io/institutions/cornell-university-azbw8aij
https://typeset.io/journals/iie-transactions-2d1btcyd
https://typeset.io/topics/time-horizon-3m9d8xm9
https://typeset.io/topics/dynamic-priority-scheduling-37r1rl8z
https://typeset.io/topics/holding-cost-1e4moym4
https://typeset.io/topics/dynamic-programming-qam1y7wv
https://typeset.io/topics/bellman-equation-3kxmproe
https://typeset.io/papers/dynamic-multipriority-patient-scheduling-for-a-diagnostic-106r8ueqto
https://typeset.io/papers/appointment-scheduling-in-health-care-challenges-and-4zf8zvyszw
https://typeset.io/papers/approximate-dynamic-programming-solving-the-curses-of-4qh93ad5wf
https://typeset.io/papers/outpatient-scheduling-in-health-care-a-review-of-literature-1hhvwkpuz9
https://typeset.io/papers/operating-room-planning-and-scheduling-a-literature-review-3suvztydcx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-2v6fhp2mfa
https://twitter.com/intent/tweet?text=Approximate%20dynamic%20programming%20for%20dynamic%20capacity%20allocation%20with%20multiple%20priority%20levels&url=https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-2v6fhp2mfa
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-2v6fhp2mfa
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-2v6fhp2mfa
https://typeset.io/papers/approximate-dynamic-programming-for-dynamic-capacity-2v6fhp2mfa

Approximate Dynamic Programming for Dynamic Capacity Allocation
with Multiple Priority Levels

Alexander Erdelyi

School of Operations Research and Information Engineering,

Cornell University, Ithaca, NY 14853, USA
alex@orie.cornell.edu

Huseyin Topaloglu

School of Operations Research and Information Engineering,

Cornell University, Ithaca, NY 14853, USA
topaloglu@orie.cornell.edu

May 21, 2010

Abstract

In this paper, we consider a quite general dynamic capacity allocation problem. There is a fixed
amount of daily processing capacity. On each day, jobs of different priorities arrive randomly and
we need to decide which jobs should be scheduled for which days. Waiting jobs incur a holding cost
depending on their priority levels. The objective is to minimize the total expected cost over a finite
planning horizon. We begin by formulating the problem as a dynamic program, but this formulation
is computationally difficult as it involves a high dimensional state vector. To address this difficulty,
we use an approximate dynamic programming approach that decomposes the dynamic programming
formulation by the different days in the planning horizon to construct separable approximations to
the value functions. We use the value function approximations for two purposes. First, we show
that the value function approximations can be used to obtain a lower bound on the optimal total
expected cost. Second, the value function approximations can be used to make the job scheduling
decisions over time. Computational experiments indicate that the job scheduling decisions made by
our approach perform significantly better than a variety of benchmark strategies.

Many companies face the problem of allocating limited processing capacity to jobs that arrive randomly

over time. This is a common problem in production environments, where a company utilizes a certain

production resource to serve the demands from customers with different profit margins. Similarly,

clinics and owners of medical diagnostics resources need to allocate appointment slots to patients with

different needs and urgency levels. The essential tradeoff in these problems is between using the available

processing capacity for a low priority job that is currently available and delaying the processing of the

low priority job with the hope that a high priority job can use the available capacity later. This tradeoff

is further complicated by the fact that the processing capacity is perishable. If the processing capacity

that is available on a day is not used by that day, then it ends up being wasted.

In this paper, we consider a generic capacity allocation problem that captures the fundamental

tradeoffs mentioned above. We consider a setting where we have a fixed amount of daily processing

capacity. Jobs of different priorities arrive randomly over time and we need to decide which jobs

should be scheduled for which days. The jobs that are waiting to be processed incur a holding cost

depending on their priority levels and we are interested in finding a job scheduling policy that minimizes

the total expected cost over a finite planning horizon. It is possible to formulate such a capacity

allocation problem as a dynamic program, but this dynamic programming formulation ends up being

computationally difficult to solve as it involves a high dimensional state vector. In this paper, we

propose an approximate dynamic programming strategy that is based on decomposing the dynamic

programming formulation by the different days in the planning horizon.

Our dynamic programming decomposition approach starts with a deterministic linear programming

formulation for the capacity allocation problem. This deterministic linear program is constructed under

the assumption that the job arrivals take on their expected values and we can schedule fractional

numbers of jobs. In the linear program, there is one capacity constraint for each day in the planning

horizon, ensuring that the jobs scheduled on a day cannot exceed the daily available capacity. We use

Lagrangian relaxation to relax these capacity constraints for every day in the planning horizon except for

one particular day, so that we obtain a deterministic linear program for a capacity allocation problem

with limited capacity only on one day. This latter deterministic linear program, in turn, indicates

how we can decompose the original dynamic programming formulation of the problem by the different

days in the planning horizon. Ultimately, our dynamic programming decomposition strategy provides

separable approximations to the value functions and these value function approximations can be used

to make the job scheduling decisions.

There are several interesting properties of our dynamic programming decomposition method. To

begin with, it is possible to show that our dynamic programming decomposition method provides a

lower bound on the optimal total expected cost. Such a lower bound becomes useful when assessing the

optimality gap of a suboptimal control policy. It turns out that the deterministic linear programming

formulation mentioned above also provides such a lower bound, but the lower bound obtained by

our dynamic programming decomposition method is provably tighter than the one obtained by the

deterministic linear program. Furthermore, the job scheduling decisions made by our approach can be

computed by solving a min cost network flow problem. This is a significant result since it allows us to

2

obtain integer solutions without imposing integrality requirements on the decision variables. Finally,

our computational experiments indicate that the job scheduling decisions that are made by our dynamic

programming decomposition method can provide significant improvements over numerous benchmarks

based on the deterministic linear programming formulation.

Two papers in the literature are particularly relevant to our work. First, Patrick et al. (2008) consider

the dynamic allocation of appointment slots in a clinic and their problem is quite similar to ours. They

provide a dynamic programming formulation, but motivated by the high dimensionality of the state

vector, they use linear approximations to the value functions. Linear value function approximations

imply that the marginal value of an additional capacity does not depend on how much capacity is

left on a particular day. However, it is intuitive to expect that if we have fewer units of capacity

left on a particular day, then the marginal value of an additional capacity should increase. The value

function approximations generated by our dynamic programming decomposition method are nonlinear

and convex, indeed capturing the intuitive expectation that the marginal value of an additional capacity

increases as we have fewer units of capacity left on a particular day. Second, Erdelyi and Topaloglu

(2009a) use protection level policies for capacity allocation problems. A protection level policy is

similar to a prioritized first come first serve policy. As the jobs arrive over time, it commits the capacity

starting from the highest priority jobs, but the protection levels dictate how much capacity should be

left untouched for the future job arrivals. The authors visualize the total expected cost over the planning

horizon as a function of the protection levels and use sampled gradients of the total expected cost to

search for a good set of protection levels. The implicit assumption behind using a set of protection levels

is that the job arrivals are stationary so that using the same protection levels every day is expected

to perform reasonably well. In contrast, our dynamic programming decomposition approach does not

assume or require stationary job arrivals.

Dynamic programming decomposition ideas first appeared in the network revenue management

literature. In network revenue management problems, an airline operates a set of flight legs to serve the

requests for itineraries that arrive randomly over time. Whenever an itinerary request arrives, the airline

has to decide whether to accept or reject the itinerary request. The fundamental tradeoff is between

accepting an inexpensive itinerary request right now and reserving the capacity for an expensive itinerary

request that may arrive in the future. It is possible to formulate network revenue management problems

as dynamic programs, but this approach requires keeping track of the remaining capacity on all of the

flight legs and the resulting dynamic programs end up having high dimensional state vectors. Therefore,

it is customary to try to decompose the problem by the flight legs. Williamson (1992) is one of the first

to decompose the network revenue management problem by the flight legs to generalize the expected

marginal seat revenue heuristic of Belobaba (1987). A discussion of early decomposition approaches is

given in Talluri and van Ryzin (2005). Liu and van Ryzin (2008) and Kunnumkal and Topaloglu (2009)

use decomposition ideas while incorporating customer choice behavior into network revenue management

problems. Zhang and Adelman (2009) are the first to establish that one can use dynamic programming

decomposition methods to obtain upper bounds on the optimal total expected revenue. Topaloglu (2009)

shows that decomposition methods can be visualized as an application of Lagrangian relaxation to the

dynamic programming formulation of the network revenue management problem. Erdelyi and Topaloglu

3

(2009b) use decomposition ideas to make overbooking decisions in network revenue management. It is

worthwhile to note that our capacity allocation problem can be visualized as a revenue management

problem as it involves making the most use out of limited and perishable capacity. However, traditional

revenue management problems involve only the decision of whether to accept or reject a job, whereas

our capacity allocation problem involves the decision of when to schedule a job, possibly along with

whether to accept or reject a job.

Zhang (2010) develops a dynamic programming decomposition method that improves the upper

bounds on the optimal total expected revenue provided by the methods in Liu and van Ryzin (2008),

Kunnumkal and Topaloglu (2009) and Zhang and Adelman (2009). The development in Zhang (2010)

is for the network revenue management setting and it does not immediately extend to our capacity

allocation setting for two reasons. First, it is common in the network revenue management literature

to assume that there is at most one customer arrival at each time period. Therefore, the random

variable that is of interest at each time period corresponds to the itinerary that the arriving customer

purchases. Such a random variable has a reasonably small number of possible realizations and one

can compute expectations simply by enumerating over all of its possible realizations. In our capacity

allocation setting, the random variable that is of interest on each day corresponds to the numbers of

job arrivals at different priority levels. The number of possible realizations for such a random variable

grows exponentially with the number of priority levels. For example, if we have four priority levels and

the number of job arrivals at each priority level can take 100 different values, then number of possible

realizations of job arrivals is on the order of one hundred million. Second, the approach proposed by

Zhang (2010) provides nonseparable approximations to the value functions. Nonseparable value function

approximations do not pose a difficulty in the network revenue management setting when finding a set

of itineraries to make available for purchase. In contrast, our capacity allocation setting requires jointly

deciding which arriving jobs with different priority levels should be scheduled for which days and the

separable structure of the value function approximations that we obtain plays a crucial role in making

the job scheduling decisions in a tractable fashion.

The idea of decomposing large scale dynamic programs by using duality arguments has a history

in the literature. The links between dynamic programs and duality are studied in the book chapter by

Ruszczynski (2003). Adelman and Mersereau (2008) use the term weakly coupled to refer to dynamic

programs that would decompose if a few constraints did not link the different components of the state

vector. They develop a duality framework for such dynamic programs. Under the broad umbrella

of approximate dynamic programming, there is rising interest in approximate solutions of large scale

dynamic programs. The books by Bertsekas and Tsitsiklis (1996) and Powell (2007) provide excellent

coverage of this work. Although dynamic programming decomposition ideas are not covered in these

books, our work in this paper and the success of these ideas in the network revenue management

literature indicate their capability in dealing with large scale dynamic programs.

With rising interest in health care applications, there are a several dynamic capacity allocation

problems that originate within this problem domain. The paper by Patrick et al. (2008) that we

describe above is one such work. Gerchak et al. (1996) focus on a setting where limited operating room

4

capacity has to be allocated between emergency and elective surgery. They characterize the structure

of the optimal policy and show that protection level policies may not be optimal. Gupta and Wang

(2008) present a model that considers customer choice behavior when the customers choose appointment

slots. Similar to Gerchak et al. (1996), these authors also indicate that the form of the optimal policy

may have complicated structure and they propose approximation strategies.

In this paper, we make the following research contributions. 1) We develop a method to make

job scheduling decisions in a capacity allocation model with jobs of different priorities. Our approach

decomposes the problem by the different days in the planning horizon and solves a sequence of dynamic

programs with scalar state variables. 2) We show that our approach provides a lower bound on the

optimal total expected cost and this lower bound is at least as tight as the one provided by a deterministic

linear programming formulation. 3) Computational experiments demonstrate that our method performs

significantly better than benchmark strategies based on linear programming formulations.

The rest of the paper is organized as follows. In Section 1, we formulate the capacity allocation

problem as a dynamic program. This formulation is computationally difficult due to the size of the

state vector. In Section 2, we give a deterministic linear program, which serves as a starting point

for our decomposition strategy. In Section 3, we decompose the dynamic programming formulation of

the problem by building on the deterministic linear program. In Section 4, we demonstrate how to

overcome some computational hurdles in our dynamic programming decomposition method. In Section

5, we dwell on how we can apply the policy obtained by our dynamic programming decomposition

method. In Section 6, we provide computational experiments. In Section 7, we conclude.

1 Problem Formulation

We have a fixed amount of daily processing capacity. At the beginning of each day, we observe the

arrivals of jobs of different priorities and we need to decide which jobs should be scheduled for which

days. The jobs that are waiting to be processed incur a holding cost depending on their priority levels,

but we also have the option of rejecting a job immediately by incurring a penalty cost. The objective

is to minimize the total expected cost over a finite planning horizon.

The problem takes place over the set of days T = {1, . . . , τ}. The set of possible priority levels

for the jobs is P. The number of priority p jobs that arrive on day t is given by the random variable

Dp
t so that Dt = {Dp

t : p ∈ P} captures the job arrivals on day t. We assume that the job arrivals

on different days are independent. While such an assumption is reasonable in many situations, there

can be some settings where it would be problematic to assume that the job arrivals on different days

are independent. For example, if the jobs that are rejected come back to the system, then there can

be correlations among the job arrivals on different days. Even in such cases, if there are few rejected

jobs that come back to the system when compared with the fresh job arrivals or if the rejected jobs

get service elsewhere, then it can be reasonable to assume that the job arrivals on different days are

independent. Furthermore, the quality of service that we provide on earlier days may influence the

job arrivals in the future, creating correlations among the job arrivals on different days, but such an

involved stochastic process for the job arrivals is not within the scope of our model. If we schedule a

5

priority p job that arrives on day t for day j, then we incur a holding cost of hpjt. The penalty cost of

rejecting a priority p job that arrives on day t is rpt . We use the convention that hpjt = ∞ whenever it

is infeasible to schedule a priority p job arriving on day t for day j. For example, since it is infeasible

to schedule a job for a day in the past, we naturally have hpjt = ∞ whenever j < t. Similarly, if it is

not possible to schedule a job more than S days into the future, then we can capture this constraint by

letting hpjt = ∞ whenever j − t ≥ S. Once we schedule a job for a particular day, this decision is fixed

and cannot be changed. For notational brevity, we assume that all jobs consume one unit of processing

capacity, but it is possible to extend our approach to multiple units of capacity consumption.

Given that we are on day t, we let xjt be the remaining capacity on day j so that xt = {xjt : j ∈ T }

captures the state of the remaining capacities as observed at the beginning of day t. Naturally, given

that we are on day t, we do not need to keep track of the remaining capacities on the days in the

past and we can use x̃t = {xjt : j = t, t + 1, . . . , τ} as our state variable. However, we prefer to use

xt = {xjt : j ∈ T } for notational uniformity so that the state variable on different days ends up having

the same number of dimensions. We let upjt be the number of priority p jobs that we schedule for day j

on day t so that ut = {upjt : p ∈ P, j ∈ T } captures the decisions that we make on day t. In this case,

the set of feasible decisions on day t is given by

U(xt, Dt) =
{

ut ∈ Z
|P||T |
+ :

∑

p∈P

upjt ≤ xjt j ∈ T ,
∑

j∈T

upjt ≤ Dp
t p ∈ P

}

, (1)

where the first set of constraints ensure that the decisions that we make do not violate the remaining

capacities and the second set of constraints ensure that the decisions that we make do not violate the

job arrivals. On the other hand, the total cost that we incur on day t is given by
∑

j∈T

∑

p∈P

hpjt u
p
jt +

∑

p∈P

rpt

[

Dp
t −

∑

j∈T

upjt

]

,

where the first term corresponds to the holding cost for the jobs that we schedule for different days in

the planning horizon and the second term corresponds to the penalty cost for the jobs that we reject. We

note that without loss of generality, it is possible to assume that rpt = 0 for all p ∈ P, t ∈ T . To see

this, we write the cost function above as
∑

j∈T

∑

p∈P

[

hpjt−rpt
]

upjt+
∑

p∈P rpt D
p
t . Since

∑

p∈P rpt D
p
t is a

constant that is independent of the decisions, assuming that rpt = 0 for all p ∈ P, t ∈ T is equivalent to

letting cpjt = hpjt − rpt and working with the holding cost cpjt instead of hpjt. By working with the holding

cost cpjt = hpjt− rpt , we a priori assume that all of the job arrivals on a day are rejected and immediately

charge the penalty cost
∑

p∈P rpt D
p
t , but for each priority p job that we schedule for day j, we reimburse

the penalty cost rpt back and charge the holding cost hpjt instead. Throughout the paper, we indeed

assume that rpt = 0 for all p ∈ P, t ∈ T and work with the holding costs {cpjt : p ∈ P, j, t ∈ T }.

We use Vt(xt) to denote the minimum possible total expected cost over days {t, . . . , τ} given that

the state of the remaining capacities on day t is xt. Letting ej be the |T | dimensional unit vector with

a one in the element corresponding to j ∈ T , we can compute the value functions {Vt(·) : t ∈ T } by

solving the optimality equation

Vt(xt) = E

{

min
ut∈U(xt,Dt)

{

∑

j∈T

∑

p∈P

cpjt u
p
jt + Vt+1(xt −

∑

j∈T

∑

p∈P

upjt ej)

}}

(2)

6

with the boundary condition that Vτ+1(·) = 0. The optimal total expected cost over the whole planning

horizon is V1(x1), where x1 captures the initial state of the capacities and it is a part of the problem

data. The knowledge of {Vt(·) : t ∈ T } can be used to find the optimal decisions on each day. In

particular, if the state of the remaining capacities and the job arrivals on day t are respectively given by

xt and Dt, then we can solve the optimization problem inside the expectation in (2) to find the optimal

decisions on this day.

Unfortunately, the number of dimensions of the state vector xt is equal to the number of days,

which can easily be on the order of hundreds for practical applications. Furthermore, solving the

optimality equation in (2) requires taking an expectation over the job arrivals on each day and this

expectation can be difficult to compute. These considerations render finding the exact solution to the

optimality equation in (2) intractable. In the next two sections, we give two possible approaches for

finding approximate solutions to the optimality equation in (2). The first approach involves solving a

deterministic linear program, whereas the second approach builds on this deterministic linear program

to construct separable approximations to the value functions.

2 Deterministic Linear Programming Formulation

One approach for finding approximate solutions to the optimality equation in (2) involves solving a

deterministic linear program that is formulated under the assumption that the job arrivals take on their

expected values and it is possible to schedule fractional numbers of jobs for different days. In particular,

using the decision variables {upjt : p ∈ P, j ∈ T , t ∈ T } with the same interpretation as in the previous

section, we can solve the problem

min
∑

t∈T

∑

j∈T

∑

p∈P

cpjt u
p
jt (3)

subject to
∑

t∈T

∑

p∈P

upjt ≤ xj1 j ∈ T (4)

∑

j∈T

upjt ≤ E{Dp
t } p ∈ P, t ∈ T (5)

upjt ≥ 0 p ∈ P, j ∈ T , t ∈ T (6)

to approximate the optimal total expected cost over the planning horizon. Constraints (4) in the

problem above ensure that the decisions that we make over the planning horizon do not violate the

remaining capacity on each day, whereas constraints (5) ensure that the decisions that we make on each

day do not violate the expected numbers of job arrivals.

One important use of problem (3)-(6) occurs when we want to obtain lower bounds on the optimal

total expected cost. In particular, letting z∗LP be the optimal objective value of problem (3)-(6), the

next proposition shows that we have z∗LP ≤ V1(x1) so that the optimal objective value of problem (3)-(6)

provides a lower bound on the optimal total expected cost. Such lower bounds become useful when we

want to gain insight into the optimality gap of any suboptimal control policy.

7

Proposition 1 We have z∗LP ≤ V1(x1).

Proof Our proof is standard, but it allows us to demonstrate a useful inequality. Given that the job

arrivals over the planning horizon are D = {Dp
t : p ∈ P, t ∈ T }, we let π∗(D) be the total cost incurred

by the optimal policy and z∗LP (D) be the optimal objective value of problem (3)-(6) that is obtained

after replacing the right side of constraints (5) with {Dp
t : p ∈ P, t ∈ T }. Replacing the right side

of constraints (5) with {Dp
t : p ∈ P, t ∈ T } and solving problem (3)-(6) corresponds to making the

decisions after observing all of the job arrivals over the whole planning horizon. Furthermore, problem

(3)-(6) allows scheduling fractional numbers of jobs. On the other hand, the optimal policy makes

the decisions for a particular day after observing the job arrivals only on that day. Furthermore, the

optimal policy schedules integer numbers of jobs. Therefore, it holds that z∗LP (D) ≤ π∗(D). Taking

expectations and noting that z∗LP (D) is a convex function of D, Jensen’s inequality implies that

E{π∗(D)} ≥ E{z∗LP (D)} ≥ z∗LP (E{D}) = z∗LP , (7)

where the equality follows from the definition of z∗LP . The result follows from the fact that E{π∗(D)}

gives the total expected cost incurred by the optimal policy and is equal to V1(x1). ✷

Therefore, (7) implies that both z∗LP and E{z∗LP (D)} provide lower bounds on the optimal total

expected cost. The lower bound provided by z∗LP is looser, but this lower bound can be computed simply

by solving problem (3)-(6). On the other hand, the lower bound provided by E{z∗LP (D)} is tighter, but

there is no closed form expression for the expectation in E{z∗LP (D)} and computing this expectation

requires estimation through Monte Carlo samples. Nevertheless, our computational experiments indicate

that this extra computational burden usually pays off and the lower bound provided by E{z∗LP (D)} can

be significantly tighter than the lower bound provided by z∗LP .

Another important use of problem (3)-(6) occurs when we want to construct an approximate policy

to make the decisions on each day. In particular, letting {µ∗
j : j ∈ T } be the optimal values of the dual

variables associated with constraints (4), we can use µ∗
j to estimate the value of a unit of remaining

capacity on day j. This idea suggests using the linear function
∑

j∈T µ∗
j xjt as an approximation to the

value function Vt(xt). In this case, if the state of the remaining capacities and the job arrivals on day t

are respectively given by xt and Dt, then we can replace Vt+1(xt −
∑

j∈T

∑

p∈P upjt ej) on the right side

of (2) with
∑

j∈T µ∗
j

[

xjt −
∑

p∈P upjt
]

and solve the problem

min
ut∈U(xt,Dt)

{

∑

j∈T

∑

p∈P

cpjt u
p
jt +

∑

j∈T

µ∗
j

[

xjt −
∑

p∈P

upjt

]

}

(8)

to make the decisions on day t. We refer to this decision rule as the LVF decision rule, standing for

linear value functions. We use the LVF decision rule as a benchmark strategy later in our computational

experiments. An immediate shortcoming of the LVF decision rule is that it constructs the value function

approximations by only using expected values of the job arrivals. In the next section, we build on

problem (3)-(6) to construct a value function approximation strategy that addresses the random nature

of the job arrivals more carefully.

8

3 Dynamic Programming Decomposition

In this section, we develop a method that constructs separable approximations to the value functions

by decomposing the optimality equation in (2) into a sequence of optimality equations with scalar state

variables. We begin with a duality argument on problem (3)-(6). We let {µ∗
j : j ∈ T } be the optimal

values of the dual variables associated with constraints (4) in problem (3)-(6). We choose an arbitrary

day i in the planning horizon and relax constraints (4) for all of the other days by associating the dual

multipliers {µ∗
j : j ∈ T \{i}} with them. In this case, letting 1(·) be the indicator function, the objective

function of problem (3)-(6) can be written as

∑

t∈T

∑

j∈T

∑

p∈P

cpjt u
p
jt +

∑

j∈T \{i}

µ∗
j

[

xj1 −
∑

t∈T

∑

p∈P

upjt

]

=
∑

t∈T

∑

j∈T

∑

p∈P

[

cpjt − 1(j 6= i)µ∗
j

]

upjt +
∑

j∈T \{i}

µ∗
j xj1.

Therefore, by linear programming duality, the optimal objective value of problem (3)-(6) is the same as

the optimal objective value of the problem

z∗LP = min
∑

t∈T

∑

j∈T

∑

p∈P

[

cpjt − 1(j 6= i)µ∗
j

]

upjt +
∑

j∈T \{i}

µ∗
j xj1 (9)

subject to
∑

t∈T

∑

p∈P

upit ≤ xi1 (10)

∑

j∈T

upjt ≤ E{Dp
t } p ∈ P, t ∈ T (11)

upjt ≥ 0 p ∈ P, j ∈ T , t ∈ T . (12)

Comparing problem (9)-(12) with problem (3)-(6) and ignoring the constant term
∑

j∈T \{i} µ
∗
j xj1 in the

objective function, we observe that problem (9)-(12) is the deterministic linear programming formulation

for a capacity allocation problem where there is limited capacity only on day i and the capacities on all

of the other days are infinite. In this capacity allocation problem, if we schedule a priority p job that

arrives on day t for day j, then we incur a holding cost of cpjt − 1(j 6= i)µ∗
j . We refer to this problem as

the capacity allocation problem focused on day i. Thus, the discussion in this paragraph and Proposition

1 imply that z∗LP −
∑

j∈T \{i} µ
∗
j xj1 provides a lower bound on the optimal total expected cost in the

capacity allocation problem focused on day i.

On the other hand, if there is limited capacity only on day i and the capacities on all of the other

days are infinite, then the set of feasible decisions can be written as

Ui(xit, Dt) =

{

ut ∈ Z
|P||T |
+ :

∑

p∈P

upit ≤ xit,
∑

j∈T

upjt ≤ Dp
t p ∈ P

}

. (13)

The definition above is similar to the one in (1), but it only pays attention to the remaining capacity

on day i. In this case, if there is limited capacity only on day i and the holding cost of scheduling a

priority p job that arrives on day t for day j is cpjt − 1(j 6= i)µ∗
j , then we can obtain the optimal total

9

expected cost by computing the value functions {vit(·) : t ∈ T } through the optimality equation

vit(xit) = E

{

min
ut∈Ui(xit,Dt)

{

∑

j∈T

∑

p∈P

[

cpjt − 1(j 6= i)µ∗
j

]

upjt + vi,t+1(xit −
∑

p∈P

upit)

}}

(14)

with the boundary condition that vi,τ+1(·) = 0. The optimality equation in (14) is similar to the one in

(2), but it keeps track of the remaining capacity only on day i. This is emphasized by the subscript i

in the value functions. The discussion in the previous paragraph implies that z∗LP −
∑

j∈T \{i} µ
∗
j xj1 ≤

vi1(xi1). Furthermore, the next proposition shows that vi1(xi1) +
∑

j∈T \{i} µ
∗
j xj1 ≤ V1(x1) and we

obtain the chain of inequalities

z∗LP ≤ vi1(xi1) +
∑

j∈T \{i}

µ∗
j xj1 ≤ V1(x1).

Therefore, we can solve the optimality equation in (14) to obtain a lower bound on the optimal total

expected cost in the original capacity allocation problem and this lower bound is at least as tight as the

one provided by the optimal objective value of problem (3)-(6).

Proposition 2 We have vit(xit) +
∑

j∈T \{i} µ
∗
j xjt ≤ Vt(xt) for all i ∈ T , t ∈ T .

Proof Since we have vi,τ+1(·) = Vτ+1(·) = 0 for all i ∈ T and µ∗
j ≤ 0 for all j ∈ T by dual feasibility

to problem (3)-(6), the result holds for day τ + 1. We assume that the result holds for day t + 1 and

let {ûpjt : p ∈ P, j ∈ T } be an optimal solution to the optimization problem inside the expectation in

(2), ϑt(xt, Dt) be the optimal objective value of this problem and ϑit(xit, Dt) be the optimal objective

value of the optimization problem inside the expectation in (14). We have

ϑt(xt, Dt) =
∑

j∈T

∑

p∈P

cpjt û
p
jt + Vt+1(xt −

∑

j∈T

∑

p∈P

ûpjt ej)

≥
∑

j∈T

∑

p∈P

cpjt û
p
jt + vi,t+1(xit −

∑

p∈P

ûpit) +
∑

j∈T \{i}

µ∗
j

[

xjt −
∑

p∈P

ûpjt

]

=
∑

j∈T

∑

p∈P

[

cpjt − 1(j 6= i)µ∗
j

]

ûpjt + vi,t+1(xit −
∑

p∈P

ûpit) +
∑

j∈T \{i}

µ∗
j xjt ≥ ϑit(xit, Dt) +

∑

j∈T \{i}

µ∗
j xjt,

where the first inequality follows from the induction assumption and the second inequality follows

from the fact that {ûpjt : p ∈ P, j ∈ T } is a feasible but not necessarily an optimal solution to the

optimization problem inside the expectation in (14). The result follows by taking expectations in the

chain of inequalities above and noting that Vt(xt) = E{ϑt(xt, Dt)} and vit(xit) = E{ϑit(xit, Dt)}. ✷

Proposition 2 suggests using the lower bound vit(xit) +
∑

j∈T \{i} µ
∗
j xjt as an approximation to

Vt(xt). In this approximation, given that we are on day t, the component vit(xit) captures the value

of the remaining capacity on day i, whereas the component
∑

j∈T \{i} µ
∗
j xjt captures the values of the

remaining capacities on days other than day i. We note that the component
∑

j∈T \{i} µ
∗
j xjt is somewhat

trivial in the sense that it exactly corresponds to how the LVF decision rule assesses the values of the

remaining capacities on days other than day i. To obtain more sophisticated estimates for the values of

10

the remaining capacities on days other than day i, we propose computing {vit(·) : t ∈ T } for all i ∈ T . In

this case, given that we are on day t, the component vit(xit) captures the value of the remaining capacity

on day i and we can use
∑

i∈T vit(xit) as an approximation to Vt(xt). In the next section, we resolve

the computational issues that are related to solving the optimality equation in (14).

4 Solving the Optimality Equation

The value functions {vit(·) : t ∈ T } computed through the optimality equation in (14) involve a scalar

state variable. Therefore, it is tractable to store these value functions. However, solving the optimality

equation in (14) still requires dealing with an optimization problem with |P||T | decision variables and

computing an expectation that involves the high dimensional random variable Dt, which are nontrivial

tasks. In this section, we resolve the computational issues that are related to solving the optimality

equation in (14). We begin with the next proposition, which shows that the optimization problem inside

the expectation in (14) can be solved efficiently.

Proposition 3 We can solve the optimization problem inside the expectation in (14) by a sort operation.

Proof As mentioned above, the optimality equation in (14) assumes that there is limited capacity only

on day i. Therefore, there are three things we can do with a job. We can schedule it for day i, schedule it

for a day other than day i or reject it. If we decide to schedule the job for a day other than day i or reject

it, then we simply follow the option with the smallest cost since there is no limit on the number of jobs

we can schedule for a day other than day i or reject. To make the idea precise, we let K̄ = maxj∈T {xj1}

so that the remaining capacities never exceed K̄. By using induction over the days of the planning

horizon, we can show that {vit(·) : t ∈ T } are convex in the sense that 2 vit(k) ≤ vit(k + 1) + vit(k − 1)

for all k = 1, . . . , K̄−1, t ∈ T . Thus, letting K = {0, . . . , K̄−1} and ∆k
i,t+1 = vi,t+1(k+1)−vi,t+1(k) for

all k ∈ K, we associate the decision variables {wk
i,t+1 : k ∈ K} with the first differences {∆k

i,t+1 : k ∈ K}

and write the optimization problem inside the expectation in (14) as

min
∑

j∈T

∑

p∈P

[

cpjt − 1(j 6= i)µ∗
j

]

upjt +
∑

k∈K

∆k
i,t+1w

k
i,t+1 + vi,t+1(0)

subject to
∑

p∈P

upit +
∑

k∈K

wk
i,t+1 = xit

∑

j∈T

upjt + ypt = Dp
t p ∈ P

wk
i,t+1 ≤ 1 k ∈ K

upjt, y
p
t , w

k
i,t+1 ∈ Z+ p ∈ P, j ∈ T , k ∈ K,

where we use the slack variables {ypt : p ∈ P} in the second set of constraints above.

For a particular priority level p, we consider the decision variables {upjt : j ∈ T \ {i}} and ypt
in the problem above. As far as the constraints are concerned, these decision variables appear only

in the second set of constraints. Therefore, if any one of the decision variables {upjt : j ∈ T \ {i}}

11

and ypt takes a nonzero value in the optimal solution, then this decision variable has to be the one

with the smallest objective function coefficient. This implies that we can replace all of these decision

variables with a single decision variable, say zpt , and the objective function coefficient of zpt would be

equal to the smallest of the objective function coefficients of the decision variables {upjt : j ∈ T \ {i}}

and ypt . Since the objective function coefficients of the decision variables {upjt : j ∈ T \ {i}} are

{cpjt − µ∗
j : j ∈ T \ {i}} and the objective function coefficient of the decision variable ypt is zero, letting

ĉpt = min{min{cpjt − µ∗
j : j ∈ T \ {i}}, 0}, the last problem above becomes

min
∑

p∈P

cpit u
p
it +

∑

p∈P

ĉpt z
p
t +

∑

k∈K

∆k
i,t+1w

k
i,t+1 + vi,t+1(0) (15)

subject to
∑

p∈P

upit +
∑

k∈K

wk
i,t+1 = xit (16)

upit + zpt = Dp
t p ∈ P (17)

wk
i,t+1 ≤ 1 k ∈ K (18)

upit, z
p
t , w

k
i,t+1 ∈ Z+ p ∈ P, k ∈ K. (19)

We note that the decision variable zpt corresponds to the least cost option for a priority p job among

the options of scheduling this job for a day other than day i and rejecting it. Using constraints (17),

we write zpt = Dp
t − upit for all p ∈ P and plug them into the objective function to obtain

∑

p∈P

cpit u
p
it +

∑

p∈P

ĉpt
[

Dp
t − upit

]

+
∑

k∈K

∆k
i,t+1w

k
i,t+1 + vi,t+1(0)

=
∑

p∈P

[

cpit − ĉpt
]

upit +
∑

p∈P

ĉpt D
p
t +

∑

k∈K

∆k
i,t+1w

k
i,t+1 + vi,t+1(0).

Therefore, dropping the constant term
∑

p∈P ĉpt D
p
t + vi,t+1(0) from the objective function, problem

(15)-(19) can be written as

min
∑

p∈P

[

cpit − ĉpt
]

upit +
∑

k∈K

∆k
i,t+1w

k
i,t+1 (20)

subject to
∑

p∈P

upit +
∑

k∈K

wk
i,t+1 = xit (21)

upit ≤ Dp
t p ∈ P (22)

wk
i,t+1 ≤ 1 k ∈ K (23)

upit, w
k
i,t+1 ∈ Z+ p ∈ P, k ∈ K. (24)

Problem (20)-(24) is a knapsack problem with each item consuming one unit of capacity. The items are

indexed by p ∈ P and k ∈ K. The (dis)utilities of items p ∈ P and k ∈ K are respectively cpit − ĉpt and

∆k
i,t+1. The capacity of the knapsack is xit. We can put at most Dp

t units of item p ∈ P and one unit of

item k ∈ K into the knapsack. The result follows by the fact that a knapsack problem with each item

consuming one unit of capacity can be solved by sorting the objective function coefficients and filling

the knapsack starting from the item with the smallest objective function coefficient. ✷

Another difficulty with the optimality equation in (14) is that we need to compute the expectation of

the optimal objective value of the optimization problem inside the first set of curly brackets. The proof

12

of Proposition 3 shows that this optimization problem is equivalent to problem (20)-(24), which is, in

turn, a knapsack problem where each item consumes one unit of capacity and there is a random upper

bound on how many units of a particular item we can put into the knapsack. Powell and Cheung (1994)

derive a closed form expression for the expectation of the optimal objective value of such a knapsack

problem. We briefly describe how their result relates to our setting.

To reduce the notational clutter, we note that for appropriate choices of the set of items N =

{1, . . . , N}, (dis)utilities {βn : n ∈ N}, integer valued knapsack capacity Q and integer valued random

upper bounds α = {αn : n ∈ N}, problem (20)-(24) is a knapsack problem of the form

min
∑

n∈N

βn zn (25)

subject to
∑

n∈N

zn = Q (26)

zn ≤ αn n ∈ N (27)

zn ∈ Z+ n ∈ N . (28)

Using ζ(α) to denote the optimal objective value of the problem above as a function of α, we are

interested in computing E{ζ(α)}. For a given realization of α, we can solve problem (25)-(28) by

sorting the objective function coefficients of the decision variables and filling the knapsack starting from

the item with the smallest objective function coefficient. We assume that β1 ≤ β2 ≤ . . . ≤ βN , in which

case it is optimal to start from the item with the smallest index.

We let φ(n, q) be the probability that the nth item uses the qth unit of the available knapsack

capacity in the optimal solution. If we know φ(n, q) for all n ∈ N , q = 1, . . . , Q, then we can compute

the expectation of the optimal objective value of problem (25)-(28) as

E{ζ(α)} =

Q
∑

q=1

∑

n∈N

βn φ(n, q).

Computing φ(n, q) turns out to be not too difficult. Since the optimal solution fills the knapsack

starting from the item with the smallest index, for the nth item to use the qth unit of capacity in the

knapsack, the total capacity consumed by the first n − 1 items should be strictly less than q and the

total capacity consumed by the first n items should be greater than or equal to q. Therefore, we have

φ(n, q) = P{α1+ . . .+αn−1 < q ≤ α1+ . . .+αn} and we can compute φ(n, q) as long as we can compute

the convolutions of the distributions of {αn : n ∈ N}.

The discussion in the previous two paragraphs provides a method to compute the expectation of the

optimal objective value of the optimization problem inside the first set of curly brackets in (14). In the

next section, we describe how we can use the value functions computed through the optimality equation

in (14) to make the job scheduling decisions on each day.

5 Applying the Greedy Policies

At the end of Section 3, we propose using
∑

j∈T vjt(xjt) as an approximation to Vt(xt). In this case, if the

state of the remaining capacities and the job arrivals on day t are respectively given by xt and Dt, then

13

we can replace Vt+1(xt −
∑

j∈T

∑

p∈P upjt ej) on the right side of (2) with
∑

j∈T vj,t+1(xjt −
∑

p∈P upjt)

and solve the problem

min
ut∈U(xt,Dt)

{

∑

j∈T

∑

p∈P

cpjt u
p
jt +

∑

j∈T

vj,t+1(xjt −
∑

p∈P

upjt)

}

(29)

to make the decisions on day t. We refer to this decision rule as the DPD decision rule, standing for

dynamic programming decomposition. The problem above involves |P||T | decision variables. The next

proposition shows that we can efficiently solve this problem as a min cost network flow problem.

Proposition 4 We can solve problem (29) as a min cost network flow problem.

Proof As mentioned in the proof of Proposition 3, it is possible to show that {vjt(·) : j ∈ T , t ∈ T }

are convex functions. In this case, letting K and ∆k
j,t+1 be defined as in the proof of Proposition 3, we

associate the decision variables {wk
j,t+1 : k ∈ K, j ∈ T } with the first differences {∆k

j,t+1 : k ∈ K, j ∈ T }

and write problem (29) as

min
∑

j∈T

∑

p∈P

cpjt u
p
jt +

∑

j∈T

∑

k∈K

∆k
j,t+1w

k
j,t+1 +

∑

j∈T

vj,t+1(0)

subject to
∑

p∈P

upjt +
∑

k∈K

wk
j,t+1 = xjt j ∈ T

∑

j∈T

upjt ≤ Dp
t p ∈ P

wk
j,t+1 ≤ 1 k ∈ K, j ∈ T

upjt, w
k
j,t+1 ∈ Z+ p ∈ P, k ∈ K, j ∈ T .

We define the new decision variables {ypt : p ∈ P} as ypt =
∑

j∈T upjt for all p ∈ P, in which case the

problem above becomes

min
∑

j∈T

∑

p∈P

cpjt u
p
jt +

∑

j∈T

∑

k∈K

∆k
j,t+1w

k
j,t+1 +

∑

j∈T

vj,t+1(0) (30)

subject to
∑

p∈P

upjt +
∑

k∈K

wk
j,t+1 = xjt j ∈ T (31)

∑

j∈T

upjt − ypt = 0 p ∈ P (32)

ypt ≤ Dp
t p ∈ P (33)

wk
j,t+1 ≤ 1 k ∈ K, j ∈ T (34)

upjt, y
p
t , w

k
j,t+1 ∈ Z+ p ∈ P, k ∈ K, j ∈ T . (35)

Ignoring the constant term
∑

j∈T vj,t+1(0) in the objective function, the problem above is a min cost

network flow problem. To see this, we consider a network composed of two sets of nodes N1 = {j ∈ T }

and N2 = {p ∈ P}, along with a sink node. The decision variable upjt corresponds to an arc connecting

node j ∈ N1 to node p ∈ N2, the decision variable ypt corresponds to an arc connecting node p ∈ N2 to

14

the sink node and the decision variable wk
j,t+1 corresponds to an arc connecting node j ∈ N1 to the sink

node. The supply of node j ∈ N1 is xjt and constraints (31) are the flow balance constraints for the

nodes in N1. The supply of node p ∈ N2 is zero and constraints (32) are the flow balance constraints for

the nodes in N2. The flow balance constraint for the sink node is redundant and omitted. Constraints

(33) and (34) act as simple upper bounds on the arcs. Figure 1 shows the structure of the network for

the case where T = {1, 2}, P = {a, b} and K = {l,m}. ✷

Since problem (29) can be solved as a min cost network flow problem, its continuous relaxation

naturally provides integer solutions. Therefore, we can solve problem (29) as a linear program.

6 Computational Experiments

In this section, we numerically compare the performance of the separable value function approximations

constructed through the method in Section 3 with a number of benchmark strategies.

6.1 Experimental Setup

We present two sets of computational experiments. In the first set of computational experiments,

we generate a base problem and modify its certain attributes to obtain test problems with different

characteristics. In the base problem, the number of days in the planning horizon is |T | = 100 and

the set of priority levels is P = {1, 2, 3}. We assume that it is not possible to schedule a job more

than S days into the future so that hpjt = ∞ whenever we have j − t ≥ S. We use the holding costs

hpjt = φp 1.25j−t and the penalty costs rpt = β φp 1.25S−1 for all p ∈ P, t ∈ T and t ≤ j ≤ t+ S − 1. We

note that the priority level one has the lowest priority since it incurs the lowest holding and penalty

costs. In the base problem, we use S = 7, φ = 2 and β = 5. The expected numbers of daily job

arrivals for the first, second and third priority levels are respectively 40, 20 and 10 and the coefficient

of variation for the numbers of daily job arrivals is CV = 0.3. The daily processing capacity is 70 so

that the daily expected job arrivals match the daily processing capacity.

In the second set of computational experiments, we work with test problems whose cost structures

are inspired by the health care application in Patrick et al. (2008). In particular, we assume that

there is a target duration for each priority level. If we can schedule a job within the target duration

corresponding to its priority level, then we do not incur a holding cost. Otherwise, we incur a holding

cost of fp for each day that we run over the target duration for a priority p job. Similar to the first

set of computational experiments, we assume that it is not possible to schedule a job more than S days

into the future. Therefore, using bp to denote the target duration for a priority p job, the holding costs

are of the form

hpjt =

∞ if j ≤ t− 1

0 if t ≤ j ≤ t+ bp − 1

(j − t− bp + 1) fp if t+ bp ≤ j ≤ t+ S − 1

∞ if t+ S ≤ j

for all p ∈ P , j, t ∈ T . In the expression above, the first case corresponds to scheduling a job for a day

in the past and the fourth case corresponds to scheduling a job more than S days into the future, which

15

are both infeasible. The second case corresponds to scheduling a job within its target duration and the

third case corresponds to scheduling a job beyond its target duration. The penalty costs are given by

rpt = (S − bp + 1) fp for all p ∈ P, t ∈ T . Throughout the second set of computational experiments,

the set of priority levels is P = {1, 2, 3} and we use |T | = 100 and S = 11. Similar to the first set of

computational experiments, the expected numbers of daily job arrivals for the first, second and third

priority levels are respectively 40, 20 and 10 and the coefficient of variation for the numbers of daily job

arrivals is CV = 0.3. We generate six test problems by using different combinations for f = (f1, f2, f3)

and b = (b1, b2, b3). In Table 1, we show the values that we use for f and b to generate the six test

problems in the second set of computational experiments.

6.2 Benchmark Strategies

We compare the DPD decision rule introduced in Section 5 with three benchmark strategies. Our first

benchmark strategy is the LVF decision rule that we describe at the end of Section 2. In contrast

to the basic version of this benchmark strategy, we test the performance of a dynamic version that

updates the values of dual variables {µ∗
j : j ∈ T } periodically over time. In particular, we divide the

planning horizon into M equal segments and resolve problem (3)-(6) on days tm = 1+ (m− 1)τ/M for

m = 1, . . . ,M . On day tm, we replace the set of days T in problem (3)-(6) with Tm = {tm, . . . , τ} and

the right side of constraints (4) with the current remaining capacities {xj,tm : j ∈ Tm}. In this way, we

only focus on the remaining portion of the planning horizon with the current values for the remaining

capacities. Letting {µ∗
j : j ∈ Tm} be the optimal values of the dual variables associated with constraints

(4), we use these dual variables in problem (8) until we reach the beginning of the next segment and

solve problem (3)-(6) again. We use M = 5 in all of our test problems.

To motivate our second benchmark strategy, we note that the LVF decision rule uses the dual

solution of problem (3)-(6). Naturally, it is possible to use the primal solution to problem (3)-(6) to

make the job scheduling decisions. In particular, given that we are on day t, we replace the set of days

T in problem (3)-(6) with {t, . . . , τ} and the right side of constraints (4) with the current remaining

capacities {xjt : j = t, . . . , τ}. Furthermore, we replace the right side of constraints (5) for day t with

the current realizations of the job arrivals. For the other days, we continue using the expected values

of the job arrivals. In this way, we only focus on the remaining portion of the planning horizon with

the current values for the remaining capacities and the current realization of the job arrivals for day

t. After these modifications, we solve problem (3)-(6) and letting {ûpjt′ : p ∈ P , j, t′ = t, . . . , τ} be an

optimal solution, we apply the decisions given by {ûpjt : p ∈ P, j = t, . . . , τ} on day t. We refer to this

benchmark strategy as the PLP decision rule, standing for primal linear program.

The third benchmark strategy is a simple first come first serve policy. In particular, this benchmark

strategy schedules the job arrivals on a particular day starting from the jobs with the highest priority,

without reserving capacity for the future job arrivals. We do not expect this benchmark strategy to

perform well, but we use it to demonstrate the benefit from carefully reserving capacity for the future

job arrivals. We refer to this benchmark strategy as the FC decision rule, standing for first come.

16

6.3 Computational Results

We begin by presenting our results for the first set of computational experiments. In particular, Table

2 shows the results for the base problem in the first set of computational experiments. The second

column in this table gives the lower bound on the optimal total expected cost provided by the optimal

objective value of problem (3)-(6). The third column gives the lower bound on the optimal total

expected cost provided by the expectation of the perfect hindsight total cost. Using the notation in the

proof of Proposition 1, the two lower bounds in the second and third columns respectively correspond to

z∗LP (E{D}) and E{z∗LP (D)}. Proposition 2 shows that the DPD decision rule also provides a lower bound

on the optimal total expected cost, but this lower bound turns out to be only marginally better than the

one provided by the optimal objective value of problem (3)-(6) and we do not report this bound. The

fourth, fifth, sixth and seventh columns in Table 2 respectively give the total expected costs incurred

by the DPD, LVF, PLP and FC decision rules. We estimate these total expected costs by simulating

the performances of the different benchmark strategies under 100 job arrival trajectories with common

random numbers. The eighth, ninth, tenth and eleventh columns give the percentage of jobs rejected

by the four benchmark strategies. The twelfth column gives the percent gap between the total expected

costs incurred by the DPD and LVF decision rules. Similarly, the thirteenth and fourteenth columns

give the percent performance gaps between the DPD decision rule and the remaining two benchmark

strategies. The last column gives the percent gap between the total expected cost incurred by the DPD

decision rule and the tightest of the lower bounds reported in the second and third columns. Thus, the

last column gives an upper bound on the optimality gap of the DPD decision rule.

Table 2 suggests that the DPD decision rule performs significantly better than all of the benchmark

strategies for the base problem. The performance gaps between the DPD decision rule and the two

linear programming based decision rules is 4 to 8%. It is interesting that although the lower bound

provided by the DPD decision rule does not improve the one provided by problem (3)-(6) by much,

the policy provided by the DPD decision rule performs significantly better than the policies that are

based on problem (3)-(6). The FC decision rule performs substantially worse, with a performance gap

of about 18%. In the proof of Proposition 1, we show that z∗LP (E{D}) ≤ E{z∗LP (D)} and the second

and third columns indicate that the gap between these two lower bounds can be significant. Therefore,

estimating the lower bound E{z∗LP (D)} by using Monte Carlo samples can be worth the effort.

In Tables 3 through 8, we vary different attributes of the base problem to generate test problems

with different characteristics. The first columns in these tables indicate the parameter that we modify

and its value. The interpretations of other columns remain the same as in Table 2. In Table 3, we begin

by varying the number of priority levels. The DPD decision rule performs consistently better than all

of the benchmark strategies. The performance gap between the DPD and PLP decision rules tend to

decrease with the increasing number of priority levels, but the performance gap is still about 5% even

when we have five priority levels. The FC decision rule rejects the smallest number of jobs, but this

does not translate into better performance.

In Table 4, we vary how far we are allowed to look into the future when scheduling the jobs. The

DPD decision rule continues to provide improvements over the other benchmark strategies. For the

17

longest booking horizon, the PLP decision rule outperforms the DPD decision rule by a slight margin,

but the performance of the PLP decision rule is quite erratic in the sense that there are test problems

where this benchmark strategy performs quite poorly. In Table 5, we vary the coefficient of variation

for the job arrivals. We observe that the performance gaps between the DPD decision rule and the LVF

and PLP decision rules increase as the coefficient of variation increases. This observation is encouraging

since addressing the random nature of the job arrivals is one of the main goals behind the DPD decision

rule. Since the lower bound z∗LP (E{D}) only uses the expected values of the job arrivals, its value does

not depend on the coefficient of variation, but the lower bound E{z∗LP (D)} gets larger as the coefficient

of variation increases. This increase in the lower bound is in agreement with the intuitive expectation

that the total expected cost incurred by the optimal policy should increase as the job arrivals have more

uncertainty and it becomes more difficult to anticipate the job arrivals.

In Table 6, we vary the daily available capacity. If there is plenty of daily available capacity, then

it is relatively straightforward to have capacity to accommodate the high priority jobs and the problem

becomes less challenging. Therefore, for the test problems with large capacities, all of the benchmark

strategies perform similarly. However, the DPD decision rule can provide noticeable improvements

when the capacities become tight. For the test problem with the tightest capacities, the performance

gap between the DPD and FC decision rules is about 60%. Finally, in Tables 7 and 8, we vary the

holding and penalty costs. We recall that we work with holding costs of the form hpjt = φp 1.25j−t and

penalty costs of the form rpt = β φp 1.25S−1. The base problem corresponds to the case where we have

S = 7, φ = 2 and β = 5. We observe that the DPD decision rule generally outperforms all of the other

benchmark strategies with noticeable margins.

Table 9 shows our results for the second set of computational experiments. The interpretations

of the columns of this table are very similar to those of Tables 2 through 8. For the second set of

test problems, the performance of the FC decision rule turns out to be not competitive and we do not

provide detailed results for this decision rule. Our results indicate that the DPD decision rule continues

to perform better than the LVF and PLP decision rules. It is interesting to observe that the total

expected costs incurred by the DPD decision rule for the first three test problems are very close to the

lower bounds on the optimal total expected cost. Therefore, the performance of the DPD decision rule

is essentially optimal for these test problems. On average, the LVF and PLP decision rules lag behind

the DPD decision rule respectively by about 6% and 26%.

To sum up our observations, the DPD decision rule can provide significant improvements over the

other benchmark strategies. The FC decision rule generally performs poorly as it neglects to plan for

the future job arrivals. There are a few test problems where the performances of the LVF and PLP

decision rules can be close to that of the DPD decision rule, but the LVF and PLP decision rules are

erratic in the sense that there are quite a few test problems where their performances are substantially

inferior to that of the DPD decision rule. In Table 10, we give the CPU seconds for the DPD decision

rule to compute the value functions {vit(·) : t ∈ T } for all i ∈ T . The left and right portions of this table

respectively give the CPU seconds with different values for |P| and S. The results indicate that the

CPU seconds scale a bit worse than quadratically with the number of priority levels, whereas increasing

18

the number of days over which we can schedule the jobs has a somewhat less noticeable effect on the

CPU seconds. The longest CPU seconds are less than a minute. Overall, since the value function

approximations are computed in an offline fashion, the CPU seconds reported in Table 10 are more

than adequate for practical implementation. Thus, given its superior performance, the DPD decision

rule appears to be a viable approach for dynamic capacity allocation.

7 Conclusion

In this paper, we considered a capacity allocation problem that involves allocating a fixed amount

of daily processing capacity to jobs of different priority levels arriving randomly over time. While

finding the optimal policy would require solving a dynamic program with a high dimensional state

vector, we proposed a dynamic programming decomposition method that required solving dynamic

programs with scalar state variables. We showed that our dynamic programming decomposition method

provides a lower bound on the optimal total expected cost and the greedy policy induced by the value

function approximations can be implemented by solving min cost network flow problems. Computational

experiments indicated that our dynamic programming decomposition method can provide significant

improvements when compared with alternative policies.

A worthwhile extension to the problem that we study in this paper involves jobs that consume

multiple units of capacity. It is relatively simple to extend our model to handle multiple units of

capacity consumption. Letting ap be the capacity consumption of a priority p job, all we need to do

is to modify the capacity constraints
∑

p∈P upjt ≤ xjt for all j ∈ T in (1) as
∑

p∈P ap upjt ≤ xjt for all

j ∈ T . In this case, the dynamic program in Section 1, the deterministic linear program in Section

2 and the dynamic programming decomposition method in Section 3 go through with straightforward

modifications. However, if a job consumes multiple units of capacity, then Proposition 3 does not go

through and we may have to solve the optimization problem inside the expectation in (14) as an integer

program. Similarly, if a job consumes multiple units of capacity, then we lose the min cost network

flow structure in problem (29). In this case, Proposition 4 does not go through and we may have to

solve integer programs to find the job scheduling decisions made by the DPD decision rule. Therefore,

if we have multiple units of capacity consumption, then our general approach goes through, but its

computational tractability suffers to a certain extent and we may need to solve integer programs instead

of using sort operations or solving min cost network flow problems. Finding efficient methods to solve

these integer programs is an interesting research direction to pursue.

References

Adelman, D. and Mersereau, A. J. (2008), ‘Relaxations of weakly coupled stochastic dynamic programs’,
Operations Research 56(3), 712–727.

Belobaba, P. P. (1987), Air Travel Demand and Airline Seat Inventory Control, PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996), Neuro-Dynamic Programming, Athena Scientific, Belmont,
MA.

19

Erdelyi, A. and Topaloglu, H. (2009a), ‘Computing protection level policies for dynamic capacity
allocation problems by using stochastic approximation methods’, IIE Transactions 41(6), 498–510.

Erdelyi, A. and Topaloglu, H. (2009b), ‘A dynamic programming decomposition method for making
overbooking decisions over an airline network’, INFORMS Journal on Computing (to appear).

Gerchak, Y., Gupta, D. and Henig, M. (1996), ‘Reservation planning for elective surgery under uncertain
demand for emergency surgery’, Management Science 42, 321–334.

Gupta, D. and Wang, L. (2008), ‘Revenue management for a primary-care clinic in presence of patient
choice’, Operations Research 56(3), 576–592.

Kunnumkal, S. and Topaloglu, H. (2009), ‘A new dynamic programming decomposition method for the
network revenue management problem with customer choice behavior’, Production and Operations
Management (to appear).

Liu, Q. and van Ryzin, G. (2008), ‘On the choice-based linear programming model for network revenue
management’, Manufacturing & Service Operations Management 10(2), 288–310.

Patrick, J., Puterman, M. and Queyranne, M. (2008), ‘Dynamic multi-priority patient scheduling for a
diagnostic resource’, Operations Research 56(6), 1507–1525.

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the Curses of Dimensionality, John
Wiley & Sons, Hoboken, NJ.

Powell, W. B. and Cheung, R. K. (1994), ‘Stochastic programs over trees with random arc capacities’,
Networks 24, 161–175.

Ruszczynski, A. (2003), Decomposition methods, in A. Ruszczynski and A. Shapiro, eds, ‘Handbook in
Operations Research and Management Science, Volume on Stochastic Programming’, North Holland,
Amsterdam.

Talluri, K. T. and van Ryzin, G. J. (2005), The Theory and Practice of Revenue Management, Springer,
New York, NY.

Topaloglu, H. (2009), ‘Using Lagrangian relaxation to compute capacity-dependent bid-prices in network
revenue management’, Operations Research 57(3), 637–649.

Williamson, E. L. (1992), Airline Network Seat Control, PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA.

Zhang, D. (2010), ‘An improved dynamic programming decomposition approach for network revenue
management’, Manufacturing & Service Operations Management (forthcoming).

Zhang, D. and Adelman, D. (2009), ‘An approximate dynamic programming approach to network
revenue management with customer choice’, Transportation Science 42(3), 381–394.

20

1

2

a

b

Sink
Node

a
tu1

b
tu2

a
tu2

b
tu1

l
tw 1,1 +

m
tw 1,1 +

l
tw 1,2 +

m
tw 1,2 +

a
ty

b
ty

Figure 1: Problem (29) as a min cost network flow problem when we have T = {1, 2}, P = {a, b} and
K = {l,m}.

Test
Prb. (f1, f2, f3) (b1, b2, b3)

1 (5, 10, 20) (3, 3, 3)
2 (5, 10, 20) (5, 5, 5)
3 (5, 10, 20) (7, 7, 7)
4 (20, 20, 20) (5, 4, 3)
5 (20, 20, 20) (7, 5, 3)
6 (20, 20, 20) (9, 6, 3)

Table 1: Holding cost parameters and target durations for the test problems in the second set of
computational experiments.

Test Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
Prb. z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

Base 13,979 14,771 15,885 16,528 17,238 18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54

Table 2: Results for the base problem in the first set of computational experiments.

Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
|P| z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

2 11,654 12,574 13,804 14,233 15,184 15,545 2.10 2.53 4.41 0.13 3.11 10.00 12.61 9.78
3 13,979 14,771 15,885 16,528 17,238 18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54
4 17,234 17,893 18,964 19,966 20,108 23,577 2.05 2.58 4.04 0.02 5.28 6.03 24.33 5.99
5 19,838 20,520 21,581 22,832 22,656 27,594 2.19 2.63 4.07 0.00 5.80 4.98 27.86 5.17

Table 3: Results with varying |P| in the first set of computational experiments.

21

Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
S z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

3 11,994 13,018 14,012 14,217 15,063 14,390 1.04 1.31 6.89 0.72 1.46 7.50 2.70 7.64
5 12,566 13,590 14,722 15,197 16,426 16,417 1.32 1.65 6.15 0.21 3.23 11.57 11.51 8.33
7 13,979 14,771 15,885 16,528 17,238 18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54
9 16,527 16,936 17,885 20,075 17,810 21,390 1.96 1.68 2.63 0.00 12.24 -0.42 19.60 5.60
11 19,977 20,374 21,578 24,424 20,972 24,448 1.19 0.84 1.87 0.00 13.19 -2.81 13.30 5.91

Table 4: Results with varying S in the first set of computational experiments.

Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
CV z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

0.0 13,979 13,979 13,979 13,979 13,979 17,867 2.40 2.40 2.40 0.00 0.00 0.00 27.81 0.00
0.1 13,979 14,154 14,411 14,637 14,992 17,891 2.23 2.41 2.89 0.00 1.57 4.03 24.15 1.82
0.2 13,979 14,380 14,991 15,434 15,985 18,099 2.16 2.42 3.42 0.00 2.96 6.63 20.73 4.25
0.3 13,979 14,771 15,885 16,528 17,238 18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54
0.4 13,979 15,222 16,909 17,718 18,549 19,515 1.96 2.52 5.16 0.16 4.78 9.70 15.41 11.08
0.5 13,979 15,810 18,325 19,251 20,135 20,455 1.93 2.70 6.33 0.41 5.05 9.88 11.62 15.91

Table 5: Results with varying CV in the first set of computational experiments.

Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
xj1 z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

55 34,841 34,930 35,868 37,428 36,524 57,896 18.75 20.11 20.13 18.22 4.35 1.83 61.41 2.69
65 20,023 20,365 21,588 24,688 23,828 36,237 6.92 9.33 9.59 3.58 14.36 10.38 67.86 6.01
70 13,979 14,771 15,885 16,528 17,238 18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54
75 11,858 12,218 12,305 12,746 12,265 12,515 0.00 0.00 0.00 0.00 3.58 -0.33 1.71 0.71
85 11,342 11,389 11,397 11,459 11,396 11,448 0.00 0.00 0.00 0.00 0.54 -0.01 0.45 0.07

Table 6: Results with varying xj1 in the first set of computational experiments.

Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
φ z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

1.2 10,111 10,841 11,645 11,997 13,241 !12,578 2.03 2.46 4.04 0.02 3.02 13.71 8.01 7.42
2.0 13,979 14,771 15,885 16,528 17,238 !18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54
3.0 20,489 21,260 22,638 24,119 23,772 !29,064 2.04 2.46 4.24 0.02 6.54 5.01 28.39 6.48
4.0 28,859 29,595 31,131 33,850 32,150 !42,278 2.03 2.46 4.24 0.02 8.73 3.27 35.81 5.19

Table 7: Results with varying φ in the first set of computational experiments.

Lower Bound Total Expected Cost % Rejected Jobs % Gap with DPD DPD
β z(E{D}) E{z(D)} DPD LVF PLP FC DPD LVF PLP FC LVF PLP FC gap

2.0 12,194 13,074 14,372 14,697 14,944 18,729 2.13 2.46 8.24 0.02 2.26 3.98 30.32 9.93
4.0 13,384 14,286 15,383 15,918 17,064 18,741 2.06 2.46 5.63 0.02 3.48 10.93 21.83 7.68
5.0 13,979 14,771 15,885 16,528 17,238 18,747 2.05 2.46 4.23 0.02 4.05 8.52 18.02 7.54
6.0 14,575 15,195 16,378 17,138 16,813 18,753 2.03 2.46 2.95 0.02 4.64 2.66 14.50 7.79
8.0 15,413 15,904 16,829 19,107 16,771 18,765 1.15 0.81 1.80 0.02 13.54 -0.34 11.50 5.82

Table 8: Results with varying β in the first set of computational experiments.

22

% Gap
Test Lower Bound Total Expected Cost % Rejected Jobs with DPD DPD
Prb. z(E{D}) E{z(D)} DPD LVF PLP DPD LVF PLP LVF PLP gap

1 40,987 41,004 41,013 42,365 45,373 12.42 13.42 14.40 3.30 10.63 0.02
2 27,959 28,000 28,030 28,805 35,472 10.87 11.71 14.48 2.76 26.55 0.11
3 17,220 17,227 17,326 17,618 24,946 9.65 10.01 14.25 1.69 43.98 0.57
4 141,455 141,847 149,251 163,650 191,048 11.81 12.99 15.16 9.65 28.00 4.96
5 131,695 132,352 148,785 158,937 181,486 11.80 12.60 14.40 6.82 21.98 11.04
6 114,557 115,447 142,695 158,705 177,309 11.33 12.59 14.07 11.22 24.26 19.10

Table 9: Results for the second set of computational experiments.

|P| CPU secs.

2 5.5
3 7.4
4 32.1
5 59.8

S CPU secs.

5 5.4
7 7.4
9 10.1
11 12.8

Table 10: CPU seconds for the DPD decision rule to compute the value functions {vit(·) : t ∈ T } for all
i ∈ T .

23

