
APPROXIMATE DYNAMIC PROGRAMMING: LESSONS FROM THE FIELD

Warren B. Powell

Department of Operations Research and Financial Engineering
Princeton University

Princeton, NJ 08544, U.S.A.

ABSTRACT

Approximate dynamic programming is emerging as a power-
ful tool for certain classes of multistage stochastic, dynamic
problems that arise in operations research. It has been ap-
plied to a wide range of problems spanning complex financial
management problems, dynamic routing and scheduling,
machine scheduling, energy management, health resource
management, and very large-scale fleet management prob-
lems. It offers a modeling framework that is extremely
flexible, making it possible to combine the strengths of
simulation with the intelligence of optimization. Yet it re-
mains a sometimes frustrating algorithmic strategy which
requires considerable intuition into the structure of a prob-
lem. There are a number of algorithmic choices that have
to be made in the design of a complete ADP algorithm.
This tutorial describes the author’s experiences with many
of these choices in the course of solving a wide range of
problems.

1 INTRODUCTION

This is my third in a series of tutorials on approximate dy-
namic programming that I have given at the Winter Simula-
tion Conference. In (Powell 2005), I described approximate
dynamic programming as a method of making intelligent de-
cisions within a simulation. For simulation problems where
there is a need to optimize over time (that is, decisions now
have to consider their impact on the future), ADP offers a
powerful framework for calculating the impact of a decision
on the future, and using this measurement to make better
decisions. In this view, ADP is a form of “optimizing simu-
lator.” It is important not to confuse this view with the more
familiar simulation-optimization community which uses a
decision rule governed by one or more parameters which
then need to be chosen optimally.

In my second tutorial (Powell 2006), I focused on
ADP as a method for solving high-dimensional dynamic
programming problems that suffer from the three curses of

dimensionality: the state variable, exogenous information
and the decision variable. A major algorithmic strategy for
these problems involves fitting the value function around the
post-decision state variable, which measures the state of the
system after a decision is made but before new information
arrives. This means that the value function is a deterministic
function of the state and action, a feature that is very
important in the use of scalable optimization algorithms. In
addition to this tutorial, my book on approximate dynamic
programming (Powell 2007) appeared in 2007, which is
kind of ultimate tutorial, covering all these issues in far
greater depth than is possible in a short tutorial article.

In this tutorial, I am going to focus on the behind-
the-scenes issues that are often not reported in the research
literature. In some cases, I will reinforce ideas that have
been presented in my book, but some of the topics are not
even covered there (in part because of experiences that have
occurred in the last year).

2 THREE PERSPECTIVES OF ADP

As a result of its name, approximate dynamic programming
is typically viewed as a method for solving complex dynamic
programs. While this is true, it hides the breadth of its range
of applications. We have found that ADP can be of use in
three very distinct methodological communities:

a) Large-scale (deterministic) optimization. Our own
work in ADP got its start solving very large opti-
mization problems arising in the context of freight
transportation. We have found that commercial
packages such as Cplex can handle very large static
problems, but struggle when a time dimension is
introduced. We have used ADP successfully to
break problems arising in the largest freight trans-
portation companies into components that Cplex
handles very easily. In this setting, ADP is simply
a decomposition strategy that breaks problems with
long horizons into a series of shorter problems. The

205 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Powell

Time
Sp

ac
e

Figure 1: Illustration of time-space network

fact that ADP can also handle uncertainty in this
context is a nice byproduct that we often exploit.

b) Making simulations intelligent. There are many
stochastic, dynamic problems that are solved us-
ing myopic policies where decisions at time t ig-
nore their impact on the future. ADP provides
a method for capturing the impact of these deci-
sions on the future, and then communicating this
impact backward so that decisions can be made
more intelligently. The result is not just higher
quality decisions, but also more realistic decisions,
since humans are actually quite good at anticipating
downstream impacts.

c) Solving complex dynamic programs. It is some-
times natural to formulate a problem as a dynamic
program, only to find that the resulting problem is
computationally impossible. ADP offers a rich set
of algorithmic strategies for providing good solu-
tions to otherwise intractable stochastic, dynamic
programs.

Figure 1 is an illustration of a typical time-space net-
work that is often used in dynamic resource allocation
problems. In large-scale applications such as those that
arise in freight transportation, these graphs become excep-
tionally large (millions of “space” nodes, billions of links).
Instead of solving the entire problem, ADP solves sequences
of smaller subproblems such as that shown in figure 2. We
have found that over short time horizons, Cplex can handle
what would normally be described as very difficult integer
programs, even for very large-scale problems. But we have
to estimate some sort of approximation to capture the impact
of decisions now on the future. This is where approximate
dynamic programming comes in.

There are many dynamic applications where standard
practice is to simulate a myopic policy. In dynamic pro-
gramming, a policy is any rule for making decisions. A
myopic policy is a rule that ignores the impact of a decision
now on the future. Let xt be a decision (how much to order,

Figure 2: Illustration of a single subproblem

what machine to assign a job to) or vector of decisions
(which drivers should handle which loads, what types of
energy resources should we use) at time t. Now let Xπ(St)
be a function that determines a decision given the informa-
tion in the state variable St . Xπ(St) is sometimes called a
decision function, a decision rule or simply a policy. We
assume there may be a family of policies, so we let π ∈Π

index a set of policies from the set Π.
Xπ might be the optimization problem in figure 2 without

the nonlinear functional approximations. We might write
this policy as

Xπ(St) = arg max
x∈Xt

ctxt

where Xt is a feasible region. After we make our deci-
sion (either by solving a math programming, or any other
method), we update our system state variable St using

St+1 = SM(St ,xt ,Wt+1(ω)) (1)

where SM(·) is the transition function (also known as the
system model), and Wt+1(ω) is the information that becomes
available between t and t +1 when we are following sample
path ω .

Approximate dynamic programming would try to im-
prove this myopic policy by replacing it with

Xπ(St) = arg max
x∈Xt

ctxt +V̄t(x)

where V̄t(x) is some sort of approximation that captures the
impact of decisions now, xt , on the future.

206

Powell

Finally, if we are trying to solve a dynamic program,
we have probably written out Bellman’s equation as

Vt(St) = max
x∈Xt

(
C(St ,xt)+ γE{Vt+1(St+1)|St}

)
. (2)

Often, the first problem people encounter in realistic prob-
lems is that we cannot compute Vt(St). Standard textbooks
in Markov decision processes ((Puterman 1994) is a good
reference) assume that the state variable is discrete with
states s = (1,2, . . . , |S |). The problem is that St might be a
vector, and it might be continuous. Even if it is discrete, if
St is a vector the number of possible states grows extremely
quickly. Problems with as few as four or five dimensions
can be computationally intractable (this is the famous “curse
of dimensionality”). Approximate dynamic programming
proceeds by replacing Vt+1(St+1) with an approximation
V̄t+1(St+1), which might be discrete or continuous (even if
St is discrete). The body of literature for approximating
the value function effectively draws on the entire field of
statistics and machine learning (see chapters 6, 7 and 11 of
(Powell 2007) for an introduction).

3 A BASIC ADP ALGORITHM

There are many variations of approximate dynamic pro-
gramming algorithms. Figure 3 describes a basic ADP
procedure which illustrates several key elements of most
ADP procedures. First, the algorithm steps forward in time,
simulating a sample path. In classical dynamic program-
ming, we proceed by stepping backward in time, where we
have to solve equation (2) for each state St . Most ADP
algorithms proceed by stepping forward in time, following
a particular sample path which we index by ωn, where n
indexes our iteration counter. We let Wt(ωn) be the infor-
mation that arrives between the decision made at time t−1
and the decision made at time t. If we make decision xn

t
at time t during iteration n, then our next state is given by
equation (1).

The second element of ADP is how we make decisions.
Most ADP algorithms solve an equation of the form

xn
t = arg max

xt∈Xt

(
C(Sn

t ,xt)+ γE{V̄ n−1
t+1 (St+1)|Sn

t }
)

(3)

where St+1 = SM(St ,xt ,Wt+1) where Wt+1 is a random vari-
able at time t. Here, V̄ n−1

t+1 (St+1) is some sort of approxi-
mation of the value of being in state St+1 (more on this in
section 4).

Even if we have some sort of approximation for the
value function, equation (3) may still be very hard to solve.
First, we assume we can compute the expectation. If the
random variable is simple (for example, a binomial random
variable indicating the arrival of a customer, or the random
change of a scalar stock price), then this may be easy.

Step 0. Initialization:

Step 0a. Initialize V̄ 0
t , t ∈T .

Step 0b. Set n = 1.

Step 0c. Initialize S1
0.

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0,1,2, . . . ,T :

Step 2a. Solve:

v̂n
t = max

xt∈X n
t

(
C(Sn

t ,xt)+ γV̄ n−1
t (SM,x(Sn

t ,xt))
)

(5)

and let xn
t be the value of xt that solves (5).

Step 2b. If t > 0, update the value function:

V̄ n
t−1←UV (V̄ n−1

t−1 ,Sx,n
t−1, v̂

n
t).

Step 2c. Update the states:

Sn
t+1 = SM(Sn

t ,xn
t ,Wt+1(ωn)).

Step 3. Increment n. If n≤ N go to Step 1.

Step 4. Return the value functions (V̄ N
t)T

t=1.

Figure 3: A basic ADP algorithm.

But this problem may have a complex vector of random
variables, making the expectation intractable.

We can overcome this problem using the concept of a
post-decision state, denoted Sx

t . The post-decision state is
the state immediately after we make a decision, but before
any new information has arrived. We assume we have a
function Sx

t = SM,x(St ,xt) that gives us the post-decision
state as a function of St and xt . Now assume that we have
estimated V̄t(Sx

t) around the post-decision state. In this case,
equation (3) becomes

xn
t = arg max

xt∈Xt

(
C(Sn

t ,xt)+ γV̄ n−1
t+1 (St+1)

)
. (4)

Now, the decision problem no longer has to deal with
an expectation. We note, however, that the structure of
a post-decision state is highly problem-dependent. There
are problems where the post-decision state is much simpler
than the pre-decision state, and others where it does not
offer any advantage (but it never makes the problem more
complicated).

The next challenge is making a decision. There are
communities which assume that there is a finite (and small)
set of actions which can be easily enumerated and evaluated.
In operations research, there are many problems where xt
is a vector, of possibly very high-dimensionality. For these
problems, we need to draw from a vast array of optimiza-
tion algorithms, ranging from linear, nonlinear and integer
programming through the entire family of metaheuristics.

After we make a decision, we often update the value
function approximation using information derived from the

207

Powell

optimization problem where we made a decision (in other
variations of ADP, the value functions are only updated
after completing a forward trajectory). If v̂n

t is the value of
being in state Sn

t , we can update the value of being in this
state using

V̄ n
t (Sn

t) = (1−αn−1)V̄ n−1
t (Sn

t)+αn−1v̂n
t . (6)

Equation (6) is updating the value function approximation
around the pre-decision state Sn

t . This updating scheme is
using a standard lookup-table representation, where we have
a value of being in each discrete state s. Alternatively, we
can update the value around the post-decision state using

V̄ n
t−1(S

x,n
t−1) = (1−αn−1)V̄ n−1

t−1 (Sx,n
t−1)+αn−1v̂n

t . (7)

Note that we are using v̂n
t to update the value function

around the previous post-decision state Sx,n
t−1.

The final element of an ADP algorithm is the simulation
from Sn

t to the next state Sn
t+1 using the transition function.

4 DESIGNING VALUE FUNCTION
APPROXIMATIONS

Typically the first introduction to approximate dynamic
programming uses simple lookup-table representations for
value functions. To use a lookup-table representation, we
assume that the state space S has been discretized into a
series of elements which we number (1,2, . . . , |S |). We
then assume we have an estimate V̄ (s) for each state s∈S .
We estimate the value of being in each state using (6). This
strategy appears to avoid the need to loop over all the states
(as is required when we solve Bellman’s equation backward
in time as in equation (2)). However, it replaces the need
to enumerate the states with the need to estimate the value
of being in any state that might be visited.

The central challenge with any ADP algorithm is finding
a value function approximation which can be represented
using the fewest possible number of parameters. With a
lookup-table representation, there is one parameter for each
state (that is, we have to estimate the value of each state).
A common way of reducing the number of parameters is
to aggregate the state space. This is particularly useful
for problems with a small number of continuous dimen-
sions. For example, (Nascimento and Powell 2008) describe
an application for managing the cash balance for mutual
funds. The state variable has three continuous dimensions:
the amount of cash on hand, the return on investments and
interest rates. Using a fine discretization, an exact solution
of Bellman’s equation takes about three days. Coarser dis-
cretization quickly reduce this, but introduce discretization
errors.

From the origins of dynamic programming, it has been
recognized that the most promising way to overcome the

challenge of approximating value functions is through the
use of functional approximations (Bellman and Dreyfus
1959). Perhaps the modern era for studying value function
approximations can be traced to (Schweitzer and Seidmann
1985), but major references include (Tsitsiklis and Van Roy
1996) and (Bertsekas and Tsitsiklis 1996). This line of
research has used the vocabulary of approximation theory
which assumes that we are given a family of basis functions
(φ f (S)) f∈F . A basis function is also referred to as feature.
The function φ f (S) is assumed to extract information from
the state variable S that helps explain the behavior of the value
function. The simplest class of function approximations are
linear in the basis functions, which is to say that

V (S)≈ V̄ (S) = ∑
f∈F

θ f φ f (S). (8)

If there exists θ such that V (S) = ∑ f∈F θ f φ f (S), then we
say that the functions φ f (S) form a basis. In practice, this is
generally not the case (or is unverifiable). In the language
of statistical regression, we would refer to the functions
φ f (S) as explanatory variables which are often represented
as X f = φ f (S). We would write a linear regression model
as

Y = ∑
f∈F

θ f X f + ε

where Y would be our observation of the value of being in a
state, and ε explains any discrepancy between the observed
values and the regression estimate.

Functions with the form given in equation (8) are re-
ferred to as linear approximations because they are linear
in the parameters. However, it is also important to under-
stand the structure of the basis functions themselves. For
example, consider a resource allocation problem where Rti
is the number of resources of type i at time t. We could
construct a value function approximation that is linear in
the resource variable, giving us

V̄ (R) = ∑
i

θiRti.

Such an approximation assumes that the value of resources
of type i is a constant given by θi. For many resource
allocation problems, using an approximation that is linear
in the number of resources offers particularly nice structure,
often allowing problems to be decomposed for the purpose
of parallel or distributed computation. However, many
problems exhibit nonlinear behavior, and a common strategy
is to use a quadratic polynomial such as

V̄ (R) = ∑
i

(
θ1iRti +θ2iR2

ti
)
.

208

Powell

Some researchers assume almost automatically that nonlin-
ear functions are always better than linear ones. The reality
is that it depends on what you want to achieve with a value
function approximation.

It is very important to understand what you want a value
function to do for you. Start by asking - what would go
wrong if you use V̄t(St) = 0? In our work, we have worked
with two classes of resource allocation problems that arise
in transportation. One class involves the management of
freight cars where it is important to determine how many
freight cars to move to a location (see (Powell and Topaloglu
2005) for an illustration). For such a setting, a value function
that is linear in the resource state would not be able to help
with the decision of how many to move.

By contrast, (Simao, Day, George, Gifford, Nienow,
and Powell 2008) describes a fleet management problem
arising in truckload trucking, where the challenge is to
determine what type of driver to assign to a load. For this
setting, a value function that is linear in the resource state
worked perfectly well.

Another common tendency in the literature is the as-
sumption that if you need a nonlinear function, then the
function should be some sort of low-order polynomial. If
an application involves managing small numbers of discrete
resources (locomotives, aircraft, small numbers of expen-
sive equipment), then a polynomial is unlikely to work
well. Such problems are better suited to piecewise lin-
ear functional approximations ((Godfrey and Powell 2001),
(Topaloglu and Powell 2006)).

There are many resource allocation problems which
require a nonlinear, nonseparable function to capture the
interaction between different resources. The most popular
technique emerged from within the stochastic programming
community as Benders decomposition. This technique ap-
proximates the value of the future using a series of cuts.
The optimization problem is typically written

max
xt∈Xt

(
ctxt + z

)
(9)

subject to

z ≤ αt+1(v̂t+1)+(βt+1(v̂t+1))T xt ∀v̂t+1 ∈ Vt+1. (10)

Here, the set Vt+1 is a set of vertices that have been generated
as the algorithm progresses by using information from the
dual of the optimization problem at time t +1. For detailed
descriptions of this technique, see (Higle and Sen 1991)
and (Sen and Higle 1999).

There are many applications where the state variable is
a mixture of different measurements. For example, an appli-
cation involving the testing of cardiovascular patients might
involve biometric measures such as weight, blood pres-
sure and cholesterol, behavioral indicators such as smoking
and exercise, and family history. The question is, are all

these variables important? (Fan and Li 2006) describe the
challenges of feature selection for high-dimensional appli-
cations, and (Tsitsiklis and Van Roy 1996) describe the use
of feature-based methods in approximation dynamic pro-
gramming (without addressing the problem of choosing the
features). The special challenge of approximate dynamic
programming is the challenge of choosing features as the
algorithm progresses.

The key insight here is very simple. Before designing
a value function approximation, it is extremely important
that you understand the properties of your problem, and the
behavior you would like to achieve with your approximation.
You then need to design a value function which reasonably
captures the shape of the true value function, and which
will give you the behavior that you are looking for.

5 FITTING A VALUE FUNCTION
APPROXIMATION

One method, albeit a clumsy one, for fitting a value function
approximation is to take observations of a series of states
(Sm)n

m=1 and the observed value of being in these states
(v̂m)n

m=1, and use this data to fit the parameters of a regression
model. This is typically referred to as batch regression, and
becomes very clumsy as the number of iterations grow.

Most applications of ADP use some form of recursive
estimation. The simplest arises with lookup-table represen-
tations which use the updating formula given in equation
(3). Here, the only decision is the choice of stepsize, which
we address in greater depth in section 7. When we use ba-
sis functions, a popular method for updating the parameter
vector θ is the stochastic gradient equation given by

θ
n = θ

n−1−αn−1(V̄ (θ n−1)− v̂n)∇θV̄ (θ n)

= θ
n−1−αn−1(V̄ (θ n−1)− v̂n)

φ1(Sn)
φ2(Sn)

...
φF(Sn)

 .(11)

There are many different methods for choosing the stepsize
for the lookup table in equation (3), but they all share the
property that 0 < αn ≤ 1. In equation (11), we introduce
a scaling problem, since the units of θ and the units of
the error (V̄ (θ n−1)− v̂n), as well as the basis functions
themselves, are different. As a result, we have to decide
how to scale the stepsize. This issue is fairly significant.
Depending on the units of the error and the basis functions,
you might need to limit the stepsize to a number under 10−3

or 103. If you scale the stepsize improperly, convergence
will either be impractically slow, or completely unstable.

One way to overcome the scaling problem is to make
multiple observations of the value of being in a state and
then use standard batch estimation techniques (see (Bertazzi,

209

Powell

Bertsekas, and Speranza 2000) for an illustration). But a
more elegant strategy is to use recursive least squares. This
is accomplished by updating the parameter vector θ using

θ
n = θ

n−1−Hn
φ

n
ε̂

n, (12)

where φ n is a column vector of basis functions evaluated
at Sn and Hn is a matrix computed using

Hn =
1
γn Bn−1.

Bn−1 is an F +1 by F +1 matrix (where F is the number
of features) which is updated recursively using

Bn = Bn−1− 1
γn (Bn−1

φ
n(φ n)T Bn−1).

γn is a scalar computed using

γ
n = 1+(xn)T Bn−1xn.

One problem with recursive least squares is that it has
the effect of equally weighting all prior observations. In
approximate dynamic programming, we have to deal with
the fact that the observations of the value of being in a
particular state evolve higher (or possibly lower) as the
value of being in a state reflects the future trajectory. We
handle this issue by modifying the RLS equations slightly
using (see (Powell 2007), section 7.3.3)

θ̄
n = θ̄

n−1− (Gn)−1
φ

n
ε̂

n.

The matrix Gn is computed using

Gn = λnGn−1 +φ
n(φ n)T ,

with G0 = 0. We determine the parameter λ below. Bn is
now given by

Bn =
1
λ

(
Bn−1− 1

γn (Bn−1
φ

n(φ n)T Bn−1)
)

.

γ is computed using

γ
n = λ +(φ n)T Bn−1

φ
n.

These equations are the same as the original recursive least
squares if we set λ = 1. λ plays the role of a discount
factor which determines how much weight we want to put
on past data. One way to determine the best value of λ is to
simply try different values starting at 1 and then decreasing.
Another way is to use the extensive literature on this topic
for setting step sizes. If you have a stepsize formula that you

are comfortable with, a rough relationship between stepsize
and λ is given by

λn = αn−1

(
1−αn

αn

)
.

It is important to note that the ADP algorithm presented
in figure 3, where the function UV (·) refers to the updating of
a set of basis functions, has not been shown to converge. In
fact, (Bertsekas 1995) provides counter-examples where the
algorithm actually diverges. The problem is that recursive
least squares is designed to deal with stationary forms of
noise, but if we change the value function and allow this to
change the policy, then it is like fitting a function to a moving
target. (Tsitsiklis and Van Roy 1997) proves convergence
if we hold the policy constant. This means locking in the
value function approximation, which eliminates the problem
of fitting to a moving target.

6 VALUES VS. SLOPES

The standard way of describing an ADP algorithm involves
computing a value v̂n

t which is an estimate of the value of
being in state Sn

t . This is the style used in the algorithm in
figure 3. There are many problems, however, where it is more
natural to use the derivative of the value function rather than
the value function itself. This is particularly true of problems
that involve managing resources, such as those that arise
in inventory planning, supply chain management, demand
management and the management of natural resources. For
these problems, it is natural to let Rta be the amount of
resources with attribute a∈A (a may be a vector) at time t,
and let Rt = (Rta)a∈A be the resource state vector. Now let
xtad be a decision to act on resources with attribute a with
a decision of type d ∈D (d may represent buying, selling,
moving from one location to another, repairing, modifying).
We would then solve the optimization problem

xn
t = arg max

xt∈X n
t

(
C(Rn

t ,xt)+ γV̄ n−1
t (Rx

t)
)

where the constraint set X n
t would include the constraint

∑
d∈D

xtad = Rn
ta. (13)

Of course, there may be other constraints. Many resource
allocation problems are naturally solved as mathematical
programs, where it is important to capture the slope of
the value function (adding a constant does not change the
optimal solution). If the optimization problem is a linear or
nonlinear program, we obtain a dual variable v̂n

ta for each
constraint (13). In some cases, we might even estimate
v̂n

ta using numerical derivatives. In this case, instead of
obtaining a single scalar value v̂n

t giving the value of being

210

Powell

in state Sn
t , we obtain a vector (v̂n

ta)a∈A which can be used
to update V̄ n−1

t (Rx
t). Since we are primarily interested in

the slopes of V̄ n−1
t (Rx

t), an updated based on the vector of
dual variables can be far more effective.

7 THE PROBLEM OF STEPSIZES

Arguably the most vexing and poorly understood issue in
approximate dynamic programming is the choice of stepsize.
I have met people who insist that you just set the stepsize to
a constant (such as 0.10), while I have seen others casually
assume αn = 1/n without debate. For our discussion, we
are going to assume that we are using a simple lookup-table
representation for our value function, so that we can assume
that our stepsizes should be between 0 and 1.

A simple example illustrates the challenges in choosing
an appropriate stepsize. Consider a stochastic dynamic
program with no decisions and only one state. Further
assume that the contribution we earn at each time period
can only be determined using sampling. Let Ĉ be a sample
observation of the contribution. After receiving the reward,
we return to the same state, where the estimated value of
being in this state after n observations is v̄n. At iteration n,
the sampled value of being in the state is given by

v̂n = Ĉn + γ v̄n−1.

Because of the noise in the observation of Ĉ, we have to
perform smoothing using

v̄n = (1−αn−1)v̄n−1 +αn−1v̂n.

If Ĉ were not random, the optimal stepsize would be αn−1 =
1, which gives us v̄n = Ĉ + γ v̄n−1, which is classical value
iteration from Markov decision processes. Now assume
γ = 0. In this case, we are just trying to estimate EĈ using
sample observations. It is well known that αn−1 = 1/n is
the best possible stepsize in the sense of producing the
lowest possible variance for the estimator. For 0 < γ < 1,
it is also known that αn−1 = 1/n also produces a sequence
v̄n→ v∗ which is guaranteed to reach the optimal solution.
(Frazier and Powell 2007) shows that after n iterations, v̄(n)
is bounded by

v̄(n) ≥ c
1− γ

(
1− (n+1)−(1−γ)

)
(14)

v̄(n) ≤ c
1− γ

(
1−bn−(1−γ)− 1− γ

γ

1
n

)
(15)

where for any n0,

b = n1−γ

0

(
1− 1− γ

n0γ
− 1− γ

c
v̄(n0)

)
.

Using these bounds, it is possible to show that if γ = 0.95
that it will require over 1010 iterations to get a solution
within one percent of optimal. In effect, these bounds show
that 1/n produces a convergent sequence that can be so
slow that it should never be used for larger values of γ .
Thus, the classic 1/n stepsize rule can be the best possible,
or so slow it would never converge in a reasonable amount
of time.

The balancing of noise and the need to sum future values
is one reason why there is such a debate over stepsizes. The
right stepsize really depends on the nature of your problem.
A popular stepsize rule is the harmonic series

αn−1 =
a

a+n−1
. (16)

If a = 1, we get the 1/n stepsize rule. For larger values
of a, we get stepsizes that decline arithmetically, but not
as quickly as 1/n. Of course, this means that you have to
decide the best value of a.

One issue is that each state (or parameter) might need
its own stepsize. The behavior of being in each state may
be unique. As a result, there has been considerable interest
in so-called stochastic stepsizes which adapt to the data as
it arrives. We have had considerable success with a rule
that we developed (George and Powell 2006) given by

αn−1 = 1− σ2

(1+λ n)σ2 +(β n)
(17)

where

λ
n =

{
(αn−1)2, n = 1
(1−αn−1)2λ n−1 +(αn−1)2, n > 1.

and where σ2 is the variance of the observation noise, and
β n is the bias measuring the difference between the current
estimate of the value function V̄ n(Sn) and the true value
functionV (Sn). In practice, of course, these quantities are
not known, but they can be estimated from data (see (George
and Powell 2006) or (Powell 2007), chapter 6 for details).
This stepsize formula has some nice features. First, if there
is no noise, we get αn−1 = 1, which we earlier argued was
optimal when there is no noise. Second, if β n = 0 (which
is to say that we do not have any bias due to the growth in
the value function), then it is possible to show that we get
αn−1 = 1/n. It is also possible to show that αn−1 ≥ 1/n at
all times.

(George and Powell 2006) calls this the “optimal step-
size algorithm” (or OSA), and (Powell 2007) refers to it
as the “bias-adjusted Kalman filter” (BAKF) stepsize rule,
since this is the behavior that can be derived from the
Kalman filter. In our experimental work, we have found
projects where this stepsize works superbly (see, for ex-

211

Powell

ample, (Simao, Day, George, Gifford, Nienow, and Powell
2008), where it nicely adapted to the rate of convergence
of each of many thousands of parameters). Sometimes we
work on deterministic applications, and have found that the
BAKF stepsize rule gives us much higher stepsizes (as we
would like) than other rules would have.

But all of these rules have limitations. A constant
stepsize such as 0.1 can be far too small in some applica-
tions, and since it does not decline to zero, the estimates
never converge (a problem if we want the variance of the
estimate under some number). The harmonic stepsize rule
requires that you tune a, and it also requires (for reasons
of practicality) that we use the same value of a for all pa-
rameters. Finally, stochastic stepsize rules can work poorly
in the presence of highly random data. We have found in
particular that BAKF does not work well in the presence of
rare events (e.g. a failure that occurs one time out of 100).

(George and Powell 2006) reviews a long list of stepsize
rules (see also chapter 6 in (Powell 2007)). Based on our
experiences with many projects, we suggest the following
strategy:

a) Start with a constant stepsize. For problems with
noise, 0.10 is a good starting point, but do not be
afraid to try both larger and smaller values. Get a
sense of the best constant stepsize for your problem,
and the number of iterations required before the
algorithm appears to converge.

b) Next try a harmonic stepsize rule. Choose a so
that it roughly produces a stepsize comparable
to the best constant stepsize by the number of
iterations where the constant stepsize appeared to
convergence. Depending on the problem, this could
be 100 iterations, or 100,000 iterations. Now try
varying a from this original value.

c) Try the BAKF stepsize rule. There is one tunable
parameter (a target stepsize) described in (George
and Powell 2006), but we have found that you
should try both 0.10 and 0 for this target step-
size. Be sure to plot the average stepsize (over all
your parameters) at each iteration for the stochastic
stepsize. Be aware of the problems with very high
levels of noise.

It is important to keep in mind that the best stepsize may be
very large, possibly close to 1, if there is very little noise.
As the noise increases, you need a stepsize closer to 1/n,
but the ideal stepsize rises again if the value of being in a
state at time t requires summing the rewards over a number
of time periods into the future (10 is a fairly large number).
For example, if you are solving an inventory problem where
you would like to cover 90 percent of the demand, the last
unit of inventory will be used with probability less than 10
percent, which means one time period out of 10. In order

for the model to justify ordering this unit, the value has to
reflect the expected value over the next 10 time periods.
A small stepsize will have significant difficulty estimating
this value.

Stochastic stepsizes are the most appealing in theory.
We have found that the BAKF stepsize in equation (17) can
work quite well. But this rule, and we believe all stochastic
stepsize rules, struggle when there is a very high degree of
noise. In particular, imagine again an inventory problem
where you have a single high-value part, with very low
frequency demands (the same would be true in a traditional
inventory problem where the goal is to satisfy demand a
high percentage of the time). When there is a demand,
the value of a part jumps up, and the BAKF rule quickly
increases to adapt to what it perceives as a change in the
signal. Then, it quickly decreases when there is a long
stretch with no demand.

8 DEBUGGING AN ADP MODEL

So now you have an ADP algorithm up and running, but
it just does not seem to work. Perhaps the behavior does
not seem reasonable, or it underperforms a simple rule. A
common symptom is that the solution does not seem to
improve (it might even get worse). The following steps
have proved useful in our work:

• v̂n
t gives an estimate of the value of being in state

Sn
t , so the first debugging tool is to make sure that

this appears to be accurate. The complication here
is that v̂n

t depends on the contribution function,
the decision and the value function V̄ n−1

t (Sx
t). The

value function plays a critical role in determining a
policy. For some problems, you get a reasonable (if
suboptimal) decision if you simply set V̄ n−1

t (Sx
t) =

0. But this step may be an effective debugging tool.
For other problems, setting the value function to
0 gives a trivial behavior which does not provide
any information. If this is the case, you have to
assume that the value function is exact. Given this,
does v̂n

t seem reasonable?
• Verify that your value function is reasonable. This

means that the structure of the function is reason-
able, and that the parameters that you are fitting
are reasonable. If you can use a simpler approxi-
mation (e.g. linear), then do this (as a debugging
tool). In the early iterations of an algorithm, it
is possible to get extremely poor estimates of the
value of being in a state, and these estimates can
distort the value function in later iterations.

• Try switching to a deterministic problem (or one
where you always use the same sample path).

• Watch out for stepsizes. It is possible that a decision
at time t depends on costs and rewards earned

212

Powell

over many time periods. If your stepsize is too
small, backward communication can be so slow
that the algorithm will never converge. Try solving
a deterministic problem, and switch to a large
stepsize, possibly as large as 1.0. If you are worried
about backward communication, try switching to
a small discount factor (e.g. γ = 0.2). If this
improves performance, then it is possible that your
stepsizes are too small, or you may need to switch
to a backward pass.

• Perhaps your algorithm is working well, but not
as well as you hoped. Again, stepsizes may be a
problem. Some people like to use a fixed stepsize
such as 0.10. This may provide a good solution but
prevents the algorithm from ever converging. For
this, you need a declining stepsize, but you have to
be sure the stepsize does not decline too quickly.
Try using a harmonic stepsize, but be sure to fix a so
that it hits what appears to be a reasonable stepsize
by a certain number of iterations. We have problems
where 100 iterations produces superb results, and
other problems where we run a million iterations.
It does not make sense to use the same value of a
for both problems.

• If possible, try to solve a simplified version of
your problem optimally. You might be able to
reduce the state space and solve it exactly as a
discrete Markov decision process. Or it may be a
problem that can be solved deterministically as a
linear program.

While we have used all of these methods, the most valuable
debugging tool is making sure that v̂n

t is correct. This step
also helps verify that the software is coded correctly.

9 EVALUATING AN ADP POLICY

Now imagine that your algorithm is up and running, and
seems to be working well. For example, your final solution
is better than your initial solution (equivalent to a myopic
policy) or your favorite heuristic. But the question remains:
how good is your policy? The first issue that you need to
resolve is whether there is a good alternative to your ADP
policy. Consider:

• Solve a deterministic version of your problem,
ideally obtaining an optimal solution. This does
not work for all problems. In some problems,
removing uncertainty makes the problem trivial. In
other cases, a deterministic problem is extremely
hard to solve. If you can solve a deterministic
version of the problem optimally, try applying ADP
to the same deterministic problem. Also, you can
take a sample path, assume you know the sample

path and solve the resulting deterministic problem,
producing a posterior bound.

• Simulate a good policy. Perhaps your problem
lends itself to a “good” decision rule (assign a
job to the shortest queue, order inventory up to
a certain level, sell when the price goes under or
over some amount) which either reflects standard
practice (or a rule used in the literature). Many
policies have a parameter (the order-up-to rule,
the trigger price) which can be optimized. Such
problems lend themselves to techniques that fall
under the umbrella of “simulation optimization.”

• Try a competing technique. There are differ-
ent communities proposing competing techniques
that go under names such as robust optimization,
stochastic programming, the linear-programming
method, and simulation optimization. These tech-
niques may be completely inappropriate for your
problem, but in some cases they may even out-
perform your method. For example, simulation
optimization is a powerful method for finding a
good myopic policy. If this works well for your
problem, there is a good chance that it may outper-
form a good ADP algorithm, which is best suited
for harder problems.

ACKNOWLEDGMENTS

This research was supported in part by grant AFOSR contract
FA9550-08-1-0195.

REFERENCES

Bellman, R., and S. Dreyfus. 1959. Functional approxima-
tions and dynamic programming. Mathematical Tables
and Other Aids to Computation 13:247–251.

Bertazzi, L., D. Bertsekas, and M. G. Speranza. 2000. Op-
timal and neuro-dynamic programming solutions for a
stochastic inventory trasportation problem. Unpublished
technical report, Universita Degli Studi Di Brescia.

Bertsekas, D., and J. Tsitsiklis. 1996. Neuro-dynamic pro-
gramming. Belmont, MA: Athena Scientific.

Bertsekas, D. P. 1995. A counterexample to temporal dif-
ference learning. Neural computation 7:270–279.

Fan, J., and R. Li. 2006. Statistical challenges with high
dimensionality: Feature selection in knowledge dis-
covery. In Proceedings of International Congress of
Mathematicians, ed. J. V. J. V. e. M. Sanz-Solé, J. So-
ria, Volume III, 595–622.

Frazier, P., and W. B. Powell. 2007. Approximate value
iteration converges slowly when smoothed with a 1/n
stepsize. Technical report, Princeton University.

George, A., and W. B. Powell. 2006. Adaptive stepsizes for
recursive estimation with applications in approximate

213

Powell

dynamic programming. Machine Learning 65 (1): 167–
198.

Godfrey, G. A., and W. B. Powell. 2001. An adaptive,
distribution-free approximation for the newsvendor
problem with censored demands, with applications to
inventory and distribution problems. Management Sci-
ence 47 (8): 1101–1112.

Higle, J., and S. Sen. 1991. Stochastic decomposition: An
algorithm for two stage linear programs with recourse.
Mathematics of Operations Research 16 (3): 650–669.

Nascimento, J., and W. B. Powell. 2008. An optimal approx-
imate dynamic programming algorithm for the lagged
asset acquisition problem. Mathematics of Operations
Research.

Powell, W. B. 2005. The optimizing-simulator: Merging
simulation and optimization using approximate dynamic
programming. In Proceedings of the Winter Simulation
Conference. New York: OMNIPress.

Powell, W. B. 2006. Approximate dynamic programming
for high-dimensional applications. In Proceedings of the
Winter Simulation Conference. New York: OMNIPress.

Powell, W. B. 2007. Approximate dynamic programming:
Solving the curses of dimensionality. New York: John
Wiley and Sons.

Powell, W. B., and H. Topaloglu. 2005. Fleet management.
In Applications of Stochastic Programming, ed. S. Wal-
lace and W. Ziemba. Philadelphia: Math Programming
Society - SIAM Series in Optimization.

Puterman, M. L. 1994. Markov decision processes. New
York: John Wiley & Sons.

Schweitzer, P., and A. Seidmann. 1985. Generalized poly-
nomial approximations in Markovian decision pro-
cesses. Journal of Mathematical Analysis and Applica-
tions 110:568–582.

Sen, S., and J. Higle. 1999. An introductory tutorial on
stochastic linear programming models. Interfaces 29
(2): 33–61.

Simao, H. P., J. Day, A. P. George, T. Gifford, J. Nienow,
and W. B. Powell. 2008. An approximate dynamic pro-
gramming algorithm for large-scale fleet management:
A case application. Transportation Science (to appear).

Topaloglu, H., and W. B. Powell. 2006. Dynamic program-
ming approximations for stochastic, time-staged inte-
ger multicommodity flow problems. Informs Journal
on Computing 18 (1): 31–42.

Tsitsiklis, J., and B. Van Roy. 1997. An analysis of temporal-
difference learning with function approximation. IEEE
Transactions on Automatic Control 42:674–690.

Tsitsiklis, J. N., and B. Van Roy. 1996. Feature-based
methods for large scale dynamic programming. Machine
Learning 22:59–94.

AUTHOR BIOGRAPHY

WARREN B. POWELL is a professor in the Department of
Operations Research and Financial Engineering at Princeton
University. He is director of CASTLE Laboratory and has
implemented optimizing-simulator models in both military
and civilian settings, including a number of the largest freight
transportation companies in the U.S. The coauthor of over
100 refereed publications, he is an Informs Fellow, and has
served in numerous leadership positions within Informs.
He recently authored Approximate Dynamic Programming:
Solving the curses of dimensionality.

214

