
Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 263

Approximate Dynamic Programming Strategies and Their Applicability for

Process Control: A Review and Future Directions

Jong Min Lee and Jay H. Lee*

Abstract: This paper reviews dynamic programming (DP), surveys approximate solution
methods for it, and considers their applicability to process control problems. Reinforcement
Learning (RL) and Neuro-Dynamic Programming (NDP), which can be viewed as approximate
DP techniques, are already established techniques for solving difficult multi-stage decision
problems in the fields of operations research, computer science, and robotics. Owing to the
significant disparity of problem formulations and objective, however, the algorithms and
techniques available from these fields are not directly applicable to process control problems,
and reformulations based on accurate understanding of these techniques are needed. We
categorize the currently available approximate solution techniques for dynamic programming
and identify those most suitable for process control problems. Several open issues are also
identified and discussed.

Keywords: Approximate dynamic programming, reinforcement learning, neuro-dynamic
programming, optimal control, function approximation.

1. INTRODUCTON

Dynamic programming (DP) offers a unified

approach to solving multi-stage optimal control
problems [12,13]. Despite its generality, DP has
largely been disregarded by the process control
community due to its unwieldy computational
complexity referred to as ‘curse-of-dimensionality.’
As a result, the community has studied DP only at a
conceptual level [55], and there have been few
applications.

In contrast, the artificial intelligence (AI) and
machine learning (ML) fields over the past two
decades have made significant strides towards using
DP for practical problems, as evidenced by several
recent review papers [34,95] and textbooks [18,86].
Though a myriad of approximate solution strategies
have been suggested in the context of DP, they are
mostly tailored to suit the characteristics of
applications in operations research (OR), computer
science, and robotics. Since the characteristics and
requirements of these applications differ considerably
from those of process control problems, these
approximate methods should be understood and

interpreted carefully from the viewpoint of process
control before they can be considered for real process
control problems.

The objective of this paper is to give an overview of
the popular approximation techniques for solving DP
developed from the AI and ML fields and to
summarize the issues that must be resolved before
these techniques can be transferred to the field of
process control.

The rest of the paper is organized as follows.
Section 2 motivates the use of DP as an alternative to
model predictive control (MPC), which is the current
state-of-the-art process control technique. We also
give the standard DP formulation and the conventional
solution approaches. Section 3 discusses popular
approximate solution strategies, available mainly from
the reinforcement learning (RL) field. Important
applications of the strategies are categorized and
reviewed in Section 4. Section 5 brings forth some
outstanding issues to be resolved for the use of these
techniques in process control problems. Section 6
summarizes the paper and points to some future
directions.

 2. DYNAMIC PROGRAMMING

2.1. Alternative to Model Predictive Control (MPC)?

Process control problems are characterized by
complex multivariable dynamics, constraints, and
competing sets of objectives. Because of the MPC’s
ability to handle these issues systematically, the
technique has been widely adopted by process
industries.

 Manuscript received May 29, 2004; accepted July 14, 2004.
Recommended by Editor Keum-Shik Hong under the direction
of Editor-in-Chief Myung Jin Chung.
 Jong Min Lee and Jay H. Lee are with the School of
Chemical and Biomolecular Engineering, Georgia Institute of
Technology, Atlanta, GA 30332-0100, USA (e-mails:
{Jongmin.Lee, Jay.Lee}@chbe.gatech.edu).
* Corresponding author.

International Journal of Control, Automation, and Systems, vol. 2, no. 3, pp. 263-278, September 2004

264 Jong Min Lee and Jay H. Lee

MPC is based on periodic execution of state
estimation followed by solution of an open-loop
optimal control problem formulated on a finite
moving prediction horizon [55,66]. Notwithstanding
its impressive track record within the process industry,
a close scrutiny points to some inherent limitation in
its versatility and performance. Besides the obvious
limitation imposed by the need for heavy on-line
computation, the standard formulations are based on
solving an open-loop optimal control problem at each
sample time, which is a poor approximation of the
closed-loop control MPC actually performs in an
uncertain environment. This mismatch between the
mathematical formulation and the reality can translate
into substantial performance losses.

DP allows us to derive an optimal feedback control
policy off-line [12,65,13], and hence has the potentials
to be developed into a more versatile process control
technique without the shortcomings of MPC. The
original development of DP by Bellman dates back to
the late 50s. Though used to derive celebrated results
for simple control problems such as linear quadratic
(Gaussian) optimal control problem, DP has largely
been considered to be impractical by the process
control community because of the so called ‘curse-of-
dimensionality,’ which refers to the exponential
growth in the computation with respect to the state
dimension. The computational and storage
requirements for almost all problems of practical
interest remain unwieldy even with today’s computing
hardware.

2.2. Formulation of DP

Consider an optimal control problem with a
predefined stage-wise cost and state transition
equation. The sets of all possible states and actions are
represented by X and U , respectively. In general,

xnX R⊂ and unU R⊂ for process control
problems, where xn and un are the number of state
and action variables, respectively.

Let us denote the system state at the thk time step
by ()x k X∈ , the control action by ()u k U∈ , and

some random disturbance by ωω() nk R∈ . The
successor state (1)x k + is defined by the transition
equation of

()(1) () () ω()x k f x k u k k+ = , , . (1)

Note that (1) represents a Markov decision process
(MDP), meaning the next state (1)x k + depends
only on the current state and input not on the states
and actions of past times. Throughout the paper, a
model in the form of (1) will be assumed. The model
form is quite general in that, if the next state did
indeed depend on past states and actions, a new state

vector can be defined by including those past
variables. Whereas (1) is the typical model form used
for process control problems, most OR problems have
a model described by a transition probability matrix,
which describes how the probability distribution (over
a finite set of discrete states) evolves from one time
step to the next. We also assume that a bounded
single-stage cost, ()φ () ()x k u k, , is incurred
immediately or within some fixed sample time
interval after a control action ()u k is implemented.
We restrict the formulation to the case where state
information is available either from direct
measurements or from an estimator. A control policy
µ is defined to map a state to a control action, i.e.,

µ()u x= . We also limit our investigation to stationary
(time-invariant) policies and infinite horizon objective
functions. DP for finite horizon problems are also
straightforward to formulate [13]. For any given
control policy µ , the corresponding infinite horizon
cost function is defined as

()µ
µ

0
() α φ () () (0) ,k

k
J x E x k u k x x x X

∞

=

= , = ∀ ∈

∑

(2)

where µE is the conditional expectation under the
policy µ()u x= , and α [0 1)∈ , is a discount factor
that handles the tradeoff between the immediate and
delayed costs. µ ()J x represents the expected
discounted total cost starting with the state x . Note
that µJ is a function of x , which will be referred to
as the ‘cost-to-go’ function hereafter. Also define

µ
µ

() inf ()J x J x x X∗ = ∀ ∈ . (3)

A policy µ∗ is α -optimal, if

µ () () .J x J x x X
∗ ∗= ∀ ∈ (4)

The closed-loop (state feedback) optimal control
problem is formulated as a dynamic program yielding
the following function equation:

()
(()) min φ(() ()) α ((1))

u k U
J x k E x k u k J x k∗ ∗

∈
 = , + + ,

x X∀ ∈ . (5)

(5) is called Bellman equation and its solution defines
the optimal cost-to-go function for the entire state
space. The objective is then to solve the Bellman
equation to obtain the optimal cost-to-go function,

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 265

which can be used to define the optimal control policy
as follows:

()
µ (()) arg min φ(() ()) α ((1)) ,

u k U
x k E x k u k J x k∗ ∗

∈
 = , + +

x X∀ ∈ . (6)

2.3. Value/Policy iteration

In this section, we review two conventional
approaches for solving DP, value iteration and policy
iteration. They form the basis for the various
approximate solution methods introduced later.

• Value iteration
In value iteration, one starts with an initial guess for
the cost-to-go for each state and iterates on the
Bellman equation until convergence. This is
equivalent to calculating the cost-to-go value for
each state by assuming an action that minimizes the
sum of the current stage cost and the ‘cost-to-go’
for the next state according to the current estimate.
Hence, each update assumes that the calculated
action is optimal, which may not be true given that
the cost-to-go estimate is inexact, especially in the
early phase of iteration. The algorithm involves the
following steps.
1. Initialize 0 ()J x for all x X∈ .
2. For each state x

1 ˆ() min φ() α ()i i
u

J x E x u J x+ = , + (7)

where ˆ (ω)x f x u X= , , ∈ , and i is the
iteration index.

3. Perform the above iteration (step 2) until ()J x
converges.

The update rule of (7) is called full backup because
the cost-to-go values of the entire state space are
updated in every round of update.

• Policy iteration
Policy iteration is a two-step approach composed of
policy evaluation and policy improvement. Rather
than solve for a cost-to-go function directly and
then derive an optimal policy from it, the policy
iteration method starts with a specific policy and
the policy evaluation step computes the cost-to-go
values under that policy. Then the policy
improvement step tries to build an improved policy
based on the cost-to-go function of the previous
policy. The policy evaluation and improvement
steps are repeated until the policy no longer
changes. Hence, this method iterates on policy
rather than cost-to-go function.

The policy evaluation step iterates on the cost-to-go
values but with the actions dictated by the given
policy. Each evaluation step can be summarized as
follows:
1. Given a policy µ , initialize µ ()J x for all

x X∈ .
2. For each state x

1
µ µ ˆ() φ(µ()) α () .J x E x x J x+ = , + (8)

3. The above iteration (step 2) continues until

µ ()J x converges.

The overall policy iteration algorithm is given as
follows:
1. Given an initial control policy 0µ , set 0i = .
2. Perform the policy evaluation step to evaluate

the cost-to-go function for the current policy µi .
3. The improved policy is represented by

1
µ

ˆµ () arg min φ() α () .i
i

u
x E x u J x+ = , +

 (9)

Calculate the action given by the improved
policy for each state.

4. Iterate steps 2 and 3 until µ()x converges.

For systems with a finite number of states, both the
value iteration and policy iteration algorithms
converge to an optimal policy [12,32,13]. Whereas
policy iteration requires complete policy evaluation
between steps of policy improvement, each
evaluation often converges in just few iterations
because the cost-to-go function typically changes
very little when the policy is only slightly improved.
At the same time, policy iteration generally requires
significantly fewer policy improvement steps than
value iteration because each policy improvement is
based on accurate cost-to-go information [65].
One difficulty associated with value or policy
iteration is that the update is performed after one
“sweep” of an entire state set, making it
prohibitively expensive for most problems. To
avoid this difficulty, asynchronous iteration
algorithms have been proposed [17,16]. These
algorithms do not back up the values of states in a
strict order but use whatever updated values
available. The values of some states may be backed
up several times while the values of others are
backed up once. However, obtaining optimal cost-
to-go values requires infinite number of updates
in general.

266 Jong Min Lee and Jay H. Lee

2.4. Linear programming based approach
Another approach to solving DP is to use a linear

programming (LP) formulation. The Bellman equation
can be characterized by a set of linear constraints on
the cost-to-go function. The optimal cost-to-go
function, which is the fixed point solution of the
Bellman equation, can also be obtained by solving a
LP [48,26,30,19]. Let us define a DP operator T to
simplify (5) as follows:

 J TJ= . (10)

Then J∗ is the unique solution of the above equation.
Solving this Bellman equation is equivalent to solving
the following LP:

max Tc J , (11)
s t TJ J. . ≥ , (12)

where c is a positive weight vector. Any feasible J
must satisfy J J ∗≤ , and therefore for any strictly
positive c , J∗ is the unique solution to the LP of
(11). Note that (12) is a set of constraints

[]ˆφ() α () (),E x u J x J x u U, + ≥ ∀ ∈ (13)

leaving us with the same ‘curse-of-dimensionality’;
the number of constraints grows with the number of
states and the number of possible actions.

The LP approach is the only known algorithm that
can solve DP in polynomial time, and recent years
have seen substantial advances in algorithms for
solving large-size linear programs. However,
theoretically efficient algorithms have still been
shown to be ineffective or even infeasible for
practically-sized problems [34,86].

3. APPROXIMATE METHODS FOR
SOLVING DP

Whereas the process control community concluded

DP to be impractical early on, researchers in the fields
of machine learning and artificial intelligence began
to explore the possibility of applying the theories of
psychology and animal learning to solving DP in an
approximate manner in the 1980s [85,80]. The
research areas related to the general concept of
programming agents by “reward and punishment
without specifying how the task is achieved” have
collectively been known as ‘reinforcement learning
(RL)’ [86,34]. It has spawned a plethora of techniques
to teach an agent to learn cost or utility of taking
actions given a state of the system. The connection
between these techniques and the classical dynamic
programming was elucidated by Bertsekas and

Tsitsiklis [18,95], who coined the term Neuro-
Dynamic Programming (NDP) because of the popular
use of artificial neural networks (ANNs) as the
function approximator.

In the rest of this section, we first discuss the
representation of state space, and then review different
approximate DP algorithms, which are categorized
into model-based and model-free methods. The most
striking feature shared by all the approximate DP
techniques is the synergetic use of simulations (or
interactive experiments) and function approximation.
Instead of trying to build the cost-to-go function for
an entire state space, they use sampled trajectories to
identify parts of the state space relevant to optimal or
“good” control where they want to build a solution
and also obtain an initial estimate for the cost-to-go
values.

3.1. State space representation

Typical MDPs have either a very large number of
discrete states and actions or continuous state and
action spaces. Computational obstacles arise from the
large number of possible state/action vectors and the
number of possible outcomes of the random variables.
The ‘curse-of-dimensionality’ renders the
conventional DP solution approach through
exhaustive search infeasible. Hence, in addition to
developing better learning algorithms, substantial
efforts have been devoted to alleviating the curse-of-
dimensionality through more compact state space
representations. For example, state space
quantization/discretization methods have been used
popularly in the context of DP [9] and gradient
descent technique [79]. The discretization/
quantization methods have been commonly accepted
because the standard RL/NDP algorithms were
originally designed for systems with discrete states.
The discretization method should be chosen carefully,
however, because incorrect discretization could
severely limit the performance of a learned control
policy, for example, by omitting important regions of
the state space and/or by affecting the original Markov
property [56].

More sophisticated discretization methods have
been developed based on adaptive resolutions such as
the multi-level method [67], clustering-based method
[38], triangularization method [56,57], state
aggregation [15], and divide-and-conquer method
(Parti-Game algorithm) [52]. The parti-game
algorithm, which is one of the most popular
discretization strategies, attempts to search for a path
from an initial state to a goal state (or region) in a
multi-dimensional state space based on a coarse
discretization. When the search fails, the resolution is
iteratively increased for the regions of the state space
where the path planner is unsuccessful. Though some
adaptive discretization methods can result in a better

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 267

policy compared to the fixed versions [6], they can
potentially suffer from their own ‘curse-of-
dimensionality’ and become less reliable when the
estimation of cost-to-go is necessary for the states
lying in a smaller envelope than that of converged
partitions.

Function approximation methods have also been
employed to represent the relationship between cost-
to-go and system state in a continuous manner either
by based on parametric structures (e.g. ANNs) or
‘store-and-search’ based nonparametric methods (e.g.
nearest neighbor). The function approximation based
approaches are more general because they are
applicable to both finite and infinite number of states
without modification of a given problem. The current
status and the issues of incorporating function
approximators into approximate DP strategies will be
discussed separately in section 5.

3.2. Model-based methods

If there exists a model that describes a concerned
system, the main question becomes how to solve the
Bellman equation efficiently. Given an exact model, a
conceptually straightforward approach is to use the
value or policy iteration algorithm. Since it is not
feasible to do this for all states, one plausible
approach is to use a set of sampled data from closed-
loop simulations (under known suboptimal policies)
to reduce the number of states for which the Bellman
equation is solved. Since the successor states during
each iteration may be different from the ones in the
simulations, function approximation is employed to
estimate the cost-to-go values for those states not
visited during the simulation runs [35,43]. A family of
methods in which a model built from data is used to
derive a control policy as if it were an exact
representation of the system is called ‘certainty-
equivalence’ approach, which is similar to the concept
for process identification/control involving learning
phase and acting phase [39]. We note that random
exploration for gathering data to build such a model is
much less efficient than policy-interlaced exploration
[100,36].

Independently from the researchers working on
direct DP solution methods, Werbos proposed a family
of adaptive critic designs (or actor-critic methods
(AC) as named later in [11]) in the late 1970s [98]. He
extended the work and collectively called the
approach Heuristic Dynamic Programming [99]. The
purpose of the adaptive critic design is to learn
optimal control laws by successively adapting two
ANNs, namely, an action network and a critic network.
These two ANNs indirectly approximate the Bellman
equation. The action network calculates control
actions using the performance index from the critic
network. The critic network learns to approximate the
cost-to-go function and uses the output of the action

network as one of its inputs, either directly or
indirectly. This structure has been used as a “policy
learner” in conjunction with many RL schemes in
addition to being a popular structure for neuro-fuzzy-
controllers [64]. The AC algorithms are less suited to
cases where the data change frequently since the
training of the networks is challenging and time-
consuming. We note that the AC framework is not
limited to the model-based learning scheme, and it has
also been used as a framework for model-free learning.
The general structure of AC is shown in Fig. 1.

RL literature has considered the model-based
learning as an alternative way to use gathered data
efficiently during interactive learning with an
environment, compared to a class of model-free
learning schemes that will be introduced in the next
section. They have been interested in ‘exploration
through trial-and-error’ to increase the search space,
for example, in a robot-juggling problem [74]. Hence,
most model-based approaches from the RL literature
have been designed to learn an explicit model of a
system simultaneously with a cost-to-go function and
a policy [82,83,54,63,10]. The general algorithms
iteratively 1) update the learned model, 2) calculate
control actions that optimize the given cost-to-go
function with the current learned model, 3) update the
corresponding cost-to-go function as in value iteration,
and 4) execute the control policy and gather more data.
Representative algorithms in this class are Dyna and
RTDP (real-time dynamic programming) [82,10].
These model-based interactive learning techniques
have the advantage that they can usually find good
control actions with fewer experiments since they can
exploit the existing samples better by using the model
[27].

3.3. Model-free methods

RL/NDP and other related research work have
mainly been concerned with the question of how to
obtain an optimal policy when a model is not
available. This is mainly because the state transition
rule of their concerned problems is described by a

Critic

Actor System
u

x

heuristic value

single-stage cost

Fig. 1. The actor-critic architecture.

268 Jong Min Lee and Jay H. Lee

probability transition matrix, which is difficult to
identify empirically. Many trial-and-errors, however,
allow one to find the optimal policy eventually. These
“on-line planning” methods have an agent interact
with its environment directly to gather information
(state and action vs. cost-to-go) from on-line
experiments or in simulations. In this section, three
important model-free learning frameworks are
introduced – Temporal Difference (TD) learning, Q-
learning, and SARSA, all of which learn the cost-to-
go functions incrementally based on experiences with
the environment.

3.3.1 Temporal difference learning

TD learning is a passive learner in that one
calculates the cost-to-go values by operating an agent
under a fixed policy. For example, we watch a robot
wander around using its current policy µ to see what
cost it incurs and which states it explores. This was
suggested by Sutton and is known as the TD(0)
algorithm [81]. The general algorithm is as follows:

1. Initialize ()J x .

2. Given a current policy (µ ()i x), let an agent
interact with its environment, for example, let an
agent (e.g. robot, controller, etc.) perform some
relevant tasks.

3. Watch the agent’s actions given from µ ()i x ,

obtain a cost φ(µ ())ix x, , and its successor state
x̂ .

4. Update the cost-to-go using

{ }ˆ() (1 γ) () γ φ(µ ()) α ()iJ x J x x x J x← − + , + (14)

or equivalently,

{ }ˆ() () γ φ(µ ()) α () ()iJ x J x x x J x J x← + , + − (15)

where γ is a learning rate from 0 to 1. The
higher the γ , the more we emphasize our new
estimates and forget the old estimates.

5. Set ˆx x← and continue experiment.
6. If one sweep is completed, return to step 2 with

1i i← + , and continue the procedure until
convergence.

Whereas TD(0) update is based on the “current”
difference only, a more general version called TD(λ)
updates the cost-to-go values by including the
temporal differences of the later states visited in a
trajectory with exponentially decaying weights.

Suppose we generated a sample trajectory,
{ (0) (1) () }x x x t, , , , . The temporal difference term,

()d t , at time t is given by

() φ(() µ(())) α ((1)) (())d t x t x t J x t J x t= , + + − . (16)

Then the policy evaluation step for a stochastic system
is approximated by

(()) (()) γ λ ()m t

m t
J x t J x t d m

∞
−

=
← + ∑ , (17)

where 0 λ 1≤ < is a decay parameter. Within this
scheme, a single trajectory can include a state, say x ,
multiple times, for example, at times 1 2 Mt t t, , , . In
such a case, ‘every-visit’ rule updates the cost-to-go
whenever the state is visited in the trajectory
according to

Time
t 1 t 2 tM

update
for
J(x)

d(t)1 d(t)2 d(t)M

d(t +1)1λ d(t +1)λ d(t +1)λ2 Μ

Fig. 2. Cumulative addition of temporal difference terms in the every-visit method.

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 269

1
(()) (()) γ λ ()j

j

M m t

j m t
J x t J x t d m

∞ −

= =
← + ∑ ∑ . (18)

Graphical representation of the addition of update
terms is shown in Fig. 2.

A corresponding on-line update rule for the every-
visit method is given by

(()) (()) γ{φ(() µ (()))
α ((1)) (())} (()),

i

t

J x t J x t x t x t
J x t J x t e x t

← + ,
+ + −

 (19)

where t is the time index in a single sample
trajectory, and ()te x is ‘eligibility,’ with which each
state is updated. Note that the temporal difference
term, {}⋅ of (19), appears only if x has already
been visited in a previous time of the trajectory. Hence,
all eligibilities start out with zeros and are updated at
each time t as follows:

1

1

αλ () if (),
()

αλ () 1 if (),
t

t
t

e x x x t
e x

e x x x t
−

−

≠
= + =

 (20)

where α is the discount factor for the cost-to-go.
The eligibility thereby puts more emphasis on the
temporal difference term in recent past. Singh and
Sutton [77] proposed an alternative version of the
eligibility assignment algorithm, where visited states
in the most recent sample run always get an eligibility
of unity rather than an increment of 1, which they
called the ‘first-visit’ method.

Since the TD learning is based on a fixed policy, it
can be combined with an AC-type policy-learner. The
convergence properties of the AC-related algorithms
were explored [101]. The convergence property of
TD(λ) learning was also studied by several
researchers [24,62,93].

3.3.2 Q-learning

Q-learning [97,96] is an active learner in that one
modifies the ‘greedy’ policy as the agent learns. One
can also tweak the policy to try different control
actions from the calculated policy even when the
agent is interacting with a real environment. For
example, injection of random signals into actions is
often carried out for exploration of the state space.
Optimal Q-value is defined as the cost-to-go value of
implementing a specific action u at state x , and
then following the optimal policy from the next time
step on. Hence, the optimal Q-function satisfies the
following equation:

ˆ
ˆ ˆ() φ() αmin ()

u
Q x u E x u Q x u∗ ∗ , = , + ,

 (21)

ˆφ() α () .E x u J x∗ = , + (22)

This also gives a recursive relation for the Q-function,
similarly as does the Bellman equation for the ‘J-
function.’ Once the optimal Q-function ()Q x u∗ , is

known, the optimal policy µ ()x∗ can easily be
obtained by

µ () arg min ().
u

x Q x u∗ ∗= , (23)

The on-line incremental learning of the Q-function is
similar to the TD-learning:

1. Initialize ()Q x u, .
2. Let an agent interact with its environment by

solving (23) using the current approximation of
Q instead of Q∗ . If there are multiple actions
giving a same level of performance, select an
action randomly.

3. Update the Q values by

{ }ˆ

() (1 γ) ()

ˆ ˆγ φ() αmin () .
u

Q x u Q x u

x u Q x u

, ← − ,

+ , + ,
 (24)

4. Set ˆx x← and continue the experiment.
5. Once a loop is complete, repeat from step 2 until

convergence.

If one performs the experiment infinite times, the
estimates of Q-function converge to ()Q x u∗ , with
proper decaying of the learning rate γ [97,33].
Greedy actions may confine the exploration space,
especially in the early phase of learning, leading to a
failure in finding the optimal Q-function. To explore
the state space thoroughly, random actions should be
carried out on purpose. As the solution gets improved,
the greedy actions are implemented. This
randomization of control actions are similar to the
simulated annealing technique used for global
optimization.

3.3.3 SARSA

SARSA [68] also tries to learn the state-action
value function (Q-function). It differs from Q-learning
with respect to the incremental update rule. SARSA
does not assume that the optimal policy is imposed
after one time step. Instead of finding a greedy action,
it assumes a fixed policy as does the TD learning. The
update rule then becomes

{ }ˆ ˆ() () γ φ() α (µ ()) () .iQ x u Q x u x u Q x x Q x u, ← , + , + , − ,

 (25)

270 Jong Min Lee and Jay H. Lee

A policy learning component like the AC scheme can
also be combined with this strategy.

4. APPLICATIONS OF APPROXIMATE DP
METHODS

In this section, we briefly review some of the

important applications of the approximate DP
methods, mainly RL and NDP methods. Important OR
applications are reviewed in [18,86]. We classify the
previous work by application areas.

4.1. Operations research

The application area that benefited the most from
the RL/NDP theory is game playing. Samuel’s
checker player was one of the first applications of DP
in this field and used linear function approximation
[70,71]. One of the most notable successes is
Tesauro’s backgammon player, TD-Gammon [88-90].
It is based on TD methods with approximately 2010
states. To handle the large number of state variables,
ANN with a simple feed forward structure was
employed to approximate the cost-to-go function,
which maps a board position to the probability of
winning the game from the position. Two versions of
learning were performed for training the TD-Gammon.
The first one used a very basic encoding of the state of
the board. The advanced version improved the
performance significantly by employing some
additional human-designed features to describe the
state of the board. The learning was done in an
evolutionary manner over several months – playing
against itself using greedy actions without exploration.
TD-Gammon successfully learned to play
competitively with world-champion-level human
players. By providing large amounts of data
frequently and realizing the state transitions in a
sufficiently stochastic manner, TD-Gammon could
learn a satisfactory policy without any explicit
exploration scheme. No comparable successes to that
of TD-Gammon has been reported in other games yet,
and there are still open questions regarding how to
design experiments and policy update in general
[75,91].

Another noteworthy application was in the problem
of elevator dispatching. Crites and Barto [22,23] used
Q-learning for a complex simulated elevator
scheduling task. The problem is to schedule four
elevators operating in a building with ten floors. The
objective is to minimize the discounted average
waiting time of passengers. The formulated discrete
Markov system has over 2210 states even in the most
simplified version. They also used a neural network
and the final performance was slightly better than the
best known algorithm and twice as good as the policy
most popular in real elevator systems. Other

successful RL/NDP applications in this field include
large-scale job-shop scheduling [105,104,106], cell-
phone channel allocation [76], manufacturing [47],
and finance applications [58].

4.2. Robot learning

Robot learning is a difficult task in that it generally
involves continuous state and action spaces, similar to
process control problems. Barto et al. [11] proposed a
learning structure for controlling a cart-pole system
(inverted pendulum) that consisted of an associative
search system and an adaptive critic system. Anderson
[4] extended this work by training ANNs that learned
to balance a pendulum given the actual state variables
of the inverted pendulum as input with state space
quantization for the evaluation network.

Schaal and Atkeson [74] used a nonparametric
learning technique to learn the dynamics of a two-
armed robot that juggles a device known as “devil-
stick.” They used task-specific knowledge to create an
appropriate state space for learning. After 40 training
runs, a policy capable of sustaining the juggling
motion up to 100 hits was successfully obtained. A
nonparametric approach was implemented to
generalize the learning to unvisited states in the
algorithm. This work was later extended to learn a
pendulum swing-up task by using human
demonstrations [8,73]. In the work, however, neither
parametric nor nonparametric approach could learn a
task of balancing the pendulum reliably due to poor
parametrization and insufficient information for
important regions of the state space, respectively.

We note that most robots used in assembly and
manufacturing lines are trained in such a way that a
human guides the robot through a sequence of
motions that are memorized and simply replayed.
Mahadevan and Connell [46] suggested a Q-learning
algorithm with a clustering method for tabular
approach to training a robot performing a box-pushing
task. The robot learned to perform better than a
human-programmed solution when a decomposition
of sub-tasks was done carefully. Lin [45] used an
ANN-based RL scheme to learn a simple navigation
task. Asada et al. [6] designed a robot soccer control
algorithm with a discretized state space based on some
domain knowledge. Whereas most robot learning
algorithms discretized the state space [87], Smart and
Kaelbling [78] suggested an algorithm that deals with
continuous state space in a more natural way. The
main features are that approximated Q-values are used
for training neighboring Q-values, and that a hyper-
elliptic hull is designed to prevent extrapolation.

4.3. Process control

After the Bellman’s publication, some efforts were
made to use DP to solve various deterministic and
stochastic optimal control problems. However, only a

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 271

few important results could be achieved through
analytical solution, the most celebrated being the LQ
optimal controller [103]. This combined with the
limited computing power available at the time caused
most control researchers to abandon the approach. As
the computing power grew rapidly in the 1980s, some
researchers used DP to solve simple stochastic optimal
control problems, e.g., the dual adaptive control
problem for a linear integrating system with an
unknown gain [7].

While the developments in the AI and OR
communities went largely unnoticed by the process
control community, there were a few attempts for
using similar techniques on process control problems.
Hoskins and Himmelblau [31] first applied the RL
concept to develop a learning control algorithm for a
nonlinear CSTR but without any quantitative control
objective function. They employed an adaptive
heuristic critic algorithm suggested by Anderson [4] to
train a neural network that maps the current state of
the process to a suitable control action through on-line
learning by experience. This approach uses qualitative
subgoals for the controller and could closely
approximate the behavior of the PID controller, but
generalization of the method requires sufficient on-
line experiments to cover the domain of interest at the
cost of more trials for learning. Miller and Williams
[51] used a temporal-difference learning scheme for
control of a bio-reactor. They used a backpropagation
network to estimate Q-values, and the internal state of
a plant model was assumed to be known. The learning
was based on trial-and-errors, and the search space
was small (only 2 states).

Wilson and Martinez [102] studied batch process
automation using fuzzy modeling and RL. To reduce
the high dimensionality of the state and action space,
they used a fuzzy look-up table for Q-values.
Anderson et al. [5] suggested a RL method for tuning
a PI controller of simulated heating coil. Their action
space had only 9 discrete values, and therefore the
look-up table method could be used. Martinez [50]
suggested batch process optimization using RL, which
was formulated as a two dimensional search space
problem by shrinking the region of policy parameters.
The work did not solve the DP, but only used a RL-
based approach for exploring in the action space.
Ahamed et al. [1] solved a power system control
problem, which they represented it as a Markov chain
with known transition probabilities so that the system
dynamics would have finite candidate state and action
sets for exploration and optimization.

Recently, Lee and co-workers have started
introducing the concept of RL and NDP to the process
control community and developed value/policy
iteration-based algorithms to solve complex nonlinear
process control problems. They include
chemical/biochemical reactor control problems

[43,35], a dual adaptive control problem [41], and a
polymerization reactor control problem [40].

5. ISSUES IN APPLYING APPROXIMATE DP

SCHEMES TO PROCESS CONTROL
PROBLEMS

RL approaches in robot learning have dealt with

continuous variables either by discretization or by
function approximation, but they are based on trial-
and-error on-line learning. For example, human
controls a robot randomly to explore the state space in
the early phase. They also assume that the
environment does not change, which reduces the
dimension of a concerned state space. On the other
hand, NDP is more of an off-line based learning
[18,14], and its basic assumption is that large amounts
of data can be collected from simulation trajectories
obtained with “good” suboptimal policies. Their
common update rule, however, is based on the
incremental TD-learning, which is difficult to apply to
continuous state variables. In addition, complex
dynamics of most chemical processes would limit the
amount of data, whereas the NDP or related
algorithms require huge amounts of data [18].

Despite various approximate methods from the
RL/NDP communities, their applicability to process
control problems is limited due to the following
disparities:

1) Continuous state and action space: Infinite
number of state and action values is common in
process control problems due to their continuous
nature. Furthermore, the number of state variables
is generally large. In this case, discretization and
the common “incremental” update rule are not
practical approaches. Function approximation
should also be used with caution, because
approximation errors can grow quickly.

2) Costly on-line learning: Real-world-
experience-based learning, which is the most
prevalent approach in RL, is costly and risky for
process control problems. For example, one
cannot operate a chemical reactor in a random
fashion without any suitable guidelines to explore
the state space and gather data. Consequently, off-
line learning using simulation trajectories should
be preferred to on-line learning. Furthermore, one
should also exercise a caution in implementing
on-line control by insuring against “unreliable”
optimal control actions calculated from only a
partially learned cost-to-go function.

3) Limited data quantity: Though large amounts
of simulation data can be collected for off-line
learning, complex dynamics of most chemical
processes still limit the state space that can be
explored, leading to regions of sparse data. This
limits the range over which the learned cost-to-go

272 Jong Min Lee and Jay H. Lee

function is valid. Thus, learning and using of the
cost-to-go function should be done cautiously by
guarding against unreasonable extrapolations.

In summary, an adequate ADP approach for process

control problems should be able to provide reliable
control policies despite limited coverage of
continuous state and action spaces by training data.
One plausible approach is to simulate the system with
a set of known suboptimal policies and generate
trajectories to identify some superset of the portions of
the state space pertinent to optimal control. In the
absence of a model, an empirical model can be
constructed, if necessary, and then value or policy
iteration can be performed on the sampled data. A
function approximator should also be designed to
estimate cost-to-go values for points not visited by the
simulations [35,43]. An approximate value iteration
scheme is depicted in Fig. 3. In the following sections,
issues concerning the suggested approach and the
related work reported in the literature are discussed.

5.1. Generalization of Cost-to-Go function
5.1.1 Choice of approximator

All the algorithms described in section 3 assume
that states and actions are finite sets and their sizes are
manageable. When this is not true, generalization of
cost-to-go values over the state space (or the state-
action space for Q-learning) through function
approximation may be the only recourse. One
potential problem in using a function approximator in
solving the Bellman equation is that small
approximation errors can grow rapidly through the
iteration to render the learned cost-to-go function
useless. The minimization operator can bias the

estimate significantly, and no prior knowledge on the
structure of the cost-to-go function is available in
general.

Typical approaches in the NDP and RL literature is
to use a global approximator like a neural network to
fit a cost-to-go function to the data. While it has seen
some notable successes in problems such as the
Tesauro’s backgammon player [88,89,90] and the job-
shop scheduling problem [105], there are many other
less successful applications reported in the literature
[21,75]. Successful implementations using localized
networks like CMACs [2,3], radial basis functions,
and memory-based learning methods [29] have also
been reported [53,72,84].

The failure of the approaches using a general
function approximator was first explained by Thrun
and Schwartz [92] with what they called an
“overestimation” effect. They assumed uniformly
distributed and independent error in the
approximation and derived the bounds on the
necessary accuracy of the function approximator and
discount factor. Sabes [69] showed that bias in
optimality can be large when a basis function
approximator is employed. Boyan and Moore [20]
listed several simple simulation examples where
popular approximators fail miserably. They used a
model of the task dynamics and applied full DP
backups off-line to a fixed set of states. Sutton [84]
used the same examples and made them work by
modifying the experimental setup. Sutton used an on-
line learning scheme without a model for the state
trajectories obtained from randomly sampled initial
points. In summary, experiments with different
function approximation schemes have produced
mixed results, probably because of the different

Suboptimal
Control Policy

Closed-loop
Simulation

Cost-to-Go
Calculation

x(k), u (k), J(x (k))

Function Approximation

J(x):= x (k) J(x (k))

J i

Optimality Equation

J (x) = min { φ(x, u) + J (F (x, u))}
u ts

ii+ 1

converged?

Online Control

N

Y

policy update
for uncovered region
,if needed.

Simulation Part Approximation Part

Fig. 3. Approximate value iteration scheme.

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 273

learning schemes and problem setups.
Gordon [28] presented a ‘stable’ cost-to-go learning

scheme with off-line iteration for a fixed set of states.
A class of function approximators with a
‘nonexpansion’ property is shown to guarantee off-
line convergence of cost-to-go values to some values.
These function approximators do not exaggerate the
differences between two cost-to-go functions over
iterations in the sense of infinity norm. That is, if we
have two functions f and g , their approximations
from this class of approximators , f and g , satisfy

() () () ()f x g x f x g x ∞− ≤ − . (26)

The class includes the k-nearest neighbor, kernel-
based approximators, and other type of “averagers”
having the following structure:

0
1

() β β ()
k

i i
i

f x f x
=

= + ∑ (27)

with

0
β 1 and β 0

k

i i
i=

= ≥∑ . (28)

If the off-line learning using a value or policy

iteration scheme is chosen for the cost-to-go learning,
memory-based approximators with the nonexpansion
property show better performance than global
parametric approximators [20,40].

5.1.2 Control of extrapolation

Even though iteration error is monotonically
decreased and convergence is guaranteed with a
proper choice of approximator, sparse data in a high-
dimensional state space can result in poor control due
to the limited validity of the learned cost-to-go
function [35,40]. The cost-to-go approximator may
not be valid in regions where no training data is
available. Hence, control of extrapolation is a critical
issue in using the approximated cost-to-go function
both during off-line value/policy iteration and during
on-line control. This issue has not been studied
explicitly in the RL/NDP literature because of the
characteristics of their problems (e.g. trial-and-error
learning and huge data).

Related work dealing with excessive extrapolation
is found in the robot learning literature [78]. They
construct an approximate convex hull, which is called
“independent variable hull (IVH)” taking an elliptic
form as depicted in Fig. 4. Whenever one has to
estimate the cost-to-go for a query point, the IVH is
calculated around the training data that lie closer than

some threshold value from the query point. Any
queries within the convex hull are considered to be
reliable and those outside are deemed unreliable. This
approach is not computationally attractive. It also
gives up making a prediction for the point outside the
hull and requires more random explorations. In
addition, the use of the convex hull may be
misleading if the elliptic hull contains a significant
empty region around the query point.

One logical approach to this problem is to estimate
local density of training data points around the query
point and use it as a reliability indicator. One such
idea was reported by Leonard et al. [44] for design of
a reliable neural network structure by using a radial
basis function and a nonparametric probability density
estimator [61]. Lee and Lee [42] suggested a penalty
function-based approach, which adjusts the estimate
of cost-to-go according to the local data density.

5.2. Solution property: convergence and optimality

Understanding the accuracy of a learned cost-to-go
function and its corresponding policy is very
important for successful implementation. Researchers
have been interested in understanding the convergence
property of a learning algorithm and its error bound
(or bias from the “true” optimal cost-to-go function).
Though exact value and policy iterations are shown to
converge and their error bounds are presented in
standard DP textbooks [65], most of the approximate
DP algorithms employing function approximation are
yet to be understood fully at a theoretical level. This is
particularly true for problems with continuous state-
action spaces.

Gordon’s value iteration algorithm using a local
averager with the nonexpansion property [28] is
convergent but its error bound is only available for the
1-nearest neighborhood estimator. Tsitsiklis and Van
Roy [94] provided a proof of convergence and its
accuracy for linear function approximators when
applied to finite MDPs with temporal difference

Fig. 4. Two-dimensional independent variable hull

(IVH).

274 Jong Min Lee and Jay H. Lee

learning under a particular on-line state sampling
scheme. They concluded that the convergence
properties of general nonlinear function
approximators (e.g. neural network) were still unclear.

Ormoneit and Sen [60] suggested a kernel-based Q-
learning for continuous state space using sample
trajectories only. The algorithm is designed for
discounted infinite horizon cost and employs a kernel
averager like Gordon’s to average a collection of
sampled data where a specific action was applied.
Hence, a separate training data set exists marked with
each action to approximate the Q-function. This way
they show that the kernel-based Q-learning can
converge to a unique solution, and the optimal
solution can be obtained as the number of samples
increases to infinity, which they call consistency. They
also conclude that all reinforcement learning using
finite samples is subject to bias. Same results for
average cost problems are provided in [59]. Though
the theoretical argument on the convergence property
could be established, error bounds for practical set-up
of the algorithm are yet to be provided.

Sutton et al. [79] suggested an alternative approach
that directly optimizes over the policy space. The
algorithm uses a parametric representation of a policy,
and gradient-based optimization is performed to
update the parameter set. As the number of parameters
increases, the learning converges to an optimal policy
in a “local” sense due to the gradient-based search.
Konda and Tsitsiklis [37] proposed a similar approach
under an actor-critic framework, which guarantees
convergence to a locally optimal policy. In both
approaches, they consider a finite MDP with a
randomized stationary policy that gives action
selection probabilities.

De Farias and Van Roy [25] proposed an
approximate LP approach to solving DP based on
parameterized approximation. They derived an error
bound that characterizes the quality of approximations
compared to the “best possible” approximation of the
optimal cost-to-go function with given basis functions.
The approach is, however, difficult to generalize to
continuous state problems, because the LP approach
requires a description of the system’s stochastic
behavior as finite number of constraints, which is
impossible without discretization of a probabilistic
model.

6. FUTURE DIRECTIONS AND

CONCLUDING REMARKS

Though there exist many RL/NDP methodologies
for solving DP in an approximate sense, only a limited
number of them are applicable to process control
problems given the problems’ nature. We are of the
opinion that finding a fixed-solution of the Bellman
equation using value/policy iteration with a stable

function approximator (e.g. local averager) is the best
strategy. In general, solving DP by RL/NDP methods
with function approximation remains more a problem-
specific art than a generalized science.

In order to solve highly complex problems with
guaranteed performance, the following questions
should be addressed.
● Reliable use of cost-to-go approximation:

Though we can control undue extrapolations by using
some penalty terms, function approximation can be
carried out in a more systematic way if an error bound
can be derived for a general class of problems. This
analysis is yet to be reported for continuous problems.
● Dealing with large action space: The suggested

algorithms can suffer from the same curse-of-
dimensionality as the dimension of action space
increases. This is because the action space should be
searched over for finding a greedy control action.
● Applicability of policy space algorithms: All the

methods and issues described above are mainly
concerned with approximating the cost-to-go function
aimed at solving the Bellman equation directly. Then
the learned cost-to-go function is used to prescribe a
near-optimal policy. A new approach recently
advocated is to approximate and optimize directly
over the policy space, which is called policy-gradient
method [37,79,49]. The method was motivated by the
disadvantage of the cost-to-go function based
approach that can result very different actions for
“close” states from the greedy policy in the presence
of approximation errors. This can be avoided by
controlling the smoothness of the policy directly.
However, the algorithms still need significant
investigation to be recast as an applicable framework
for process control problems.

REFERENCES
[1] T. P. I. Ahamed, P. S. N. Rao, and P. S. Sastry,

“A reinforcement learning approach to
automatic generation control,” Electric Power
Systems Research, vol. 63, no. 1, pp. 9-26, 2002.

[2] J. S. Albus, “Data storage in the cerebellar
model articulation controller,” Journal of
Dynamic Systems, Measurement and Control, pp.
228-233, 1975.

[3] J. S. Albus, “A new approach to manipulator
control: The cerebellar model articulation
controller (CMAC),” Journal of Dynamic
Systems, Measurement and Control, pp. 220-227,
1975.

[4] C. W. Anderson, “Learning to control an
inverted pendulum using neural networks,”
IEEE Control Systems Magazine, vol. 9, no. 3,
pp. 31-37, 1989.

[5] C. W. Anderson, D. C. Hittle, A. D. Katz, and R.
M. Kretchmar, “Synthesis of reinforcement

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 275

learning, neural networks and PI control applied
to a simulated heating coil,” Artificial
Intelligence in Engineering, vol. 11, no. 4, pp.
421-429, 1997.

[6] M. Asada, S. Noda, S. Tawaratsumida, and K.
Hosoda, “Purposive behavior acquisition for a
real robot by vision-based reinforcement
learning,” Machine Learning, vol. 23, pp. 279-
303, 1996.

[7] K. J. Åström and A. Helmersson, “Dual control
of an integrator with unknown gain,” Comp. &
Maths. with Appls., vol. 12A, pp. 653-662, 1986.

[8] C. G. Atkeson and S. Schaal, “Robot learning
from demonstration,” Proc. of the Fourteenth
International Conference on Machine Learning,
pp. 12-20, San Francisco, CA, 1997.

[9] L. Baird III, “Residual algorithms: Rein-
forcement learning with function approxi-
mation,” Proc. of the International Conference
on Machine Learning, pp. 30-37, 1995.

[10] A. G. Barto, S. J. Bradtke, and S. P. Singh,
“Learning to act using real-time dynamic pro-
gramming,” Artificial Intelligence, vol. 72, no. 1,
pp. 81-138, 1995.

[11] A. G. Barto, R. S. Sutton, and C. W. Anderson,
“Neuronlike adaptive elements that can solve
difficult learning control problems,” IEEE Trans.
on Systems, Man, and Cybernetics, vol. 13, no. 5,
pp. 834-846, 1983.

[12] R. E. Bellman, Dynamic Programming,
Princeton University Press, New Jersey, 1957.

[13] D. P. Bertsekas. Dynamic Programming and
Optimal Control, Athena Scientic, Belmont, MA,
2nd edition, 2000.

[14] D. P. Bertsekas, “Neuro-dynamic programming:
An overview,” In J. B. Rawlings, B. A. Ogun-
naike, and J. W. Eaton, editors, Proc. of Sixth
International Conference on Chemical Process
Control, 2001.

[15] D. P. Bertsekas and D. A. Castañon, “Adaptive
aggregation for infinite horizon dynamic
programming,” IEEE Trans. on Automatic
Control, vol. 34, no. 6, pp. 589-598, 1989.

[16] D. P. Bertsekas and R. G. Gallager, Data
Networks, Prentice-Hall, Englewood Cliffs, NJ,
2nd edition, 1992.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation: Numerical Methods,
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-
Dynamic Programming, Athena Scientic, Bel-
mont, Massachusetts, 1996.

[19] V. Borkar, “A convex analytic approach to
Markov decision processes,” Probability Theory
and Related Fields, vol. 78, pp. 583-602, 1988.

[20] J. A. Boyan and A. W. Moore, “Generalization
in reinforcement learning: safely approximating

the value function,” In G. Tesauro and D.
Touretzky, editors, Advances in Neural
Information Processing Systems, vol. 7, Morgan
Kaufmann, 1995.

[21] S. J. Bradtke, “Reinforcement learning applied
to linear quadratic regulation,” In S. J. Hanson, J.
Cowan, and C. L. Giles, editors, Advances in
Neural Information Processing Systems, vol. 5,
Morgan Kaufmann, 1993.

[22] R. Crites and A. G. Barto, “Improving elevator
performance using reinforcement learning,” In D.
S. Touretzky, M. C. Mozer, and M. E. Hasselmo,
editors, Advances in Neural Information
Processing Systems, vol. 8, MIT Press, San
Francisco, CA, 1996.

[23] R. Crites and A. G. Barto, “Elevator group
control using multiple reinforcement learning
agents,” Machine Learning, vol. 33, pp. 235-262,
1998.

[24] P. Dayan. “The convergence of TD(λ) for
general λ,” Machine Learning, vol. 8, pp. 341-
362, 1992.

[25] D. P. de Farias and B. Van Roy, “The linear
programming approach to approximate dynamic
programming,” Operations Research, vol. 51, no.
6, pp. 850-865, 2003.

[26] E. V. Denardo, “On linear programming in a
Markov decision problem,” Management
Science, vol. 16, pp. 282-288, 1970.

[27] C. G. Atkeson and J. Santamaria, “A comparison
of direct and model-based reinforcement
learning,” Proc. of the International Conference
on Robotics and Automation, 1997.

[28] G. J. Gordon, “Stable function approximation in
dynamic programming,” Proc. of the Twelfth
International Conference on Machine Learning,
San Francisco, CA, pp. 261-268, 1995.

[29] T. Hastie, R. Tibshirani, and J. Friedman, The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer-Verlag, New
York, NY, 2001.

[30] A. Hordijk and L. C. M. Kallenberg, “Linear
programming and Markov decision chains,”
Management Science, vol. 25, pp. 352-362, 1979.

[31] J. C. Hoskins and D. M. Himmelblau, “Process
control via artificial neural networks and
reinforcement learning,” Computers & Chemical
Engineering, vol. 16, no. 4, pp. 241-251, 1992.

[32] R. A. Howard, Dynamic Programming and
Markov Processes, MIT Press, Cambridge, MA,
1960.

[33] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On
the convergence of stochastic iterative dynamic
programming algorithms,” Neural Computation,
vol. 6, no. 6, pp. 1185-1201, 1994.

[34] L. P. Kaelbling, M. L. Littman, and A. W.
Moore, “Reinforcement learning: A survey,”

276 Jong Min Lee and Jay H. Lee

Journal of Artificial Intelligence Research, vol.
4, pp. 237-285, 1996.

[35] N. S. Kaisare, J. M. Lee, and J. H. Lee,
“Simulation based strategy for nonlinear optimal
control: Application to a microbial cell reactor,”
International Journal of Robust and Nonlinear
Control, vol. 13, no. 3-4, pp. 347-363, 2002.

[36] S. Koenig and R. G. Simmons, “Complexity
analysis of real-time reinforcement learning,”
Proc. of the Eleventh National Conference on
Artificial Intelligence, Menlo Park, CA, pp. 99-
105, 1993.

[37] V. R. Konda and J. N. Tsitsiklis, “Actor-critic
algorithms,” In S. A. Solla, T. K. Leen, and K.-R.
Müller, editors, Advances in neural information
processing systems, vol. 12, 2000.

[38] B. J. A. Kröse and J. W. M. van Dam, “Adaptive
state space quantisation for reinforcement
learning of collision-free navigation,” Proc. of
the 1992 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Piscataway, NJ,
1992.

[39] P. R. Kumar and P. P. Varaiya, Stochastic
Systems: Estimation, Identification, and
Adaptive Control, Prentice Hall, Englewood
Cliffs, NJ, 1986.

[40] J. M. Lee, N. S. Kaisare, and J. H. Lee,
“Simulation-based dynamic programming
strategy for improvement of control policies,”
AIChE Annual Meeting, San Francisco, CA,
paper 438c, 2003.

[41] J. M. Lee and J. H. Lee, “Neuro-dynamic
programming approach to dual control
problem,” AIChE Annual Meeting, Reno, NV,
paper 276e, 2001.

[42] J. M. Lee and J. H. Lee, “Approximate dynamic
programming based approaches for input-output
data-driven control of nonlinear processes,”
Automatica, 2004. Submitted.

[43] J. M. Lee and J. H. Lee, “Simulation-based
learning of cost-to-go for control of nonlinear
processes,” Korean J. Chem. Eng., vol. 21, no. 2,
pp. 338-344, 2004.

[44] J. A. Leonard, M. A. Kramer, and L. H. Ungar,
“A neural network architecture that computes its
own reliability,” Computers & Chemical
Engineering, vol. 16, pp. 819-835, 1992.

[45] L.-J. Lin, “Self-improving reactive agents based
on reinforcement learning, plannin and
teaching.” Machine Learning, vol. 8, pp. 293-
321, 1992.

[46] S. Mahadevan and J. Connell, “Automatic
programming of behavior-based robots using
rein-forcement learning,” Machine Learning, vol.
55, no. 2-3, pp. 311-365, 1992.

[47] S. Mahadevan, N. Marchalleck, T. K. Das, and
A. Gosavi, “Self-improving factory simulation

using continuous-time average-reward reinforce-
ment learning,” Proc. of 14th International
Conference on Machine Learning, pp. 202-210,
1997.

[48] A. S. Manne, “Linear programming and
sequential decisions,” Management Science, vol.
6, no. 3, pp. 259-267, 1960.

[49] P. Marbach and J. N. Tsitsiklis, “Simulation-
based optimization of Markov reward
processes,” IEEE Trans. on Automatic Control,
vol. 46, no. 2, pp. 191-209, 2001.

[50] E. C. Martinez, “Batch process modeling for
optimization using reinforcement learning,”
Computers & Chemical Engineering, vol. 24, pp.
1187-1193, 2000.

[51] S. Miller and R. J. Williams, “Temporal
difference learning: A chemical process control
application,” In A. F. Murray, editor,
Applications of Artificial Neural Networks,
Kluwer, Norwell, MA, 1995.

[52] A. Moore and C. Atkeson, “The parti-game
algorithm for variable resolution reinforcement
learning in multidimensional state spaces.
Machine Learning, vol. 21, no. 3, pp. 199-233,
1995.

[53] A. W. Moore, Efficient Memory Based Robot
Learning, PhD thesis, Cambridge University,
October 1991.

[54] A. W. Moore and C. G. Atkeson, “Prioritized
sweeping: Reinforcement learning with less data
and less time,” Machine Learning, vol. 13, pp.
103-130, 1993.

[55] M. Morari and J. H. Lee, “Model predictive
control: Past, present and future,” Computers &
Chemical Engineering, vol. 23, pp. 667-682,
1999.

[56] R. Munos, “A convergent reinforcement
learning algorithm in the continuous case based
on a finite difference method,” Proc. of the
International Joint Conference on Artificial
Intelligence, 1997.

[57] R. Munos, “A study of reinforcement learning in
the continuous case by means of viscosity
solutions,” Machine Learning Journal, vol. 40,
pp. 265-299, 2000.

[58] R. Neuneier, “Enhancing Q-learning for optimal
asset allocation,” In M. Jordan, M. Kearns, and
S. Solla, editors, Advances in Neural
Information Processing Systems, vol. 10, 1997.

[59] D. Ormoneit and P. W. Glynn, “Kernel-based
reinforcement learning in average-cost
problems,” IEEE Trans. on Automatic Control,
vol. 47, no. 10, pp. 1624-1636, 2002.

[60] D. Ormoneit and S. Sen, “Kernel-based
reinforcement learning,” Machine Learning, vol.
49, pp. 161-178, 2002.

[61] E. Parzen, “On estimation of a probability

Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 277

density function and mode,” Ann. Math. Statist.,
vol. 33, pp. 1065-1076, 1962.

[62] J. Peng, Efficient Dynamic Programming-Based
Learning for Control, PhD thesis, North-eastern
University, Boston, MA, 1993.

[63] J. Peng and R. J. Williams, “Efficient learning
and planning within the Dyna framework,”
Adaptive Behavior, vol. 1, no. 4. pp. 437-454,
1993.

[64] D. V. Prokhorov and D. C. Wunsch II,
“Adaptive critic designs,” IEEE Trans. on
Neural Networks, vol. 8, no. 5, pp. 997-1007,
September 1997.

[65] M. L. Puterman, Markov Decision Processes,
Wiley, New York, NY, 1994.

[66] S. J. Qin and T. A. Badgwell, “A survey of
industrial model predictive control technology,”
Control Engineering Practice, vol. 11, no. 7, pp.
733-764, 2003.

[67] U. Rüde, Mathematical and Computational
Techniques for Multilevel Adaptive Methods,
Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1993.

[68] G. A. Rummery and M. Niranjan, On-line Q-
learning using connectionist systems, Technical
Report CUED/F-INFENG/TR 166, Engineering
Department, Cambridge University, 1994.

[69] P. Sabes, “Approximating Q-values with basis
function representations,” Proc. of the Fourth
Connectionist Models Summer School, Hillsdale,
NJ, 1993.

[70] A. L. Samuel, “Some studies in machine
learning using the game of checkers,” IBM J.
Res. Develop., pp. 210-229, 1959.

[71] A. L. Samuel, “Some studies in machine
learning using the game of checkers II - recent
progress,” IBM J. Res. Develop., pp. 601-617,
1967.

[72] J. C. Santamaría, R. S. Sutton, and A. Ram,
“Experiments with reinforcement learning in
problems with continuous state and action
spaces,” Adaptive Behavior, vol. 6, no. 2, pp.
163-217, 1997.

[73] S. Schaal, “Learning from demonstration,” In M.
C. Mozer, M. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing
Systems, vol. 9, pp. 1040-1046, 1997.

[74] S. Schaal and C. Atkeson, “Robot juggling: An
implementation of memory-based learning,”
IEEE Control Systems, vol. 14, no. 1, pp. 57-71,
1994.

[75] N. N. Schraudolph, P. Dayan, and T. J.
Sejnowski, “Temporal difference learning of
position evaluation in the game of Go,” In J. D.
Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing
Systems, vol. 6, pp. 817-824, 1994.

[76] S. Singh and D. Bertsekas, “Reinforcement
learning for dynamic channel allocation in
cellular telephone systems,” In M. C. Mozer, M.
I. Jordan, and T. Petsche, editors, Advances in
Neural Information Processing Systems, vol. 9,
pp. 974-980, 1997.

[77] S. P. Singh and R. S. Sutton, “Reinforcement
learning with replacing eligibility traces,”
Machine Learning, vol. 22, pp. 123-158, 1996.

[78] W. D. Smart and L. P. Kaelbling, “Practical
reinforcement learning in continuous spaces,”
Proc. 17th International Conf. on Machine
Learning, pp. 903-910, 2000.

[79] R. Sutton, D. McAllester, S. Singh, and Y.
Mansour, “Policy gradient methods for
reinforce-ment learning with function
approximation,” In S. A. Solla, T. K. Leen, and
K.-R. Muller, editors, Advances in Neural
Information Processing Systems, vol. 12, pp.
1057-1063, 2000.

[80] R. S. Sutton, Temporal Credit Assignment in
Reinforcement Learning, PhD thesis, University
of Massachusetts, Amherst, MA, 1984.

[81] R. S. Sutton, “Learning to predict by the method
of temporal differences,” Machine Learning, vol.
3. no. 1, pp. 9-44, 1988.

[82] R. S. Sutton, “Integrated architectures for
learning, planning, and reacting based on
approximating dynamic programming,” Proc.
of the Seventh International Conference on
Machine Learning, Austin, TX, 1990.

[83] R. S. Sutton, “Planning by incremental dynamic
programming,” Proc. of the Eighth International
Workshop on Machine Learning, pp. 353-357,
1991.

[84] R. S. Sutton, “Generalization in reinforcement
learning: Successful examples using sparse
coarse coding,” In D. S. Touretzky, M. C. Mozer,
and M. E. Hasselmo, editors, Advances in
Neural Information Processing Systems, vol. 8,
pp. 1038-1044, 1996.

[85] R. S. Sutton and A. G. Barto, “Toward a modern
theory of adaptive networks: Expectation and
prediction,” Psycol. Rev., vol. 88, no. 2, pp. 135-
170, 1981.

[86] R. S. Sutton and A. G. Barto, Reinforcement
Learning: An Introduction, MIT Press, Cam-
bridge, MA, 1998.

[87] M. Takeda, T. Nakamura, M. Imai, T.
Ogasawara, and M. Asada, “Enhanced
continuous valued Q-learning for real
autonomous robots,” Advanced Robotics, vol. 14,
no. 5, pp. 439-442, 2000.

[88] G. Tesauro, “Practical issues in temporal
difference learning,” Machine Learning, vol. 8,
pp. 257-277, 1992.

[89] G. Tesauro, “TD-Gammon, a self-teaching

278 Jong Min Lee and Jay H. Lee

backgammon program, achieves master-level
play,” Neural Computation, vol. 6, no. 2, pp.
215-219, 1994.

[90] G. Tesauro, “Temporal difference learning and
TD-Gammon,” Communications of the ACM,
vol. 38, no. 3, pp. 58-67, 1995.

[91] S. Thrun, “Learning to play the game of chess,”
In G. Tesauro, D. S. Touretzky, and T. K. Leen,
editors, Advances in Neural Information
Processing Systems, vol. 7, 1995.

[92] S. Thrun and A. Schwartz, “Issues in using
function approximation for reinforcement learn-
ing,” Proc. of the Fourth Connectionist Models
Summer School, Hillsdale, NJ, 1993.

[93] J. N. Tsitsiklis, “Asynchronous stochastic
approximation and Q-learning,” Machine
Learning, vol. 16, pp. 185-202, 1994.

[94] J. N. Tsitsiklis and B. Van Roy, “An analysis of
temporal-difference learning with function
approximation,” IEEE Trans. on Automatic
Control, vol. 42, no. 5, pp. 674-690, 1997.

[95] B. Van Roy, “Neuro-dynamic programming:
Overview and recent trends,” In E. Feinberg and
A. Shwartz, editors, Handbook of Markov
Decision Processes: Methods and Applications,
Kluwer, Boston, MA, 2001.

[96] C. J. C. H. Watkins, Learning from Delayed
Rewards, PhD thesis, University of Cambridge,
England, 1989.

[97] C. J. C. H. Watkins and P. Dayan, “Q-learning,”
Machine Learning, vol. 8, pp. 279-292, 1992.

[98] P. J. Werbos, “Advanced forecasting methods
for global crisis warning and models of intelli-
gence,” General Systems Yearbook, vol. 22, pp.
25-38, 1977.

[99] P. J. Werbos, “Approximate dynamic
programming for real-time control and neural
modeling,” In D. A. White and D. A. Sofge,
editors, Handbook of Intelligent Control: Neural,
Fuzzy, and Adaptive Approaches, Van Nostrand
Reinhold, New York, pp. 493-525, 1992.

[100] S. D. Whitehead, “Complexity and cooperation
in Q-learning,” Proc. of the Eighth International
Workshop on Machine Learning, Evanston, IL,
1991.

[101] R. J. Williams and L. C. Baird III, “Analysis of
some incremental variants of policy iteration:
First steps toward understanding actor-critic
learning systems,” Technical Report NU-CCS-
93-14, Northeastern University, College of
Computer Science, Boston, MA, 1993.

[102] J. A. Wilson and E. C. Martinez, “Neuro-fuzzy
modeling and control of a batch process
involving simultaneous reaction and distilla-
tion,” Computers & Chemical Engineering, vol.
21S, pp. S1233-S1238, 1997.

[103] M. Wonham, “Stochastic control problems,” In
B. Friedland, editor, Stochastic Problems in
Control, ASME, New York, 1968.

[104] W. Zhang, Reinforcement Learning for Job-
Shop Scheduling, PhD thesis, Oregon State
University, 1996. Also available as Technical
Report CS-96-30-1.

[105] W. Zhang and T. G. Dietterich, “A
reinforcement learning approach to job-shop
scheduling,” Proc. of the Twelfth International
Conference on Machine Learning, San Francisco,
CA, pp. 1114-1120, 1995.

[106] W. Zhang and T. G. Dietterich, “High-
performance job-shop scheduling with a time-
delay TD(λ) network,” In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances
in Neural Information Processing Systems, vol.
8, 1996.

Jong Min Lee received his B.S.
degree in Chemical Engineering from
Seoul National University, Seoul,
Korea in 1996, and his Ph.D. degree in
Chemical and Biomolecular Engineering
from Georgia Institute of Technology,
Atlanta, in 2004. He is currently a
post doctoral researcher in the School

of Chemical and Biomolecular Engineering at Georgia
Institute of Technology, Atlanta. His current research
interests are in the areas of optimal control, dynamic
programming and reinforcement learning.

Jay H. Lee obtained his B.S. degree in
Chemical Engineering from the
University of Washington, Seattle, in
1986, and his Ph.D. degree in
Chemical Engineering from California
Institute of Technology, Pasadena, in
1991. From 1991 to 1998, he was with
the Department of Chemical

Engineering at Auburn University, AL, as an Assistant
Professor and an Associate Professor. From 1998 to 2000,
he was with School of Chemical Engineering at Purdue
University, West Lafayette, as an Associate Professor.
Currently, he is a Professor in the School of Chemical and
Biomolecular Engineering and a director of Center for
Process Systems Engineering at Georgia Institute of
Technology, Atlanta. He has held visiting appointments at E.
I. Du Pont de Numours, Wilmington, in 1994 and at Seoul
National University, Seoul, Korea, in 1997. He was a
recipient of the National Science Foundation's Young
Investigator Award in 1993. His research interests are in the
areas of system identification, robust control, model
predictive control and nonlinear estimation.

