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ABSTRACT
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I. INTRODUCTION
In supersymmetric theories {11, all particles in the standard
model are accompanied by their superpartners. In order to give masses

to quarks and leptons, and to cancel triangle gauge anamolies, at

least two Higgs doublets H1 = (H({, H;) and H2 = (H;, Hg), with
opposite hypercharge (Y(Hl) = -1, Y('H?.) = +1), are required in the

minimal version of the supersymmetric standard model{MSSM). The
fermionic partners of these Higgs bosons mix with the fermionic
partners of the gauge bosons to produce two chargino states xi;, i=1,
2, and four neutralino states ;(2, i =1, 2, 3, 4 in the MSSM. The
neutralino states of the minimal model have been studied in great
detail [2-4], because the lightest neutralino state is expected to be

the lightest supersymmetric particle(LSP) in supersymmetric theories

In this paper, we make an analysis of the neutralino sector of
the nonominimal supersymmetric model (NMSSM) containing two Higgs
doublets, H1 and HZ’
represented by the superpotential {6}

and a Higgs singlet chiral superfield N {51,

W=h Q UH, +h @ DH + hgLEJH, + A HN - %kNB, (1.1)
where k # 0 in order to avoid an unacceptable axion in the model.
Recently much attention [7,8] has been devoted to the study of the
Higgs sector of the nonminimal supersymmetric standard model (NMSSM)
(1.1). The reasons for the study of the nonminimal supersymmetric
model are twofold. First, the Higgs bilinear term -in the
superpotential of MSSM can be generated dynamically in the model
(1.1), through the trilinear coupling }\HlH‘zN, thereby solving the so
called y problem of the MSSM [9]. Secondly, the minimal supersymmetric
standard model makes definite predictions about the spectrum of Higgs
bosons and their couplings, including radiative corrections [10}.
These predictions about Higgs masses and couplings can be tested
experimentally. If these predictions are not borne out, then it would
be natural to go to the non-minimal supersymmetric model. In the

nonminimal supersymmetric model (1.1), after mixing of Higgs and gauge



~t .t ~
fermions, there are two chargino Xy 0 Xgo and five neutralino, Xy s
0 Y0 0 ~o0 . . ,
Xo » X3 1 Xg 0 Xgo states. The neutralino mass matrix arises from the
interaction between gauge and matter multiplets as well as the last
two terms in the superpotential (1.1) when the Higgs fields obtain
vacuum expectation wvalues. In addition there are supersymmetry

breaking gaugino masses, Ml’ MZ’ M, associated with the U(1), SU(2)

and SU(3) subgroups of the stand:;rd model, respectively. It is a
common practice to reduce the parameter freedom by assuming that the
three mass scales are equal at some grand unification scale, so that
at the electroweak scale the three mass parameters are related [1]

through (Mz = M, Mé is the gluino mass)

M = tanzew M, M3 = M; = (ozs/az) M, (1.2)
in the standard notation. We shall use these relations in what
follows. In the non-minimal model (1.1), because there 1is an
additional gauge singlet fermion I:I, the mass matrix for the
neutralinos is a 5 x 5 matrix. We shall choose the following
convenient basis for the gaugino-higgsino system of the nonminimal

model:

0 . , a b . .
wJ = (“1)\1! _1>\Z) wH’ wH’ WN)’ J =12, 3, 4, 5, (1.3a)
where 7&7 and )‘Z are the two component spinors of the photino

and zino, respectively, and

a _ 1 . 2 b _ 1 2 .
wH = le smeV szz cosev, wH = le coseV + tsz sm@V (1.3b)

1
H

~1 ~ ~

spinors of the neutral higgsinos Hcl), H(Z) and N, respectively, and

where [11]

are the higgsino states, with vy , q)}zI » Wy the two component

o _ o_ _ _
<H1> = Vl//Z, <H2> = vz//Z, tan OV = Vl/v2’ {1.3¢)

The mass term in the Langrangian has the form



1 0 0
£y = 5 M, v, Yij Vs + h.c., (1.4a)

where the mass matrix [12]

-

2 . 2 . b
Mo cos 9w+sm Gw) A(l-(x)smewcosew 0 0 0
. . 2 2
A(l—cx)smewcosew Ala sin 6w+cos ew) 1 0 0
Y= 0 1 -p s1r126V -p cosZG)V 0
0 0 -p cosZGV v stOV Y
0 0 0 Y -&
{1.4b)
with
)
M M Ax X (v2 o4 Bz
- _— o 1 2 2 kx
A= M o = M y p = M 3 Y = _ , S = T—, (1.4C)
z Z /2 M, z

where we have taken out a factor of MZ so that we deal with
dimensionless quantities orly. Neglecting CP violation, Y is a real
symmetric matrix which can be diagonalized by a 5 x 5 unitary matrix
N:
N, N Y =& 8., x? = N, ¢° (1.5)
im " kn "mn i Tik i i) v
where §i= mi/MZ’ with m, being the mass eigenvalue of the neutralino
state X(i)' Since Y is a real symmetric matrix, we can take ANim to be
real orthogonal matrix. Some of the mass eigenvalues may be negative.
These can be made positive by an appropriate choice of phases in Nim’
but we shall not do that here. The sign of m, is related to the CP
quantum number of X(i) [13]. The eigenvalues gi of (1.4b) are the

solutions of the eigenvalue equation

(€ = M(E - AIL(E + 8)(E*1?) - ¥*(E + v sin26,))]
~(£ - Ax cos“0, - A sin 0, )[(E + 8)(E - v sin 26,)-y°] = 0. (L.6)

Once we obtain the eigenvalues §i, the eigenstates of the neutralino

mass matrix can be written as



| A1 - (x)sinew cose [(1)2 - 5?)(5. + u)+72(t‘§i + v sin26v)] .l
[Ei-l\(a cosze + sin 6 )J(? ~E} ) £, +8) + yz(giﬂ) sin?.ev)]

xO= —é (£ Al coszew + sin ewn[(v sin20,, - E)(E + O %]

[Ei - Ao coszeW + sinzew)](gi + 6 ) v cos 28V

2 .2
[&i - Mo cos™@, + sin Gw)] 7 v cos20y

(1.7)
in the chosen basis. Here Ni is the appropriate no~rmalization factor.
The four component Majorana mass eigenstates x? of neutralinos
are defined as usual in terms of x? and )_((1) The neutralino components
given in (1.7) are elements of the transformation matrix N which
diagonalizes the mass matrix Y. These will determine the couplings of

the neutralino’s to the other states in the model.

II. COMPLETE SOLUTIONS

The eigenvalue problem, Eq.(1.6), cannot, in general, be solved
analytically. However, for certain special values of the parameters,
it reduces to a product of quadratic and linear equations, and can,
thus, be solved analytically, as we do in this section. These special
cases will serve as a basis for our approximate formulas derived in

Section IIT.

a) sin28w = 0, sin26V = 1: For these special values of the

parameters, the neutralino states are given by

1 0 0 0 0
0 cos¢ sing 0 0
o _ o _ , -l o_ 0 _
Xy = 0 Xo = sing X3 = cosd X4= 0 Xg 0
0 0 0 cosB sinf
| 0 ] U ] 0 | _sinﬁ ] | —cosf 1,

The corresponding neutralino masses are given by



§2=A<x,

o A-v+ /(A+ u)2 + 4 o A-v-Y(A+ v)z + 4

&y = 7 v &3 F 2 '
(2.2)

o 9—8-,/(v+6)2+412 o v—6+,[(u+6)2+472

64’ 2 ] 55' 2

with the mixing angles given by

v+ 6 1/2 A+ v 1/2
v - [t R ]
sinf = /3 ,/(u R 5)2+472 y sing =/5 (A + »)2+d (2.3)

b) A > 1 and/or v >>1: In this case complete solutions exist
only for sir126V = 1. This last condition is not required for the
analogous situtation in the minimal model. The neutralino states in

this limit are

sin® cosO,, [ 0 ] [0 ] [0 ]
cosf -sinf 0 0 0
Xp=| O Xp = | O x3= | 1| xg=1]0 Xg = | ©
0 0 0 cosf sinf
| 0 _l ’ Y ] ’ | 0 ] ’ | sinf | |—~cosf 1,
(2.4)

with eigenvalues

/ (0+85) 24472
_ 1
Eg = A, gg = Aa, &g: -, 52’5 - _w-3) :tr/2 o (2.5)

with the mi‘(ing angle B same as in (2.3). Note that the states 7(1 and
xg are W and B states, respectlvely, whereas x3 is a pure doublet
Higgsino state.The states x4 and XS are a mixture of doublet and

singlet Higgsino states.



c.) The limit of x << Vi Vo This limit is typical of the result that
emerges from renormalization group analysis (6] of the model and has
been studied for the Higgs sector of the model. In the present case
this limit corresponds to taking v, & 2 0 in the lowest approximation.

Then the mass matrix splits into a 2x2 matrix whose eigenvectors are

a mixture of doublet Higgsino and the singlet Higgsino,

o | o |
0
0 _ 0 _
Xy = | © X5 = | (2.6)
1/Y2 1/Y2
| 1//2 ] B ’
with eigenvalues
«Ei 5 = 0 (2.7)

and a 3x3 matrix which cannot be diagonalized analytically. However,
in the limit sin26w=0, the 3x3 matrix can also be diagonalized

analytically with eigenstates and masses given by

(1] 0] C 0]
0 cos¢ sing
0 0 . 0
Xy = 0 Xo = sin¢ X3 -cos$ {2.8)
0 0 0
L o] B L o]
/’ 2
£0 = Aa, gg’:), L AT+ 4 (2.9)
A -‘1/2
sin¢g = —-l 1+ > {2.10)
/2 A +4

Here xi is a pure photino, whereas xg 3 are mixtures of the zino and
b

the doublet Hig gsino.

~



III. ANALYTICAL FORMULAS AND NUMERICAL RESULTS

Having discussed various special cases where complete analytical
solutions are possible, we now discuss several approximation schemes
for the neutralino masses which may be of practical value in different
domains of the parameter space. The approximation formulas are based
on applying perturbation theory to the exact analytical results
obtained in Section II. We shall compare these approximate formulas
for the neutralino masses with the results obtained by the exact
numerical diaognalization of the mass matrix to establish their range

of applicability.

Since the number of parameters on which the neutralino mass
matrix depends is large, we shall use renormalization group equations
as a guiding principle to restrict the parameter space and to motivate
specific choice of the parameters for the numerical analysis. The
renormalization group equations for the parameters A and k have
infrared fixed points such that if they have wvalues of order 1 or
larger at the GUT scale, then at low energies their values will be

near the fixed point values [8]:
A ~ 0.87, k ~ 0.63. (3.1)

We shall consider the values in (3.1) as a conservative upper limit on
the parameters, and use them in our numerical work. The result (3.1),

and the first of egs.(1.2), imply

1%
_8_ ~ 0.70, T ~ 1.40, (3.2)
o ~ 0.47, (3.3)

respectively. Thus, in a renormalization group inspired model we have
only three independant parameters describing the neutralino mass
matrix which we shall take to be A, v and tanev. Furthermore, if we
assume that there is no explicit or spontaneous CP violation, then one
can choose to work in a vacuum state with all three vacuum expectation
values real and positive [6], implying a positive tangv[14]. In order

to accomplish this in a renormalization group approach with



supersymmetry breaking at GUT scale induced by a universal gaugino
mass term M' = M = MS = MU # 0, with no other soft SUSY breaking
terms, MU must be chosen to be positive. With A given by (3.1), the
effective u(= ax) parameter and the gaugino mass parameter M, and
hence v and A, are thus both positive, in contrast to the situation
that obtains in the minimal model[2]. We shall use this general resull
to restrict the parameter space in our numerical comparison with onp

analytical results, although our analytical formulas are valid for any

sign of p and A.

II1.1. Expansion in sin26w and sin2(6v—n/4)

This approximation scheme, which is based on the analsytical
solution (a) of section I for sin 6 = 0 and sm26 = 1, is analogous
to the corresponding scheme for the minimal model [3] The expansion
is applicable for a large range of A, v and tan@v values, A = 10, p <
10 and 0.1 < tan GV < 1, respectively. The mass matrix Y, Fq.(l.1b),

can be written as

- _ ’ _ . 9
Y = + Al - o) sin Gw 23 + A1 - o) smew cosGw Z]
+2L) sm623+21)sm6 cosz?}‘ (3.1
e . .2 _ , - L
where YO is the mass matrix for sin 6w = 0, stQV =1, and r = H\,

- n/4. The 5x5 matrices Zi and E; are given b'»

[0 0 o 0 0 | [ 00 ol
0 0 0 0 0 o 0 0 0
Z,= oo o 0 2 = 0 0 0 0
0 0 0 0 0 0 0
[ 0 0 0 0o o0 | |, ] 0 0 0 0]

{3.5)

with (71. the Pauli matrices. Perturbation theory applied to (3.4) gives

. 2 2
[A(1-«) smew cos@w] cos ¢

g, = gg + AL - a)sinzew +

0 0
2 2 €17 &
[(A(1-«) sin ew cos Qw] sin® ¢
+
0 0 )
81~ &



_ .0 _ . 2 2 .2 . 2
62 = &2 - M1 - «)sin ew cos ¢ + 2 p sin"e sin ¢
[A{l-a) sin@ W cosew]zcosztb [200 sine sing cos{?]2
+ +
0 0 0 0
+ [2v sine sing sinf] 2
0 o} ’
g2 7 &5
_ 20 _ .2 . 2 . 2 2
53 = 53 A(l-a) sin Gw sin"¢ + 20 sin ¢ cos ¢
[A(1-c) sinGw cosGW sind)]2 [2v sine cos¢ cos[:'i]2
* 0 0 * 0 )
E 3_ E 1 E 3— & 4
2

[2v sine cos¢ sinp]

53-335

, (3.6)

2
£ = go ~ 2b sin%e Coszﬁ 4 _L2v sine sin¢ cosf]
1 4 E0 _ g0
4 =2

[2v sine cos¢ cosf] 2

el |

{2v sine sin¢ sinfl]

(8] 0
5 7 &9

_ 20 .2 .2
55—55 2v sin"e sin B +

[2v sine cos¢ sin] 2

ee

where Eci) are the eigenvalues of YO and are given by 6(1) Ax, and F? {i
= 2, 3, 4, 5) as in (2.2), with ¢ and B sgiven by (2.3). These
eigenvalues are plotted in Fig.1 as a function of v for A = 1.0 and
tanGV = 0.4 (sinZeV ~ 0.7), together with the exact results for the
same set of parameters. It is obvious that (3.6) is an excellent
approximation for v < 10 for tan GV < 1. This covers almost the entire

phenomenologically interesting range of parameters.

111.2 Expansion in v and sinzew

Since v and & are related through the renormalization group

10



equation constraint (3.2), this is effectively an expansion in p», &
and sinzew. The limit of small ¥ and & is interesting, because it is a
result which emerges from a rencormalization group analysis of the
non-minimal model [6]. If we expand about this limit, we will get
approximation formulae for p < 1 which are valid for all values of
tanf_,. Starting from the exact solution (2.6) - (2.10) of Section 1I,

\Y
and expanding in v, 6 and sin26w we get the eigenvalues

2
[

[A(l-a) sinB® . cosB . cos¢]
£.o= % + All-«) sin6., + W W
1 1 W F“ L0
(A(l-x) sin8 W cos@wsind)]2
+
0 ) ’
£ 7 &3
. , , [(1-c) sin® _cosp]”
I;’z = {-:2 - All-«) sin Qw cos Gw + 5 5
‘52 - gl
) [v sin ZGV sing cos¢>]2
- v sin26v sin"¢  +
0 0
2 7 &
(v cos26, sing)® (e% - g9
+ 1+ 2 ‘
0 0 0 0
2(&2 - 64) (Ez - E.) ) )
5"50‘/\(1‘)'29 .2¢_).29 2
3 7 &3 ) sin W sin P sin v cos ¢
[A(1-) sinew cosGW sintt)]2 [ sin ZBV cos¢ sing) :
+ +
0 0 0 0
[v cos 26V cos <1>]2 (&g - &Z)
+ 5 5 1 + = 5 (3.7)
2 (‘E3 - 64) (63 - 65)
. . 2 2
o p sin 26v {v sin 26 V] [v cos 26, sin ¢ ]
54 - 54 * 2 * 0 o °© 0 \0
gy - € 20€) ~E,)

11



2
[v cos ZGV cos ¢] 5 62

+ .0y —

0 0 2 P 0
L, rmn, om0l o cost )
5 5 2 o 5 5 S
. (v cos 28, cos $1° s, 5 2
0 2 0 P )

where &? are the eigenvalues in the limit of v, O sin26w » 0, and are
given in (2.7) and (2.9). Note that only 54 and 55 depend on &. These
eigenvalues are plotted in Fig.2, together with the exact results, as
a function of v for tan GV = 0.4 and A = 1.0. From the figure we see
that the approximation is of a good quality for v < 1.0. This

approximation is in fact valid for all values of tanev.

111.3 Expansion in 1/A or*1/v and sin 2(6v~1r/4)

We have seen in Section 11 that complete analytical
solutions can pe obtained for A >> 1 and/or P >? 1 with sinZGV = 1.
Taking solution (2.5) as the zeroth approximation, perturbation

theory gives,

c0526 sinze
g,z Eo 4 W e 0+ W
10 o _ g0 2~ 52 o _ g9 '
cos 0 sin 6 oA o
€3=a§+2vsme+.-—-ﬂ+____w (v sin2e cospl
0‘_ 0 _ 0 0 _ EO
E3~ &4 Eq ~ &g Eq 1
2
[v sin 2¢_sin f] .
0 0 , .
€3~ &5

{v sin 2€ CcOS B]z + [v sin € sin 28] 2

£, - £ £ - &

§4 = EZ -2v sinzs coszﬁ +

12



2 ”
0 ] .2 .7 p osin 2r sin B1° posin ofosin 217
£, = F. - 2 p sin € SIn B+ L { + [_________‘_,,__,!,_
o o] &0 _ zg() &u _ En
5 3 5 1

where E? are the limiting values given in (2.5}, and ¢ 9\. - n/t. The
result (3.8) is shown in Fig. 3, where we have plotted the eigenvilnes
as a function of p for A = 1.0 and tanev. We see from the figure that
the approximation is fairly good even for low values of A when 1 is

small. The approximation becomes better for larger values of v for

large A > 2.

IV. DISCUSSION AND CONCLUDING REMARKS

We have obtained exact analytical formulas for the neutralino
masses in NMSSM for some special values of the parameters. Based on
these solutions we have build up approximate formulae throush o
perturbation expansion which cover a wide region of the parameter
space relevant for phenomenology, and compared them with exact
numerical solution for.the neutralino masses. We note that the
neutralino states can be obtained, for each of the three cases
discussed above, from the general result (1.7). It is important to
point out that the approximation formulae. (3.6) - (3.8) are valid when
the corresponding eigenvalues E? are non-degenerate. In case of
degeneracy one must apply degenerate perturbation theory. In our
numerical analysis, with the parameter space that we have considered,
we have not actually come across a degeneracy. To illustrate this
point we consider the solution (a) of Section 11. We note that FL: and
&g, and &i and Eg are never degenerate for anv physical values of the
parameters. E(i and Eg can be degenerate only for negative values of
which we have not considered here. Similar remarks apply to the
eigenvalues E,(i’ and F,g, and E? and EF;, etc.

If the future data rules out the minimal supersymr.tric
model, then in the context of supersymmetr: the non-minimal madel
could be a viable alternative. We have seen that in the contest ~f
renormnlization group analysis, the effective number of pavameters

describing the neutralino sector is three, the same as it the mintmal

13



model. It will, therefore, be interesting to see whether there are
distinctive signatures of the model in the neutralino sector in the
context of present and future colliders. This gquestion is under study

and will be reported elsewhere [15].
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FIGURE CAPTIONS

1.

Approximate neutralino masses, result (3.6), as a function of v
for fixed value of A = 1.0, tan GV = 0.4, with sinzew = 0.23.
Solid curves are exact numerical solutions.

Neutralino masses as obtained from the approximation

formulas (3.7), represented as dashed lines, as a function of
p. Solid lines represent exact solutions. This approximation is
valid for all values of tanGV‘

Approximation formulas (3.8) (dashed lines) for neutralino masses
plotted as a function of v, Solid lines represent exact
results. The approximation becomes better for larger values

of v at values of A > 2.
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