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Approximate Expressions for the 
Reflection Coefficient of Ducts 
Terminated by Circular Flanges 

Estimating the magnitude of the pressure reflection coefficient |R| and the end correction l 
at the open end of ducts is a critical procedure when designing or predicting the acoustic 
behavior of acoustical systems, such as exhausts, tailpipes, mufflers, loudspeaker 
enclosures and so on. For cylindrical ducts and plane waves, exact intricate solutions exist 
for two distinct open-end boundary conditions, namely for a thin-walled unflanged pipe 
and for a pipe terminated by an infinite flange. This work provides simple approximate 
expressions for |R| and l of cylindrical pipes terminated by circular flanges with finite 
radii. The expressions are obtained from a polynomial fit performed over the numerical 
results provided by a Boundary Element model, and is valid for Helmholtz numbers in the 
range 0 ≤ ka ≤ 3.0, as well as for 0 ≤ a/b ≤ 1, where a and b are the pipe and flange radii, 
respectively. When compared with the exact solutions for both the unflanged and the 
infinite-flanged pipe, the approximate formulae provide a maximum error of ~2% at the 
upper frequency limit (ka →3.0). 
Keywords: reflection coefficient, cylindrical ducts, flange, boundary element model 
 
 
 
 

Introduction1 

The assessment of the complex reflection coefficient � at the 
open end of ducts is an important procedure in order to predict the 
acoustical behaviour of these systems in terms of their resonance 
frequencies and their capability of radiating sound. 

For cylindrical ducts and normal acoustic modes, exact solutions 
have been proposed for a thin unflanged pipe situation (Levine and 
Schwinger, 1948), as well as for a pipe terminated by an infinite 
flange (Nomura et al., 1960). These analytical solutions are 
relatively intricate and require numerical solution. Based on these 
limitations, approximate formulae for the unflanged pipe situation 
have been developed by Causs´e et al. (1984) and Silva et al. 
(2009b). For pipes terminated by an infinite flange, approximate 
expressions have been proposed by Norris and Sheng (1989) and 
Silva et al. (2009b).   

Nevertheless, in day-to-day circumstances, cylindrical tubes are 
terminated by an intermediate boundary condition, that is, a pipe 
terminated by a circular flange of finite radius, for which exact 
solutions do not exist. An approximate formula for such situation 
has been proposed by Ando (1969). In spite of being an 
approximation, Ando’s solution depends on an intricate numerical 
computation, which precludes its application in a practical basis. 
Having that in mind, Dalmont et al. (2001) proposed a simple fit 
formula based on the results obtained numerically for the length 
correction � as a function of the ratio between pipe and flange radii 
�/�. Unfortunately, the solutions proposed by these authors are only 
valid for the low-frequency limit.  

The objective of this work is twofold. First, to investigate the 
behaviour of � in cylindrical tubes terminated by circular flanges 
of different sizes. The investigations are carried out with a 
numerical model based on the Boundary Element Method. The 
second objective is to derive simple approximate expressions for 
the magnitude of the reflection coefficient |�| and the length 
correction �, as functions of both the Helmholtz number ka and the 
ratio between pipe and flange radii �/�. The approximate 
formulae derived in this work are valid for 0 ≤ �� ≤ 3.0 and for 
0 ≤ �/� ≤ 1. The behaviour of the reflection coefficient � in the 
presence of a non-stagnant mean flow is not addressed in this 
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study and can be found elsewhere (Silva et al., 2009a; Allam and 
Abom, 2006; Munt, 1990).  

This paper is structured as follows. Section II presents the 
formulation for the reflection coefficient inside the pipe. Section III 
provides a brief description of the Boundary Element Method, 
discusses the numerical model used in this work, and presents its 
validation based on the comparison between numerical results and 
those obtained with the exact analytical solutions for the unflanged 
pipe (Levine and Schwinger, 1948) and for the pipe terminated by 
an infinite flange (Nomura et al., 1960).  Section IV discusses the 
results obtained through the numerical model and proposes a 
simplified formula for |�| and �/�	based on a polynomial surface 
fit. Finally, the conclusions and remarks are presented in Section V.  

Nomenclature 

�  = internal area of the pipe‘s cross section, m2 
� = pipe radius, m 
�  = flange radius, m 
�  = speed of sound, m/s 
	 = 
/2�  = frequency, Hz 
�(,�)   = free-space Green’s function 
��,� = coefficients of the fit formula for |R| and l 
�	 = complex unity √(-1) 
� = wave number, m-1 
�� = Helmholtz number, dimensionless 
� = distance between two axial points, m 
�  = end correction, m 
� = unity normal vector pointing inwards from the surface  
��  = sound pressure calculated outside the surface 

domain, Pa 
��   = sound pressure calculated inside the surface 

domain, Pa 
�	 = complex sound pressure, Pa 
�� and ��  = reflected and incident wave components, Pa 
�  = pressure reflection coefficient, dimensionless 
|�|	 = magnitude of the pressure reflection coefficient, 

dimensionless 
�	 = volume velocity, m3/s 
�	 = input function 
�∗  = polynomial that approximates u 
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�	 = acoustic particle velocity, m/s 
�	 = acoustic impedance, Rayls 
��  = characteristic acoustic impedance, Rayls 

 = rotational frequency, rad/s 

Greek Symbols 

∆P = pressure drop, Pa 
∆T       = mean temperature difference, K 
µ = air dynamic viscosity, kg/(m s) 
ρ = air density, kg/m3 
�	 = boundary element surface 

Subscripts 

0 = relative to fluid, air 
e = relative to external, outside 
i = relative to inside 
log = relative to logarithmic  

Reflection Coefficient �  
When plane sound waves propagate away from an acoustic 

source inside a duct, part of the acoustic wave will be radiated to the 
external domain and part will be reflected back inside the duct at the 
open end.  

 
 

 
Figure 1. Scheme of the reflection of sound at the open end of a duct. 

 
The acoustic pressure at any point along the coordinate x inside 

the duct is given by  
                              

��� = ���
�exp�−��� + ���
�exp����.																											(1) 
 

where �	 = 
/� is the wavenumber, � is the complex unity and	� is 
the speed of sound. The ratio between the reflected pressure wave 
component, ���
� and the incident pressure wave component 
���
�, both measured at the open end, is a complex parameter 
known as the pressure reflection coefficient �, given by   

��
� = ��

��
,																																																																																								(2) 

where 
 is the rotational frequency. The reflection coefficient � can 
be also expressed in terms of acoustic impedance as  
 

��
� = �� ��/�� − 1�/�� + 1� ,																																																																		(3) 
 

where Z is the acoustic impedance at the duct’s open end, defined as 
the ratio between the complex acoustic pressure ��
� = �� + �� 
and the complex volume velocity ��
� = ��
�/�, being � the 
duct’s cross-section area and v the acoustic particle velocity. 
�� 	= ��/� is the characteristic impedance inside the cylinder, � is 
the undisturbed density of the fluid and � is the speed of sound. A 
more intuitive way to gather the physical meaning of � is to express 
it in the polar form by  
 

�	 = 	−|�| ��2����,					               (4) 
       

where |�| is the magnitude of the reflection coefficient and � is the 
end correction.  

In the absence of a mean flow, the frequency-dependent 
magnitude of the reflection coefficient |�| assumes values between 
zero and the unity, depending on the boundary condition at the open 
end of the duct (flanged or unflanged). Hence, values of |�| close to 
one imply that most of the sound produced by the acoustic source 
stays inside the duct rather than being radiated to the outer domain. 
An opposite scenario happens when |�| approaches to zero. The 
frequency-dependent end correction � is an additional length 
downstream from the open end, through which the incident wave 
must propagate before it is partially reflected back inside the duct as 
a reflected wave. The end correction is a consequence of the inertia 
caused by acoustic load of the stagnant air surrounding the duct’s 
open end.  

Numerical Procedures  

Boundary element method  

A brief description of the boundary element method (BEM) for 
determining the pressure and acoustic particle velocity within and 
acoustic domain is here provided. The reader may find more 
thorough description of the method in several works (Fahy and 
Walker, 2004; Chandler and Langdon, 1991). For the determination 
of the radiation impedance at the open end of an open tube, the 
problem is essentially divided into two parts, each representing the 
internal and external acoustic domains. The internal domain is 
represented by the following integral expression  

 

���� =
∫
Γ
!��,�� "��"# ���− ����� "�"# �,��$ %Γ���

∫
Γ

"
"# & 14��'%Γ���

.							(5) 

 
Likewise, the sound pressure at any point of the external surface 

can be obtained by the solution of the following integral equation  
 

���� =
∫
Γ
!��,�� "��"# ��� − ����� "�"# �,��$ %Γ���

∫
Γ

"
"# & 14��'%Γ���

.						(6) 

 
Here and in the following, � is the sound pressure calculated for 

a single frequency in any point  on the boundary surface Γ. The 
sub-indexes � and   indicate whether � is internally or externally 
located on the surface, respectively, and # is the unity vector 
pointing inwards from Γ. �(,�) = 	 �(−���/4��) is the free 
space Green’s function, and � is the distance between the two points 
 and � within the internal domain.  

The solutions for Eqs. (5) and (6) can be reached by dividing the 
boundary surface Γ into several discrete segments called elements. 
Each element leads to a simplified integral equation, which can be 
resolved by Gauss integration with polynomial approximation for 
the Green’s function �.  

BEM model  

The BEM model consisted of cylindrical tube of length 
�	 = 	0.5 m and radius �	 = 	0.04 m. The tube was closed at one 
end and terminated by a thin circular flange at its open end. The 
boundary surface was constructed using thin shell elements, 
meaning that the effect of flange thickness is not taken into 
account. Variations of this model were considered by differing the 
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ratio �/�, where � is the radius of the pipe and b is the radius of 
the circular flange. The analysis was conducted for �/�	 =
	0, 0.2, 0.4, 0.6, 0.8 and 1. For the model terminated by infinite 
flange (�/�	 = 	0), an adapted Green function was used in Eq. (6) 
to take into account the effect of the infinite baffle, without the 
necessity of meshing it. This technique has been already verified 
by Selamet et al. (2001). Figure 2 depicts the BEM model for 
�/�	 = 	0.6.  

 
 

 
Figure 2. Mesh for the BEM model of a circular pipe  terminated by a finite 
thin flange (�/�	 = 	�.�). 

 
Due to computational limitations, the analyses were conducted 

up to a maximum Helmholtz number ��	 = 	3.0, where �	 = 
/�  is 
the real wavenumber and � the speed of sound. This value is inferior 
to the first cut off frequency for cylindrical ducts (��	 = 	3.83), 
bellow which only plane waves propagate.  

The mesh refinement applied to the model was 63 elements per 
wavelength at the frequency corresponding to ��	 = 	3.0. This 
refinement criterion was observed to be crucial at the frequency 
range of analysis, in order to maintain the model inaccuracy inferior 
to 0.3% (da Silva, 2008).  

The model was resolved using the commercial code LMS-
Sysnoise 5.6, based on the solutions of Eqs. (5) and (6). The model 
is excited at forty equally spaced frequencies between 0	 ≤ ��	 ≤
	3.0 by prescribing a unitary particle velocity at the tube’s closed 
end. The reflection coefficient � cannot be directly measured at the 
end of the pipe due to the fact that the plane wave front becomes 
distorted as it approaches the output, as described by Dalmont et al. 
(Dalmont et al., 2001). Therefore, for each frequency step, the 
reflection coefficient � at the open end is indirectly computed using 
the following expression: 
 

���� =
�	tan(arctan��∆�	�/���� − �∆)− 1
�	tan(arctan��∆�	�/���� − �∆)+ 1 	,															(7) 

 
where �∆ = 	�(	)/�(	), 	 is the frequency, and � and � are, 
respectively, the pressure and the acoustic particle velocity obtained 
inside the pipe at a distance  ∆	= 	8� from the open end.   

Model validation  

The boundary element model described in the previous section 
was validated in terms of complex reflection coefficient for both 
situations including the unflanged case and the pipe terminated by an 
infinite flange. The validation was conducted by comparing the 
numerical results with the exact analytical solutions for an unflanged 
pipe (Levine and Schwinger, 1948) and for a pipe terminated by an 
infinite flange (Nomura et al., 1960). The comparison between the 
numerical and the exact analytical solutions for both the magnitude of 

the reflection coefficient |�| and the dimensionless end correction �/� 
are presented in Figs. 3(a) and 3(b), respectively.  

 

 
Figure 3(a) 

 

 
Figure 3(b) 

Figure 3. Comparison between numerical and exact an alytical solutions for 
an unflanged pipe and a pipe terminated by an infin ite flange: (a) Magnitude 
of the reflection coefficient; and (b) dimensionles s end correction. 

 
The results depicted in both Figs. 3(a) and 3(b) show that a 

very good agreement between numerical results and theory can 
be achieved when the mesh refinement of the model is greater 
than forty elements per wavelength. Nevertheless, a slight 
discrepancy of ~	0.2% is observed in the dimensionless end 
correction (Fig. 3(b)) at high frequencies, namely for �� > 2.5. 
This discrepancy is attributed to a non-sufficient mesh 
refinement, particularly at the open end region. For lower 
Helmholtz regions, as well as for the entire range of Helmholtz 
numbers in Fig. 3(a), the discrepancy is negligible.  

Results 

The simulation results for the reflection coefficient of pipes 
terminated by finite circular flanges of different radii are now 
presented. Figure 4(a) depicts the results for the magnitude of the 
reflection coefficient |�| as a function of the Helmholtz number ka 
and the ratio between flange and pipe radii �/�.  
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 Figure 4(a) 
 

 Figure 4(b) 

Figure 4. Reflection coefficient as a function of �/� and ��: (a) magnitude 
of the reflection coefficient; and (b) dimensionles s end correction.  

 
Interestingly, the results illustrated in Fig. 4(a) show that, for 

pipes terminated by finite circular flanges, the behavior of 
|�|	for a given ��	 � 	0 is not monotonic along �/	. This implies 
that, for certain values of ��	 � 	0, the corresponding magnitude 
of the reflection coefficient |�| may not lie between the curves 
representing the two extreme cases, as shown in Fig. 3(a). 

 The same non-monotonic behavior along �/	 is observed for 
the dimensionless end correction 
/� depicted in Fig. 4(b). This 
behavior becomes more evident when 
/� is plotted against the ratio 
between pipe and flange radii �/	, as shown in Fig. 5.  

The same figure shows that the numerical results for ��	 � 	0 
are in very good agreement with the fit formula proposed by 
Dalmont et al. (2001) for the low frequency limit. Another 
interesting feature of Fig. 5 is that it shows that the non-monotonic 
behavior of  
/�	 does not only appear along the �/	 axis, but also 
along ��. This behavior seems to be critical in the region �/		~	0.4. 
This essentially means that, for a finite-flanged pipe with �/		~	0.4, 
the length correction  
/�  may significantly increase as �� → 	0.8. 

 
Figure 5. Dimensionless end correction as function of the ratio between 
pipe and flange radii �/� for different values of ��. 

 
The numerical results presented in terms of surfaces (Figs. 4(a) 

and 4(b)) were used to derive approximate formulae for both |�| and  

/� based on a least square polynomial fit scheme that minimizes 
the error e by  

 

� � ���� � ��
∗��

�

���

,																																																																											�8� 
 

where �� is the i-th element of an input vector �, having an arbitrary 
integer number of elements �, being � �	1. ��

∗ is the i-th element 
of a vector given by the polynomial �∗, whose coefficients are found 
in order to minimize the error �. The resulting polynomial �∗ is 
approximated from the input vectors of |�| and 
/� obtained 
numerically as functions of the Helmholtz number �� and the ratio 
between duct and flange radii �/	, and is given by  
 

�∗���, �/	� � � ���,	�����
	��/	�	,
�

	��

�

���

																										�9� 
 

where the coefficients ��,	 are given for both |�| and 
/� in Table 1 
for the range of  0	 � ��	 � 	3.0 and 0	 � �/		 � 	1. 
 

Table 1. Coefficients found for the polynomial fit formula, Eq. (9). 
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Naturally, the choice of the polynomial order in Eq. (9) will 
determine the goodness of the fit for the approximate formula. On 
the other hand, increasing the polynomial order implies in a higher 
number of polynomial coefficients, which may restrict the 
applicability of the fit formula. Thus, a tradeoff was established so 
as to provide simplicity of the fit formula and a reasonable goodness 
of fit. The result was a polynomial ��

∗ of order 10 (Eq. (9)), resulting 
on twenty one coefficients presented on Table 1.  

 

 
Figure 6(a)                                                    

 
Figure 6(b) 

 
Figure 6(c) 

 
 Figure 6(d) 

Figure 6. Comparison between approximate formula an d numerical results 
for |�|. (—) Approximate formula; (* * *) numerical result s. The results are 
obtained for four different values of �/�: (a) 0.2; (b) 0.4; (c) 0.6; and (d) 0.8. 

 
Replacing the coefficients from Table1 in Eq. (9) will lead to the 

fit formulas for both the magnitude of the reflection coefficient |�| 
and the end correction �. Figures 6 and 7 present comparisons 
between numerical data and the values obtained by the fit formula 
(Eq. (9)) with the coefficients provided in Table 1. The results 
depicted in Figure 6 show a good agreement between fit formula 
and numerical data for the magnitude of the reflection coefficient 
|�|. The maximum deviation from the numerical results is found at 
�/�	 = 0.4 and ��	~	1, and corresponds to 4% (Fig. 7(b)). 

Figure 7 shows the numerical and fit formula results for the 
dimensionless end correction l. Similarly to |R|, the maximum 
deviation between numerical and fit results is observed at a/b = 0.4 
and ka = 0.7, corresponding to 2%. The deviations in both |R| and l 
are attributed to the inability of the polynomial to capture the non-
monotonic behavior of these curves, particularly for �/�	 = 	0.4. 

As previously discussed, the deviations could be minimized by 
increasing the order of the polynomial (Eq. (9)).  
 However, increasing the accuracy of the fit formula by 1%  
would require an increase of the polynomial order by eight. That 
would imply in a significant increase of the number of coefficients, 
which in turn compromises the simplicity of the fit formula. 

Conclusions 

This paper investigates the behavior of the magnitude of the 
reflection coefficient |�| and the dimensionless end correction �/� 
at the open end of cylindrical pipes terminated by finite circular 
flanges in the absence of a mean flow. Moreover, the paper 
presented an approximate formula for both |�| and �/� based on a 
polynomial fit. The results from a numerical model of a pipe based 
on the boundary elements method have shown that |�| and �/� have 
a non-monotonic behavior in the regions between 0	 ≤ 	�/�	 ≤ 	1 
and 0	 ≤ 	��		 ≤ 3.0. In the case of |�|, the non-monotonic behavior 
is more significant at high frequencies, namely ��	 > 	2 and within          
0.2	 ≤ 	�/�	 ≤ 		0.5.  

The non-monotonic behavior is also observed for l/a, In this 
case, however, the behavior is stronger at the low frequency region, 
namely ��	 < 	0.5 and 0.2 ≤ �/� ≤ 0.6. In fact, in the low 
frequency region the non-monotonic behavior of  �/�  may act to 
significantly increase the value of the end correction as	�� increases 
from zero. This behavior is neither observed in the unflanged pipe, 
nor in the pipe terminated by an infinite flange. The approximate 
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formulae for |�| and l/a were derived by a polynomial fit of the 
numerical results.  

The fit formula agrees well with the numerical results, provided 
that 0 ≤ 	�� ≤ 	3.0 and 0 ≤ 	�/� ≤ 	1. In the case of the magnitude 
of the reflection coefficient, the maximum deviation from the 
numerical results is equal to 4% at �/�	 = 0.4 and 	~	1. Similarly, 
in the case of �/� the maximum deviation from the numerical results 
is found at �/�	 = 0.4, corresponding to 2% at ��	~	0.4. 

 

 
Figure 7(a) 

 
Figure 7(b) 

 
Figure 7(c) 

 
 Figure 7(d) 

Figure 7. Comparison between approximate formula an d numerical results 
for �/�. (—) Approximate formula; (* * *) numerical result s. The results are 
obtained for four different values of �/�: (a) 0.2; (b) 0.4; (c) 0.6; and (d) 0.8. 
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