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Abstract: This paper reviews dynamic programming (DP), surveys approximate solution 
methods for it, and considers their applicability to process control problems. Reinforcement 
Learning (RL) and Neuro-Dynamic Programming (NDP), which can be viewed as approximate 
DP techniques, are already established techniques for solving difficult multi-stage decision 
problems in the fields of operations research, computer science, and robotics. Owing to the 
significant disparity of problem formulations and objective, however, the algorithms and 
techniques available from these fields are not directly applicable to process control problems, 
and reformulations based on accurate understanding of these techniques are needed. We 
categorize the currently available approximate solution techniques for dynamic programming 
and identify those most suitable for process control problems. Several open issues are also 
identified and discussed. 
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1. INTRODUCTON 
 
Dynamic programming (DP) offers a unified 

approach to solving multi-stage optimal control 
problems [12,13]. Despite its generality, DP has 
largely been disregarded by the process control 
community due to its unwieldy computational 
complexity referred to as ‘curse-of-dimensionality.’ 
As a result, the community has studied DP only at a 
conceptual level [55], and there have been few 
applications.  

In contrast, the artificial intelligence (AI) and 
machine learning (ML) fields over the past two 
decades have made significant strides towards using 
DP for practical problems, as evidenced by several 
recent review papers [34,95] and textbooks [18,86]. 
Though a myriad of approximate solution strategies 
have been suggested in the context of DP, they are 
mostly tailored to suit the characteristics of 
applications in operations research (OR), computer 
science, and robotics. Since the characteristics and 
requirements of these applications differ considerably 
from those of process control problems, these 
approximate methods should be understood and 

interpreted carefully from the viewpoint of process 
control before they can be considered for real process 
control problems.  

The objective of this paper is to give an overview of 
the popular approximation techniques for solving DP 
developed from the AI and ML fields and to 
summarize the issues that must be resolved before 
these techniques can be transferred to the field of 
process control.  

The rest of the paper is organized as follows. 
Section 2 motivates the use of DP as an alternative to 
model predictive control (MPC), which is the current 
state-of-the-art process control technique. We also 
give the standard DP formulation and the conventional 
solution approaches. Section 3 discusses popular 
approximate solution strategies, available mainly from 
the reinforcement learning (RL) field. Important 
applications of the strategies are categorized and 
reviewed in Section 4. Section 5 brings forth some 
outstanding issues to be resolved for the use of these 
techniques in process control problems. Section 6 
summarizes the paper and points to some future 
directions. 

 
 2. DYNAMIC PROGRAMMING 

  
2.1. Alternative to Model Predictive Control (MPC)? 

Process control problems are characterized by 
complex multivariable dynamics, constraints, and 
competing sets of objectives. Because of the MPC’s 
ability to handle these issues systematically, the 
technique has been widely adopted by process 
industries.  
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MPC is based on periodic execution of state 
estimation followed by solution of an open-loop 
optimal control problem formulated on a finite 
moving prediction horizon [55,66]. Notwithstanding 
its impressive track record within the process industry, 
a close scrutiny points to some inherent limitation in 
its versatility and performance. Besides the obvious 
limitation imposed by the need for heavy on-line 
computation, the standard formulations are based on 
solving an open-loop optimal control problem at each 
sample time, which is a poor approximation of the 
closed-loop control MPC actually performs in an 
uncertain environment. This mismatch between the 
mathematical formulation and the reality can translate 
into substantial performance losses.  

DP allows us to derive an optimal feedback control 
policy off-line [12,65,13], and hence has the potentials 
to be developed into a more versatile process control 
technique without the shortcomings of MPC. The 
original development of DP by Bellman dates back to 
the late 50s. Though used to derive celebrated results 
for simple control problems such as linear quadratic 
(Gaussian) optimal control problem, DP has largely 
been considered to be impractical by the process 
control community because of the so called ‘curse-of-
dimensionality,’ which refers to the exponential 
growth in the computation with respect to the state 
dimension. The computational and storage 
requirements for almost all problems of practical 
interest remain unwieldy even with today’s computing 
hardware. 
 
2.2. Formulation of DP 

Consider an optimal control problem with a 
predefined stage-wise cost and state transition 
equation. The sets of all possible states and actions are 
represented by X  and U , respectively. In general, 

xnX R⊂  and unU R⊂  for process control 
problems, where xn  and un  are the number of state 
and action variables, respectively.  

Let us denote the system state at the thk  time step 
by ( )x k X∈ , the control action by ( )u k U∈ , and 

some random disturbance by ωω( ) nk R∈ . The 
successor state ( 1)x k +  is defined by the transition 
equation of  

( )( 1) ( ) ( ) ω( )x k f x k u k k+ = , , .            (1) 

Note that (1) represents a Markov decision process 
(MDP), meaning the next state ( 1)x k +  depends 
only on the current state and input not on the states 
and actions of past times. Throughout the paper, a 
model in the form of (1) will be assumed. The model 
form is quite general in that, if the next state did 
indeed depend on past states and actions, a new state 

vector can be defined by including those past 
variables. Whereas (1) is the typical model form used 
for process control problems, most OR problems have 
a model described by a transition probability matrix, 
which describes how the probability distribution (over 
a finite set of discrete states) evolves from one time 
step to the next. We also assume that a bounded 
single-stage cost, ( )φ ( ) ( )x k u k, , is incurred 
immediately or within some fixed sample time 
interval after a control action ( )u k  is implemented. 
We restrict the formulation to the case where state 
information is available either from direct 
measurements or from an estimator. A control policy 
µ  is defined to map a state to a control action, i.e., 

µ( )u x= . We also limit our investigation to stationary 
(time-invariant) policies and infinite horizon objective 
functions. DP for finite horizon problems are also 
straightforward to formulate [13]. For any given 
control policy µ , the corresponding infinite horizon 
cost function is defined as  
 

( )µ
µ

0
( ) α φ ( ) ( ) (0) ,k

k
J x E x k u k x x x X

∞

=

 
= , = ∀ ∈ 

  
∑  

(2) 
 
where µE  is the conditional expectation under the 
policy µ( )u x= , and α [0 1)∈ ,  is a discount factor 
that handles the tradeoff between the immediate and 
delayed costs. µ ( )J x  represents the expected 
discounted total cost starting with the state x . Note 
that µJ  is a function of x , which will be referred to 
as the ‘cost-to-go’ function hereafter. Also define  

µ
µ

( ) inf ( )J x J x x X∗ = ∀ ∈ .            (3) 

A policy µ∗  is α -optimal, if  

µ ( ) ( ) .J x J x x X
∗ ∗= ∀ ∈               (4) 

 
The closed-loop (state feedback) optimal control 
problem is formulated as a dynamic program yielding 
the following function equation:  
 

( )
( ( )) min φ( ( ) ( )) α ( ( 1))

u k U
J x k E x k u k J x k∗ ∗

∈
 = , + +  , 

x X∀ ∈ .  (5) 
 
(5) is called Bellman equation and its solution defines 
the optimal cost-to-go function for the entire state 
space. The objective is then to solve the Bellman 
equation to obtain the optimal cost-to-go function, 
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which can be used to define the optimal control policy 
as follows:  
 

( )
µ ( ( )) arg min φ( ( ) ( )) α ( ( 1)) ,

u k U
x k E x k u k J x k∗ ∗

∈
 = , + + 

x X∀ ∈ .  (6) 
 
2.3. Value/Policy iteration 

In this section, we review two conventional 
approaches for solving DP, value iteration and policy 
iteration. They form the basis for the various 
approximate solution methods introduced later.  
 

• Value iteration  
In value iteration, one starts with an initial guess for 
the cost-to-go for each state and iterates on the 
Bellman equation until convergence. This is 
equivalent to calculating the cost-to-go value for 
each state by assuming an action that minimizes the 
sum of the current stage cost and the ‘cost-to-go’ 
for the next state according to the current estimate. 
Hence, each update assumes that the calculated 
action is optimal, which may not be true given that 
the cost-to-go estimate is inexact, especially in the 
early phase of iteration. The algorithm involves the 
following steps.  
1. Initialize 0 ( )J x  for all x X∈ .  
2. For each state x   
 

1 ˆ( ) min φ( ) α ( )i i
u

J x E x u J x+  = , +          (7) 

 
where ˆ ( ω)x f x u X= , , ∈ , and i  is the 
iteration index.  

3. Perform the above iteration (step 2) until ( )J x  
converges.  

 
The update rule of (7) is called full backup because 
the cost-to-go values of the entire state space are 
updated in every round of update.  

 

• Policy iteration  
Policy iteration is a two-step approach composed of 
policy evaluation and policy improvement. Rather 
than solve for a cost-to-go function directly and 
then derive an optimal policy from it, the policy 
iteration method starts with a specific policy and 
the policy evaluation step computes the cost-to-go 
values under that policy. Then the policy 
improvement step tries to build an improved policy 
based on the cost-to-go function of the previous 
policy. The policy evaluation and improvement 
steps are repeated until the policy no longer 
changes. Hence, this method iterates on policy 
rather than cost-to-go function.  

The policy evaluation step iterates on the cost-to-go 
values but with the actions dictated by the given 
policy. Each evaluation step can be summarized as 
follows:  
1. Given a policy µ , initialize µ ( )J x  for all 

x X∈ .  
2. For each state x   
 

1
µ µ ˆ( ) φ( µ( )) α ( ) .J x E x x J x+  = , +        (8) 

 
3. The above iteration (step 2) continues until 

µ ( )J x  converges.  
 

The overall policy iteration algorithm is given as 
follows:  
1. Given an initial control policy 0µ , set 0i = .  
2. Perform the policy evaluation step to evaluate 

the cost-to-go function for the current policy µi .  
3. The improved policy is represented by  
 

1
µ

ˆµ ( ) arg min φ( ) α ( ) .i
i

u
x E x u J x+  = , +  

   (9) 

 
Calculate the action given by the improved 
policy for each state.  

4. Iterate steps 2 and 3 until µ( )x  converges.  
 

For systems with a finite number of states, both the 
value iteration and policy iteration algorithms 
converge to an optimal policy [12,32,13]. Whereas 
policy iteration requires complete policy evaluation 
between steps of policy improvement, each 
evaluation often converges in just few iterations 
because the cost-to-go function typically changes 
very little when the policy is only slightly improved. 
At the same time, policy iteration generally requires 
significantly fewer policy improvement steps than 
value iteration because each policy improvement is 
based on accurate cost-to-go information [65].  
One difficulty associated with value or policy 
iteration is that the update is performed after one 
“sweep” of an entire state set, making it 
prohibitively expensive for most problems. To 
avoid this difficulty, asynchronous iteration 
algorithms have been proposed [17,16]. These 
algorithms do not back up the values of states in a 
strict order but use whatever updated values 
available. The values of some states may be backed 
up several times while the values of others are 
backed up once. However, obtaining optimal cost-
to-go values requires infinite number of  updates 
in general. 
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2.4. Linear programming based approach 
Another approach to solving DP is to use a linear 

programming (LP) formulation. The Bellman equation 
can be characterized by a set of linear constraints on 
the cost-to-go function. The optimal cost-to-go 
function, which is the fixed point solution of the 
Bellman equation, can also be obtained by solving a 
LP [48,26,30,19]. Let us define a DP operator T  to 
simplify (5) as follows:  

 
 J TJ= .                             (10) 

 
Then J∗  is the unique solution of the above equation. 
Solving this Bellman equation is equivalent to solving 
the following LP:  
 

max Tc J ,                          (11) 
s t TJ J. . ≥ ,                         (12) 

 
where c  is a positive weight vector. Any feasible J  
must satisfy J J ∗≤ , and therefore for any strictly 
positive c , J∗  is the unique solution to the LP of 
(11). Note that (12) is a set of constraints  
 

[ ]ˆφ( ) α ( ) ( ),E x u J x J x u U, + ≥ ∀ ∈      (13) 
 
leaving us with the same ‘curse-of-dimensionality’; 
the number of constraints grows with the number of 
states and the number of possible actions.  

The LP approach is the only known algorithm that 
can solve DP in polynomial time, and recent years 
have seen substantial advances in algorithms for 
solving large-size linear programs. However, 
theoretically efficient algorithms have still been 
shown to be ineffective or even infeasible for 
practically-sized problems [34,86]. 
 

3. APPROXIMATE METHODS FOR  
SOLVING DP 

 
Whereas the process control community concluded 

DP to be impractical early on, researchers in the fields 
of machine learning and artificial intelligence began 
to explore the possibility of applying the theories of 
psychology and animal learning to solving DP in an 
approximate manner in the 1980s [85,80]. The 
research areas related to the general concept of 
programming agents by “reward and punishment 
without specifying how the task is achieved” have 
collectively been known as ‘reinforcement learning 
(RL)’ [86,34]. It has spawned a plethora of techniques 
to teach an agent to learn cost or utility of taking 
actions given a state of the system. The connection 
between these techniques and the classical dynamic 
programming was elucidated by Bertsekas and 

Tsitsiklis [18,95], who coined the term Neuro-
Dynamic Programming (NDP) because of the popular 
use of artificial neural networks (ANNs) as the 
function approximator.  

In the rest of this section, we first discuss the 
representation of state space, and then review different 
approximate DP algorithms, which are categorized 
into model-based and model-free methods. The most 
striking feature shared by all the approximate DP 
techniques is the synergetic use of  simulations (or 
interactive experiments) and function approximation. 
Instead of trying to build the cost-to-go function for 
an entire state space, they use sampled trajectories to 
identify parts of the state space relevant to optimal or 
“good” control where they want to build a solution 
and also obtain an initial estimate for the cost-to-go 
values. 
 
3.1. State space representation 

Typical MDPs have either a very large number of 
discrete states and actions or continuous state and 
action spaces. Computational obstacles arise from the 
large number of possible state/action vectors and the 
number of possible outcomes of the random variables. 
The ‘curse-of-dimensionality’ renders the 
conventional DP solution approach through 
exhaustive search infeasible. Hence, in addition to 
developing better learning algorithms, substantial 
efforts have been devoted to alleviating the curse-of-
dimensionality through more compact state space 
representations. For example, state space 
quantization/discretization methods have been used 
popularly in the context of DP [9] and gradient 
descent technique [79]. The discretization/ 
quantization methods have been commonly accepted 
because the standard RL/NDP algorithms were 
originally designed for systems with discrete states. 
The discretization method should be chosen carefully, 
however, because incorrect discretization could 
severely limit the performance of a learned control 
policy, for example, by omitting important regions of 
the state space and/or by affecting the original Markov 
property [56].  

More sophisticated discretization methods have 
been developed based on adaptive resolutions such as 
the multi-level method [67], clustering-based method 
[38], triangularization method [56,57], state 
aggregation [15], and divide-and-conquer method 
(Parti-Game algorithm) [52]. The parti-game 
algorithm, which is one of the most popular 
discretization strategies, attempts to search for a path 
from an initial state to a goal state (or region) in a 
multi-dimensional state space based on a coarse 
discretization. When the search fails, the resolution is 
iteratively increased for the regions of the state space 
where the path planner is unsuccessful. Though some 
adaptive discretization methods can result in a better 
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policy compared to the fixed versions [6], they can 
potentially suffer from their own ‘curse-of-
dimensionality’ and become less reliable when the 
estimation of cost-to-go is necessary for the states 
lying in a smaller envelope than that of converged 
partitions.  

Function approximation methods have also been 
employed to represent the relationship between cost-
to-go and system state in a continuous manner either 
by based on parametric structures (e.g. ANNs) or 
‘store-and-search’ based nonparametric methods (e.g. 
nearest neighbor). The function approximation based 
approaches are more general because they are 
applicable to both finite and infinite number of states 
without modification of a given problem. The current 
status and the issues of incorporating function 
approximators into approximate DP strategies will be 
discussed separately in section 5. 
 
3.2. Model-based methods 

If there exists a model that describes a concerned 
system, the main question becomes how to solve the 
Bellman equation efficiently. Given an exact model, a 
conceptually straightforward approach is to use the 
value or policy iteration algorithm. Since it is not 
feasible to do this for all states, one plausible 
approach is to use a set of sampled data from closed-
loop simulations (under known suboptimal policies) 
to reduce the number of states for which the Bellman 
equation is solved. Since the successor states during 
each iteration may be different from the ones in the 
simulations, function approximation is employed to 
estimate the cost-to-go values for those states not 
visited during the simulation runs [35,43]. A family of 
methods in which a model built from data is used to 
derive a control policy as if it were an exact 
representation of the system is called ‘certainty-
equivalence’ approach, which is similar to the concept 
for process identification/control involving learning 
phase and acting phase [39]. We note that random 
exploration for gathering data to build such a model is 
much less efficient than policy-interlaced exploration 
[100,36].  

Independently from the researchers working on 
direct DP solution methods, Werbos proposed a family 
of adaptive critic designs (or actor-critic methods 
(AC) as named later in [11]) in the late 1970s [98]. He 
extended the work and collectively called the 
approach Heuristic Dynamic Programming [99]. The 
purpose of the adaptive critic design is to learn 
optimal control laws by successively adapting two 
ANNs, namely, an action network and a critic network. 
These two ANNs indirectly approximate the Bellman 
equation. The action network calculates control 
actions using the performance index from the critic 
network. The critic network learns to approximate the 
cost-to-go function and uses the output of the action 

network as one of its inputs, either directly or 
indirectly. This structure has been used as a “policy 
learner” in conjunction with many RL schemes in 
addition to being a popular structure for neuro-fuzzy-
controllers [64]. The AC algorithms are less suited to 
cases where the data change frequently since the 
training of the networks is challenging and time-
consuming. We note that the AC framework is not 
limited to the model-based learning scheme, and it has 
also been used as a framework for model-free learning. 
The general structure of AC is shown in Fig. 1. 

RL literature has considered the model-based 
learning as an alternative way to use gathered data 
efficiently during interactive learning with an 
environment, compared to a class of model-free 
learning schemes that will be introduced in the next 
section. They have been interested in ‘exploration 
through trial-and-error’ to increase the search space, 
for example, in a robot-juggling problem [74]. Hence, 
most model-based approaches from the RL literature 
have been designed to learn an explicit model of a 
system simultaneously with a cost-to-go function and 
a policy [82,83,54,63,10]. The general algorithms 
iteratively 1) update the learned model, 2) calculate 
control actions that optimize the given cost-to-go 
function with the current learned model, 3) update the 
corresponding cost-to-go function as in value iteration, 
and 4) execute the control policy and gather more data. 
Representative algorithms in this class are Dyna and 
RTDP (real-time dynamic programming) [82,10]. 
These model-based interactive learning techniques 
have the advantage that they can usually find good 
control actions with fewer experiments since they can 
exploit the existing samples better by using the model 
[27]. 
 
3.3. Model-free methods 

RL/NDP and other related research work have 
mainly been concerned with the question of how to 
obtain an optimal policy when a model is not 
available. This is mainly because the state transition 
rule of their concerned problems is described by a 

Critic

Actor System
u

x

heuristic value

single-stage cost

Fig. 1. The actor-critic architecture. 
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probability transition matrix, which is difficult to 
identify empirically. Many trial-and-errors, however, 
allow one to find the optimal policy eventually. These 
“on-line planning” methods have an agent interact 
with its environment directly to gather information 
(state and action vs. cost-to-go) from on-line 
experiments or in simulations. In this section, three 
important model-free learning frameworks are 
introduced – Temporal Difference (TD) learning, Q-
learning, and SARSA, all of which learn the cost-to-
go functions incrementally based on experiences with 
the environment. 
 
3.3.1 Temporal difference learning 

TD learning is a passive learner in that one 
calculates the cost-to-go values by operating an agent 
under a fixed policy. For example, we watch a robot 
wander around using its current policy µ  to see what 
cost it incurs and which states it explores. This was 
suggested by Sutton and is known as the TD(0) 
algorithm [81]. The general algorithm is as follows:  

1. Initialize ( )J x .  

2. Given a current policy ( µ ( )i x ), let an agent 
interact with its environment, for example, let an 
agent (e.g. robot, controller, etc.) perform some 
relevant tasks.  

3. Watch the agent’s actions given from µ ( )i x , 

obtain a cost φ( µ ( ))ix x, , and its successor state 
x̂ .  

4. Update the cost-to-go using  
 

{ }ˆ( ) (1 γ) ( ) γ φ( µ ( )) α ( )iJ x J x x x J x← − + , + (14) 

 
or equivalently,  

{ }ˆ( ) ( ) γ φ( µ ( )) α ( ) ( )iJ x J x x x J x J x← + , + − (15) 

 
where γ  is a learning rate from 0 to 1. The 
higher the γ , the more we emphasize our new 
estimates and forget the old estimates.  

5. Set ˆx x←  and continue experiment.  
6. If one sweep is completed, return to step 2 with 

1i i← + , and continue the procedure until 
convergence. 

 
Whereas TD(0) update is based on the “current” 
difference only, a more general version called TD( λ ) 
updates the cost-to-go values by including the 
temporal differences of the later states visited in a 
trajectory with exponentially decaying weights.  

Suppose we generated a sample trajectory, 
{ (0) (1) ( ) }x x x t, , , , . The temporal difference term, 

( )d t , at time t  is given by  
 

( ) φ( ( ) µ( ( ))) α ( ( 1)) ( ( ))d t x t x t J x t J x t= , + + − . (16) 
 
Then the policy evaluation step for a stochastic system 
is approximated by  
 

( ( )) ( ( )) γ λ ( )m t

m t
J x t J x t d m

∞
−

=
← + ∑ ,        (17) 

 
where 0 λ 1≤ <  is a decay parameter. Within this 
scheme, a single trajectory can include a state, say x , 
multiple times, for example, at times 1 2 Mt t t, , , . In 
such a case, ‘every-visit’ rule updates the cost-to-go 
whenever the state is visited in the trajectory 
according to  
 

Time
t 1 t 2 tM

update
for
J(x)

d(t  )1 d(t  )2 d(t  )M

d(t  +1)1λ d(t  +1)λ d(t  +1)λ2 Μ

  
Fig. 2. Cumulative addition of temporal difference terms in the every-visit method. 



Approximate Dynamic Programming Strategies and Their Applicability for Process Control: A Review and … 269 
 

1
( ( )) ( ( )) γ λ ( )j

j

M m t

j m t
J x t J x t d m

∞ −

= =
← + ∑ ∑ .    (18) 

 
Graphical representation of the addition of update 
terms is shown in Fig. 2. 

A corresponding on-line update rule for the every-
visit method is given by  
 

( ( )) ( ( )) γ{φ( ( ) µ ( ( )))
α ( ( 1)) ( ( ))} ( ( )),

i

t

J x t J x t x t x t
J x t J x t e x t

← + ,
+ + −

  (19) 

 
where t  is the time index in a single sample 
trajectory, and ( )te x  is ‘eligibility,’ with which each 
state is updated. Note that the temporal difference 
term, {}⋅  of (19), appears only if x  has already 
been visited in a previous time of the trajectory. Hence, 
all eligibilities start out with zeros and are updated at 
each time t  as follows:  
 

1

1

αλ ( ) if ( ),
( )

αλ ( ) 1 if ( ),
t

t
t

e x x x t
e x

e x x x t
−

−

≠
=  + =

   (20) 

 
where α  is the discount factor for the cost-to-go. 
The eligibility thereby puts more emphasis on the 
temporal difference term in recent past. Singh and 
Sutton [77] proposed an alternative version of the 
eligibility assignment algorithm, where visited states 
in the most recent sample run always get an eligibility 
of unity rather than an increment of 1, which they 
called the ‘first-visit’ method.  

Since the TD learning is based on a fixed policy, it 
can be combined with an AC-type policy-learner. The 
convergence properties of the AC-related algorithms 
were explored [101]. The convergence property of 
TD(λ) learning was also studied by several 
researchers [24,62,93]. 

 
3.3.2 Q-learning 

Q-learning [97,96] is an active learner in that one 
modifies the ‘greedy’ policy as the agent learns. One 
can also tweak the policy to try different control 
actions from the calculated policy even when the 
agent is interacting with a real environment. For 
example, injection of random signals into actions is 
often carried out for exploration of the state space. 
Optimal Q-value is defined as the cost-to-go value of 
implementing a specific action u  at state x , and 
then following the optimal policy from the next time 
step on. Hence, the optimal Q-function satisfies the 
following equation:  

 

ˆ
ˆ ˆ( ) φ( ) αmin ( )

u
Q x u E x u Q x u∗ ∗ , = , + ,  

      (21) 

ˆφ( ) α ( ) .E x u J x∗ = , +                  (22) 

 
This also gives a recursive relation for the Q-function, 
similarly as does the Bellman equation for the ‘J-
function.’ Once the optimal Q-function ( )Q x u∗ ,  is 

known, the optimal policy µ ( )x∗  can easily be 
obtained by  
 

µ ( ) arg min ( ).
u

x Q x u∗ ∗= ,                 (23) 

 
The on-line incremental learning of the Q-function is 
similar to the TD-learning:  

1. Initialize ( )Q x u, .  
2. Let an agent interact with its environment by 

solving (23) using the current approximation of 
Q  instead of Q∗ . If there are multiple actions 
giving a same level of performance, select an 
action randomly.  

3. Update the Q values by  
 

{ }ˆ

( ) (1 γ) ( )

ˆ ˆγ φ( ) αmin ( ) .
u

Q x u Q x u

x u Q x u

, ← − ,

+ , + ,
    (24) 

 
4. Set ˆx x←  and continue the experiment.  
5. Once a loop is complete, repeat from step 2 until 

convergence.  
 

If one performs the experiment infinite times, the 
estimates of Q-function converge to ( )Q x u∗ ,  with 
proper decaying of the learning rate γ  [97,33]. 
Greedy actions may confine the exploration space, 
especially in the early phase of learning, leading to a 
failure in finding the optimal Q-function. To explore 
the state space thoroughly, random actions should be 
carried out on purpose. As the solution gets improved, 
the greedy actions are implemented. This 
randomization of control actions are similar to the 
simulated annealing technique used for global 
optimization. 

 
3.3.3 SARSA 

SARSA [68] also tries to learn the state-action 
value function (Q-function). It differs from Q-learning 
with respect to the incremental update rule. SARSA 
does not assume that the optimal policy is imposed 
after one time step. Instead of finding a greedy action, 
it assumes a fixed policy as does the TD learning. The 
update rule then becomes  
 

{ }ˆ ˆ( ) ( ) γ φ( ) α ( µ ( )) ( ) .iQ x u Q x u x u Q x x Q x u, ← , + , + , − ,

   (25) 
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A policy learning component like the AC scheme can 
also be combined with this strategy. 
 

4. APPLICATIONS OF APPROXIMATE DP 
METHODS 

 
In this section, we briefly review some of the 

important applications of the approximate DP 
methods, mainly RL and NDP methods. Important OR 
applications are reviewed in [18,86]. We classify the 
previous work by application areas. 
 
4.1. Operations research 

The application area that benefited the most from 
the RL/NDP theory is game playing. Samuel’s 
checker player was one of the first applications of DP 
in this field and used linear function approximation 
[70,71]. One of the most notable successes is 
Tesauro’s backgammon player, TD-Gammon [88-90]. 
It is based on TD methods with approximately 2010  
states. To handle the large number of state variables, 
ANN with a simple feed forward structure was 
employed to approximate the cost-to-go function, 
which maps a board position to the probability of 
winning the game from the position. Two versions of 
learning were performed for training the TD-Gammon. 
The first one used a very basic encoding of the state of 
the board. The advanced version improved the 
performance significantly by employing some 
additional human-designed features to describe the 
state of the board. The learning was done in an 
evolutionary manner over several months – playing 
against itself using greedy actions without exploration. 
TD-Gammon successfully learned to play 
competitively with world-champion-level human 
players. By providing large amounts of data 
frequently and realizing the state transitions in a 
sufficiently stochastic manner, TD-Gammon could 
learn a satisfactory policy without any explicit 
exploration scheme. No comparable successes to that 
of TD-Gammon has been reported in other games yet, 
and there are still open questions regarding how to 
design experiments and policy update in general 
[75,91].  

Another noteworthy application was in the problem 
of elevator dispatching. Crites and Barto [22,23] used 
Q-learning for a complex simulated elevator 
scheduling task. The problem is to schedule four 
elevators operating in a building with ten floors. The 
objective is to minimize the discounted average 
waiting time of passengers. The formulated discrete 
Markov system has over 2210  states even in the most 
simplified version. They also used a neural network 
and the final performance was slightly better than the 
best known algorithm and twice as good as the policy 
most popular in real elevator systems. Other 

successful RL/NDP applications in this field include 
large-scale job-shop scheduling [105,104,106], cell-
phone channel allocation [76], manufacturing [47], 
and finance applications [58]. 
 
4.2. Robot learning 

Robot learning is a difficult task in that it generally 
involves continuous state and action spaces, similar to 
process control problems. Barto et al. [11] proposed a 
learning structure for controlling a cart-pole system 
(inverted pendulum) that consisted of an associative 
search system and an adaptive critic system. Anderson 
[4] extended this work by training ANNs that learned 
to balance a pendulum given the actual state variables 
of the inverted pendulum as input with state space 
quantization for the evaluation network.  

Schaal and Atkeson [74] used a nonparametric 
learning technique to learn the dynamics of a two-
armed robot that juggles a device known as “devil-
stick.” They used task-specific knowledge to create an 
appropriate state space for learning. After 40 training 
runs, a policy capable of sustaining the juggling 
motion up to 100 hits was successfully obtained. A 
nonparametric approach was implemented to 
generalize the learning to unvisited states in the 
algorithm. This work was later extended to learn a 
pendulum swing-up task by using human 
demonstrations [8,73]. In the work, however, neither 
parametric nor nonparametric approach could learn a 
task of balancing the pendulum reliably due to poor 
parametrization and insufficient information for 
important regions of the state space, respectively.  

We note that most robots used in assembly and 
manufacturing lines are trained in such a way that a 
human guides the robot through a sequence of 
motions that are memorized and simply replayed. 
Mahadevan and Connell [46] suggested a Q-learning 
algorithm with a clustering method for tabular 
approach to training a robot performing a box-pushing 
task. The robot learned to perform better than a 
human-programmed solution when a decomposition 
of sub-tasks was done carefully. Lin [45] used an 
ANN-based RL scheme to learn a simple navigation 
task. Asada et al. [6] designed a robot soccer control 
algorithm with a discretized state space based on some 
domain knowledge. Whereas most robot learning 
algorithms discretized the state space [87], Smart and 
Kaelbling [78] suggested an algorithm that deals with 
continuous state space in a more natural way. The 
main features are that approximated Q-values are used 
for training neighboring Q-values, and that a hyper-
elliptic hull is designed to prevent extrapolation.  
 
4.3. Process control 

After the Bellman’s publication, some efforts were 
made to use DP to solve various deterministic and 
stochastic optimal control problems. However, only a 
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few important results could be achieved through 
analytical solution, the most celebrated being the LQ 
optimal controller [103]. This combined with the 
limited computing power available at the time caused 
most control researchers to abandon the approach. As 
the computing power grew rapidly in the 1980s, some 
researchers used DP to solve simple stochastic optimal 
control problems, e.g., the dual adaptive control 
problem for a linear integrating system with an 
unknown gain [7].  

While the developments in the AI and OR 
communities went largely unnoticed by the process 
control community, there were a few attempts for 
using similar techniques on process control problems. 
Hoskins and Himmelblau [31] first applied the RL 
concept to develop a learning control algorithm for a 
nonlinear CSTR but without any quantitative control 
objective function. They employed an adaptive 
heuristic critic algorithm suggested by Anderson [4] to 
train a neural network that maps the current state of 
the process to a suitable control action through on-line 
learning by experience. This approach uses qualitative 
subgoals for the controller and could closely 
approximate the behavior of the PID controller, but 
generalization of the method requires sufficient on-
line experiments to cover the domain of interest at the 
cost of more trials for learning. Miller and Williams 
[51] used a temporal-difference learning scheme for 
control of a bio-reactor. They used a backpropagation 
network to estimate Q-values, and the internal state of 
a plant model was assumed to be known. The learning 
was based on trial-and-errors, and the search space 
was small (only 2 states).  

Wilson and Martinez [102] studied batch process 
automation using fuzzy modeling and RL. To reduce 
the high dimensionality of the state and action space, 
they used a fuzzy look-up table for Q-values. 
Anderson et al. [5] suggested a RL method for tuning 
a PI controller of simulated heating coil. Their action 
space had only 9 discrete values, and therefore the 
look-up table method could be used. Martinez [50] 
suggested batch process optimization using RL, which 
was formulated as a two dimensional search space 
problem by shrinking the region of policy parameters. 
The work did not solve the DP, but only used a RL-
based approach for exploring in the action space. 
Ahamed et al. [1] solved a power system control 
problem, which they represented it as a Markov chain 
with known transition probabilities so that the system 
dynamics would have finite candidate state and action 
sets for exploration and optimization.  

Recently, Lee and co-workers have started 
introducing the concept of RL and NDP to the process 
control community and developed value/policy 
iteration-based algorithms to solve complex nonlinear 
process control problems. They include 
chemical/biochemical reactor control problems 

[43,35], a dual adaptive control problem [41], and a 
polymerization reactor control problem [40]. 
 
5. ISSUES IN APPLYING APPROXIMATE DP 

SCHEMES TO PROCESS CONTROL 
PROBLEMS 

 
RL approaches in robot learning have dealt with 

continuous variables either by discretization or by 
function approximation, but they are based on trial-
and-error on-line learning. For example, human 
controls a robot randomly to explore the state space in 
the early phase. They also assume that the 
environment does not change, which reduces the 
dimension of a concerned state space. On the other 
hand, NDP is more of an off-line based learning 
[18,14], and its basic assumption is that large amounts 
of data can be collected from simulation trajectories 
obtained with “good” suboptimal policies. Their 
common update rule, however, is based on the 
incremental TD-learning, which is difficult to apply to 
continuous state variables. In addition, complex 
dynamics of most chemical processes would limit the 
amount of data, whereas the NDP or related 
algorithms require huge amounts of data [18].  

Despite various approximate methods from the 
RL/NDP communities, their applicability to process 
control problems is limited due to the following 
disparities:  

1) Continuous state and action space: Infinite 
number of state and action values is common in 
process control problems due to their continuous 
nature. Furthermore, the number of state variables 
is generally large. In this case, discretization and 
the common “incremental” update rule are not 
practical approaches. Function approximation 
should also be used with caution, because 
approximation errors can grow quickly.  

2)  Costly on-line learning: Real-world-
experience-based learning, which is the most 
prevalent approach in RL, is costly and risky for 
process control problems. For example, one 
cannot operate a chemical reactor in a random 
fashion without any suitable guidelines to explore 
the state space and gather data. Consequently, off-
line learning using simulation trajectories should 
be preferred to on-line learning. Furthermore, one 
should also exercise a caution in implementing 
on-line control by insuring against “unreliable” 
optimal control actions calculated from only a 
partially learned cost-to-go function.  

3)  Limited data quantity: Though large amounts 
of simulation data can be collected for off-line 
learning, complex dynamics of most chemical 
processes still limit the state space that can be 
explored, leading to regions of sparse data. This 
limits the range over which the learned cost-to-go 
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function is valid. Thus, learning and using of the 
cost-to-go function should be done cautiously by 
guarding against unreasonable extrapolations.  

 
In summary, an adequate ADP approach for process 

control problems should be able to provide reliable 
control policies despite limited coverage of 
continuous state and action spaces by training data. 
One plausible approach is to simulate the system with 
a set of known suboptimal policies and generate 
trajectories to identify some superset of the portions of 
the state space pertinent to optimal control. In the 
absence of a model, an empirical model can be 
constructed, if necessary, and then value or policy 
iteration can be performed on the sampled data. A 
function approximator should also be designed to 
estimate cost-to-go values for points not visited by the 
simulations [35,43]. An approximate value iteration 
scheme is depicted in Fig. 3. In the following sections, 
issues concerning the suggested approach and the 
related work reported in the literature are discussed. 
 
5.1. Generalization of Cost-to-Go function 
5.1.1 Choice of approximator 

All the algorithms described in section 3 assume 
that states and actions are finite sets and their sizes are 
manageable. When this is not true, generalization of 
cost-to-go values over the state space (or the state-
action space for Q-learning) through function 
approximation may be the only recourse. One 
potential problem in using a function approximator in 
solving the Bellman equation is that small 
approximation errors can grow rapidly through the 
iteration to render the learned cost-to-go function 
useless. The minimization operator can bias the 

estimate significantly, and no prior knowledge on the 
structure of the cost-to-go function is available in 
general.  

Typical approaches in the NDP and RL literature is 
to use a global approximator like a neural network to 
fit a cost-to-go function to the data. While it has seen 
some notable successes in problems such as the 
Tesauro’s backgammon player [88,89,90] and the job-
shop scheduling problem [105], there are many other 
less successful applications reported in the literature 
[21,75]. Successful implementations using localized 
networks like CMACs [2,3], radial basis functions, 
and memory-based learning methods [29] have also 
been reported [53,72,84].  

The failure of the approaches using a general 
function approximator was first explained by Thrun 
and Schwartz [92] with what they called an 
“overestimation” effect. They assumed uniformly 
distributed and independent error in the 
approximation and derived the bounds on the 
necessary accuracy of the function approximator and 
discount factor. Sabes [69] showed that bias in 
optimality can be large when a basis function 
approximator is employed. Boyan and Moore [20] 
listed several simple simulation examples where 
popular approximators fail miserably. They used a 
model of the task dynamics and applied full DP 
backups off-line to a fixed set of states. Sutton [84] 
used the same examples and made them work by 
modifying the experimental setup. Sutton used an on-
line learning scheme without a model for the state 
trajectories obtained from randomly sampled initial 
points. In summary, experiments with different 
function approximation schemes have produced 
mixed results, probably because of the different 
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Fig. 3. Approximate value iteration scheme. 
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learning schemes and problem setups.  
Gordon [28] presented a ‘stable’ cost-to-go learning 

scheme with off-line iteration for a fixed set of states. 
A class of function approximators with a 
‘nonexpansion’ property is shown to guarantee off-
line convergence of cost-to-go values to some values. 
These function approximators do not exaggerate the 
differences between two cost-to-go functions over 
iterations in the sense of infinity norm. That is, if we 
have two functions f  and g , their approximations 
from this class of approximators , f  and g , satisfy  

 
( ) ( ) ( ) ( )f x g x f x g x ∞− ≤ − .           (26) 

 
The class includes the k-nearest neighbor, kernel-
based approximators, and other type of “averagers” 
having the following structure:  
 

0
1

( ) β β ( )
k

i i
i

f x f x
=

= + ∑                  (27) 

 
with  
 

0
β 1 and β 0

k

i i
i=

= ≥∑ .                 (28) 

 
If the off-line learning using a value or policy 

iteration scheme is chosen for the cost-to-go learning, 
memory-based approximators with the nonexpansion 
property show better performance than global 
parametric approximators [20,40]. 
 
5.1.2 Control of extrapolation 

Even though iteration error is monotonically 
decreased and convergence is guaranteed with a 
proper choice of approximator, sparse data in a high-
dimensional state space can result in poor control due 
to the limited validity of the learned cost-to-go 
function [35,40]. The cost-to-go approximator may 
not be valid in regions where no training data is 
available. Hence, control of extrapolation is a critical 
issue in using the approximated cost-to-go function 
both during off-line value/policy iteration and during 
on-line control. This issue has not been studied 
explicitly in the RL/NDP literature because of the 
characteristics of their problems (e.g. trial-and-error 
learning and huge data).  

Related work dealing with excessive extrapolation 
is found in the robot learning literature [78]. They 
construct an approximate convex hull, which is called 
“independent variable hull (IVH)” taking an elliptic 
form as depicted in Fig. 4. Whenever one has to 
estimate the cost-to-go for a query point, the IVH is 
calculated around the training data that lie closer than 

some threshold value from the query point. Any 
queries within the convex hull are considered to be 
reliable and those outside are deemed unreliable. This 
approach is not computationally attractive. It also 
gives up making a prediction for the point outside the 
hull and requires more random explorations. In 
addition, the use of the convex hull may be 
misleading if the elliptic hull contains a significant 
empty region around the query point. 

One logical approach to this problem is to estimate 
local density of training data points around the query 
point and use it as a reliability indicator. One such 
idea was reported by Leonard et al. [44] for design of 
a reliable neural network structure by using a radial 
basis function and a nonparametric probability density 
estimator [61]. Lee and Lee [42] suggested a penalty 
function-based approach, which adjusts the estimate 
of cost-to-go according to the local data density. 
 
5.2. Solution property: convergence and optimality 

Understanding the accuracy of a learned cost-to-go 
function and its corresponding policy is very 
important for successful implementation. Researchers 
have been interested in understanding the convergence 
property of a learning algorithm and its error bound 
(or bias from the “true” optimal cost-to-go function). 
Though exact value and policy iterations are shown to 
converge and their error bounds are presented in 
standard DP textbooks [65], most of the approximate 
DP algorithms employing function approximation are 
yet to be understood fully at a theoretical level. This is 
particularly true for problems with continuous state-
action spaces.  

Gordon’s value iteration algorithm using a local 
averager with the nonexpansion property [28] is 
convergent but its error bound is only available for the 
1-nearest neighborhood estimator. Tsitsiklis and Van 
Roy [94] provided a proof of convergence and its 
accuracy for linear function approximators when 
applied to finite MDPs with temporal difference 

  
Fig. 4. Two-dimensional independent variable hull

(IVH). 
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learning under a particular on-line state sampling 
scheme. They concluded that the convergence 
properties of general nonlinear function 
approximators (e.g. neural network) were still unclear.  

Ormoneit and Sen [60] suggested a kernel-based Q-
learning for continuous state space using sample 
trajectories only. The algorithm is designed for 
discounted infinite horizon cost and employs a kernel 
averager like Gordon’s to average a collection of 
sampled data where a specific action was applied. 
Hence, a separate training data set exists marked with 
each action to approximate the Q-function. This way 
they show that the kernel-based Q-learning can 
converge to a unique solution, and the optimal 
solution can be obtained as the number of samples 
increases to infinity, which they call consistency. They 
also conclude that all reinforcement learning using 
finite samples is subject to bias. Same results for 
average cost problems are provided in [59]. Though 
the theoretical argument on the convergence property 
could be established, error bounds for practical set-up 
of the algorithm are yet to be provided.  

Sutton et al. [79] suggested an alternative approach 
that directly optimizes over the policy space. The 
algorithm uses a parametric representation of a policy, 
and gradient-based optimization is performed to 
update the parameter set. As the number of parameters 
increases, the learning converges to an optimal policy 
in a “local” sense due to the gradient-based search. 
Konda and Tsitsiklis [37] proposed a similar approach 
under an actor-critic framework, which guarantees 
convergence to a locally optimal policy. In both 
approaches, they consider a finite MDP with a 
randomized stationary policy that gives action 
selection probabilities.  

De Farias and Van Roy [25] proposed an 
approximate LP approach to solving DP based on 
parameterized approximation. They derived an error 
bound that characterizes the quality of approximations 
compared to the “best possible” approximation of the 
optimal cost-to-go function with given basis functions. 
The approach is, however, difficult to generalize to 
continuous state problems, because the LP approach 
requires a description of the system’s stochastic 
behavior as finite number of constraints, which is 
impossible without discretization of a probabilistic 
model. 

 
6. FUTURE DIRECTIONS AND 

CONCLUDING REMARKS 
 

Though there exist many RL/NDP methodologies 
for solving DP in an approximate sense, only a limited 
number of them are applicable to process control 
problems given the problems’ nature. We are of the 
opinion that finding a fixed-solution of the Bellman 
equation using value/policy iteration with a stable 

function approximator (e.g. local averager) is the best 
strategy. In general, solving DP by RL/NDP methods 
with function approximation remains more a problem-
specific art than a generalized science.  

In order to solve highly complex problems with 
guaranteed performance, the following questions 
should be addressed. 
●  Reliable use of cost-to-go approximation: 

Though we can control undue extrapolations by using 
some penalty terms, function approximation can be 
carried out in a more systematic way if an error bound 
can be derived for a general class of problems. This 
analysis is yet to be reported for continuous problems.  
●  Dealing with large action space: The suggested 

algorithms can suffer from the same curse-of-
dimensionality as the dimension of action space 
increases. This is because the action space should be 
searched over for finding a greedy control action.  
●  Applicability of policy space algorithms: All the 

methods and issues described above are mainly 
concerned with approximating the cost-to-go function 
aimed at solving the Bellman equation directly. Then 
the learned cost-to-go function is used to prescribe a 
near-optimal policy. A new approach recently 
advocated is to approximate and optimize directly 
over the policy space, which is called policy-gradient 
method [37,79,49]. The method was motivated by the 
disadvantage of the cost-to-go function based 
approach that can result very different actions for 
“close” states from the greedy policy in the presence 
of approximation errors. This can be avoided by 
controlling the smoothness of the policy directly. 
However, the algorithms still need significant 
investigation to be recast as an applicable framework 
for process control problems. 
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