Approximate Dynamic Programming - I:
Modeling

Warren B. Powell

December 7, 2009

Abstract

The first step in solving a stochastic optimization problem is providing a mathematical model. How
the problem is modeled can impact the solution strategy. In this chapter, we provide a flexible
modeling framework that uses a classic control-theoretic framework, avoiding devices such as one-
step transition matrices. We describe the five fundamental elements of any stochastic, dynamic
program. Different notational conventions are introduced, and the types of policies that can be used
to guide decisions are described in detail. This discussion puts approximate dynamic programming in
the context of a variety of other algorithmic strategies by using the modeling framework to describe
a wide range of policies. A brief discussion of model-free programming is also provided.

1 Introduction

Stochastic optimization problems pose unique challenges in how they are represented mathematically.
These problems arise in a number of different communities, often in the context of problems which
introduce specific computational characteristics. As a result, a number of contrasting notational
styles have evolved which complicate our ability to communicate research across communities. This
is particularly problematic in the general area of multistage, stochastic optimization problems, where
different communities have made significant algorithmic contributions which have applications to a
wide variety of problems.

The range of problems that can be modeled as stochastic, dynamic optimization problems is vast.
Examples of major problem classes include:

e Optimization over stochastic graphs - This is a fundamental problem class that addresses the
problem of managing a single entity in the presence of different forms of uncertainty with finite
actions.

e Dynamic resource allocation problems - These include scheduling people and machines, routing
vehicles, managing inventories, and investing in new facilities and technologies. These problems
arise in supply chain management, personnel management, health care, military operations,
agriculture and energy.

e Demand management - These problems include booking strategies for airlines, hotels, hospitals,
vendor-managed inventories, and incentives to control the demand for energy.

e Management of financial portfolios - How should a portfolio be spread over different investments
to strike a balance between risk and return?

e R & D portfolio problems - How should research and development portfolios be managed to
reach specific technological goals? What investment strategy should we pursue to ensure that
we will meet government targets for renewable energy in 30 years? These decisions need to be
made in the presence of uncertainty about prices, climate, technology and government policy.

e Pricing problems - How should products and services be priced to maximize total revenue?

e Engineering control problems - How much CO2 should we release into the atmosphere? What
time window should you commit to for providing service? At what speed should you fly your
aircraft?

e Sensor management problems - We would like to manage a team of technicians collecting
information about the presence of disease in the population, the concentration of pollution or
radiation in the atmosphere, or the concentration of pollutants in the water.

These problems are hardly exhaustive, but hint at the range of applications and types of complex-
ities that we might encounter. In all of these problems, we face the challenge of making decisions
sequentially, in that we make a decision, and then observe information that we did not know when we
made the first decision. We then get to make another decision, after which we see more information.
The goal is to make decisions over time that achieve some objective.

There are several ways to model these problems, and different communities have evolved mod-
eling and algorithmic strategies to deal with specific problem classes. For example, the simulation

community typically uses myopic policies (rules that do not directly consider the impact of decisions
now on the future) which might depend on one or more tunable parameters. For example, an (¢, Q)
inventory policy orders new product if the inventory falls below ¢, and places an order to bring the
total inventory up to Q. In this case, ¢ and @Q are tunable parameters which can be optimized to
find the best policy, indirectly taking into account the impact of decisions now on the future.

The Markov decision process community assumes that we can represent our system as being in a
state s at time ¢. If we choose action a, then we let p(s'|s, a) be the probability that we then land in
state s’. If C(s,a) is the contribution (reward) we earn if we choose action a when in state s, then
we can find the best action by solving Bellman’s optimality equation, given by

V(s) = max (C(s,a) + Y p(s']s,a)V(s)), (1)

where 7 is a discount factor. We are assuming that we are maximizing total discounted contributions
over an infinite horizon. The challenge is computing the value V' (s) for each (discrete) state s. There
are powerful algorithms for solving this problem, but they require enumerating the set of potential
states. While there are many problems that can be solved with this strategy, the method breaks
down when s consists of a vector of elements. This produces the well-known curse of dimensionality
of dynamic programming.

Approximate dynamic programming (ADP) is both a modeling and algorithmic framework for
solving stochastic optimization problems. Most of the literature has focused on the problem of
approximating V(s) to overcome the problem of multidimensional state variables. In addition to
the problem of multidimensional state variables, there are many problems with multidimensional
random variables, and multidimensional decision variables (most commonly referred to as actions
in the dynamic programming community, or controls in the engineering literature). These three
challenges make up what have been called the three curses of dimensionality.

It is important in any presentation on dynamic programming to acknowledge the different com-
munities that have contributed to the field. The challenge of making good decisions over time in
the presence of uncertainty arises in a number of fields, and as a result it is not surprising to see
similar ideas being developed under different notational systems and different vocabularies. These
communities include:

e Discrete Markov decision processes (MDP’s) - This covers research in computer science as well
as the MDP community in operations research. These problems are typically characterized by
discrete states (with possibly many states), and discrete actions, but typically not very many
actions.

e Control theory - These communities include engineering in the physical sciences and economics.
Problems are often modeled in continuous time, with decision variables (controls) that are
typically continuous and low-dimensional (e.g. one to a dozen dimensions). Randomness often
arises in the form of measurement noise.

e Stochastic programming - This community deals with vector-valued (and often high- dimen-
sional) decision vectors and general forms of uncertainty which are represented using scenario
trees. This community typically does not use Bellman’s optimality equation as an algorithmic
device.

e Simulation optimization - The simulation community generally uses myopic policies to make
decisions over time, but these policies may be governed by a vector of tunable parameters that
can be optimized. This community also does not use Bellman’s equation to guide decisions, but
there are close parallels between the problem of optimizing policies in simulation, and policy
optimization in dynamic programming.

Although the roots of approximate dynamic programming can be traced to early work by Bellman
(see, for example, Bellman and Kalaba (1959)), the ideas evolved independently within different fields,
notably the early work on training computers to play games (Samuel (1959, 1967)), and the work
in control theory (Werbos (1974), Werbos (1989), White and Sofge (1992)). The work in computer
science evolved under the name “reinforcement learning,” where the first published use of this term is
Minsky (1961) (the roots of this work can be found in Minsky’s Ph.D. dissertation Minsky (1954); see
also Mendel and McLaren (1970)). Reinforcement learning as a field did not really emerge until the
1980’s with Barto et al. (1981), followed by numerous contributions by Sutton and Barto through the
1980’s, eventually leading to their ground breaking book Sutton and Barto (1998). Work in control
theory took place under a variety of names, including reinforcement learning, adaptive dynamic
programming and (later) approximate dynamic programming, with important early contributions by
Paul Werbos (see Werbos (1974), Werbos (1989), White and Sofge (1992) and Si et al. (2004)). The
seminal book Bertsekas and Tsitsiklis (1996) introduced the name “neuro-dynamic programming,”
but it appears that this term is being replaced with approximate dynamic programming (see, for
example, chapter 6 of Bertsekas (2007)).

While ADP in its various forms really accelerated in the 1990’s in computer science and control
theory, there was relatively little attention given to ADP in the operations research community until
after year 2000. One of the earliest papers in the operations research literature to explicitly use the
term approximate dynamic programming is Bertsimas and Demir (2002), although others have done
similar work under different names such as adaptive dynamic programming (see, for example, Powell
et al. (2001), Godfrey and Powell (2002), Papadaki and Powell (2003)). Methods for handling vector-
valued decision variables in a formal way using the language of dynamic programming appear to have
emerged quite late (see in particular Powell and Van Roy (2004)), although other authors have used
specialized techniques from math programming to solve multistage stochastic optimization problems.
Pereira and Pinto (1991) in particular introduces the idea of using Benders cuts to overcome the
curse of dimensionality in dynamic programming (see also Powell (2007), chapter 11). This idea has
enjoyed a substantial literature (see Birge and Louveaux (1997), Higle and Sen (1996)), but these
have evolved independently of the approximate dynamic programming community.

From this discussion, we feel that any discussion of approximate dynamic programming has
to acknowledge the fundamental contributions made within computer science (under the umbrella
of reinforcement learning) and control theory. The one dimension that these communities largely
ignored was problems which involved high-dimensional decision variables, which are common in
operations research. The first book to bridge the gap with mainstream operations research in a
thorough way did not appear until Powell (2007).

2 Modeling a stochastic optimization problem

Before we can solve a problem, we have to model it. In this section, we review the five fundamental
dimensions of a stochastic, dynamic systems which include 1) states, 2) actions/decisions/controls,

3) exogenous information/random variables, 4) transition function, and 5) objective function. We
use this presentation to review the different notational systems used by different communities.

2.1 States

It is with some surprise that we have found that few authors attempt to actually define a state
variable. Powell (2007) offers the following definition:

Definition 2.1 A state variable is the minimally dimensioned function of history that is necessary
and sufficient to compute the decision function, the transition function, and the contribution function.

This definition is familiar to researchers in control theory (in particular, in electrical engineering).
The modifier “minimally dimensioned” is intended to restrict the state variable to all the information
needed, but only the information needed, so that it is as compact as possible.

The Markov decision process framework, used in both computer science and operations research,
uses s for state, or S; for the random variable describing the state at time ¢. Control theorists
use x. Most applications involve modeling a physical state (the status of a piece of equipment, the
amount of products in different inventories), but many problems require modeling an information
state (information used to make a decision), and for some applications, a belief state (when we are
unsure about the actual state of our system).

2.2 Decisions/actions/controls

We might refer to action a (Markov decision processes), control u or decision z. While it is easy to
view these as different variable names for the same quantity, it is also the case that these communities
tend to work on different types of problems. Although exceptions abound, in most cases a refers
to a relatively small (that is, easy to enumerate) set of discrete actions; the control u is typically a
low-dimensional (e.g. one to ten) continuous vector (density, pressure, velocity, acceleration, price);
and the decision vector x in operations research is often very high-dimensional, with hundreds to
tens of thousands of dimensions.

We defer until later the problem of determining how to make a decision, other than to say that
we will ultimately look for a policy 7, which is a rule (or function) for determining a decision using
the information in the state variable S;. We might use 7 to represent this rule, or a function A™(.S;)
to determine the action a; or X7 (S;) to determine the decision z;. We let II be the set of all possible
policies (or functions), which takes on different meanings as we give a policy structure in a specific
setting.

2.3 Exogenous information

We are typically interested in problems that are driven by some sort of exogenous information process.
This might come from a physical system (observed prices or rainfall) or a probability distribution.
These are modeled as random variables, but there is an important distinction between whether the
underlying probability distribution is known or not.

While communities have standard notation for states and actions, we are unaware of any standard
notation for exogenous information. The MDP community typically does not explicitly model ex-
ogenous information, preferring the more compact representation of the one-step transition function
p(s'|s,a). In control theory, we often see w; for random information. Given the preference of the
applied probability community to use capital letters for random variables, we use W; as our generic
notation for random information.

A separate modeling issue for discrete time models is the modeling of time. In a continuous time
model, W; would represent information arriving between ¢ and ¢ + dt. For discrete time problems,
there are many authors who would let W; be new information (about rainfall, changes in prices, new
demands) arriving between ¢ and t + 1, but this means that at time ¢, W; is random. We prefer
the convention, widely used in the applied probability community, that W; represents information
arriving between ¢ — 1 and ¢. With this convention, any variable indexed by ¢ is known at time t.

We let w represent a sample path (Wi, Wa,...) where w € Q. To finish the formalism, we let F
be the sigma-algebra on €2 (the set of events), and let P be a probability measure on (€2, F). Finally,
because information evolves, over time, we let F; be the sigma-algebra generated by the variables
(W1,...,Wy), which implies that F; C Fiy; is a sequence of filtrations. We can use this notation
to express the dependence of state variables and decisions on information that has arrived prior to
time ¢.

There are instances where it is useful to provide an explicit model of the history. For this purpose,
we can define

H; = The history of the process, consisting of all the information known
through time ¢,
- (Wl,WQ,...,Wt),

H: = The set of all possible histories through time ¢,
= {Hi(w)lw e 0},

h:; = A sample realization of a history,
= Hi(w),

Q(ht) = {w S Q’Ht(W) = ht}

In the stochastic programming community, it is common to model uncertainty through scenario
trees, which represents the branching of outcomes as new information becomes available. Imagine
all the outcomes w € Q(h:) which correspond to a common history h; at time ¢. We can model this
juncture as a node n € A/, where each node n captures a particular history at a point in time. All the
outcomes that meet at node n follow a common path (corresponding to the history h:). Rather than
use an explicit model of time, the modeling of scenario trees typically refers to predecessor nodes
and successor nodes. A decision made at node n of the tree has to depend on the information up
to that juncture. This representation does not use the concept of a state variable, where outcomes
with different histories can lead to the same state.

It is interesting to contrast the use of scenario trees in stochastic programming with state vari-
ables in dynamic programming. A node in a scenario tree corresponds to an entire history. Not
surprisingly, scenario trees grow exponentially in size as the number of time periods increases. For
this reason, there is a literature addressing the problem of generating scenario trees which capture
desirable properties with a minimum number of outcomes (see Dupagova et al. (2000), Hg yland and

Wallace (2001), Heitsch and Romisch (2009)). It is perhaps curious that the stochastic programming
community, which focuses primarily on problems with multidimensional decisions z¢, views dynamic
programming as a method that is limited to small problems (due to the “curse of dimensionality”)
when in fact scenario trees suffer from a similar curse of dimensionality when representing exogenous
information processes.

In practice, scenario trees are used most often when the history of a process plays an important
role. Although the history can be easily added to a state variable, the result is an extremely large
state space where there may be a unique state for each sample path (which shares a common history).
We note that scenario trees are generated prior to solving the problem, which means that this method
of modeling uncertainty is unable to handle problems where the exogenous outcome depends on a
prior decision. For example, we may be modeling random prices to determine the value of an asset. If
we sell more, the prices may drop. For such problems, we cannot generate scenario trees in advance.

2.4 The transition function

There are different styles for modeling how the system evolves over time. The convention in opera-
tions research is to use systems of equations, such as

Atmt + Bt_lmt_l = bt. (2)

In the MDP community, the evolution of the system is described using the one-step transition matrix
p(s'ls, a).

In the control theory community, it is common to define a function that maps state, action, new
information to new state, as in:

Sir1 = SM(Sy, ar, Wig1).

The function SM(-) goes under many names: “plant model” (literally, the model of a physical
production plant), “plant equation,” “law of motion,” “transfer function,” “system dynamics,” “sys-
tem model,” “transition law,” and “transition function.” We use “transition function,” but adopt
notation that captures the widely used term “system model.” Transition functions are typically
straightforward to specify (with exceptions as we note below), although in many engineering appli-
cations, they can be quite complex. For this reason, it is common practice to specify the existence
of a transition function when modeling a problem without actually writing out the details. This
contrasts sharply with writing out systems of linear equations such as equation (2), where all the

details of the transition are fully specified.
It is often overlooked that the one-step transition matrix is actually an expectation, since it can
be derived directly from the transition function as follows:
P(s'|s,a) = E{l{g_sm(s,awi)}St = s}
= Z P(Wit1 = wit1)1{o—sM (5.0,W111)}-

wi4+1 €241

The problem with one-step transition matrices is that they tend to be extremely large, measuring
the number of states times the number of states times the number of actions. One-step transition

matrices have enjoyed a rich history in the literature for Markov decision processes, where they have
facilitated an elegant theory. But in practice, it is only an extremely narrow class of problems where
they can actually be computed.

2.5 Objective function

The final dimension of our model is the objective function. We might minimize a cost or maximize
a contribution (or reward). Assuming that we are maximizing, we define

C (S, ar) = Contribution received for being in state S; and taking action a;.

The contribution might be a random variable, which we would then write as C(S;, a;, Wit1). In
many applications, we observe the next state S;11 but do not explicitly observe Wy 1, in which case
we may write the contribution as C(Sy, as, Si+1). In either case, C(St, a;) would be the expected
contribution. The most common assumption is that we are maximizing total discounted rewards
over a finite or infinite horizon, which we would write as

F™(So) = {Z’y c St,A“<St>>} (3)

t=0

where 7 is a discount factor. It is very common to let T' — oo and solve for a steady state policy, but
for other problems, solving undiscounted, finite horizon problems is the standard model. We note
that we are assuming that our objective function can be written in the form of additive rewards.

We let A™(Sy) be a function, parameterized in some way by 7w € II, that determines the action
a¢ given the information in the state S;. Our goal is to find the best policy, which means solving

gléiﬁ{E{Z'y (S, A))} (4)

Solving this optimization problem directly, even for very simple problems, is computationally
intractable. The breakthrough of dynamic programming is realizing that this problem can be solved
using Bellman’s optimality equation (see Puterman (1994) for a modern and thorough discussion of
this field), which can be written

Vi(Sy) = max (C(St,a) +v) pls'|Sa)Vesa(s), (5)

S/

= max (C(Sy, a) + VE{Vi41(Se41)18e}), (6)

where Sy = SM (S, a, W;11). For steady state problems, we let V;(S) = V;11(S) = V(S). If states
are discrete (and there are not too many of them), the number of actions is not too large, and the
expectation is easy to compute, then equation (5) or (6) can be used to find the best action a for each
state S, which gives us a lookup-table representation of a policy. Unfortunately, only a small number
of toy problems meet these criteria, which is what leads us to the field of approximate dynamic
programming.

3 Major problem classes

Approximate dynamic programming arises because of the computational difficulties in solving Bell-
man’s equation. Now that we have our modeling framework in place, we can discuss more precisely
about the nature of these complexities.

There are three computational challenges that arise in the solution of Bellman’s equation:

1) Finding the value function V(.S) (or V;(S;) for finite-horizon problems).
2) Computing the expectation.

3) Finding the best action.

The nature of these challenges arises from the characteristics of three variables: the state variable
Sy, the exogenous information variable Wy, and the action a;/control u;/decision x;.

State variables can typically be divided between whether the state space is a) discrete and easy
to enumerate (up to thousands of states, but not millions), b) scalar and continuous, or ¢) a vector
(whether it is discrete or continuous). Often, cases (b) and (c) are equivalent from a computational
perspective, but scalar, continuous variables tend to offer special structure. The third case spans
discrete vectors (how many cars of each model are in inventory), continuous vectors (how much money
is invested in each investment choice), vectors of categorical attributes, and of course a mixture of all
of these. There are many applications where the state variable is complicated by the need to retain
some portion of the history of the process. When this happens, a common modeling strategy is to
use scenario trees.

For the random vector Wy, we are primarily interested in whether we can compute the expectation
in Bellman’s equation. Vectors of random variables may be easy if they are independent, and of course
the problem is easiest when there are no autocorrelations linking observations over time. It is possible
the random information is simple, but we do not know the probability distribution. For example,
the random variable may simply capture whether a person accepts a bid in an auction or not; the
random variable is Bernoulli, but we do not know the probability distribution describing the person’s
behavior. It is also important to separate problems where W; is independent of all prior history;
problems where W; depends on the state S;; and problems where W; depends on both the state S;
and action zy.

For decisions, there may be a small number of discrete actions a, a single scalar decision, low-
dimensional continuous vectors u, or high-dimensional continuous or discrete vectors x. For vector-
valued actions, we typically need some sort of search algorithm such as a linear program or genetic
algorithm to find z. The choice of algorithmic search strategy can have an impact on how we
represent future events when making a decision.

The default way to handle any dynamic program is to discretize all the states and actions, and
assume that we can compute expectations. When the number of states and actions is small enough
to enumerate when discretized, and when we can compute expectations, we typically can solve
Bellman’s equation (1) exactly using classical techniques (see, e.g. Puterman (1994)). If the state
variable is a vector, discretizing it can produce an exponentially large number of states, a problem
that is routinely referred to as the “curse of dimensionality” (a term coined by Bellman). The same
problem arises with the information variable W and the action a/u/x. However, there are problems

where W may be continuous, but where the expectation is still easy. There are other problems where
the information may be fairly simple (e.g. the behavior of an opponent or the price of a stock), but
where we do not know the distribution so we cannot compute the expectation. Finally, there are
problems where the decision variable is a vector, which makes it impossible to enumerate all the
actions. When all three of these problems arise (vector-valued states, uncomputable expectation and
vector-valued decisions), we say that we have three curses of dimensionality.

4 Types of policies

The challenge of dynamic programming is finding a good rule for making decisions given a state.
We refer to this rule as a policy. Policies come in a number of forms, and the precise form can play
a major role in the design of an algorithm for finding a good policy. A policy is often denoted as
m, which is a generic mapping from a state to an action. It is convenient to emphasize that this is
really a function. If the action is a, we might designate the function as A™(S) for the action that
we would take if we are in state S. If your action is z, we could use X™(S). We design our space of
possible policies using 7 € II, but what this means computationally is very dependent on the nature
of the policy (or decision function). Examples of policies include:

1) Lookup tables - For a discrete state s, A™(s) is the discrete action we should take. If there are
100 states and 10 actions per state, our policy space would have 1,000 parameters.

2) Parameterized myopic policies - Let S; be the amount of inventory on hand at time ¢. A
reorder policy might be to order X™(S;) = Q@ — Sy if S; < ¢ and 0 otherwise. This policy is
parameterized by ¢ and @, so we might say m = (¢, Q). The set of all possible policies is the
set of potential values for ¢ and Q.

3) Statistical models - When controlling energy commitments from a wind farm, let W; be the
wind speed. We have to decide how much energy to commit to the grid, which we might model
using x; = 0y + 01 Wy + 0. W2 + 3W2. This regression function is a policy parameterized by
(0o, 01, 02,03). Within this category, we would include training a neural network to represent a
policy, a strategy that is common in the neural network community (see Haykin (1999), chapter
12).

4) Myopic optimization models - Let C'(S¢, x¢) be the contribution earned by using decision x when
we are in state S. An example might be a resource allocation problem where we are allocating
people, products or machinery to different tasks or demands. S; captures the current status
of our resources and tasks, and x; is our vector of decisions of who gets assigned to what. We
could solve our problem using

X"(S) = argmax C(S¢,).

This means finding the best assignment of resources now, without regard to the impact of
these decisions on the future. We note that solving this problem may involve using a solver for
linear, nonlinear or integer programs, or using a heuristic search algorithm such as tabu search
or genetic algorithms.

5) Tree search - For problems with typically small action spaces, it is possible to estimate the
value of a particular state by enumerating all the actions and subsequent states that result

from reaching a particular state. These methods are widely used in the design of algorithms
for playing games (see Pearl (1984)).

Roll-out heuristics - When it is not possible to enumerate all the actions out of a state (as in
tree search), it may be the case that we have access to a reasonable (but suboptimal) policy.
A roll-out heuristic evaluates the value of a particular state s’ (that we might reach from state
s using a potential action a) by following this policy starting from s’ for a specified number
of iterations. The value of this simulated sample path can be used to approximate the value
of reaching state s’. See Bertsekas and Castanon (1999) for a more in-depth discussion of this
strategy.

Rolling horizon policies (deterministic) - We could also optimize over a planning horizon T'
using

t+T
U™(S;) = a C(Sy !
(t) rgrqileal,}{{z (tvut)v
t'=t
where point forecasts are used to make decisions over the horizon ¢,...,¢ +7T. We only use

ug as our decision to implement right now. This strategy is also known as a receding horizon
policy, or, in the control theory community, model-predictive control. Rolling horizon poli-
cies are mathematically equivalent to tree search, but are normally written in the context of
multidimensional decision/control problems where a solver of some sort is used to solve the
optimization problem.

Rolling horizon policies (stochastic) - Classical rolling horizon policies use a point forecast of
the future, but it is possible to use a stochastic model which captures uncertainty in potential
future events. This strategy is most popular in the stochastic programming community which
represents possible outcomes of future events as scenarios in a set €);. An outcome w €

would be viewed as a set of potential events over time periods ¢t,t + 1,...,t + 7.
t+T
U —
X7(S5) = arg max C (St xt) + ; p(w) tlzm C(Sp(w), zy (w)).
weN =

These problems have to be solved subject to constraints (known as “nonanticipativity con-
straints” in the stochastic programming community) which ensure that a decision x; does not
see information that becomes available at time periods later than ¢'.

Value function approximations - In this strategy, we use an approximation of the value function
in Bellman’s equation, where we would make a decision by solving

A™(Sy) = arg max (C(St,a) + AYE{ Vi1 (SM (S}, a, Wit1))|S:}). (7)

where V(S) is an approximation of the value of being in state S. The space of policies is the
space of potential value function approximations.

Lookup tables are easy to visualize but require enumerating states and actions, so this is precisely
the type of policy that is sensitive to curse of dimensionality issues. Finding the best parameters in
a parameterized policy is a topic that has been widely studied in the literature known as simulation
optimization (see, for example, Nelson et al. (2001), Fu et al. (2005), Kim and Nelson (2006), Chang

10

et al. (2007)) where the techniques of stochastic search are used (see Spall (2003)). Rolling horizon
policies have been viewed as a form of ADP (see Bertsekas (2005) for a discussion of the relationship
between ADP and model-predictive control), since they are in the same mathematical class as tree-
search algorithms and roll-out policies (Bertsekas and Castanon (1999)).

Approximate dynamic programming arises primarily when we are looking for a value function
approximation that determines a decision using equations such as equation (7). However, finding the
best statistical model (policies of type 3 above) is also an important strategy in the ADP literature,
where it is referred to as approximate policy optimization. This is particularly common in the control
theory community where a policy is a neural network (literally, a statistical model). It can be argued
that finding the best regression function (type 3) and finding the best value function (type 9) are
mathematically equivalent (both produce functions that are determined by regression methods),
but the computational issues are different. The problem of finding the best approximation of a
policy is closest to policy iteration of dynamic programming, while finding the best value function
approximation is closest to value iteration.

5 Model-free dynamic programming

A topic that is very popular in computer science (in the reinforcement learning community) and
engineering is a problem class that is referred to as “model free.” These applications arise in the
context of more complex applications, but the term “model free” can take on different meetings in
different settings. In a nutshell, model-free dynamic programming arises when we cannot compute

ap = max (C(S7,a) +1EVir1 (SY (ST, ar, Wesa (W"))). (8)

a

There are three calculations implied in the solution of equation (8):

a) Computing Sp,; = SM(SP, az, Wyy1(w™)) using the transition function,
b) computing the expectation and

c¢) computing the contribution function C'(S}, a).

There are many applications where we cannot compute some combination of these calculations.
The most common is problems where we do not have an explicit transition function. Given the
fact that many refer to this as the model, the lack of a model (transition function) resulted in
algorithmic strategies which address this dimension as model-free dynamic programming. These
techniques apply equally to problems where we cannot compute the expectation, which can easily
arise because observations are from an exogenous process where we do not know the underlying
probability distribution. There are also problems where we do not have an explicit contribution (or
reward or utility) function. These can arise when we are trying to mimic a human making decisions,
where we do not know the precise utility function that guides the human.

The reinforcement learning community often requires a model-free framework since this commu-
nity is frequently working on problems that involve mimicing human behavior. Model-free dynamic
programming is so common, in fact, that authors feel that they have to explicitly state when an
algorithm is model-based. The control theory community often encounters model-free applications

11

when the physics of a particular problem (e.g. modeling a chemical plant) is simply too complex to
represent as a mathematical model.

6 Closing remarks

The goal of this chapter was to outline a general strategy for modeling stochastic, dynamic problems.
Designing effective policies is a difficult challenge which requires taking advantage of the nature of a
particular problem. Approximate dynamic programming offers very general algorithmic framework
for solving these problems. An introduction to this approach is given in Powell (2010) in this volume.

References

Barto, A., Sutton, R. and Brouwer, P. (1981), ‘Associative search network: A reinforcement learning
associative memory’, Biological cybernetics 40, 201-211.

Bellman, R. and Kalaba, R. (1959), ‘On adaptive control processes’, IRE Transactions on Automatic
Control 4, 19.

Bertsekas, D. (2005), ‘Dynamic programming and suboptimal control: A survey from ADP to MPC’,
European Journal of Control 11, 310-334.

Bertsekas, D. P. (2007), Dynamic Programming and Optimal Control, Vol. II, Athena Scientific,
Belmont, MA.

Bertsekas, D. P. and Castanon, D. A. (1999), ‘Rollout Algorithms for Stochastic Scheduling Prob-
lems’, J. Heuristics 5, 89-108.

Bertsekas, D. and Tsitsiklis, J. (1996), Neuro-dynamic programming, Athena Scientific, Belmont,
MA.

Bertsimas, D. and Demir, R. (2002), ‘An approximate dynamic programming approach to multidi-
mensional knapsack problems’, Management Science 48, 550-565.

Birge, J. R. and Louveaux, F. (1997), Introduction to Stochastic Programming, Springer Verlag, New
York.

Chang, H. S., Fu, M. C., Hu, J. and Marcus, S. . (2007), Simulation-Based Algorithms for Markov
Decision Processes, Springer, Berlin.

Dupagové, J., Consigli, G. and Wallace, S. W. (2000), ‘Scenarios for multistage stochastic programs’,
Annals of Operations Research 100(1), 25-53.

Fu, M., Glover, F. and April, J. (2005), ‘Simulation optimization: a review, new developments, and
applications’, Proceedings of the 37th conference on Winter simulation pp. 83—-95.

Godfrey, G. and Powell, W. (2002), ‘An adaptive dynamic programming algorithm for dynamic fleet
management, [: Single period travel times’, Transportation Science 36, 21-39.

Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall.

12

Heitsch, H. and Romisch, W. (2009), ‘Scenario tree modeling for multistage stochastic programs’,
Mathematical Programming 118(2), 371-406.

Higle, J. L. and Sen, S. (1996), Stochastic Decomposition: A Statistical Method for Large Scale
Stochastic Linear Programming, Kluwer Academic Publishers.

Hg yland, K. and Wallace, S. W. (2001), ‘Generating scenario trees for multistage decision problems’,
Management Science pp. 295-307.

Kim, S. H. and Nelson, B. L. (2006), Selecting the best system, Elsevier, chapter 17.

Mendel, J. M. and McLaren, R. W. (1970), Reinforcement learning control and pattern recognition
systems, Vol. 66, Academic Press, New York, pp. 287-318.

Minsky, M. L. (1954), Theory of neural-analog reinforcement systems and its application to the
brain-model problem, PhD thesis.

Minsky, M. L. (1961), ‘Steps Toward Artificial Intelligence’, Proceedings of the Institute of Radio
Engineers 49, 8-30.

Nelson, B. L., Swann, J., Goldsman, D. and Song, W. (2001), ‘Simple procedures for selecting the
best simulated system when the number of alternatives is large’, Operations Research 49, 950-963.

Papadaki, K. P. and Powell, W. B. (2003), ‘An adaptive dynamic programming algorithm for a
stochastic multiproduct batch dispatch problem’, Naval Research Logistics 50, 742—769.

Pearl, J. (1984), Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-
Wesley.

Pereira, M. V. F. and Pinto, L. M. V. G. (1991), ‘Multistage stochastic optimization applied to
energy planning’, Mathmatical Programming 52, 359-375.

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the curses of dimensionality,
John Wiley & Sons, Hoboken, NJ.

Powell, W. B. (2010), Approzimate Dynamic Programming - II: Algorithms, John Wiley and Sons,
chapter 777, p. 777

Powell, W. B., Shapiro, J. A. and Simao, H. P. (2001), A representational paradigm for dynamic
resource transformation problems, in R, J. C. Baltzer AG, pp. 231-279.

Powell, W. B. and Van Roy, B. (2004), Approximate Dynamic Programming for High Dimensional
Resource Allocation Problems, in J. Si, A. G. Barto, W. B. Powell and D. W. II, eds, ‘Handbook
of Learning and Approximate Dynamic Programming’, IEEE Press, New York.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley & Sons, Hoboken, NJ.

Samuel, A. L. (1959), ‘Some studies in machine learning using the game of checkers’, IBM Journal
of Research and Development 3, 211—-229.

Samuel, A. L. (1967), ‘Some studies in machine learning using the game of checkers II - recent
progress’, IBM J. Res. Develop 11, 601—617.

Si, J., Barto, A. G., Powell, W. B. and Wunsch, D. (2004), ‘Handbook of learning and approximate
dynamic programming’, Wiley-IEEE Press .

13

Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation and
Control, John Wiley & Sons, Hoboken, NJ.

Sutton, R. and Barto, A. (1998), Reinforcement Learning, Vol. 35, MIT Press, Cambridge, MA.

Werbos, P. J. (1974), Beyond regression: new tools for prediction and analysis in the behavioral
sciences, PhD thesis.

Werbos, P. J. (1989), ‘Backpropagation and neurocontrol: A review and prospectus’, Neural Networks
pp- 209-216.

White, D. A. and Sofge, D. A. (1992), Handbook of intelligent control: Neural, fuzzy, and adaptive
approaches, Van Nostrand Reinhold Company.

14

