
Approximate Evaluation of Range Nearest

Neighbor Queries with Quality Guarantee?

Chi-Yin Chow1, Mohamed F. Mokbel1, Joe Naps1, and Suman Nath2

1 Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{cchow,mokbel,naps}@cs.umn.edu sumann@microsoft.com

Abstract. The range nearest-neighbor (NN) query is an important
query type in location-based services, as it can be applied to the case
that an NN query has a spatial region, instead of a location point, as
the query location. Examples of the applications of range NN queries
include uncertain locations and privacy-preserving queries. Given a set
of objects, the range NN answer is a set of objects that includes the
nearest object(s) to every point in a given spatial region. The answer
set size would significantly increase as the spatial region gets larger.
Unfortunately, mobile users in wireless environments suffer from scarce
bandwidth and low-quality communication, transmitting a large answer
set from a database server to the user would pose very high response
time. To this end, we propose an approximate range NN query process-
ing algorithm to balance a performance tradeoff between query response
time and the quality of answers. The distinct features of our algorithm
are that (1) it allows the user to specify an approximation tolerance level
k, so that we guarantee to provide an answer set A such that each object
in A is one of the k nearest objects to every point in a given query region;
and (2) it minimizes the number of objects returned in an answer set, in
order to minimize the transmission time of sending the answer set to the
user. Extensive experimental results show that our proposed algorithm
is scalable and effectively reduces query response time while providing
approximate query answers that satisfy the user specified approximation
tolerance level.

1 Introduction

Nearest-neighbor (NN) queries have been widely used in location-based services
(e.g., see [1, 2, 3, 4, 5]). The problem of traditional NN queries can be defined
as follows: “given a set of objects and a query location point p, find the nearest
object(s) to p”; and thus, they are referred to as point NN queries. Point NN
queries have been extended to find all NNs for line segments [6] and spatial
regions [7, 8, 9] that are referred to as linear and range NN queries, respectively.

? This work is supported in part by the National Science Foundation under Grants
IIS-0811998, IIS-0811935, and CNS-0708604.

A linear NN query returns an answer set that includes the nearest object(s)
to every point in a given line segment. On the other hand, a range NN query
returns an answer set that includes the nearest object(s) to every point in a given
spatial region, where the spatial region can be either a rectangular region [7, 9]
or a circular region [8].

Recent research efforts have shown the importance of range NN queries in
location-based services, as it can be applied to the following realistic scenarios:

– Uncertain locations. We have two kinds of location uncertainty, measure-
ment imprecision and sampling imprecision. The measurement imprecision
is due to the limitation of the underlying positioning techniques of network
environments, e.g., 2G/3G and Wi-Fi. On the other hand, the sampling im-
precision is due to continuous motion, network delays, and location update
frequency even with highly accurate positioning devices, e.g., GPS. Thus, we
have to use a spatial region where the user is guaranteed to be therein to rep-
resent the user location information in order to capture location uncertainty
(e.g., see [10, 11, 12, 13, 14]).

– Privacy-preserving queries. Mobile users are not willing to reveal their
exact location information to location-based service providers, as they
want to preserve their location privacy. The most commonly used privacy-
enhancing technique is to blur the user’s exact location into a spatial region,
i.e., spatial cloaking, that satisfies the user’s specified privacy requirements
(e.g., see [8, 9, 15, 16, 17, 18, 19]).

In these two scenarios, the mobile user sends her NN query along with a spatial
region as the query location, i.e., a range NN query. Then, a database server
returns an answer set that includes the nearest object(s) to every point within
the spatial region. The answer set size would substantially increase as the query
region gets larger. Unfortunately, the communication bandwidth between the
user and the database server is very limited in a mobile environment, i.e., the
downlink bandwidth ranges from 128 kbps at vehicular speeds to 2 Mbps at
stationary or very slow speeds for 3G mobile subscribers. Transmitting large
answer sets to the user would pose very high query response time. Furthermore,
as mobile users receive their answer handheld devices with a small screen, it is
convenient to return to the users very few answers with high quality.

In this paper, we propose a new approximate range NN query processing
algorithm that enables the user to tune a trade off between query response time
and the quality of query answers. Our proposed algorithm allows the user to
specify an approximation tolerance level k, where we return an answer set A
such that each object in A is one of the k nearest objects of every point in the
query region. The larger the value of k, the smaller the answer set returned by a
database server. Thus, the approximation tolerance level is a tuning parameter
that trades off between query response time and the quality of answers. In the
case that k = 1, we return the exact range NN answer of maximal size to the
user. On the other hand, if k > 1, we return an approximate answer set, which
is smaller than the exact answer, to the user; and thus, the transmission time

�

�

�

��

(a) 1-NN of each region

��

��

��

��

��

��

��

(b) 2-NN of each region

���

���

���

���

���

(c) 3-NN of each region

Fig. 1. A motivating example

of sending the answer set to the user is reduced. Since query response time is
dominated by the communication overhead between the user and the database
server, a larger value of k incurs lower query response time.

Figure 1 depicts a motivating example for our problem where we decompose
the query region Q.R of a range NN query Q into disjoint regions and label each
region with its k-NN(s). Figure 1a shows the NN of each region. If a user wants
to find the nearest object(s) to Q.R, i.e., the exact range NN query answer,
the required answer set contains the nearest object(s) to every point in Q.R,
i.e., A1 = {A, B, C, D, E}. Figure 1b shows the 2-NN of each region. If the user
is satisfied with the 2-nd nearest object(s) to Q.R, the answer set A2 should
contain at least one object among the 2 nearest objects to every point in Q.R.
For example, if A2 = {A, B, C, D}, regardless of the actual user location within
Q.R, the user is guaranteed to receive an object among her 2 nearest objects.
However, we can still do better. For example, if A′2 = {A, C, D}, the user is still
guaranteed to receive an object among her 2 nearest objects, regardless of her
actual location within Q.R. Thus, the answer set of minimal size is a minimal set
of objects such that there is at least one object among the 2 nearest objects of
each region. Furthermore, if the user is satisfied with the 3-rd nearest object(s)
to Q.R, i.e., the required answer set A3 should contain at least one object among
the 3 nearest objects of each region, as depicted in Figure 1c, where the minimal
answer set is A3 = {A, C}. Therefore, if a user accepts a higher approximation
tolerance in a range NN query answer, the user will receive a smaller answer set
and more user convenience.

The main idea of our proposed range NN query processing algorithm is to
have an off-line process to pre-compute a set of k-order Voronoi diagrams, from
order one to a predefined maximum order kmax, for a set of stationary data ob-
jects, e.g., restaurants, gas stations and hotels. For a k-order Voronoi diagram,
each Voronoi cell is associated with a distinct set of k objects that are the k near-
est objects to every point in the cell. To efficiently search in a Voronoi diagram,
we propose an incomplete pyramid structure as an access method to index the
Voronoi cells. Given a range NN query Q and an approximation tolerance level
k, our proposed on-line range NN query processing algorithm first determines a
set of Voronoi cells V that intersects the query region by accessing the incomplete
pyramid structure of the relevant k-order Voronoi diagram. Then, the remaining
query processing is reduced to a well-known set-covering problem where we use
a greedy approach to select the minimal set of objects, i.e., the answer set A,

from the objects associated with the Voronoi cells in V such that at least one
object from each Voronoi cell in V is selected. As a result, each object in A is
one of the k nearest objects to every Voronoi cell in V , i.e., each object in A is
one of the k nearest objects to every point in the query region. With a larger
value of k, there are more common objects associated among the Voronoi cells in
V ; and hence, we would get smaller answer sets that incur lower query response
time. In general, the contributions of this paper can be summarized as follows:

– We introduce a new location-based query type, approximate range nearest
neighbor (NN) query, that returns an answer set A such that each object in
A is one of the k nearest object(s) to every point in a given query region. k

is a user specified approximation tolerance level that can be used to tune a
performance tradeoff between query response time and answer quality.

– We design an incomplete pyramid structure as an access method for efficiently
retrieving a set of Voronoi cells that intersects a given query region from a
Voronoi diagram for our proposed query processing algorithm.

– We propose an approximate range NN query processing algorithm that aims
to minimize the number of objects returned in an answer set to improve query
response time and user convenience while guaranteeing that the answer set
satisfies the user specified approximation tolerance level.

– We provide experimental evidence through a comparison between the state-
of-the-art techniques that our proposed query processing algorithm is scal-
able in terms of query processing time, and it significantly reduces query
response time while the returned approximate answer is guaranteed to be
satisfied with the user desired approximation tolerance level.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 describes our system model. Our proposed approximate range NN
query processing algorithm is presented in Section 4. The extensive experimental
results are analyzed in Section 5. Finally, Section 6 concludes the paper.

2 Related Works

In location-based services, point nearest-neighbor (NN) queries have been exten-
sively studied, e.g., [1, 2, 3, 4, 5]. Existing point NN query processing algorithms
mainly focus on the scalability and efficiency of finding the nearest object(s) to
a given query point. By considering user mobility, the concept of NN searches is
extended to line segments [6] (referred to as linear NN query). The basic idea of
linear NN query processing algorithm is to split a line segment into subsegments
such that each subsegment has the same nearest object(s). All such nearest ob-
jects constitute the answer set of a linear NN query. Recently, the concept of NN
searches is further extended to rectangular regions [7, 9] (referred to as range NN
query). A minimal answer set for a range NN query includes all objects located
in query region and the nearest objects to each edge of the query region [7]. By
relaxing the minimality requirement, another existing range NN query process-
ing algorithm, Casper, computes a candidate answer set that includes the exact

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(a) 1-order Voronoi diagram

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

(b) 2-order Voronoi diagram

Fig. 2. The 1-order and 2-order Voronoi diagrams for five sites s1 to s5

answer [9]. The Casper algorithm first finds the nearest object to each vertex of
the query region as filters, and then extends each edge of the query region to
a minimal distance that is computed based on the filters to form an extended
query region. The candidate answer set is a set of objects that is included in the
extended query region. Also, a range NN query processing algorithm is proposed
for finding the minimal answer set for a circular query region [8].

Our proposed approximate range NN query processing algorithm distin-
guishes itself from all previous techniques, as (1) it allows the user to specify
an approximation tolerance level k for a range NN query, so that each object in
the answer set is one of the k nearest objects to every point in a given query
region; and (2) it aims to minimize the number of objects returned in the answer
set to improve query response time, as the response time is dominated by the
transmission time of sending the answer set to the user. In Section 5, we will
compare the performance of our proposed algorithm with the state-of-the-art
range NN query processing algorithms (i.e., [7, 9]).

3 System Model

In this section, we first formally define our problem, and then present the basic
concept of Voronoi diagrams and the underlying system architecture.

Problem definition. Our problem is defined as follows: given a set of ob-
jects, a range nearest-neighbor query Q with a query region Q.R, and an approx-
imation tolerance level k, find the minimal set of objects A such that each object
in A is one of the k nearest objects to every point in Q.R.

Voronoi diagrams. Given a set of points S on the plane, which are the
Voronoi sites, the Voronoi diagram of S, denoted as V (S), is a decomposition
of the space into disjoint regions, cells, such that each site si is associated with
a cell Vj , denoted as Vj = {si}, containing all the points in the plane that are
closer to si than any other site in S. In other words, si is the nearest site to
every point in Vj . Figure 2a depicts a Voronoi diagram of a set of five sites

S = {s1, s2, s3, s4, s5}, V (S). V (S) decomposes the space into five cells V1, V2,
V3, V4, and V5 that are associated with the sites s1, s2, s3, s4, and s5, respectively.
For example, given a point p in cell V1, s1 is the nearest site to p.

Higher-order Voronoi diagrams. The k-order Voronoi diagram extends
the concept of the Voronoi diagram by defining cells based on the k nearest
neighbors. The k-order Voronoi diagram of S, where 1 < k ≤ |S| − 1, denoted
as Vk(S), is a decomposition of the space into disjoint cells, such that a distinct
set of k sites Si = {si1 , si2 , . . . , sik

} is associated with a cell Vj , Vj = {Si},
containing all the points in the plane that have the sites in Si as their k nearest
sites. In other words, Si contains k nearest sites to every point in Vj . Figure 2b
depicts the 2-order Voronoi diagram of S, V2(S), that decomposes the space
into seven cells, i.e., V1 = {s1, s3}, V2 = {s1, s2}, V3 = {s2, s3}, V4 = {s1, s4},
V5 = {s3, s4}, V6 = {s4, s5}, and V7 = {s3, s5}. For example, given a point p in
cell V3, the sites s2 and s3 are the two nearest sites to p.

System architecture. We consider a mobile environment where mobile
users communicate with a location-based database server through a (2G/3G)
cellular network. The data/control flow of our system is as follows: The mobile
user sends range NN queries to the database server. Our proposed approximate
range NN query processing algorithm that is implemented in the database server
computes an answer set, and then the server sends the answer set to the user.
We use the Euclidean distance as our distance metric.

4 Approximate Range NN Query Processing

In this section, we first describe an off-line process to compute Voronoi diagrams,
from order one to order kmax, where kmax is the maximum allowable user speci-
fied approximation tolerance level, and present our proposed incomplete pyramid
structure that is used as an access method for each Voronoi diagram. Then, we
present an on-line query processing algorithm for approximate range NN queries.

4.1 Building Voronoi Diagrams

We use an off-line process to build k Voronoi diagrams for a set of objects,
e.g., restaurants, hotels and gas stations, from order one to order kmax, where
kmax is the maximum user specified approximation tolerance level. Thus, the
user can specify her desired approximation tolerance level k from one to kmax.
Notice that if k = 1, our algorithm provides an exact answer set of the minimal
size for range NN queries. Given a set of objects S, building a set of Voronoi
diagrams, from order one to order kmax, i.e., V1(S), V2(S), . . . , and Vkmax

(S),

takes O(k2
maxN log N) time and O(

∑kmax

k=1 k2(N − k)) space, where N is the
number of objects in S [20]. After we build the k Voronoi diagrams, they are
stored for later use in our proposed range NN query processing algorithm. For
each Voronoi diagram, we maintain a table to store each Voronoi cell with its
associated objects.

�������
��	�
��

�����

������ �
�

������ �
�

�
�

������ �
�
��
	

��
��� �
�
��
	
��

������ �

������ �

����� �

�

���� �
�

��	���

����
�������

�

�
�

�
	

�
�

�

�
�

�
�

�
�

�
	

�
�

�

� � � � � � � �

�

�

�

�

�

�

�

�

Fig. 3. The base level of an incomplete pyramid structure

4.2 Access Method for Voronoi Diagrams

We will construct an incomplete pyramid structure for each Voronoi diagram to
support efficient range search among Voronoi cells. The idea of our proposed
incomplete pyramid structure is that we need to find a set of Voronoi cells V
that intersects a given range query region in order to retrieve their associated
objects. Without any index structure, we have to scan every cell in a Voronoi
diagram to find V . When the number of objects and/or k is large, scanning all
cells in a Voronoi diagram would pose a scalability issue. To this end, we propose
an incomplete pyramid structure to overcome this issue. The construction of an
incomplete pyramid structure for each Voronoi diagram includes two main steps.

STEP 1: Base level step. This step decomposes the space into grid cells
where each grid cell C(c, r) is uniquely identified by its column number c and
row number r. Also, we use a hash table, mapping table, that associates each
grid cell identity with a list of Voronoi cells that intersects the grid cell. Figure 3
depicts an 8 × 8 grid structure for the Voronoi diagram given in Figure 2a and
the corresponding mapping table. For example, given a grid cell identity C(5, 1),
we can retrieve a set of Voronoi cells that intersects C(5, 1), i.e., V2, V3, and V5.

STEP 2: Merge step. This step merges quadtree-like neighbor cells to
their parent if they intersect the same set of Voronoi cells. The idea of this step
is to adaptively determine the height of an incomplete pyramid structure for
a Voronoi diagram to minimize search time. This is due to the fact that the
k Voronoi diagrams we maintain have different structures, e.g., the number of
Voronoi cells and Voronoi cell size distribution, with respect to the number of
objects, the object distribution and the degree of order (k). Thus, the shape of
an incomplete pyramid structure would be different for each computed Voronoi
diagram. Other than the base level, each cell C(l, c, r) at upper levels is identified
by the level of the incomplete pyramid structure l, column number c and row
number r. This step uses a bottom-up approach to construct the upper levels
of an incomplete pyramid structure. Starting from the base level, if all quadtree-
like sibling cells (i.e., the cells have the same parent) intersect the same set of
Voronoi cells, they are merged to their parent. The merge process includes three
tasks, (i) adding an entry that associates the parent cell identity with the set of
intersected Voronoi cells of its children to the mapping table, (2) removing the

�
��

� �
�

�
�

���	
�	�	

�	�	
�

�	�	
�

�	�	
�

�
�

� � � � � � � �

�
�

�
�

�
�

�
�

�������
��	�
��

�����

����
�������

�������� �
�

�������� �
�

�
�

��������

������
�
�

������

������

Fig. 4. Incomplete pyramid structure

entries of the merged child cells from the mapping table, and (3) annihilating the
merged child cells by removing their pointers at their parent.

Figure 4 depicts an incomplete pyramid structure with a mapping table for
the base level given in Figure 3, where the underlying Voronoi diagram is shown
at the base level for the sake of illustration. Starting from the base level, we
merge the quadtree-like sibling cells to their parent if they intersect the same set
of Voronoi cells. For example, the four cells at the left bottom corner (C(1, 1),
C(2, 1), C(1, 2), and C(2, 2)) intersect the same Voronoi cell V2, these cells are
merged to their parent. To complete the merge process, we add an entry with
the parent identity C(1, 1, 1) with the intersected Voronoi cell V2 to the mapping
table, remove the entries of the merged child cells from the mapping table, and
annihilate the merged child cells. We illustrate merged child cells by removing
the grid cells. Similarly, we merge the cells at the other corners. At level one,
the sibling cells at the left top corner (i.e., C(1, 1, 3), C(1, 2, 3), C(1, 1, 4), and
C(1, 2, 4)) intersect the same Voronoi cell V1, so they are merged to their parent
at level two, i.e., C(2, 1, 2). At level two, since all cells intersect different sets
of Voronoi cells, we cannot merge any cells and this step terminates. In this
example, the shaded cells depict the lowest maintained cells of the incomplete
pyramid structure, and there is an entry for each shaded cell in the mapping
table. The height of the incomplete pyramid structure is two.

4.3 Online Query Processing Algorithm

The distinct feature of our proposed approximate range NN query processing
algorithm is to enable the user to specify an approximation tolerance k for a
range NN query, so that we provide a minimal answer set A where each object is
guaranteed to be one of the k nearest objects to every point in the query region.
If k = 1, we return an exact answer set with the maximal size to the user. In the
case that k > 1, we return an approximate answer set with a smaller size than
the exact one to the user; and thus, the transmission time of the answer set is
reduced. The input of our proposed algorithm is a range NN query Q, a user
specified approximation tolerance level k, and a k-order Voronoi diagram that

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � � � �

�

�

�

�

�

�

�

�

�

(a) Voronoi diagram

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

� � � � � � � �

�

�

�

�

�

�

�

�

(b) 2-order Voronoi diagram

Fig. 5. Range NN query processing using Voronoi diagrams

����������

�������

�������

����� ����� ����� �����

�������

��������

�������

����� ����� �	����	���

�

�����

�������

�������

���	� �	��� �	�	�

��������� �������

�
��� �
��� ����� �����

���������

�������

�������

�������

Fig. 6. Example of a range search in the incomplete pyramid structure (Figure 4)

is pre-computed by an off-line process (as described in Section 4.1). Figure 5
depicts a running example for our proposed algorithm where the query region of
the input range NN query Q is represented as a bold rectangle and the maximum
approximation tolerance level kmax is two. The algorithm consists of two key
steps, range search step (Section 4.3.1) and query-covering step (Section 4.3.2).

4.3.1 Range Search Step

In this step, we retrieve a set of Voronoi cells Vk = {V1, V2, . . . , Vn} that intersects
the query region Q.R and each Voronoi cell in Vk associates with k objects, i.e.,
Vi = {si1 , . . . , sik

} (1 ≤ i ≤ n). We use a top-down approach to traverse an
incomplete pyramid structure. Initially, at the highest maintained level of the
incomplete pyramid structure of the k-order Voronoi diagram, we find a set of
grid cells that intersects Q.R, and then recursively search each of these grid cells.
During a recursive search, if an encountered grid cell C that intersects Q.R is at
the lowest maintained level or base level of the incomplete pyramid structure, we
retrieve the set of Voronoi cells that intersects C from the mapping table, and
then return it. Otherwise, we recursively search the four child cells of C.

Figure 6 illustrates the range search step for the running example depicted
in Figure 5a where k = 1. For the sake of illustration, we only show the grid cells
intersecting the query region Q.R, and the grid cells at the lowest maintained

Algorithm 1 Query-Covering Step
1: function QueryCovering (RNNQuery Q, ToleranceLevel k, VoronoiCellSet Vk)
2: AnswerSet A ← {∅}
3: Construct an inverted list of Vk, i.e., L(Vk) = {L(s1), L(s2), . . . , L(sm)}, where L(si) =
{Vi1 , Vi2 , . . . , Vi|L(si)|

} and 1 ≤ i ≤ m

4: while L(Vk) 6= {∅} do

5: Select the object si ∈ L(Vk) with the largest |L(si)|
6: for each object sj ∈ L(Vk) (i 6= j) do

7: L(sj)← L(sj)− L(si)
8: if L(sj) = {∅} then

9: L(Vk)← L(Vk)− {L(sj)}
10: end if

11: end for

12: A ← A ∪ {si}
13: L(Vk)← L(Vk)− {L(si)}
14: end while

15: return A

level or base level of the incomplete pyramid structure (as depicted in Figure 4)
are represented shaded nodes. As shown in Figure 4, the highest maintained
level of the incomplete pyramid structure is level two where we start the range
search step. Since all grid cells at level two, i.e., C(2, 1, 1), C(2, 1, 2), C(2, 2, 1)
and C(2, 2, 2), intersect Q.R, we will recursively search these grid cells. For
C(2, 1, 1), only one child cell C(1, 2, 2) intersects Q.R, so we search their child
cells C(3, 3), C(3, 4), C(4, 3), and C(4, 4) at the base level. Since all these child
cells intersect Q.R, we retrieve the Voronoi cells that intersect them from the
mapping table and return the set of retrieved Voronoi cells. As C(2, 1, 2) is at the
lowest maintained level, we retrieve the Voronoi cells that intersects C(2, 1, 2)
from the mapping table without further search. Then, we search the grid cell
C(2, 2, 1) where it has two child cells C(1, 3, 2) and C(1, 4, 2) intersecting Q.R.
Since all child cells of C(1, 3, 2) and C(1, 4, 2) at the base level intersect Q.R,
we retrieve the Voronoi cells that intersect them from the mapping table and
return the retrieved Voronoi cells. Similarly, we search the grid cell C(2, 2, 2). As
a result, the set of Voronoi cells that intersects Q.R is V1 = {V1, V2, V3, V4, V5}.
For the other running example where k = 2, the range search step searches
the incomplete pyramid structure of the 2-order Voronoi diagram and the set of
Voronoi cells that intersects Q.R is V2 = {V1, V3, V4, V5, V6, V7}.

4.3.2 Query-Covering Step

Algorithm 1 gives the pseudo code of this step where we aim to compute
the minimal set of objects in which each object is one of the k nearest objects
to every point in the query region Q.R. First, we construct an inverted list of
the set of Voronoi cells Vk retrieved from the previous step, L(Vk) (Line 3).
In the inverted list L(Vk), each object si has a list of Voronoi cells L(si) =
{Vi1 , . . . , Vim

} (m ≤ n), where si is associated with Vij
(1 ≤ j ≤ m).

Figure 7a depicts the inverted list of our running example for k = 1, as given
in Figure 5a, where the Voronoi cells in V1 with their associated objects retrieved
from the range search step are V1 = {s1}, V2 = {s2}, V3 = {s3}, V4 = {s4},

�
��
����

�
�

�
��
����

�
�

�
	�
����

	
�

�

�
����

�

�
��
����

�
�

�
��
����

�
�

�
��
����

�
�

�
	�
����

	
�

�

�
����

�

�
��
����

�
�

���������	
��

������

������
������

(a) Voronoi cell set V1

�
��
����

�
��
�
	

�
��
����

��
�
	

�
��
����

�
��
�
	

�
��
����

�
��
�
	

�
�
����

�
��
�
	

�
��
����

�
��
�
	

�

�
����

�
	

�
��
����

�
��
�
��
�
��
�
	

�
��
����

�
��
�
��

	

�
��
����

��
�
	

�
��
����

�
��
�
	

�������

����	�
���� �	��������
��

(b) Voronoi cell set V2

Fig. 7. Inverted lists

and V5 = {s5}. The inverted list of V1 is L(V1) = {L(s1) = {V1}, L(s2) =
{V2}, L(s3) = {V3}, L(s4) = {V4}, L(s5) = {V5}}. On the other hand, Figure 7b
depicts the inverted list of our running example for k = 2, as shown in Figure 5b
where the Voronoi cells in V2 with their associated objects retrieved from the
range search step are V1 = {s1, s3}, V3 = {s2, s3}, V4 = {s1, s4}, V5 = {s3, s4},
V6 = {s4, s5}, and V7 = {s3, s5}. The inverted list of V2 is L(V2) = {L(s1) =
{V1, V4}, L(s2) = {V3}, L(s3) = {V1, V3, V5, V7}, L(s4) = {V4, V5, V6}, L(s5) =
{V6, V7}}.

After constructing the inverted list of Vk, L(Vk), our objective is to select the
minimal set of objects from L(Vk) such that every Voronoi cell in Vk has at least
one associated object selected in the answer set. In other words, we consider the
items in the inverted list as sets and the Voronoi cells in Vk as elements, and then
select a minimum number of sets so that the selected sets contain all the elements
that are contained in any of the sets in the inverted list. Thus, our problem can
be reduced to a well-known set-covering problem. Since computing the optimal
solution for the set-covering problem is NP-hard [21], we use a greedy approach
to compute an answer set. Basically, the greedy approach selects an object with
the largest set of Voronoi cells, and then remove the Voronoi cells associated
with the selected object from other objects’ lists. Then, the selected object and
the objects with an empty list are removed from the inverted list. We repeat this
procedure until the inverted list is empty (Lines 4 to 14 in Algorithm 1). The
set of selected objects is returned as the answer set to the user.

In our running example for k = 1, i.e., the user wants to have an exact query
answer, the query-covering step simply add all objects in the inverted list L(V1)
(Figure 7a) to the answer set, i.e., A1 = {s1, s2, s3, s4, s5}. On the other hand,
Figure 8 depicts the query-covering step for our running example for k = 2, based
on the inverted list of V2, L(V2), as given in Figure 7b. Since L(s3) has the largest
size, we select s3 and remove the Voronoi cells in L(s3), i.e., V1, V3, V5, and V7,
from other objects’ lists, i.e., L(s1), L(s2), L(s4), and L(s5). Then, we add s3

to an answer set A2 and remove L(s3) from L(V2). The updated inverted list is
L(V2) = {L(s1) = {V4}, L(s2) = {∅}, L(s4) = {V4, V6}, L(s5) = {V6}}. After
we remove the empty list L(s2) from L(V2), L(s4) has the largest size. Thus,
we select s4 and remove the Voronoi cells in L(s4), i.e., V4 and V6, from other

� ∅∅∅∅

�
��
����

�
��
�
	

�

�
����

�
	

�
��
����

�
��
�
��
�
��

	

�
��
����

�
��
�
��
�
	

�
��
����

�
��

	

�����������	
�	�����

�
�
��������

� ∅∅∅∅
�
��
����

�
	

�

�
������	

�
��
����

�
��
�
	

�
��
����

�
	

�����	�����	
�	�����

�
�
���

�
�

� ∅∅∅∅
�����	�����	
�	�����

� ∅∅∅∅

�
��
������	

�
��
������	

�
��
���

�
�
�
�

Fig. 8. Example of the query-covering step, based on Figure 7b

objects’ lists, i.e., L(s1) and L(s5). Then, we add s4 to A2 and remove L(s4) from
L(V2). The updated inverted list is L(V2) = {L(s1) = {∅} and L(s5) = {∅}}.
Since all lists are empty, they are removed from the inverted list, and the query-
covering step terminates and returns the answer set A2 = {s3, s4} to the user.
From this example, we can see that our proposed approximate range NN query
processing algorithm reduces the answer set size by 60%, i.e., from five objects
in the exact answer set to two objects in the approximate answer set.

5 Experimental Results

In this section, we evaluate our Approximate Range nearest-neighbor (NN) query
processing algorithm (denoted as ARNN) with respect to user specified approx-
imation tolerance levels (k), query region size, the number of objects, downlink
bandwidth, and object size. We compare our ARNN algorithm with two state-of-
the-art range NN query processing algorithms as baseline algorithms. The first
baseline algorithm computes an exact answer set of the minimal size for range
NN queries (denoted as Exact) [7], while the other baseline algorithm computes
a candidate answer set that contains the exact answer for range NN queries
(denoted as Casper) [9].

We have two performance measures: (1) total processing time that includes
the query processing time at the database server and the transmission time of
sending the answer set to the user, and (2) answer set size that is the average
number of objects returned in the answer sets. The answer set size is important
as it indicates communication overhead and the power consumed by the user
device to receive the answer set and user convenience.

In all experiments, we assume that the user communicates with a database
server through a 3G cellular network. The downlink (i.e., from the database
server to the user) bandwidth varies with respect to the user mobility speed,
i.e., 128 kbps (i.e., kbits per second) at vehicular speeds, 384 kbps at pedestrian
speeds, 2 Mbps at stationary or very slow movement speeds. Unless mentioned
otherwise, the experiments consider 200 objects in a square space of a length l =
1000. The mobile user moving at pedestrian speeds (i.e., the downlink bandwidth
is 384 kbps) issues 1,000 range NN queries, and the object size is 10 Kbytes. The
default user specified approximation tolerance level (k) is four and the query
region size is 0.05l × 0.05l. Table 1 summarizes the parameter settings.

Table 1. Parameter settings

Parameter Default Value Range

Approximation tolerance (k) 4 1 to 10
Number of objects 200 100 to 300
Query region size (0.05l)2 (0.008l)2 to (0.256l)2 (where l = 1000)

Downlink bandwidth 384 kbps 128 kbps to 2 Mbps
Object size 10 Kbytes 0.5 Kbytes to 20 Kbytes

�

�

�

�

�

�

� � � � � ��

	

��

��
�

��
�
��

�����
������

	�� � ����� � ���

(a) Answer set size

�

���

���

���

���

�

� � � � � ��

�	

�
�
�
�	
��
��
��
�
�
��

�
�
��
��

�	�������������

��� � ������ !��

(b) Total Processing time

�

���

�

���

�

���

�

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $ %��!�� &'���

(c) Tolerance level: k = 2

�

���

�

���

�

���

�

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $ %��!�� &'���

(d) Tolerance level: k = 10

Fig. 9. Approximation tolerance levels (k)

5.1 Effect of Approximation Tolerance Levels

Figure 9 depicts the performance of our proposed algorithm (ARNN) with respect
to varying the approximation tolerance level (k) from 1 to 10. The performance
of the baseline algorithms (Casper and Exact) is not affected by varying the value
of k. Figure 9a gives the number of objects returned in the answer set, while
Figure 9b indicates the total processing time that includes the query processing
time at the database server and the transmission time of sending the answer set
to the user. Figure 9a shows that ARNN effectively reduces the answer set size
as k gets larger. When k = 2 (k = 10), ARNN reduces the size of the answer sets
given by Casper and Exact by 34.3% and 66% (79.3% and 89.3%), respectively.
Since the transmission time is much higher than the total processing time, the
total processing time of ARNN decreases as k gets larger (Figure 9b). Figures 9c
and 9d show that ARNN performs better than the baseline algorithms for all
mobility speeds. Since ARNN effectively reduces the answer set size, when the

�

�

��

��

��

��

��

��

��

��

��

����� ����	 ����� ���	� ����� ����	

�
�

�
��
�
�
��
�
��
�

� ����������������

�� �

������

� �!�

(a) Answer set size

�

�

�

�

�

��

��

����� ����� ����� ����� ����� ���	�

�
�
��
�
��
��
��
��
�
�

��

�
��
��
��

� �������������� �

!�" "

#�$��

%&��

(b) Total processing time

�

���

���

���

���

�

���

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $

%��!��

&'���

(c) Query region size: (0.008l)2

�

�

��

��

��

��

��

��

��� ��� ����

�	

�
�
�
�	
��
��
��
�
�
��

�
�
��
��

�	� ���������� ��
���� ��

!"# #

$�� ��

%&��

(d) Query region size: (0.256l)2

Fig. 10. Query region size

downlink bandwidth is more limited, ARNN performs much better than Casper

and Exact.

5.2 Effect of Query Region Size

Figure 10 depicts the performance of our proposed algorithm (ARNN) with
respect to increasing the query region size from (0.008l)2 to (0.256l)2, where
l = 1000. Figure 10a shows that the answer set of all algorithms gets larger
as the query region size increases. With small query regions, i.e., (0.008l)2, the
answer set size of ARNN is 94.7% and 59.8% smaller than Casper and Exact,
respectively. For large query regions, i.e., (0.256l)2, the answer set size of ARNN

is 442.1% and 145.3% smaller than Casper and Exact, respectively. Thus, ARNN

performs much better than the baseline algorithms for larger query regions. Since
the transmission time is much higher than the total processing time, ARNN out-
performs the baseline algorithms in terms of query response time (Figure 10b).
Figures 10c and 10d depict that ARNN effectively reduces the total processing
time of the baseline algorithms regardless of user mobility speeds.

5.3 Effect of Number of Objects

Figure 11 gives the performance of our proposed algorithm (ARNN) with respect
to varying the number of objects from 100 to 300. When the number of objects
increases, there are more nearest objects to the query region; and thus, the

�

�

�

�

�

�

�

��� ��� ��� ��� ���

�
	

�

�
�
�
�
��
�
��
�

��� ������� �����

��� � ��
�� !���

(a) Answer set size

�

���

���

���

���

�

���

��� ��� ��� ��� 	��

�
�
��
�
��
��
��
��
�
�

��

�
��
��
��

��� �������� � ����

!"� � #�$�� %&��

(b) Total processing time

�

���

�

���

�

���

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $ %��!�� &'���

(c) 100 objects

�

���

�

���

�

���

�

���

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $ %��!�� &'���

(d) 300 objects

Fig. 11. Number of objects

�

����

���

����

���

����

���

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $

%��!��

&'���

(a) 0.5 KB

�

�

�

�

�

�

�

��� ��� ����

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

�
� ���������� ������� !��

"#$ $

%��!��

&'���

(b) 20 KB

Fig. 12. Object size

answer set size of all algorithms gets larger (Figures 11a). Similar to the previous
experiments, the transmission time is much higher than the total processing
time. Since the answer set size of ARNN is smaller than the baseline algorithms
Casper and Exact, ARNN incurs the lowest total processing time for any number
of objects (Figures 11b). Likewise, ARNN effectively reduces the answer set size,
the total processing time of ARNN is better than Casper and Exact for all user
mobility speeds, as depicted in Figures 11c and 11d.

5.4 Effect of Object Size

Figure 12 depicts the performance of our proposed algorithm (ARNN) with re-
spect to the object size of 0.5 and 20 Kbytes. Since varying the object size does

�

���

�

���

�

���

�

� � � � 	 ��

�
�
��
�
��
��
��
��
�
�

��

�
��
��
��

��������������

��� � �!�� "#��

(a) Approximation tolerance

�

�

��

��

��

��

��

��

����� ����� ����� ����	 ����� �����

�
�
��
�
��
��
��
��
�
�

��

�
��
��
��

� �������������� �

!�" "

#�$��

%&��

(b) Query region size

�

���

�

���

�

���

�

���

��� ��� ��� ��� ���

��
	

��

��
��
��
��
�
��
��

�
��
��
��

��� �������� ����	�

��� �
�!�� "#
�	

(c) Number of objects

�

�

�

�

�

�

�

� � � � � ��

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

� �������������� ����

!"# #

$��%��

&'���

(d) Object size

Fig. 13. Downlink bandwidth at vehicular speeds (128 kbps)

not affect the answer set size, the answer set size of all algorithms is the same
as the case that k = 4 in Figure 9a. It is interesting to see that the transmission
time is much higher than the total processing time even if the object size is small
and the answer set is sent to the user through the downlink with the largest pos-
sible bandwidth, i.e., 2 Mbps. Therefore, the results indicate that reducing the
answer set size is an effective way to improve query response time. This is the
motivation of our proposed algorithm ARNN that aims to minimize the answer
set size while guaranteeing that the answer set is satisfied with the user specified
approximation tolerance level k.

5.5 Effect of Communication Bandwidth

Figures 13 and 14 give the comprehensive evaluation of our proposed algorithm
(ARNN) with respect to all parameters for users moving at vehicular speeds and
very slow speeds, respectively. Although Casper gives the best query processing
time, it suffers from very high transmission time. This is because the candidate
answer set provided by Casper is much larger than the answer set of ARNN and
Exact. Thus, the total processing time of Casper is always worse than ARNN and
Exact. Since ARNN provides approximate answers that satisfy the user specified
approximation tolerance level, the answer set size of ARNN is smaller than the
exact answer set provided by Exact. As a result, ARNN performs better than
Casper and Exact in terms of the total processing time for all parameter settings.

�

����

����

����

����

���

����

����

����

����

� � � � � ��

�	

�
�
�
�	
��
��
��
�
�
��

�
�
��
��

�	�������������

��� � ������ !��

(a) Approximation tolerance

�

���

�

���

�

���

����� ����� ����� ����	 ����� �����

�
�
��
�
��
��
��
��
�
�

��

�
��
��
��

� �������������� �

!�" "

#�$��

%&��

(b) Query region size

�

����

���

����

���

����

��� ��� ��� ��� ���

��
	

��

��
��
��
��
�
��
��

�
��
��
��

��� �������� ����	�

��� �
�!�� "#
�	

(c) Number of objects

�

���

���

���

���

� � � � � ��

	

��
�
�
�

��
��
��
�
�	
��

�
��
��
��

� �������������� ����

!"# #

$��%��

&'���

(d) Object size

Fig. 14. Downlink bandwidth at stationary or very slow speeds (2 Mbps)

6 Conclusion

In this paper, we propose a new query type, approximate range nearest-neighbor
(NN) query, for location-based services. The distinct features of this new query
type are that (1) It aims to minimize the number of objects returned to the
user so as to reduce the transmission time of sending the answer to the user;
and (2) It provides quality guarantee for the query answer, i.e., each object in
an answer set is one of the k nearest objects to every point in a given query
region, where k is a user specified tuning parameter for a tradeoff between query
response time (that is dominated by transmission time as shown in all exper-
imental results) and the quality of answers. To achieve these two features, we
propose an approximate range NN query processing algorithm. The main idea
is to have an off-line process to compute Voronoi diagrams, from order one to
order kmax, where kmax is the maximum allowable user specified approximation
tolerance level, and then build our proposed incomplete pyramid structure as
an access method for each Voronoi diagram. Given a range NN query and an
approximation tolerance level k, our on-line query processing algorithm accesses
the incomplete pyramid structure of the k-order Voronoi diagram to retrieve a
set of Voronoi cells that intersects the query region and the k nearest objects
to each Voronoi cell. Then, the remaining query processing is reduced to a set-
covering problem where we use a greedy approach to find a minimal answer set.
Extensive experimental results show that our proposed algorithm is scalable in
terms of query processing time, and effective to reduce query response time com-

pared with the state-of-the-art techniques while guaranteeing that the answer
set satisfies the user desired approximation tolerance level.

References

[1] Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest and reverse nearest
neighbor queries for moving objects. VLDB Journal 15(3) (2006) 229–249

[2] Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial
queries over moving objects. In: SIGMOD. (2005)

[3] Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD. (2005)

[4] Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of
continuous queries in spatio-temporal databases. In: SIGMOD. (2004)

[5] Zheng, B., Xu, J., Lee, W.C., Lee, D.L.: Grid-partition index: A hybrid method
for nearest-neighbor queries in wireless location-based services. VLDB Journal
15(1) (2006) 21–39

[6] Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB.
(2002)

[7] Hu, H., Lee, D.L.: Range nearest-neighbor query. IEEE TKDE 18(1) (2006)
78–91

[8] Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based
identity inference in anonymous spatial queries. IEEE TKDE 19(12) (2007) 1719–
1733

[9] Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for
location services without compromising privacy. In: VLDB. (2006)

[10] de Almeida, V.T., Güting, R.H.: Supporting uncertainty in moving objects in
network databases. In: ACM GIS. (2005)

[11] Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving
object environments. IEEE TKDE 16(9) (2004) 1112–1127

[12] Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: SSD. (1999)

[13] Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty
in moving objects databases. ACM TODS 29(3) (2004) 463–507

[14] Yiu, M.L., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient evaluation of prob-
abilistic advanced spatial queries on existentially uncertain data. IEEE TKDE
21(1) (2009) 108–122

[15] Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries
in mobile environments with privacygrid. In: WWW. (2008)

[16] Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy
in mobile data management infrastructures. In: PET. (2006)

[17] Ghinita1, G., Kalnis, P., Skiadopoulos, S.: Mobihide : A mobile peer-to-peer
system for anonymous location-based queries. In: SSTD. (2007)

[18] Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity:
Architecture and algorithms. IEEE Trans. on Mobile Computing 7(1) (2008) 1–18

[19] Hu, H., Xu, J.: Non-exposure location anonymity. In: ICDE. (2009)
[20] Lee, D.T.: On k-nearest neighbor voronoi diagrams in the plane. IEEE Trans. on

Computers 31(6) (1982) 478–487
[21] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-

rithms, 2nd Edition. MIT Press, Cambridge, MA (2001)

